10 Lecture 10 - Differentiation

10.1 Definition and Some Examples

Let $A \subset \mathbb{R}$ and $a \in A$. We also assume that there exists $\delta>0$ such that $(a-\delta, a+\delta) \subset A$. Let $f: A \rightarrow \mathbb{R}$ be a given function.

Definition 10.1. - We say that f is differentiable at a, or f has a derivative at a, if the limit

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists and is finite. We will write $f^{\prime}(a)$ or $\frac{d f}{d x}(a)$ for the derivative of f at a, that is,

$$
f^{\prime}(a):=\frac{d f}{d x}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

whenever this limit exists and is finite.

- If for each $a \in A$ the derivative $f^{\prime}(a)$ exists, then the function f is said to be differentiable on A and the function defined by $A \ni x \mapsto f^{\prime}(x)$ is called the derivative of f on the set A.

Remark 10.1. Taking $h:=x-a$ in Definition 10.1, we have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Definition 10.2. - If a finite left-sided limit

$$
\lim _{x \rightarrow a-} \frac{f(x)-f(a)}{x-a}
$$

exists, then this limit is called a left derivative of f at a and is denoted by $f_{-}^{\prime}(a)$ or $\frac{d^{-} f}{d x}(a)$.

- If a finite right-sided limit

$$
\lim _{x \rightarrow a+} \frac{f(x)-f(a)}{x-a}
$$

exists, then this limit is called a right derivative of f at a and is denoted by $f_{+}^{\prime}(a)$ or $\frac{d^{+} f}{d x}(a)$.
Remark 10.2. By Theorem 7.8, a derivative $f^{\prime}(a)$ exists iff $f_{-}^{\prime}(a)$ and $f_{+}^{\prime}(a)$ exist and $f_{-}^{\prime}(a)=f_{+}^{\prime}(a)$.
Example 10.1. For the function $f(x)=x, x \in \mathbb{R}$, and any point $a \in \mathbb{R}$ we have

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{x-a}{x-a}=1 .
$$

Thus, $(x)^{\prime}=1, x \in \mathbb{R}$.
Example 10.2. For the function $f(x)=|x|, x \in \mathbb{R}$, and the point $a=0$ we have

$$
f_{-}^{\prime}(0)=\lim _{x \rightarrow 0-} \frac{|x|-|0|}{x-0}=\lim _{x \rightarrow 0-} \frac{-x}{x}=-1
$$

and

$$
f_{+}^{\prime}(0)=\lim _{x \rightarrow 0+} \frac{|x|-|0|}{x-0}=\lim _{x \rightarrow 0+} \frac{x}{x}=1
$$

So, $f_{-}^{\prime}(0)=-1 \neq f_{+}^{\prime}(0)=1$ and the derivative $f^{\prime}(0)$ does not exist.

Example 10.3. Let $f(x)=x^{2}, x \in \mathbb{R}$, and $a \in \mathbb{R}$. Then

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}=\lim _{x \rightarrow a} \frac{(x-a)(x+a)}{x-a}=\lim _{x \rightarrow a}(x+a)=2 a
$$

Hence, $\left(x^{2}\right)^{\prime}=2 x, x \in \mathbb{R}$.
Example 10.4. For the function $f(x)=\sqrt[3]{x}, x \in \mathbb{R}$, and the point $a=0$ we have

$$
\lim _{x \rightarrow 0} \frac{\sqrt[3]{x}-\sqrt[3]{0}}{x-0}=\lim _{x \rightarrow 0} \frac{1}{\sqrt[3]{x^{2}}}=+\infty
$$

Consequently, the derivative of f at 0 does not exist.
Example 10.5. Let $f(x)=x \sin \frac{1}{x}, x \in \mathbb{R} \backslash\{0\}$, and $f(0)=0$. Let also $a=0$. Then $\frac{f(x)-f(0)}{x-0}=$ $\frac{x \sin \frac{1}{x}-0}{x-0}=\sin \frac{1}{x}$ does not have any limit as $x \rightarrow 0$ (see Exercise 8.8). Thus, the function f is not differentiable at 0 .
Exercise 10.1. Check that $(x|x|)^{\prime}=2|x|, x \in \mathbb{R}$.
Exercise 10.2. For the function $f(x)=\left|x^{2}-x\right|, x \in \mathbb{R}$, compute $f^{\prime}(x)$ for each $x \in \mathbb{R} \backslash\{0,1\}$. Compute left and right derivatives at points 0 and 1.

10.2 Interpretation of Derivative

a) Physical Interpretation.

Let a point P move on the real line and $s(t)$ is its position at time t. Let t_{1}, t_{2} be two moments of time and $t_{1}<t_{2}$. Then the average velocity over the period of time $\left[t_{1}, t_{2}\right]$ is the ratio $\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}$, where $s\left(t_{2}\right)-s\left(t_{1}\right)$ is the distance travelled by P during the time $t_{2}-t_{1}$. The instantaneous velocity at t_{1} is the limit of the average velocity as t_{2} approaches t_{1}, that is, it is the limit $\lim _{t_{2} \rightarrow t_{1}} \frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}$. Thus, instantaneous velocity $v(t)$ of the point P at time t is the derivative of s at t, i.e. $v(t)=s^{\prime}(t)$.
b) Geometric interpretation

Let a function $f:(a, b) \rightarrow \mathbb{R}$ be differentiable at a.

The slope of the secant line through $(a, f(a))$ and $(x, f(x))$ is

$$
\tan \alpha_{x}=\frac{f(x)-f(a)}{x-a}
$$

If x approaches a, the secant line through $(a, f(a))$ and $(x, f(x))$ approaches the tangent line through $(a, f(a))$. Hence, the derivative $f^{\prime}(a)$ is the slope of the tangent line through the point $(a, f(a))$, that is,

$$
\tan \alpha=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)
$$

So, the linear function whose graph is the tangent line through $(a, f(a))$ can be given by the equation

$$
f^{\prime}(a)=\tan \alpha=\frac{y-f(a)}{x-a}, \quad x \in \mathbb{R}
$$

that is,

$$
y=f(a)+f^{\prime}(a)(x-a), \quad x \in \mathbb{R}
$$

10.3 Properties of Derivatives

Theorem 10.1. If a function $f: A \rightarrow \mathbb{R}$ is differentiable at a, then there exists a function $\varphi: A \rightarrow \mathbb{R}$ such that

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\varphi(x)(x-a), \quad x \in A
$$

and $\varphi(x) \rightarrow 0, x \rightarrow a$.
Proof. We take $\varphi(x):=\frac{f(x)-f(a)}{x-a}-f^{\prime}(a), x \in A \backslash\{a\}$ and $\varphi(a)=0$. Then the statement easily follows from Definition 10.1.

Exercise 10.3. If there exists $L \in \mathbb{R}$ such that $f(x)=f(a)+L(x-a)+\varphi(x)(x-a), x \in A$, for some function $\varphi: A \rightarrow \mathbb{R}$ satisfying $\varphi(x) \rightarrow 0, x \rightarrow a$, then f is differentiable at a and $f^{\prime}(a)=L$. Prove this statement.

Theorem 10.2. If f is differentiable at a point a, then f is continuous at a.
Proof. Using theorems 10.1 and 8.1, we obtain

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left(f(a)+f^{\prime}(a)(x-a)+\varphi(x)(x-a)\right)=f(a)
$$

Exercise 10.4. Let f has a derivative $f^{\prime}(a)$ at a point a. Express through $f(a)$ and $f^{\prime}(a)$ the following limits:
a) $\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{h}$;
b) $\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a)}{h}$;
c) $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{h}$;
d) $\lim _{n \rightarrow \infty} n\left(f\left(a+\frac{1}{n}\right)-f(a)\right)$;
e) $\lim _{n \rightarrow \infty} n\left(f\left(\frac{n+1}{n} a\right)-f(a)\right)$; f) $\lim _{x \rightarrow 1} \frac{f(x a)-f(a)}{x-1} ;$ g) $\lim _{n \rightarrow \infty}\left(\frac{f\left(a+\frac{1}{n}\right)}{f(a)}\right)^{n}, f(a) \neq 0$.

Exercise 10.5. Prove that f is continuous at a point a if $f_{-}^{\prime}(a)$ and $f_{+}^{\prime}(a)$ exist.

Theorem 10.3 (Differentiation rules). Let functions $f, g: A \rightarrow \mathbb{R}$ have derivatives $f^{\prime}(a)$ and $g^{\prime}(a)$ at a point a. Then

1) for each $c \in \mathbb{R}$ the function $c f$ has a derivative at a and $(c f)^{\prime}(a)=c f^{\prime}(a)$;
2) the function $f+g$ has a derivative at a and $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$;
3) the function $f \cdot g$ has a derivative at a and $(f \cdot g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$;
4) if additionally $g(a) \neq 0$, then the function $\frac{f}{g}$ has a derivative at a and $\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}}$.

Proof. Proof of 2). By the definition of derivative and Theorem 8.1 b), we have

$$
\begin{gathered}
(f+g)^{\prime}(a) \stackrel{\text { Def. } 10.1}{=} \lim _{x \rightarrow a} \frac{f(x)+g(x)-(f(a)+g(a))}{x-a}=\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}+\frac{g(x)-g(a)}{x-a}\right) \\
\text { Th. } 8.1 \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}+\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a} \stackrel{\text { Def. } 10.1}{=} f^{\prime}(a)+g^{\prime}(a) .
\end{gathered}
$$

Proof of 3). We compute

$$
\begin{aligned}
(f \cdot g)^{\prime}(a) & \text { Def. } 10.1 \lim _{x \rightarrow a} \frac{f(x) g(x)-f(a) g(a)}{x-a}=\lim _{x \rightarrow a} \frac{f(x) g(x)-f(a) g(x)+f(a) g(x)-f(a) g(a)}{x-a} \\
& =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} g(x)+f(a) \frac{g(x)-g(a)}{x-a}\right) \stackrel{\text { Th. }}{=} 8.1 \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a} g(x) \\
& +f(a) \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}\left(\text { Def. } 10.1+\text { Th. 10.2) }=f^{\prime}(a) g(a)+f(a) g^{\prime}(a) .\right.
\end{aligned}
$$

Proof of 4). Since $g(a) \neq 0$, we have that $g(x) \neq 0$ in some neighbourhood of the point a, by theorems 10.2 and 8.2. Thus,

$$
\begin{aligned}
\frac{1}{x-a}\left(\frac{f(x)}{g(x)}-\frac{f(a)}{g(a)}\right) & =\frac{f(x) g(a)-f(a) g(a)+f(a) g(a)-f(a) g(x)}{g(x) g(a)(x-a)} \\
& =\frac{1}{g(x) g(a)}\left(\frac{f(x)-f(a)}{x-a} g(a)-f(a) \frac{g(x)-g(a)}{x-a}\right) .
\end{aligned}
$$

Thus, the needed equality follows from the latter relation and theorems 10.2 and 8.1.
Theorem 10.4 (Chain rule). Let a function $f: A \rightarrow \mathbb{R}$ have a derivative $f^{\prime}(a)$ at a point $a \in A$. Let $f(A) \subset B$ and a function $g: B \rightarrow \mathbb{R}$ have a derivative $g^{\prime}(b)$ at the point $b=f(a)$. Then the composition $g \circ f=g(f)$ has a derivative at the point a and

$$
(g \circ f)^{\prime}(a)=(g(f))^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a) .
$$

Proof. By Theorem 10.1,

$$
g(y)-g(b)=g^{\prime}(b)(y-b)+\varphi(y)(y-b),
$$

for some function $\varphi: B \rightarrow \mathbb{R}$ satisfying $\varphi(y) \rightarrow 0, y \rightarrow b$. Taking $y:=f(x)$ and dividing the latter equality by $x-a$, we obtain

$$
\frac{g(f(x))-g(f(a))}{x-a}=g^{\prime}(b) \frac{f(x)-f(a)}{x-a}+\varphi(f(x)) \frac{f(x)-f(a)}{x-a}
$$

By Theorem 10.2, $f(x) \rightarrow f(a)=b, x \rightarrow a$, and, consequently, $\varphi(f(x)) \rightarrow 0, x \rightarrow a$. So,

$$
(g \circ f)^{\prime}(a)=\lim _{x \rightarrow a} \frac{g(f(x))-g(f(a))}{x-a}=g^{\prime}(b) f^{\prime}(a)+0 f^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)
$$

Example 10.6. Let $\alpha \in \mathbb{R}$. Then $\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}, x>0$.
Indeed, using Remark 10.1 and Theorem 8.8, we obtain for $x>0$

$$
\frac{(x+h)^{\alpha}-x^{\alpha}}{h}=x^{\alpha-1} \frac{\left(1+\frac{h}{x}\right)^{\alpha}-1}{\frac{h}{x}} \rightarrow x^{\alpha-1} \cdot \alpha, \quad h \rightarrow 0 .
$$

Exercise 10.6. a) Let $n \in \mathbb{N}$. Show that $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for all $x \in \mathbb{R}$.
b) Let $m \in \mathbb{Z}$. Show that $\left(x^{m}\right)^{\prime}=m x^{m-1}$ for all $x \in \mathbb{R} \backslash\{0\}$.

Example 10.7. Let $a>0$. Then $\left(a^{x}\right)^{\prime}=a^{x} \ln a$ for all $x \in \mathbb{R}$. In particular, if $a=e$, then $\left(e^{x}\right)^{\prime}=e^{x}$ for all $x \in \mathbb{R}$.

Indeed, using Remark 10.1 and Theorem 8.7, we have for $x \in \mathbb{R}$

$$
\frac{a^{x+h}-a^{x}}{h}=a^{x} \frac{a^{h}-1}{h} \rightarrow a^{x} \cdot \ln a, \quad h \rightarrow 0
$$

Example 10.8. a) $(\sin x)^{\prime}=\cos x$ and $(\cos x)^{\prime}=-\sin x$ for all $x \in \mathbb{R}$;
b) $(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$ for all $x \in \mathbb{R} \backslash\left\{\frac{\pi}{2}+\pi k: k \in \mathbb{Z}\right\}$;
c) $(\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}$ for all $x \in \mathbb{R} \backslash\{\pi k: k \in \mathbb{Z}\}$.

Let us check the equalities in a). For every $x \in \mathbb{R}$ we have

$$
\frac{\sin (x+h)-\sin x}{h}=\frac{2}{h} \sin \frac{h}{2} \cos \left(x+\frac{h}{2}\right)=\frac{\sin \frac{h}{2}}{\frac{h}{2}} \cos \left(x+\frac{h}{2}\right) \rightarrow \cos x, \quad h \rightarrow 0
$$

Thus, $(\sin x)^{\prime}=\cos x, x \in \mathbb{R}$.
Similarly,

$$
\frac{\cos (x+h)-\cos x}{h}=-\frac{2}{h} \sin \frac{h}{2} \sin \left(x+\frac{h}{2}\right)=-\frac{\sin \frac{h}{2}}{\frac{h}{2}} \sin \left(x+\frac{h}{2}\right) \rightarrow-\sin x, \quad h \rightarrow 0
$$

Hence, $(\cos x)^{\prime}=-\sin x, x \in \mathbb{R}$.
In order to compute $(\tan x)^{\prime}$, we will use Theorem 10.34). So, for every $x \in \mathbb{R}$ such that $\cos x \neq 0$ we have

$$
(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cdot \cos x-\sin x \cdot(\cos x)^{\prime}}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}
$$

and for every $x \in \mathbb{R}$ such that $\sin x \neq 0$

$$
(\cot x)^{\prime}=\left(\frac{\cos x}{\sin x}\right)^{\prime}=\frac{(\cos x)^{\prime} \cdot \sin x-\cos x \cdot(\sin x)^{\prime}}{\sin ^{2} x}=-\frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x} .
$$

Exercise 10.7. Compute derivatives of the following functions:
a) $y=\frac{2 x}{1-x^{2}}$;
b) $y=\sqrt[3]{\frac{1+x^{2}}{1-x^{2}}}$;
c) $y=e^{-x^{2} \sin x}$;
d) $y=\frac{\sin ^{2} x}{\sin x^{2}}$;
e) $y=e^{x}\left(1+\cot \frac{x}{2}\right)$.

Exercise 10.8. Let $f(x)=x^{2}, x \leq 1$, and $f(x)=a x+b, x>1$. For which $a, b \in \mathbb{R}$ the function f : a) is continuous on $\mathbb{R} ;$ b) is differentiable on \mathbb{R} ? Compute f^{\prime}.

Exercise 10.9. Show that
a) $(\sinh x)^{\prime}=\cosh x, x \in \mathbb{R} ;$ b) $(\cosh x)^{\prime}=\sinh x, x \in \mathbb{R}$;
c) $(\tanh x)^{\prime}=\frac{1}{\cosh ^{2} x}, x \in \mathbb{R} ;$ d) $(\operatorname{coth} x)^{\prime}=-\frac{1}{\sinh ^{2} x}, x \in \mathbb{R} \backslash\{0\}$.

Exercise 10.10. Let $f(x)=\frac{1}{x^{3}} e^{-\frac{1}{x^{2}}}$ for $x \neq 0$ and $f(0)=0$. Prove that $f^{\prime}(0)=0$.

