

Problem sheet 7

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>. Solutions will be collected during the lecture on Wednesday December 12.

- 1. **[1x6 points]** Compute derivatives of the following functions: a) $f(x) = \frac{1}{4} \ln \frac{x^2 - 1}{x^2 + 1}$; b) $f(x) = \ln \left(x + \sqrt{x^2 + 1}\right)$; c) $f(x) = \ln \tan \frac{x}{2}$; d) $f(x) = \arcsin \frac{1 - x}{\sqrt{2}}$; e) $f(x) = \arctan \frac{1 + x}{1 - x}$; f) $f(x) = \sqrt[x]{x}$.
- 2. [2 points] Let a function $f : (a, b) \to \mathbb{R}$ be differentiable on (a, b) and there exists $L \in \mathbb{R}$ such that $|f'(x)| \leq L$ for all $x \in (a, b)$. Show that f is uniformly continuous on (a, b).
- 3. [2 points] Prove the equality

$$3 \arccos x - \arccos(3x - 4x^3) = \pi, \quad x \in \left[-\frac{1}{2}, \frac{1}{2}\right].$$

(*Hint:* Compute derivatives of the left and right hand sides of the equality)

- 4. [3 points] Let functions $f, g: (a, b) \to (0, +\infty)$ be differentiable on (a, b) and for every $x \in (a, b)$ $\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)}$. Prove that there exists L > 0 such that f(x) = Lg(x) for all $x \in (a, b)$. (*Hint:* Consider the functions $\ln f$ and $\ln g$)
- 5. [3 points] (Generalised Bernoulli inequality) For each $\alpha > 1$, prove that $(1 + x)^{\alpha} \ge 1 + \alpha x$ for all x > -1. Moreover, $(1 + x)^{\alpha} = 1 + \alpha x$ iff x = 0.
- 6. [2x4 points] Identify the intervals on which the following functions are monotone.
 a) f(x) = 3x x³, x ∈ ℝ b)f(x) = ^{2x}/_{1+x²}, x ∈ ℝ; c) f(x) = ^{x²}/_{2^x}, x ∈ ℝ;
 d) f(x) = x + √(1-x²), x ∈ ℝ.