Problem sheet 7

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday December 12.

1. [$1 \mathbf{x} 6$ points] Compute derivatives of the following functions:
a) $f(x)=\frac{1}{4} \ln \frac{x^{2}-1}{x^{2}+1}$;
b) $f(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$;
c) $f(x)=\ln \tan \frac{x}{2}$;
d) $f(x)=\arcsin \frac{1-x}{\sqrt{2}}$;
e) $f(x)=\arctan \frac{1+x}{1-x} ;$ f) $f(x)=\sqrt[x]{x}$.
2. [2 points] Let a function $f:(a, b) \rightarrow \mathbb{R}$ be differentiable on (a, b) and there exists $L \in \mathbb{R}$ such that $\left|f^{\prime}(x)\right| \leq L$ for all $x \in(a, b)$. Show that f is uniformly continuous on (a, b).
3. [2 points] Prove the equality

$$
3 \arccos x-\arccos \left(3 x-4 x^{3}\right)=\pi, \quad x \in\left[-\frac{1}{2}, \frac{1}{2}\right] .
$$

(Hint: Compute derivatives of the left and right hand sides of the equality)
4. [3 points] Let functions $f, g:(a, b) \rightarrow(0,+\infty)$ be differentiable on (a, b) and for every $x \in(a, b)$ $\frac{f^{\prime}(x)}{f(x)}=\frac{g^{\prime}(x)}{g(x)}$. Prove that there exists $L>0$ such that $f(x)=L g(x)$ for all $x \in(a, b)$.
(Hint: Consider the functions $\ln f$ and $\ln g$)
5. [3 points] (Generalised Bernoulli inequality) For each $\alpha>1$, prove that $(1+x)^{\alpha} \geq 1+\alpha x$ for all $x>-1$. Moreover, $(1+x)^{\alpha}=1+\alpha x$ iff $x=0$.
6. [2×4 points] Identify the intervals on which the following functions are monotone.
a) $f(x)=3 x-x^{3}, x \in \mathbb{R}$
b) $f(x)=\frac{2 x}{1+x^{2}}, x \in \mathbb{R}$;
c) $f(x)=\frac{x^{2}}{2^{x}}, x \in \mathbb{R}$;
d) $f(x)=x+\sqrt{\left|1-x^{2}\right|}, x \in \mathbb{R}$.

