

Problem sheet 6

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>. Solutions will be collected during the lecture on Wednesday December 5.

- 1. **[1+1+1 points]** Express through f'(a) the following limits: a) $\lim_{h \to 0} \frac{f(a+2h)-f(a)}{h}$; b) $\lim_{h \to 0} \frac{f(a+h)-f(a-h)}{h}$; c) $\lim_{n \to \infty} n \left(f\left(\frac{n+1}{n}a\right) - f(a) \right)$.
- 2. [2 points] Using the definition of derivative, check that $(x|x|)' = 2|x|, x \in \mathbb{R}$.
- 3. [3 points] For the function $f(x) = |x^2 x|, x \in \mathbb{R}$, compute f'(x) for each $x \in \mathbb{R} \setminus \{0, 1\}$. Compute left and right derivatives at points 0 and 1.
- 4. [1+2 points] Let

$$f(x) = \begin{cases} x^2, & x \le 1, \\ ax + b, & x > 1. \end{cases}$$

For which $a, b \in \mathbb{R}$ the function f:

a) is continuous on \mathbb{R} ; b) is differentiable on \mathbb{R} ? Compute also f'.

- 5. **[2x3 points]** Check whether the following functions are differentiable at 0. Justify your answer. a) $f(x) = \begin{cases} \frac{\cos x - 1}{x}, & x \neq 0, \\ 0, & x = 0; \end{cases}$ b) $f(x) = \sqrt[5]{x^2}, x \in \mathbb{R};$ c) $f(x) = |\sin x|, x \in \mathbb{R}.$
- 6. [1x8 points] Compute derivatives of the following functions:

a)
$$f(x) = x^2 \sin x$$
; b) $f(x) = e^{-\frac{x^2}{2}} \cos x$; c) $f(x) = \frac{x}{1+x^2}$; d) $f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$;
e) $f(x) = 2^{\tan(x^2-1)}$; f) $f(x) = \sin(\cos^2(\tan^3 x))$; g) $f(x) = \sqrt[3]{\frac{1+x^3}{1-x^3}}$;
h) $f(x) = e^{ax} \cdot \frac{a \sin bx - b \cos bx}{\sqrt{a^2 + b^2}}$, where a, b are some constants.