Problem sheet 6

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday December 5.

1. $[\mathbf{1}+\mathbf{1}+\mathbf{1}$ points $]$ Express through $f^{\prime}(a)$ the following limits:
a) $\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a)}{h}$;
b) $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{h}$;
c) $\lim _{n \rightarrow \infty} n\left(f\left(\frac{n+1}{n} a\right)-f(a)\right)$.
2. [2 points] Using the definition of derivative, check that $(x|x|)^{\prime}=2|x|, x \in \mathbb{R}$.
3. [3 points] For the function $f(x)=\left|x^{2}-x\right|, x \in \mathbb{R}$, compute $f^{\prime}(x)$ for each $x \in \mathbb{R} \backslash\{0,1\}$. Compute left and right derivatives at points 0 and 1 .
4. [1+2 points] Let

$$
f(x)= \begin{cases}x^{2}, & x \leq 1 \\ a x+b, & x>1\end{cases}
$$

For which $a, b \in \mathbb{R}$ the function f :
a) is continuous on $\mathbb{R} ; \quad$ b) is differentiable on \mathbb{R} ? Compute also f^{\prime}.
5. [2×3 points] Check whether the following functions are differentiable at 0 . Justify your answer.
a) $f(x)= \begin{cases}\frac{\cos x-1}{x}, & x \neq 0, \\ 0, & x=0 ;\end{cases}$
b) $f(x)=\sqrt[5]{x^{2}}, x \in \mathbb{R} ;$
c) $f(x)=|\sin x|, x \in \mathbb{R}$.
6. [$\mathbf{1 x 8} \mathbf{p o i n t s}]$ Compute derivatives of the following functions:
a) $f(x)=x^{2} \sin x$;
b) $f(x)=e^{-\frac{x^{2}}{2}} \cos x$;
c) $f(x)=\frac{x}{1+x^{2}}$;
d) $f(x)=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$;
e) $f(x)=2^{\tan \left(x^{2}-1\right)}$; f) $f(x)=\sin \left(\cos ^{2}\left(\tan ^{3} x\right)\right)$;
g) $f(x)=\sqrt[3]{\frac{1+x^{3}}{1-x^{3}}}$;
h) $f(x)=e^{a x} \cdot \frac{a \sin b x-b \cos b x}{\sqrt{a^{2}+b^{2}}}$, where a, b are some constants.

