

Problem sheet 5

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>. Solutions will be collected during the lecture on Wednesday November 28.

- 1. **[1+1 points]** Let a, b be a real numbers, f(x) = x + 1, $x \le 0$ and f(x) = ax + b, x > 0. a) For which a, b the function f is monotone on \mathbb{R} ? b) For which a, b the function f is continuous on \mathbb{R} ?
- 2. [1+1 points] Compute the following limits: a) $\lim_{x\to 0} (\tan x - e^x)$; b) $\lim_{x\to 2} \frac{x^2 - 3^x + 1}{x - \sin \pi x}$.
- 3. [2 points] Let $f(x) = \lfloor x \rfloor \sin \pi x$, $x \in \mathbb{R}$. Prove that f is continuous on \mathbb{R} and sketch its graph. (*Hint:* If $x \in [k, k+1)$ for some $k \in \mathbb{Z}$, then $\lfloor x \rfloor = k$ and $f(x) = k \sin \pi x$. Find f(k-) and f(k+) at the points k.)
- 4. [2 points] Prove that the function $f(x) = \sin \frac{1}{x}$, $x \neq 0$, and f(0) = 0, is discontinuous at 0.
- 5. [2x6 points] Compute the following limits:
 - a) $\lim_{x \to 0} \frac{\arcsin x}{x};$ b) $\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}};$ c) $\lim_{x \to +\infty} x(\ln(1+x) \ln x);$ d) $\lim_{x \to 0} \left(\frac{1 + \sin 2x}{\cos 2x}\right)^{\frac{1}{x}};$ e) $\lim_{x \to 0} \frac{\sqrt[7]{\cos x} 1}{\sqrt[3]{1+x^2} 1};$ f) $\lim_{x \to 0} \frac{e^{\sin 2x} e^{\tan x}}{x}.$
- 6. [2 points] Prove that the function $P(x) = x^3 + 7x^2 1$, $x \in \mathbb{R}$, has at least one root, that is, there exists $x_0 \in \mathbb{R}$ such that $P(x_0) = 0$.
- 7. [3 points] Let $f : [a, b] \to \mathbb{R}$ strictly increase on [a, b] and for each $y_0 \in [f(a), f(b)]$ there exist $x_0 \in [a, b]$ such that $f(x_0) = y_0$. Prove that f is continuous on [a, b].
- 8. [2 points] Using the definition, show that the function $f(x) = \sqrt{x}$, $x \in [1, +\infty)$, is uniformly continuous on $[1, +\infty)$.