Problem sheet 5

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday November 28.

1. [$\mathbf{1}+\mathbf{1}$ points] Let a, b be a real numbers, $f(x)=x+1, x \leq 0$ and $f(x)=a x+b, x>0$. a) For which a, b the function f is monotone on \mathbb{R} ? b) For which a, b the function f is continuous on \mathbb{R} ?
2. [$\mathbf{1}+\mathbf{1}$ points] Compute the following limits:
a) $\lim _{x \rightarrow 0}\left(\tan x-e^{x}\right)$;
b) $\lim _{x \rightarrow 2} \frac{x^{2}-3^{x}+1}{x-\sin \pi x}$.
3. [2 points] Let $f(x)=\lfloor x\rfloor \sin \pi x, x \in \mathbb{R}$. Prove that f is continuous on \mathbb{R} and sketch its graph. (Hint: If $x \in[k, k+1$) for some $k \in \mathbb{Z}$, then $\lfloor x\rfloor=k$ and $f(x)=k \sin \pi x$. Find $f(k-)$ and $f(k+)$ at the points k.)
4. [2 points] Prove that the function $f(x)=\sin \frac{1}{x}, x \neq 0$, and $f(0)=0$, is discontinuous at 0 .
5. [2×6 points] Compute the following limits:
a) $\lim _{x \rightarrow 0} \frac{\arcsin x}{x}$;
b) $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}$;
c) $\lim _{x \rightarrow+\infty} x(\ln (1+x)-\ln x)$;
d) $\lim _{x \rightarrow 0}\left(\frac{1+\sin 2 x}{\cos 2 x}\right)^{\frac{1}{x}}$;
e) $\lim _{x \rightarrow 0} \frac{\sqrt[7]{\cos x}-1}{\sqrt[3]{1+x^{2}}-1}$;
f) $\lim _{x \rightarrow 0} \frac{e^{\sin 2 x}-e^{\tan x}}{x}$.
6. [2 points] Prove that the function $P(x)=x^{3}+7 x^{2}-1, x \in \mathbb{R}$, has at least one root, that is, there exists $x_{0} \in \mathbb{R}$ such that $P\left(x_{0}\right)=0$.
7. [3 points] Let $f:[a, b] \rightarrow \mathbb{R}$ strictly increase on $[a, b]$ and for each $y_{0} \in[f(a), f(b)]$ there exist $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=y_{0}$. Prove that f is continuous on $[a, b]$.
8. [2 points] Using the definition, show that the function $f(x)=\sqrt{x}, x \in[1,+\infty)$, is uniformly continuous on $[1,+\infty)$.
