Problem sheet 4

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Monday November 19.

1. $[\mathbf{1}+\mathbf{1}+\mathbf{1}$ points $]$ Let $f: X \rightarrow Y$. Check that
a) $f\left(A_{1} \cap A_{2}\right) \subset\left(f\left(A_{1}\right) \cap f\left(A_{2}\right)\right)$ for $A_{1} \subset X, A_{2} \subset X$;
b) $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$ for $B_{1} \subset Y, B_{2} \subset Y$;
c) $f\left(f^{-1}(B)\right)=B \cap f(X)$ for $B \subset Y$.
2. [2 points] Show that the set of all limit points of the set $A=\{r \in[0,1]: r$ is rational $\}$ coincides with the interval $[0,1]$. (Hint: Use Theorem 2.3)
3. [2 point] Prove that the limit of the function $f(x)=\cos \frac{1}{x}, x \in \mathbb{R} \backslash\{0\}$, does not exist at the point $a=0$.
4. [2+2 point] Using $\varepsilon-\delta$ definition, show that
a) $\lim _{x \rightarrow 4} \sqrt{x}=2$;
b) $\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=0$.
5. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Compute the following limits:
a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$;
b) $\lim _{x \rightarrow+\infty} \frac{x^{3}-x \sin x+x}{1-3 x^{3}+\ln x}$;
c) $\lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-3 x+2}$.
6. [2 points] Let a be a limit point of $A \subset \mathbb{R}$ and $f, g: A \rightarrow \mathbb{R}$ satisfy the following properties: 1) f is bounded on A; 2) $g(x) \rightarrow 0, x \rightarrow a$. Show that $\lim _{x \rightarrow a}(f(x) \cdot g(x))=0$. (Hint: Use Squeeze theorem for functions)
7. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Compute the following limits:
a) $\lim _{x \rightarrow 0-} \frac{x}{\sqrt{1-\cos ^{2} x}}$;
b) $\lim _{x \rightarrow 0+} \frac{x}{\sqrt{1-\cos ^{2} x}}$;
c) $\lim _{x \rightarrow 0+} e^{-\frac{1}{x}}$.
