Problem sheet 3

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday November 14.

1. $\left[\mathbf{1}+\mathbf{1}+\mathbf{1}\right.$ points] For a sequence $\left(a_{n}\right)_{n \geq 1}$ compute $\underline{\lim }_{n \rightarrow \infty} a_{n}$ and $\varlimsup_{n \rightarrow \infty} a_{n}$, if for all $n \geq 1$
a) $a_{n}=1+\frac{1}{n}$;
b) $a_{n}=1+n \sin \frac{n \pi}{2}$;
c) $a_{n}=\frac{(-1)^{n}}{n}+\frac{1+(-1)^{n}}{2}$.
2. [3 points] Show that $a:=\underline{\lim }_{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \inf _{k \geq n} a_{k}$, for the case $a \in \mathbb{R}$.
(The equality also holds in the case $a \in\{-\infty,+\infty\}$).
3. [2 points] Check that the sequence $\left(a_{n}=\frac{\sin 1}{2^{1}}+\frac{\sin 2}{2^{2}}+\ldots+\frac{\sin n}{2^{n}}\right)_{n \geq 1}$ is a Cauchy sequence.
4. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Find the domain and the range of the following functions:
a) $f(x)=\frac{1}{(x+1)^{2}}$;
b) $f(x)=\sqrt{1-x^{2}}$;
c) $f(x)=\ln (1+x)$.
5. $[\mathbf{2}+\mathbf{2}$ points $]$ Find the formulas for the following implicitly defined functions. What are their domains?
a) $y=f(x)$ is the solution to the equation $x^{3} y+2 y=5$;
b) $y=f(x)$ is the largest solution to the equation $y^{2}=3 x^{2}-2 x y$.
