Problem sheet 2

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalidikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday November 7.

1. $[\mathbf{1}+\mathbf{1}+\mathbf{1}$ points] Using the definition of the limit show that
a) $\lim _{n \rightarrow \infty} \frac{n-1}{n}=1$;
b) $\lim _{n \rightarrow \infty} n^{2}=+\infty$;
c) $\lim _{n \rightarrow \infty}(-1)^{n}$ doe not exist.
2. [3 points] Assume that $a_{n} \rightarrow a, n \rightarrow \infty$, and $b_{n} \rightarrow b, n \rightarrow \infty$. Show that $\max \left\{a_{n}, b_{n}\right\} \rightarrow \max \{a, b\}$, $n \rightarrow \infty$.
3. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Compute the following limits:
a) $\lim _{n \rightarrow \infty} \frac{n^{3}-2 n^{2} \cos n+n}{\sqrt{n}-3 n^{3}+1}$;
b) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-\sqrt{n}\right)$;
c) $\lim _{n \rightarrow \infty} \sqrt[n]{n^{2} 2^{n}+3^{n}}$.
4. [3 points] Let $\left(a_{n}\right)_{n \geq 1}$ be a bounded sequence and $b_{n} \rightarrow 0, n \geq \infty$. Prove that $a_{n} b_{n} \rightarrow 0$, $n \rightarrow \infty$.
5. [3+3 points] Using the monotonicity compute the following limits:
a) $\lim _{n \rightarrow \infty} \frac{n!}{2^{n^{2}}}$;
b) $\lim _{n \rightarrow \infty} \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+\sqrt{2}}}}}_{n \text { square roots }}$.
6. [2 points] Show that $\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right)=1$.
7. [2 points] Identify the set of subsequential limits of the sequence $\left(\sin \frac{2 \pi n}{3}\right)_{n \geq 1}$.
