Problem sheet 14

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday February 6.

Points for solved exercises have to be included as bonus points for the homework

1. [1 point] Let V be a vector space over \mathbb{F}. Then, given $a \in \mathbb{F}$ and $v \in V$ such that $a v=0$, prove that either $a=0$ or $v=0$.
2. [$\mathbf{2 x} \mathbf{3}$ points] Prove or give a counterexample to the following claim:
1) Let V be a vector space over \mathbb{F} and suppose that W_{1}, W_{2} and W_{3} are subspaces of V such that $W_{1}+W_{3}=W_{2}+W_{3}$. Then $W_{1}=W_{2}$.
2) Let V be a vector space over \mathbb{F} and suppose that W_{1}, W_{2} and W_{3} are subspaces of V such that $W_{1} \oplus W_{3}=W_{2} \oplus W_{3}$. Then $W_{1}=W_{2}$.
3. [$\mathbf{2}$ points] Let $\mathbb{F}[z]$ denote the vector space of all polynomials with coefficients in \mathbb{F} and let

$$
U=\left\{a z^{2}+b z^{5}: a, b \in \mathbb{F}\right\} .
$$

Find a subspace W of $\mathbb{F}[z]$ such that $F[z]=U \oplus W$.
4. [$\mathbf{x} \mathbf{x} \mathbf{2}$ points] Consider the complex vector space $V=\mathbb{C}^{3}$ and the list $\left\{v_{1}, v_{2}, v_{3}\right\}$ of vectors in V, where $v_{1}=(i, 0,0), v_{2}=(i, 1,0)$ and $v_{3}=(i, i,-1)$.
a) Prove that $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=V$.
b) Prove or disprove that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of V.
5. [2 points] Let V be a vector space over \mathbb{F}, and suppose that $v_{1}, v_{2}, \ldots, v_{n} \in V$ are linearly independent. Let w be a vector from V such that the vectors $v_{1}+w, v_{2}+w, \ldots, v_{n}+w$ are linearly dependent. Prove that $w \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
6. [3 points] Let $p_{0}, p_{1}, \ldots, p_{n} \in \mathbb{F}_{n}[z]$ satisfy $p_{j}(2)=0$ for all $j=0,1, \ldots, n$. Prove that $p_{0}, p_{1}, \ldots, p_{n}$ must be a linearly dependent in $\mathbb{F}_{n}[z]$.
7. [3x1 points] Define the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(x+y, x)$.
a) Show that T is linear;
b) show that T is surjective;
c) find $\operatorname{dim}(\operatorname{ker} T)$.
8. [3 points] Show that the linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is surjective if

$$
\operatorname{ker} T=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=5 x_{2}, x_{3}=7 x_{4}\right\}
$$

9. [3 points] Let V and W be vector spaces over \mathbb{F} with V finite-dimensional, and let U be any subspace of V. Given a linear map $S \in \mathcal{L}(U, W)$, prove that there exists a linear map $T \in \mathcal{L}(V, W)$ such that, for every $u \in U, S(u)=T(u)$.
10. [3 points] Let V and W be vector spaces over \mathbb{F} with V finite-dimensional. Given $T \in \mathcal{L}(V, W)$, prove that there is a subspace U of V such that $U \cap \operatorname{ker} T=\{0\}$ and range $T=\{T(u): u \in U\}$.
11. [3 points] Let U, V and W be finite-dimensional vector spaces over \mathbb{F} with $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$. Prove that

$$
\operatorname{dim}(\operatorname{ker}(T S)) \leq \operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{ker} S)
$$

