

Problem sheet 14

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>. Solutions will be collected during the lecture on Wednesday February 6.

Points for solved exercises have to be included as bonus points for the homework

- 1. [1 point] Let V be a vector space over \mathbb{F} . Then, given $a \in \mathbb{F}$ and $v \in V$ such that av = 0, prove that either a = 0 or v = 0.
- 2. [2x3 points] Prove or give a counterexample to the following claim:
 - 1) Let V be a vector space over \mathbb{F} and suppose that W_1 , W_2 and W_3 are subspaces of V such that $W_1 + W_3 = W_2 + W_3$. Then $W_1 = W_2$.
 - 2) Let V be a vector space over \mathbb{F} and suppose that W_1 , W_2 and W_3 are subspaces of V such that $W_1 \oplus W_3 = W_2 \oplus W_3$. Then $W_1 = W_2$.
- 3. [2 points] Let $\mathbb{F}[z]$ denote the vector space of all polynomials with coefficients in \mathbb{F} and let

$$U = \{az^2 + bz^5 : a, b \in \mathbb{F}\}.$$

Find a subspace W of $\mathbb{F}[z]$ such that $F[z] = U \oplus W$.

- 4. [2x2 points] Consider the complex vector space $V = \mathbb{C}^3$ and the list $\{v_1, v_2, v_3\}$ of vectors in V, where $v_1 = (i, 0, 0), v_2 = (i, 1, 0)$ and $v_3 = (i, i, -1)$.
 - a) Prove that span $\{v_1, v_2, v_3\} = V$.
 - b) Prove or disprove that $\{v_1, v_2, v_3\}$ is a basis of V.
- 5. [2 points] Let V be a vector space over \mathbb{F} , and suppose that $v_1, v_2, \ldots, v_n \in V$ are linearly independent. Let w be a vector from V such that the vectors $v_1 + w, v_2 + w, \ldots, v_n + w$ are linearly dependent. Prove that $w \in \text{span}\{v_1, v_2, \ldots, v_n\}$.
- 6. [3 points] Let $p_0, p_1, \ldots, p_n \in \mathbb{F}_n[z]$ satisfy $p_j(2) = 0$ for all $j = 0, 1, \ldots, n$. Prove that p_0, p_1, \ldots, p_n must be a linearly dependent in $\mathbb{F}_n[z]$.
- 7. **[3x1 points]** Define the map $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (x + y, x). a) Show that T is linear; b) show that T is surjective; c) find dim(ker T).
- 8. [3 points] Show that the linear map $T : \mathbb{R}^4 \to \mathbb{R}^2$ is surjective if

1

$$\ker T = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = 5x_2, x_3 = 7x_4 \}.$$

- 9. [3 points] Let V and W be vector spaces over \mathbb{F} with V finite-dimensional, and let U be any subspace of V. Given a linear map $S \in \mathcal{L}(U, W)$, prove that there exists a linear map $T \in \mathcal{L}(V, W)$ such that, for every $u \in U$, S(u) = T(u).
- 10. [3 points] Let V and W be vector spaces over \mathbb{F} with V finite-dimensional. Given $T \in \mathcal{L}(V, W)$, prove that there is a subspace U of V such that $U \cap \ker T = \{0\}$ and range $T = \{T(u) : u \in U\}$.
- 11. [3 points] Let U, V and W be finite-dimensional vector spaces over \mathbb{F} with $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$. Prove that

$$\dim(\ker(TS)) \le \dim(\ker T) + \dim(\ker S).$$