Problem sheet 13

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Monday February 4.

1. [$\mathbf{2}$ points] For a complex number α show that the coefficients of the polynomial

$$
p(z)=(z-\alpha)(z-\bar{\alpha})
$$

are real numbers.
2. [3 points] Let $p(z)$ be a polynomial with real coefficients and let α be a complex number. Prove that $p(\alpha)=0$ if and only if $p(\bar{\alpha})=0$.
3. [3 points] Prove that any polynomial $p(z)$ with real coefficients can be decomposed into a product of polynomials of the form $a z^{2}+b z+c$, where $a, b, c \in \mathbb{R}$.
(Hint: Use the fundamental theorem of algebra and exercises 1., 2.)
4. [6×2 points] For each of the following sets, either show that the set is a vector space over \mathbb{F} or explain why it is not a vector space.
a) The set \mathbb{R} of real numbers under the usual operations of addition and multiplication, $\mathbb{F}=\mathbb{R}$.
b) The set \mathbb{R} of real numbers under the usual operations of addition and multiplication, $\mathbb{F}=\mathbb{C}$.
c) The set $\{f \in \mathrm{C}[0,1]: f(0)=2\}$ under the usual operations of addition and multiplication of functions, $\mathbb{F}=\mathbb{R}$.
d) The set $\{f \in \mathrm{C}[0,1]: f(0)=f(1)=0\}$ under the usual operations of addition and multiplication of functions, $\mathbb{F}=\mathbb{R}$.
e) The set $\left\{(x, y, z) \in \mathbb{R}^{3}: x-2 y+z=0\right\}$ under the usual operations of addition and multiplication on $\mathbb{R}^{3}, \mathbb{F}=\mathbb{R}$.
f) The set $\left\{(x, y, z) \in \mathbb{C}^{3}: 2 x+z+i=0\right\}$ under the usual operations of addition and multiplication on $\mathbb{C}^{3}, \mathbb{F}=\mathbb{C}$.

