

Problem sheet 13

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>. Solutions will be collected during the lecture on Monday February 4.

1. [2 points] For a complex number α show that the coefficients of the polynomial

$$p(z) = (z - \alpha)(z - \overline{\alpha})$$

are real numbers.

- 2. [3 points] Let p(z) be a polynomial with real coefficients and let α be a complex number. Prove that $p(\alpha) = 0$ if and only if $p(\overline{\alpha}) = 0$.
- 3. [3 points] Prove that any polynomial p(z) with real coefficients can be decomposed into a product of polynomials of the form $az^2 + bz + c$, where $a, b, c \in \mathbb{R}$.

(Hint: Use the fundamental theorem of algebra and exercises 1., 2.)

- 4. [6x2 points] For each of the following sets, either show that the set is a vector space over \mathbb{F} or explain why it is not a vector space.
 - a) The set \mathbb{R} of real numbers under the usual operations of addition and multiplication, $\mathbb{F} = \mathbb{R}$.
 - b) The set \mathbb{R} of real numbers under the usual operations of addition and multiplication, $\mathbb{F} = \mathbb{C}$.
 - c) The set $\{f \in C[0,1] : f(0) = 2\}$ under the usual operations of addition and multiplication of functions, $\mathbb{F} = \mathbb{R}$.
 - d) The set $\{f \in C[0,1] : f(0) = f(1) = 0\}$ under the usual operations of addition and multiplication of functions, $\mathbb{F} = \mathbb{R}$.
 - e) The set $\{(x, y, z) \in \mathbb{R}^3 : x 2y + z = 0\}$ under the usual operations of addition and multiplication on \mathbb{R}^3 , $\mathbb{F} = \mathbb{R}$.
 - f) The set $\{(x, y, z) \in \mathbb{C}^3 : 2x + z + i = 0\}$ under the usual operations of addition and multiplication on \mathbb{C}^3 , $\mathbb{F} = \mathbb{C}$.