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Solutions will be collected during the lecture on Wednesday January 30.

1. [2x4 points] Investigate the convergence of the following series:
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2. [3x2 points] Investigate the absolute and conditional convergence of the following series:
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3. [2 points] Show that for each x ∈ R
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(Hint: Use Taylor’s formula with Lagrangian remainder term (see Theorem 14.1 and Example 14.1) to show that

the remainder term converges to 0)

4. [1x3 points] Express the following complex numbers in the form x+ yi for x, y ∈ R:
a) (2 + 3i)2(1 + 2i); b) 2+3i

2−i ; c) 1
i −

1
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.

5. [2 points] Compute the real and imaginary parts of 1
z2
, where z = x+ iy, x, y ∈ R.

6. [2 points] Compute
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.

7. [2x2 points] Solve the following equations:
a) z2 + z + 3 = 0; b) z3 − i = 0.

8. [2 points] Let z, w ∈ C. Prove the parallelogram law |z − w|2 + |z + w|2 = 2(|z|2 + |w|2).
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