Problem sheet 12

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday January 30.

1. [2×4 points] Investigate the convergence of the following series:
а) $\sum_{n=1}^{\infty} \frac{3^{n} n!}{n^{n}}$;
b) $\sum_{n=1}^{\infty} \frac{n^{5}}{2^{n}+3^{n}}$;
c) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$;
d) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n(n+1)}$.
2. [3×2 points] Investigate the absolute and conditional convergence of the following series:
a) $\sum_{n=1}^{\infty}(-1)^{n} \sin ^{\alpha} \frac{1}{n}$, where $\alpha>0$;
b) $\sum_{n=1}^{\infty} \frac{\cos n}{n}$.
3. [2 points] Show that for each $x \in \mathbb{R}$

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

(Hint: Use Taylor's formula with Lagrangian remainder term (see Theorem 14.1 and Example 14.1) to show that the remainder term converges to 0)
4. [$\mathbf{1 x} \mathbf{3}$ points] Express the following complex numbers in the form $x+y i$ for $x, y \in \mathbb{R}$:
a) $(2+3 i)^{2}(1+2 i)$;
b) $\frac{2+3 i}{2-i}$;
c) $\frac{1}{i}-\frac{1}{(1+i)^{2}}$.
5. [2 points] Compute the real and imaginary parts of $\frac{1}{z^{2}}$, where $z=x+i y, x, y \in \mathbb{R}$.
6. [2 points] Compute $\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{21}$.
7. [$\mathbf{2 x} \mathbf{2}$ points] Solve the following equations:
а) $z^{2}+z+3=0$;
b) $z^{3}-i=0$.
8. [2 points] Let $z, w \in \mathbb{C}$. Prove the parallelogram law $|z-w|^{2}+|z+w|^{2}=2\left(|z|^{2}+|w|^{2}\right)$.

