

Problem sheet 12

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>. Solutions will be collected during the lecture on Wednesday January 30.

1. **[2x4 points]** Investigate the convergence of the following series: a) $\sum_{n=1}^{\infty} \frac{3^n n!}{n!}$, b) $\sum_{n=1}^{\infty} \frac{n^5}{n!}$, c) $\sum_{n=1}^{\infty} \frac{(n!)^2}{n!}$, d) $\sum_{n=1}^{\infty} \frac{(n!)^2$

a)
$$\sum_{n=1}^{\infty} \frac{5n!}{n^n}$$
; b) $\sum_{n=1}^{\infty} \frac{n!}{2^n + 3^n}$; c) $\sum_{n=1}^{\infty} \frac{3n!}{(2n)!}$; d) $\sum_{n=1}^{\infty} \left(\frac{n!}{n+1}\right)$

- 2. [3x2 points] Investigate the absolute and conditional convergence of the following series: a) $\sum_{n=1}^{\infty} (-1)^n \sin^{\alpha} \frac{1}{n}$, where $\alpha > 0$; b) $\sum_{n=1}^{\infty} \frac{\cos n}{n}$.
- 3. [2 points] Show that for each $x \in \mathbb{R}$

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

(*Hint:* Use Taylor's formula with Lagrangian remainder term (see Theorem 14.1 and Example 14.1) to show that the remainder term converges to 0)

- 4. **[1x3 points]** Express the following complex numbers in the form x + yi for $x, y \in \mathbb{R}$: a) $(2+3i)^2(1+2i)$; b) $\frac{2+3i}{2-i}$; c) $\frac{1}{i} - \frac{1}{(1+i)^2}$.
- 5. [2 points] Compute the real and imaginary parts of $\frac{1}{z^2}$, where z = x + iy, $x, y \in \mathbb{R}$.
- 6. [2 points] Compute $\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^{21}$.
- 7. [2x2 points] Solve the following equations: a) $z^2 + z + 3 = 0$; b) $z^3 - i = 0$.
- 8. [2 points] Let $z, w \in \mathbb{C}$. Prove the parallelogram law $|z w|^2 + |z + w|^2 = 2(|z|^2 + |w|^2)$.