Problem sheet 10

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Wednesday January 16.

1. [3 points] Using the definition of the integral, prove that the function $f(x)=x, x \in[0,1]$, is integrable on $[0,1]$ and compute $\int_{0}^{1} x d x$.
2. [2 points] Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. Show that f is integrable on $[a, b]$, if it is integrable on $[a, c]$ and $[c, b]$.
(Hint: Use the integrability criterion (Theorem 16.2))
3. [3 points] Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$ and g be a non-negative integrable function on $[a, b]$. Show that there exists $\theta \in[a, b]$ such that $\int_{a}^{b} f(x) g(x) d x=f(\theta) \int_{a}^{b} g(x) d x$.
4. [2 points] Let $f:[0,1] \rightarrow \mathbb{R}$ be integrable on $[0,1]$. Prove the equality

$$
\lim _{n \rightarrow \infty} \int_{\frac{1}{n}}^{1} f(x) d x=\int_{0}^{1} f(x) d x
$$

5. [2×5 points] Compute the following integrals:
a) $\int_{0}^{\frac{\pi}{2}} \sin 2 x d x$;
b) $\int_{0}^{2}|1-x| d x ;$
c) $\int_{0}^{2 \pi} x^{2} \cos x d x$;
d) $\int_{-1}^{1} \frac{x d x}{\sqrt{5-4 x}}$;
e) $\int_{0}^{\ln 2} \sqrt{e^{x}-1} d x$.
6. [$\mathbf{3}$ points] Compute the area of the region bounded by the graphs of the following functions: $y=x^{2}$ and $x+y=2$.
7. [3 points] Compute the length of the cycloid, the continuous curve defined by the following functions: $x=a(t-\sin t), y=a(1-\cos t), t \in[0,2 \pi]$, where $a>0$.
