

Problem sheet 10

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>. Solutions will be collected during the lecture on Wednesday January 16.

- 1. [3 points] Using the definition of the integral, prove that the function $f(x) = x, x \in [0, 1]$, is integrable on [0, 1] and compute $\int_0^1 x dx$.
- 2. [2 points] Let $f : [a, b] \to \mathbb{R}$ be a function and $c \in (a, b)$. Show that f is integrable on [a, b], if it is integrable on [a, c] and [c, b].

(*Hint:* Use the integrability criterion (Theorem 16.2))

- 3. [3 points] Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b] and g be a non-negative integrable function on [a, b]. Show that there exists $\theta \in [a, b]$ such that $\int_a^b f(x)g(x)dx = f(\theta)\int_a^b g(x)dx$.
- 4. [2 points] Let $f: [0,1] \to \mathbb{R}$ be integrable on [0,1]. Prove the equality

$$\lim_{n\to\infty}\int_{\frac{1}{n}}^{1}f(x)dx=\int_{0}^{1}f(x)dx.$$

- 5. **[2x5 points]** Compute the following integrals: a) $\int_0^{\frac{\pi}{2}} \sin 2x dx$; b) $\int_0^2 |1 - x| dx$; c) $\int_0^{2\pi} x^2 \cos x dx$; d) $\int_{-1}^1 \frac{x dx}{\sqrt{5-4x}}$; e) $\int_0^{\ln 2} \sqrt{e^x - 1} dx$.
- 6. [3 points] Compute the area of the region bounded by the graphs of the following functions: $y = x^2$ and x + y = 2.
- 7. [3 points] Compute the length of the cycloid, the continuous curve defined by the following functions: $x = a(t \sin t), y = a(1 \cos t), t \in [0, 2\pi]$, where a > 0.