Problem sheet 1

Tutorials by Dr. Michael Schnurr < michael.schnurr@mis.mpg.de> and Ikhwan Khalid ikhwankhalid92@gmail.com. Solutions will be collected during the lecture on Monday October 29.

1. $[\mathbf{1}+\mathbf{1}$ points $]$ List elements of the following sets:
a) $\left\{n \in \mathbb{N}:(n-4)^{2}<5^{2}\right\}$;
b) $\left\{n \in \mathbb{N}: n^{3}>4 n\right\}$.
2. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Check the following relations:
a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$;
b) $(A \cup B)^{c}=A^{c} \cap B^{c}$;
c) $\left(\bigcap_{t \in T} A_{t}\right)^{c}=\bigcup_{t \in T} A_{t}^{c}$
3. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points] Prove that
a) $\sqrt{6} \notin \mathbb{Q}$;
b) $\sqrt{2}+\sqrt{3} \notin \mathbb{Q}$;
c) for each $n \in \mathbb{N}$ either $\sqrt{n} \in \mathbb{N}$ or $\sqrt{n} \notin \mathbb{Q}$.
4. [3+3 points] Using mathematical induction prove that:
a) $1^{3}+2^{3}+\ldots+n^{3}=(1+2+\ldots+n)^{2}$ for each $n \in \mathbb{N}$;
b) $11^{n}-4^{n}$ is divisible by 7 for each $n \in \mathbb{N}$.
5. $[\mathbf{2}+\mathbf{2}+\mathbf{3}$ points] Prove that a) $\sup A=-\inf (-A)$, where A is a subset of \mathbb{R} bounded from above and $-A:=\{-a: a \in A\}$;
b) Let A and B be subsets of \mathbb{R} bounded from above. Show that $\sup (A \cup B)=\max \{\sup A, \sup B\}$;
c) Let $A=\left\{0, \alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots: \forall n \in \mathbb{N} \quad \alpha_{n} \in\{1,2,3,4,5,6,7,8\}\right\}$. Find $\inf A$ and $\sup A$.
