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Let P, (IRY) denote the space of probability measures on R? with
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dy(u,v) = (inf {E|¢ —n|*:+ &~ p,n~v})

— Wasserstein distance on P,(R?)

There is known a “singular” I" such that the DK equation has a
solution f; on Py([0, 1]) called the Wasserstein diffusion that is a
Markov process and satisfies the Varadhan formula

2
dyy, (ko)

Pl =v}i~e 20| tk1

von Renesse, Sturm (Ann. Probab. '09)



Varadhan formula and Wasserstein space

Let P, (IRY) denote the space of probability measures on R? with

Th
sol
M4

[

\.

Aim: We are going to construct non-trivial solutions of the
equation
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and show that it satisfies the Varadhan formula
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Tool: Particle approach
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Modified Arratia flow on R

Consider the system of diffusion particles on the real line such that
@ particles move independently and coalesce after meeting

@ each particle has a mass that obeys the conservation law

@ diffusion rate of each particle inversely proportional to its mass

A M\- ™
i M,
\/ v mw Y\M*A,M\W
N A
"'“*V‘ RN oW Wf%
\
YA A
P AT
" N P N A nd
At w R B
-0.5 W, FOu m L)
Wy N A A p A s .,Hr'f
W WO E Wi
“180 0.2 0.4

06

08
Grayscale colour coding is for particle mass




odified Arratia flow on R

Co

© 0 6

Our system
,m,yk.;.\—fz«/\w\/m_“,ﬂ/w N
WA N e AN e o ..%
0o W RO WA, Nt i,
WA A
W .

—os W A
Wi W -,_\‘,/,,\’ V/K'\A,

180 02 o4 06 o8

Grayscale colour coding is for particle mass

The classical Arratia flow (Brownian web)

-
[V

: % 7 0 onr o8 165 v owom ow ® oz o® om H

J )



Modified Arratia flow on R

Consider the system of diffusion particles on the real line such that
@ particles move independently and coalesce after meeting
@ each particle has a mass that obeys the conservation law
@ diffusion rate of each particle inversely proportional to its mass

Theorem. K. (Ann. Probab. '17 and Electron. J. Probab. '17)
There exists a system of processes X (u,t), t > 0, u € [0, 1], such that
@ X(u,0)=u
@ X(u,t) < X(v,t) u<w
@ X(u,-) is continuous matringale

@ joint quadratic variation is d (X (u, ), X (v, -)), = X(0=X@.0}

¢ mn b
where (u, s) = {v: X(u,t) = X(v,t)}, m(u,s) =Lebn(u,s)
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Modified Arratia flow and Varadhan formula

Theorem. K., von Renesse (Comm. Pure Appl. Math. '19)

The process i = X (-, t)|4 Leb that describes the evolution of
particle mass

o solves
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Coalescing-fragmentating Wasserstein dynamics

Reversible case:

@ Particles move independently and sticky-reflect from each other
@ each particle has a mass that obeys the conservation law

@ diffusion rate of each particle inversely proportional to its mass
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There exists a system of processes X (u,t), t > 0, u € [0, 1], such that
@ X(u,0)=u
@ X(u,t) < X(v,t) u<w

@ X(u,t)— [y <u — ﬁ Jrtus) 1;dv) ds is continuous matringale
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It is a physical improvement of the Howitt-Warren flow
—c T ——
@ joint quadratic variation is (X (u,-), X (v,)), = [;

m(u,s) ds

t ]I-_IX u,s :X(v,s)t
0
where 7(u, s) = {v: X(u,t) = X(v,t)}, m(u,s) =Lebn(u,s)
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It is a physical improvement of the Howitt-Warren flow
Let N(t) denote the number of distinct particles at time ¢
o [T N(t)dt < ooas. YT >0
o o {t: N(t) = oo} is dense in [0,00) a.s. K. 19
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Dirichlet form approach
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Theorem. K., von Renesse '18

that

There exists a o-finite full supported measure = on Py(R) such
o = is invariant for p; = X(-,t)|x Leb

o [, that describes the evolution of particle mass, solves

1 . .
Oy = §Au2‘ + V- (W), in Po(R),
where pf = >
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o The Varadhan formula

d%/V(LEb[O,l]’V)
P{,th = y} ~ e 2t

holds.

1K1

DHa



Open problems and further projects

o Extension to higher dimension: Particles with gravity potential
(VG(2) =V (-5 In|z|) = fz%ﬁ for d = 2)

dai(t) = % Z m;VG (i (t) — z;(t))dt +
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o Uniqueness in law: It is not known if conditions 1)-4) uniquely determine the

family X.
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o Other models in physics: Particle approach to solving of
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and connection with the geometry of the Wasserstein space.
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(VG(2) =V (-5 In|z|) = -5~ e ford= 2)

dwl(t)

m;

dai(t) = % Z myVG(zi(t) — z;(t))dt +

o Uniqueness in law: It is not known if conditions 1)-4) uniquely determine the
family X.

o Other models in physics: Particle approach to solving of

Bupe = 5 A+ D) + ¥ - [/ () W]

and connection with the geometry of the Wasserstein space.

o Investigation of the constructed models.
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