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Motivation: Dean-Kawasaki equation

∂tµt =
β

2
∆µt +∇ ·

(
µt∇

δF (µt)

δµt

)
+∇ · [√µtẆt]

– Dean-Kawasaki equation
The equation appears in macroscopic fluctuation theory and glass dynamic models

D. Dean ’96, K. Kawasaki, E. Vanden-Eijnden, A. Donev, B. Derrida, J. Zimmer, ...

Meaning of solutions: A measure-valued process µt solves the
equation if for each smooth bdd ϕ 〈ϕ, µt〉 =

∫
ϕ(x)µt(dx) satisfies:

〈ϕ, µt〉 −
∫ t

0

(
β

2
〈∆ϕ, µs〉+

〈
∇ϕ,∇δF (µt)

δµt

〉)
ds

martingale with quadratic variation
∫ t
0
〈|∇ϕ|2, µs〉ds
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dxi(t) =

n∑
j=1

∇V (xi(t)− xj(t))dt+ dwi(t), i = 1, . . . , n,

where wi are independent Wiener processes

µt =

n∑
i=1

δxi(t) + formal using of the Ito formula

F (µ) =

∫∫
V (x− y)µ(dx)µ(dy)
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Ill-Posedness vs. triviality

∂tµt =
β

2
∆µt +∇ ·

(
µt∇

δF (µt)

δµt

)
+∇ · [√µtẆt]

Theorem. K., Lehmann, von Renesse (Elect. Comm. Probab ’19)

Let F = 0 and µ0(Rd) = 1. Then a solution µt to the DK
equation only exists (and is unique) for β = n ∈ N and

µt =
1

n

n∑
i=1

δwi(t),

where wi are independent Brownian motions with diffusion
rate n.

Even F is “smooth” then the DK equation also has a solution only for
β = n ∈ N and it has a similar form.
K., Lehmann, von Renesse (arXiv:1812.11068)
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For which Γ the equation

∂tµt =
β

2
∆µt + Γ(µt) +∇ · [√µtẆt]

has non-trivial physically available solutions



Varadhan formula and Wasserstein space

Let P2(Rd) denote the space of probability measures on Rd with∫
|x|2µ(dx) <∞.

dW(µ, ν) =
(
inf
{
E|ξ − η|2 : ξ ∼ µ, η ∼ ν

}) 1
2

– Wasserstein distance on P2(Rd)

There is known a “singular” Γ such that the DK equation has a
solution µt on P2([0, 1]) called the Wasserstein diffusion that is a
Markov process and satisfies the Varadhan formula

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t� 1

von Renesse, Sturm (Ann. Probab. ’09)
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Aim: We are going to construct non-trivial solutions of the
equation

∂tµt =
β

2
∆µt + Γ(µt) +∇ · [√µtẆt]

and show that it satisfies the Varadhan formula

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t� 1

Tool: Particle approach



Modified Arratia flow on R

Consider the system of diffusion particles on the real line such that
1 particles move independently and coalesce after meeting
2 each particle has a mass that obeys the conservation law
3 diffusion rate of each particle inversely proportional to its mass

Grayscale colour coding is for particle mass
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Our system

Grayscale colour coding is for particle mass

The classical Arratia flow (Brownian web)



Modified Arratia flow on R

Consider the system of diffusion particles on the real line such that
1 particles move independently and coalesce after meeting
2 each particle has a mass that obeys the conservation law
3 diffusion rate of each particle inversely proportional to its mass

Theorem. K. (Ann. Probab. ’17 and Electron. J. Probab. ’17)
There exists a system of processes X(u, t), t ≥ 0, u ∈ [0, 1], such that

1 X(u, 0) = u

2 X(u, t) ≤ X(v, t) u < v

3 X(u, ·) is continuous matringale

4 joint quadratic variation is d 〈X(u, ·), X(v, ·)〉t =
I{X(u,t)=X(v,t)}

m(u,t)
dt,

where π(u, s) = {v : X(u, t) = X(v, t)}, m(u, s) = Lebπ(u, s)



Modified Arratia flow and Varadhan formula

Theorem. K., von Renesse (Comm. Pure Appl. Math. ’19)

The process µt = X(·, t)|# Leb that describes the evolution of
particle mass

solves

∂µt =
1

2
∆µ∗t +∇ · (√µtẆt), in P2(R),

where µ∗t =
∑

x∈suppµt δx

satisfies the Varadhan formula

P{µt = ν} ∼ e−
d2W (Leb[0,1],ν)

2t , t� 1



Coalescing-fragmentating Wasserstein dynamics

Reversible case:
1 Particles move independently and sticky-reflect from each other
2 each particle has a mass that obeys the conservation law
3 diffusion rate of each particle inversely proportional to its mass

Theorem. K. ’18
There exists a system of processes X(u, t), t ≥ 0, u ∈ [0, 1], such that

1 X(u, 0) = u

2 X(u, t) ≤ X(v, t) u < v

3 X(u, t)−
∫ t
0

(
u− 1

m(u,s)

∫
π(u,s)

vdv
)
ds is continuous matringale

4 joint quadratic variation is 〈X(u, ·), X(v, ·)〉t =
∫ t
0

I{X(u,s)=X(v,s)}
m(u,s)

ds,

where π(u, s) = {v : X(u, t) = X(v, t)}, m(u, s) = Lebπ(u, s)
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Let N(t) denote the number of distinct particles at time t∫ T
0
N(t)dt <∞ a.s. ∀T > 0

{t : N(t) =∞} is dense in [0,∞) a.s. K. ’19



Dirichlet form approach

Theorem. K., von Renesse ’18

There exists a σ-finite full supported measure Ξ on P2(R) such
that

Ξ is invariant for µt = X(·, t)|# Leb

µt, that describes the evolution of particle mass, solves

∂µt =
1

2
∆µ∗t +∇ · (√µtẆt), in P2(R),

where µ∗t =
∑

x∈suppµt δx

The Varadhan formula

P{µt = ν} ∼ e−
d2W (Leb[0,1],ν)

2t , t� 1

holds.



Open problems and further projects

Extension to higher dimension: Particles with gravity potential
(∇G(x) = ∇

(
− 1

2π
ln |x|

)
= − 1

2π
x

|x|2 for d = 2)

dxi(t) =
a

2π

n∑
j=1

mj∇G(xi(t)− xj(t))dt+
1√
mi

dwi(t)

Uniqueness in law: It is not known if conditions 1)-4) uniquely determine the
family X.

Other models in physics: Particle approach to solving of

∂tµt =
β

2
∆µt + Γ(µt) +∇ · [

√
σ(µt)Ẇt]

and connection with the geometry of the Wasserstein space.

Investigation of the constructed models.

. . . . . . . . .
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