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Abstract

We prove that the Dean-Kawasaki SPDE admits a solution only in integer parameter
regimes, in which case the solution is given in terms of a system of non-interacting
particles.
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1 Introduction

In this paper we show a dichotomy of non-existence vs. triviality of solutions to a
certain class of nonlinear SPDE which arise e.g. in macroscopic fluctuation theory in
physics. As a prototype one might consider the model

∂tρ = T∆ρ+∇ ·
(√

TρẆ
)
, (1.1)

which is a particular instance of the more general class of formal Ginzburg-Landau
stochastic phase field models (c.f.[17, 22, 32]) of the form

∂tφ+∇ ·
(
−L(φ)∇δH

δφ
(φ) +

√
TL(φ)Ẇ

)
= 0, (1.2)

where H is a Hamiltonian, L is an Onsager coefficient and Ẇ is vector valued space-time
white noise. The particular equation (1.1) was proposed independently in [8] and [20]
as mesoscopic description for interacting particles and is referred to as Dean-Kawasaki
equation today. Since then, together with several variants, it has been an active research
topic in various branches of non-equilibrium statistical mechanics over the last years
(c.f.[9, 12, 16, 18, 21, 26, 34]). Mathematically, interest in equations like (1.1) comes
from the fact that it appears to describe an ‘intrinsic’ random perturbation of the
gradient flow for the entropy functional on Wasserstein space by a noise which is locally
uniformly distributed in terms of dissipated energy, e.g. by a noise that is aligned with
Otto’s formal Riemannian structure [30] for optimal transportation. To see this, consider
the rescaled Hamiltonian H(µ, φ) := limε→0 εe

− 1
ε 〈µ,φ〉Gεe 1

ε 〈µ,φ〉, with Gε being the formal
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Dean-Kawasaki dynamics

generator associated to the evolution (1.1) with ε = T . Following [10], one expects the
short time asymptotics of ρ to be governed by the large deviation rate function

A(ν) =

∫ 1

0

sup
φ∈C∞0 (M)

{〈ν̇, φ〉 − H(ν, φ)〉}dt,

for regular curves ν in the Wasserstein-space. But since H(µ, φ) = 1
2 〈µ, |∇φ|

2〉, we see
that A is precisely the energy functional which determines the Wasserstein-metric by
means of the Benamou-Brenier-formula (c.f. [3] and Appendix D in [14]).

In spite of significant continuing interest in Dean-Kawasaki type models both in
physics and mathematics, rigorous results on existence and uniqueness exist so far only
for equations, which, apart from variants in the drift term, all share some regularisation
of the white noise, see e.g. [7, 13, 27]. On the other hand, in [35] Sturm and the
third author succeeded in constructing a process having the Wasserstein distance as its
intrinsic metric and which can formally be seen as a solution to the SPDE

∂tµ = α∆µ+ Ξ(µ) +∇ ·
(√

µẆ
)
,

where Ξ is some nonlinear operator. Particle approximations of these dynamics as
well as analytic and geometric properties of the corresponding entropic measure were
investigated afterwards in [1, 33] and [5, 11], respectively. Based on Arratia flows, a
new candidate for a process with Wasserstein-short-time asymptotics, but with different
drift component as in [35] was recently studied by the latter two authors in [25, 24] and
subsequently, in [28].

The main contribution of this note asserts that some correction term Ξ is in fact
necessary for the existence of (nontrivial) solutions to these DK-type models. More pre-
cisely, in Theorem 2.2 below we find that the (uncorrected) generalized Dean-Kawasaki
equation

∂tµ =
α

2
∆µ+∇ ·

(√
µẆ

)
µ|t=0 = µ0,

, (DK)αµ0

corresponding to a Ginzburg-Landau model with H = α
2

∫
µ logµ, T = 1 and L = identity

operator, admits solutions only for a discrete spectrum of parameters α and atomic
initial measures. Moreover, for these particular choices solutions are trivial, in being
just ‘measure-valued lifts’ of the martingale-problem for α

2 ∆.

Finally, given the apparent similarity of (DK)αµ0
to the SPDE description of the Dawson-

Watanabe (‘Super Brownian Motion’) process

∂tµ = β∆µ+
√
µẆ ,

admitting unique in law solutions for every β > 0, our result is interesting also from an
independent SPDE point of view.
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2 Statement and proof of the main result

As for notation, given a Polish space E, we will write M1(E) for the set of all
probability measures on E and for any function f on E, we write as usual 〈µ, f〉 =∫
E
f(x)µ(dx), whenever the integral is well-defined. Also, on M1(E) we shall always

consider the weak topology. By Cb(E) we denote the space of real-valued, bounded
continuous functions on E.

Let us briefly motivate, what we will refer to as a solution to the Dean-Kawasaki
equation. Typically, one would call a time-continuous process t 7→ µt, which takes values
in absolutely continuous measures on Rd, a solution to (DK)αµ0

, provided that for all
t ∈ [0, T ] and φ ∈ S(Rd) (Schwartz-space) it holds true that P-a.s

〈µt, φ〉 = 〈µ0, φ〉+
α

2

∫ t

0

〈µs,∆φ〉ds−
d∑
i=1

∫ t

0

∫
Rd

√
µs(x)∂iφ(x)W i(dsdx), (2.1)

with W i being mutually independent space-time white noises (for instance in the sense
of Walsh [36]).

Of course, for such a process µ we knew that

[0, T ] 3 t 7→ 〈µt, φ〉 − 〈µ0, φ〉 −
α

2

∫ t

0

〈µs,∆φ〉ds

is martingale with quadratic variation∫ t

0

〈µs, |∇φ|2〉ds.

Rather then the weak formulation in (2.1), it is this martingale characterisation that we
will study in the following, however in slightly more general setup.

Let E be a Polish state-space and (E, π,Γ) be the Markov-triple associated to some
symmetric Markov Diffusion operator L in the classical sense, as e.g. in [2]. In this
setting, we know L has the diffusion property, i.e.

Lψ(f) = ψ′(f)Lf + ψ′′(f)Γf

for every ψ ∈ C2 and f ∈ D(L). Here, Γ is the carré du champs operator, defined on
some algebra A ⊂ Cb(E) which is dense in Lp(π), by

Γ(f, g) =
1

2
(L(fg)− fLg − gLf)

for (f, g) ∈ A×A and Γf = Γ(f, f). Additionally, we impose henceforth the following two
hypotheses on boundedness and regularity for the Markov semigroup Pt belonging to L:

1. There exists an exhaustion {An}n∈N ∈ B(E), An ↑ E and real numbers (cn)n∈N
such that for every n ∈ N

Pt1An(x) ≤ cn < 1 for all x ∈ E. (2.2)

2. Pt satisfies a gradient bound, i.e. for some ρ ∈ R, we have

ΓPtf ≤ e−2ρtPtΓf. (2.3)

Both requirements are certainly fulfilled for the Brownian semigroup on Euclidean
space, but also for instance when L = ∆g is the Laplace-Beltrami operator on a Rieman-
nian manifold (E = M, g) with Ricci curvature bounded from below.
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Definition 2.1. Let α > 0, µ0 ∈M1(E) and (Ω,F , (Ft)t≥0,P) be some probability base.
We say that a P-almost surely continuousM1(E)-valued process µ is a solution to the
martingale problem (MP)αµ0

iff

1. for all φ ∈ D(L)

Mt(φ) := 〈µt, φ〉 − 〈µ0, φ〉 −
α

2

∫ t

0

〈µs, Lφ〉ds, t ∈ [0, T ], (2.4)

is an Ft-adapted martingale,

2. whose quadratic variation is given by

〈M(φ)〉t =

∫ t

0

〈µs,Γφ〉ds.

With this notation, our main results reads as follows.

Theorem 2.2 (Existence and Uniqueness of solutions to (MP)αµ0
). Solutions to (MP)αµ0

exist, if and only if α = n ∈ N and

µ0 =
1

n

n∑
i=1

δxi , (2.5)

with x1, . . . , xn ∈ E. In case of existence, the solution is, uniquely in law, given by the
empirical measure

µt =
1

n

n∑
i=1

δXint , (2.6)

where the Xi are n independent diffusion processes, each with generator 1
2L and starting

point xi.

Certainly, the Dean-Kawasaki dynamic fits in as the special case of taking L = ∆ on
E = Rd.

Theorem 2.2 will be proven in several steps. We start by the almost trivial observation
that the empirical measures (2.6) provide solutions to (MP)nµ0

. Consider first the case
n = 1. Plugging µt = δXt into the martingale problem, immediately yields that

Mt(φ) = φ(Xt)− φ(X0)− 1

2

∫ t

0

Lφ(Xs)ds

is a martingale, plainly since X is the solution of the martingale problem for 1
2L. Also

necessarily, the quadratic variation of M satisfies

〈M(φ)〉t =

∫ t

0

Γφ(Xs)ds =

∫ t

0

〈µs,Γφ〉ds.

For the general case, denote by M i the martingale associated to Xi. Then

Mt(φ) =
1

n

n∑
i=1

(
φ(Xi

nt)− φ(Xi
0)− n

2

∫ t

0

Lφ(Xi
ns)ds

)
=

1

n

n∑
i=1

M i
nt(φ)

is a Fnt-martingale with quadratic variation

〈M(φ)〉t =
1

n2

n∑
i=1

〈M i(φ)〉nt =
1

n

n∑
i=1

∫ t

0

Γφ(Xns)ds =

∫ t

0

〈µs,Γφ〉ds,

as needed.
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Our next aim is to show that these solutions are unique in law. In fact, the statement
that we prove is much stronger, namely that any solution, provided its existence, must
be unique in law. The proof adopts the argument which is used in order proof weak
uniqueness for super-Brownian motion, by Laplace-duality to some reaction-diffusion
equation (c.f.[15, 29, 31]).

Before we present the duality statement in our context, we provide some preliminary
considerations on viscous Hamilton-Jacobi equations. That is, we regard for some initial
datum f ∈ Cb(E), the PDE

∂tv =
α

2
Lv − 1

2
Γv,

v|t=0 = f,
(vHJ)f

where L and Γ are as before generator and carré du champs operator of some symmetric
Markov diffusion. Of course, the unique solution is just the classical Cole-Hopf-solution
given by

Vtf(x) = v(t, x) = −α ln(Pte
− 1
α f )(x),

where Pt is now the heat semi-group associated to α
2L. Indeed, plugging in the definition

of Vtf into the PDE, we see

∂tVtf = −α(Pte
− 1
α f )−1

α

2
LPte

− 1
α f = −α

2

2
e

1
αVtfLe−

1
αVtf =

α

2
LVtf −

1

2
ΓVtf.

Moreover, one can easily check that this solution satisfies maximum/minimum-principles,
i.e.

inf
E
f ≤ inf

E
Vtf and sup

E
Vtf ≤ sup

E
f

for f ∈ Cb(E). Also, by the gradient bound (2.3), there is ρ ∈ R such that for all f ∈ A, it
follows that

ΓVtf ≤ α2(Pte
− 1
α f )−2e−2ρtPtΓe

− 1
α f ≤ 1 ∨ e2|ρ|T e 2

α diam f(E)‖Γf‖∞. (2.7)

We can now formulate our duality result, which will be crucial not only for the
uniqueness, but also for the discussion of non-existence later on.

Theorem 2.3 (Laplace-duality). Take α > 0. For µ0 ∈ M1(E) and f ∈ Cb(E), let µ be a
solution to (MP)αµ0

and Vtf a solution to (vHJ)f . Then

Eµ0e−〈µt,f〉 = e−〈µ0,Vtf〉. (2.8)

Proof. Assume for now f ∈ A and let v(t, x) = Vtf(x) be the Cole-Hopf solution to (vHJ)f .
For 0 ≤ s ≤ t ≤ T , by Itō’s formula

de−〈µs,v(t−s)〉 =e−〈µs,v(t−s)〉
(
〈µs, (∂sv)(t− s)− α

2
Lv(t− s)

+
1

2
Γv(t− s)〉ds+ dMs(v(t− s))

)
=e−〈µs,v(t−s)〉dMs(v(t− s)).

Hence for t ∈ [0, T ] and s ≤ t the map s 7→ e−〈µs,v(t−s)〉 is a local martingale. Since by
(2.7)

E

∫ T

0

e−2〈µs,v(t−s)〉〈µs,Γv(t− s)〉ds ≤ CTe(2+ 2
α ) diam f(E)‖Γf‖∞ <∞,

it is in fact a martingale. Therefore, upon choosing s = t we find

Eµ0e−〈µt,f〉 = e−〈µ0,Vtf〉.

By density of A in Cb(E) the previous equation also holds for f ∈ Cb(E), which yields
the claim.
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Observe in particular, that the duality in Theorem 2.3 determines the Laplace-
transform of µt and by the same argument as in Theorem 11 of [19], also the finite
dimensional distributions of µ uniquely. Hence, we obtain uniqueness (in law) for
solutions to the Dean-Kawasaki equation.

In order to develop our non-existence statement, we insert a short intermezzo on
generating functions.

Whereas of course, for the probability-generating function

g(s) := EsX =

∞∑
k=0

pks
k (2.9)

of a some discrete random variable X with values in N0 = {0, 1, 2, . . . }, one knows that
pk = P (X = k), we are interested in the opposite direction and establish

Lemma 2.4. Let X be a non negative random variable, such that for each n ∈ N0

g(s) = EsX =

n∑
k=0

skpk + o(sn), as s→ 0+, (2.10)

for some sequence {pk, k ∈ N0}. Then X ∈ N0 a.s., pk ≥ 0 and

P{X = k} = pk

for each k ∈ N.

Proof. We will prove the statement by induction. Due to (2.10),

EsX → p0 as s→ 0 + .

On the other hand, since sX → 1{X=0} a.s. as s → 0+, we infer by dominated conver-
gence

EsX → P{X = 0} as s→ 0 + .

Hence, p0 is non negative and equals P{X = 0}.
For the induction step, let us assume that P{X = k} = pk for k = 1, . . . , n − 1 and

X ∈ {0, 1, . . . , n− 1} ∪ (n− 1,∞) a.s. Again, by (2.10),

1

sn

(
EsX −

n−1∑
k=0

pks
k

)
→ pn as s→ 0 + .

Using the induction assumption, we can write

1

sn

(
EsX −

n−1∑
k=0

pks
k

)
=

1

sn
E

[
sX −

n−1∑
k=0

1{X=k}s
X

]
=

1

sn
E
[
1{X>n−1}s

X
]

= E
[
1{X∈(n−1,n)}s

X−n]+ E
[
1{X≥n}s

X−n] .
Again, by the dominated convergence theorem,

E
[
1{X≥n}s

X−n]→ P{X = n} as s→ 0 + .

Thus, E
[
sX−n1{X∈(n−1,n)}

]
is bounded for s ∈ (0, 1], which implies

P{X ∈ (n− 1, n)} = 0.

This finishes the proof of the lemma.
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We can now return to our main question and prove, that the trivial solutions we found
for α ∈ N and atomic µ0 must in fact be the only possible ones.

Proof of Theorem 2.2. Take α > 0, µ0 ∈ M1(E) and a solution µ to (MP)αµ0
. To ease

notation, let us also introduce

C := {A ∈ B(E), A ⊂ An for some n ∈ N} (2.11)

and for A ∈ C and fixed t ∈ [0, T ], we abbreviate h(x) = Pt1A(x). Note that by assumption
(2.2), we can find δ > 0 with 0 ≤ h(x) ≤ 1− δ for all x ∈ E.

Now, for A ∈ C and fixed t > 0, consider the generating function g of the real-valued
random variable X = αµt(A). The Laplace-duality of Theorem 2.3 yields

Ee−rαµt(A) = Ee−〈µt,rα1A〉 = eα〈µ0,ln(Pte
−r1A )〉. (2.12)

But since Pte−r1A = 1 + (e−r − 1)h and setting s = e−r, the previous display reads

g(s) = eα〈µ0,ln(1+(s−1)h)〉 = eα〈µ0,ln(1−h)+ln(1+ h
1−h s)〉. (2.13)

By the boundedness of h, the function g is well-defined on (−δ,∞). Moreover, it is
infinitely differentiable. Thus, for each n ∈ N0

g(s) =

n∑
k=0

pks
k + o(sn) on (−δ, δ),

by Taylor’s theorem. Consequently, by Lemma 2.4 we know that αµt(A) ∈ N0 a.s. So, we
have proved that for each A ∈ C and t > 0

µt(A) ∈
{

0,
1

α
, . . . ,

bαc
α

}
a.s.

Here, we also used the fact that µt is a probability measure a.s. Next, making A ↑ E, we
obtain that

1 = µt(E) ≤ bαc
α
≤ 1 a.s.

This implies that α ∈ N. In order to make a conclusion about µ0, we take again any A ∈ C
with µ0-zero boundary and use the continuity of the process µ. So, we obtain

µ0(A) ∈
{

0,
1

α
, . . . ,

bαc
α

}
.

Hence, there exist xk, k ∈ {1, . . . , α} such that

µ0 =
1

α

α∑
k=1

δxk .

We close the considerations with the following final remark concerning generali-
sations of our result. In fact, the dichotomic nature which we proved in this paper
remains unaffected for Dean-Kawasaki dynamics driven by a free energy functional
H = α

2

∫
µ logµ+F , with some smooth potential F . In that case however, particles which

govern the evolution exhibit mean-field interaction. This result is the content of our
forthcoming paper [23].
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