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1. MAIN OBJECT OF INVESTIGATION

We consider a system of diffusion particles on
the real line that

1. start from some finite or countable set of points
with masses;

2. move independently up to the moment of the
meeting;

3. coalesce;
4. have their mass adding after sticking;
5. have their diffusion changed correspondingly

to the changing of the mass (σ2 = 1
m).



2. EXAMPLES AND KNOWN FACTS

I Arratia flow
It is the system of Brownian particles which move
independently up to the moment of the meeting. Then
they coalesce and move together as a Brownian
motion (diffusion coefficient of every particle equals
one).

MATHEMATICAL DESCRIPTION

Such flows one can describe by a system of
processes {x(u, t), t ≥ 0, u ∈ R} such that

1. x(u, ·) is a Brownian motion;
2. x(u, 0) = u, u ∈ R;
3. x(u, t) ≤ x(v , t), u < v , t ≥ 0;
4. 〈x(u, ·), x(v , ·)〉t = 0, t < τu,v, where
τu,v = inf{t : x(u, t) = x(v , t)}.



3. ASYMPTOTIC BEHAVIOUR OF
ARRATIA FLOW

LAW OF THE ITERATED LOGARITHM FOR A
WIENER PROCESS

lim
t→0

|X(u, t)− u|
√

2t ln ln t−1
= 1 a.s.

ASYMPTOTIC IN THE SUP-NORM
(Shamov A. ’10)

lim
t→0

sup
u∈[0,1]

|X(u, t)− u|
√

t ln t−1
= 1 a.s.

ASYMPTOTIC OF CLUSTER SIZE
(Dorogovtsev A. A., Vovchanskii M. B. ’13)

Let ν(t) = λ{u : X(u, t) = X(0, t)}, t ≥ 0. Then
a.s.

lim
t→0

ν(t)
√

2t ln ln t−1
≥ 1,

lim
t→0

ν(t)

2
√

t ln ln t−1
≤ 1.



4. EXISTENCE OF A HEAVY
DIFFUSION PARTICLES SYSTEM

THEOREM (KONAROVSKYI)

For every non-decreasing sequence of real numbers
{xi, i ∈ Z} and sequence of strictly positive real
numbers {bi, i ∈ Z} such that

lim
n→±∞

{(xn+1 − xn) ∧ bn+1 ∧ bn} > 0,

there exists a set of processes
{Xk(t), t ≥ 0, k ∈ Z}, satisfying

1◦) Xk(·) is a continuous square integrable martingale
with respect to the filtration

Ft = σ(Xi(s), s ≤ t, i ∈ Z);
2◦) Xk(0) = xk , k ∈ Z;
3◦) Xk(t) ≤ Xl(t), k < l , t ≥ 0;

4◦) 〈Xk(·)〉t =
t∫

0

1
mk(s)

ds, t ≥ 0,

where mk(t) =
∑

i∈Ak(t)
bi,

Ak(t) = {i ∈ Z : ∃ s ≤ t, Xk(s) = Xi(s)};
5◦) 〈Xk(·),Xl(·)〉t = 0,

t < τk ,l = inf{t : Xk(t) = Xl(t)}.
Moreover, the conditions 1◦)-5◦) uniquely determine
the distribution of the process in the space
(C([0,∞)))Z .



5. IDEA OF CONSTRUCTION
(xk(0) = k , mk(0) = 1, k ∈ Z)

CONSTRUCTION OF FINITE SYSTEM

Let {wk(t), t ≥ 0, k ∈ Z} be a system of
independent Wiener processes. For fixed n ∈ N
construct a process X n(t), t ≥ 0 in R2n+1 by
coalescing and rescaling of the trajectories of
{wk , k = −n, . . . , n}.

PROPOSITION

The process X n(t), t ≥ 0 satisfies the conditions
1◦) X n

k (·) is a continuous square integrable martingale;
2◦) X n

k (0) = k , k = −n, . . . , n;
3◦) X n

k (t) ≤ X n
l (t), k < l , t ≥ 0;

4◦) 〈X n
k (·)〉t =

t∫
0

1
mn

k(s)
ds, t ≥ 0,

where mn
k(t) = |{i : ∃s ≤ t X n

i (s) = X n
k (s)}|;

5◦) 〈X n
k (·),X n

l (·)〉t = 0, t < τ n
k ,l,

where τk ,l = inf{t : X n
k (t) = X n

l (t)}.



5. IDEA OF CONSTRUCTION
(xk(0) = k , mk(0) = 1, k ∈ Z)

PASSING TO THE LIMIT

We can pass to the limit as the number of particles
tend to infinity by the following lemma

LEMMA (KONAROVSKYI)

Let {wk(t), t ≥ 0, k = 0, 1, . . .} be a system of
independent Wiener processes. Define
ξT

k = max
t∈[0,T ]

{k + wk(t)} , ηT
k = min

t∈[0,T ]
{k + wk(t)} .

Then for every T > 0 and δ ∈ (0, 1)

P
{

lim
n→∞

{
max

k=1,...,n
ξT

k < n + δ, ηT
n+1 > n + δ

}}
= 1.

We have
P
{
∃N ∀n ≥ N ∀t ∈ [0, T ] X n

k (t) = X N
k (t)

}
= 1,

for all k ∈ Z. Hence the lemma holds

LEMMA

The sequence {X n
k (·), n ≥ k} converges almost

surely in C([0,∞)).



6. ASYMPTOTIC BEHAVIOUR

ESTIMATION OF ASYMPTOTIC GROWTH OF
MASS

Let w1(·), w2(·) be independent Wiener processes
and

σk ,l = inf{t : k + w1(t) = l + w2(t)}.

1. P{τk ,l ≤ t} ≤ P{σk ,l ≤ t};

2. P
{

lim
t→+∞

mk(t)
4
√

t ln ln t
≤ 1

}
= 1;

3. P{τk ,k+p < +∞} = 1.

ASYMPTOTIC BEHAVIOUR OF ONE
PARTICLE

Using the estimation of asymptotic growth of the mass
and the law of the iterated logarithm for a Wiener
process we have

1. P
{

lim
t→+∞

|Xk(t)|√
2t ln ln t

= 0
}

= 1;

2. P
{

lim
t→+∞

|Xk(t)|
4√t1−ε

=∞
}

= 1, for all ε ∈ (0, 1).

Open problem: What types of functions ϕ and ψ are
for which

lim
t→∞

mk(t)
ϕ(t)

= 1, lim
t→∞

|Xk(t)|
ψ(t)

= 1.



7. LARGE DEVIATIONS PRINCIPLE
(FINITE CASE)

Let C̃ = {f ∈ C ([0, 1];Rn) : fi(t) ≤ fj(t), i < j}
and let H be a set of absolutely continuous functions
g ∈ C ([0, 1];Rn) such that ġk ∈ L2[0, 1],
k = 1, . . . , n. Denote

Ix(g) =

 1
2

1∫
0
‖ġ(t)‖2dt, g(0) = x, g ∈ H ∩ C̃,

+∞ otherwise.

THEOREM (KONAROVSKYI)

Let X(t), t ∈ [0, 1], satisfy conditions 1◦)-5◦) with
X(0) = x and bk = 1, k = 1, . . . , n. Then the family
{X(ε·), ε > 0} satisfies LDP in the space
C ([0, 1];Rn) with the good rate function Ix .

PROPOSITION

Let k , l = 1, . . . , n be fixed. Define
r = min{j : xj = xk ∧ xl}, R = max{j : xj = xk ∨ xl},

S2
x =

1
R − r + 1

R∑
j=r

(
R∑

i=r

xi

R − r + 1
− xj

)2

.

Then
lim
ε→0

ε ln P{τk ,l ≤ ε} = −
Ak ,l

2
S2,

where Ak ,l is the number of elements of {xr, . . . , xR}.



8. HEAVY DIFFUSION PARTICLES
SYSTEM WITH DRIFT

System of diffusion particles on the real line that
1. start from some set of points with masses;
2. move independently up to the moment of the

meeting;
3. coalesce;
4. have their mass adding after sticking;
5. have their diffusion changed correspondingly to the

changing of the mass;
6. have evolution of particle described by SDE

dx(t) =
a(x(t))

m(t)
dt +

σ(x(t))√
m(t)

dw(t).

a(x) = −x, |x| < 1, a(x) = sign(x), |x| ≥ 1, σ(x) = (x2 ∨ 0, 1) ∧ 1



9. EXISTENCE OF THE
MATHEMATICAL MODEL

THEOREM (KONAROVSKYI)
Let a, σ be bounded Lipschitz continuity functions and
inf
x∈R

σ(x) > 0. Then for every non-decreasing sequence of

real numbers {xi, i ∈ Z} and sequence of strictly positive
real numbers {bi, i ∈ Z} such that

lim
n→±∞

{(xn+1 − xn) ∧ bn+1 ∧ bn} > 0,

there exists ζi(t), t ≥ 0, i ∈ Z, satisfying

1◦) Mi = ζi(·)−
·∫

0

a(ζi(s))
mi(s)

ds is a continuous square integrable

martingale with respect to the filtration
Fζt = σ(ζi(s), s ≤ t, i ∈ Z), where mi(t) =

∑
j∈Ai(t)

bj ,

Ai(t) = {j : ∃s ≤ t ζj(s) = ζi(s)};
2◦) ζi(0) = xi , i ∈ Z;
3◦) ζi(t) ≤ ζj(t), i < j , t ≥ 0;

4◦) 〈Mi〉t =
t∫

0

σ2(ζi(s))
mi(s)

ds, t ≥ 0;

5◦) 〈Mi,Mj〉t = 0, t < τi,j = inf{t : ζi(t) = ζj(t)}.
The conditions 1◦)-5◦) uniquely determine the distribution of
the process in the space (C([0,∞)))Z

ESTIMATION OF ASYMPTOTIC GROWTH OF THE MASS

(bk = 1, xk+1 − xk > δ, k ∈ Z)

P

{
lim

t→+∞

δmk(t)

8‖σ‖
√

t ln ln t
≤ 1

}
= 1.



10. START FROM ALL POINTS

Question: Whether there exists a system of
processes {X(u, t), t ≥ 0, u ∈ R} such that

1◦) X(u, ·) is a continuous square integrable martingale
with respect to the filtration
Ft = σ(x(u, s), s ≤ t, u ∈ R);

2◦) X(u, 0) = u, u ∈ R;
3◦) X(u, t) ≤ X(v , t), u < v , t ≥ 0;

4◦) 〈X(u, ·)〉t =
t∫

0

1
m(u,s)ds, t ≥ 0,

m(u, t) = λ{v : X(v , t) = X(u, t)};
5◦) 〈X(u, ·),X(v , ·)〉t = 0,

t < τu,v = inf{t : X(u, t) = X(v , t)}.
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