Publications

[21] M. Hellmund, “Entanglement and output entropy of the diagonal map,” Quantum Information and Computation 13 (2013) no. 5--6, 379--392, arxiv:1206.6269. [ bib | arXiv ]
[20] M. Hellmund and A. Uhlmann, “An entropy inequality,” Quantum Information and Computation 9 (2009) no. 7--8, 622--627, arXiv:0812.0906. [ bib | arXiv ]
[19] M. Hellmund and A. Uhlmann, “Concurrence and entanglement entropy of stochastic 1-qubit maps,” Physical Review A 79 (2009) 052319, arXiv:0903.1340. [ bib | arXiv ]
[18] M. Hellmund and A. Uhlmann, “Concurrence of stochastic 1-qubit maps,” arXiv:0802.2092. [ bib | arXiv ]
[17] M. Hellmund and W. Janke, “High-temperature series for the bond-diluted Ising model in 3, 4 and 5 dimensions,” Physical Review B 74 (2006) 144201, cond-mat/0606320. [ bib | arXiv ]
[16] M. Hellmund and W. Janke, “High-temperature series expansions for the q-state Potts model on a hypercubic lattice and critical properties of percolation,” Physical Review E 74 (2006) 051113, cond-mat/0607423. [ bib | arXiv ]
[15] M. Hellmund and W. Janke, “High-temperature series expansions for random Potts models,” Condens. Matter Phys. 8 (2005) 59, cond-mat/0502152. [ bib | arXiv ]
[14] M. Hellmund and W. Janke, “Star-graph expansions for bond-diluted Potts models,” Physical Review E 67 (2003) 026118, cond-mat/0206400. [ bib | arXiv ]
[13] M. Bordag, M. Hellmund, and K. Kirsten, “Dependence of the vacuum energy on spherically symmetric background fields,” Phys. Rev. D61 (2000) 085008, hep-th/9905204. 9 pages. [ bib | arXiv ]
[12] J. Gladikowski and M. Hellmund, “Static solitons with non-zero Hopf number,” Phys. Rev. D56 (1997) 5194--5199, hep-th/9609035. [ bib | arXiv ]
[11] J. Dziarmaga and M. Hellmund, “Unpolarized quasielectrons and the spin polarization at filling fractions between 1/3 and 2/5,” Phys. Rev. B56 (1997) 12116, cond-mat/9709088. [ bib | arXiv ]
[10] U. Girlich and M. Hellmund, “Interaction dependence of composite fermion effective masses,” Phys. Rev. B55 (1997) 15372, cond-mat/9612019. [ bib | arXiv ]
[9] J. Dziarmaga and M. Hellmund, “Transition from ν=8/5 to ν=5/3 in the low Zeeman energy limit,” cond-mat/9612114. [ bib | arXiv ]
[8] M. Hellmund, J. Kripfganz, and M. G. Schmidt, “Sphaleron effects near the critical temperature,” Phys. Rev. D50 (1994) 7650--7658, hep-ph/9307284. [ bib | arXiv ]
[7] U. Girlich and M. Hellmund, “A comparison of FQHE quasi electron trial wave functions on the sphere,” Phys. Rev. B49 (1994) 17488--17491, cond-mat/9403090. [ bib | arXiv ]
[6] M. Hellmund and J. Kripfganz, “The decay of the sphaleron,” Nucl. Phys. B373 (1992) 749--760. [ bib | .pdf ]
[5] M. Hellmund and J. Kripfganz, “Multiloop free energy of the heterotic string near the Hagedorn temperature,” Phys. Lett. B241 (1990) 211. [ bib | .pdf ]
[4] M. Hellmund and J. Kripfganz, “Background field equations for the heterotic string at finite temperature,” Phys. Lett. B223 (1989) 67. [ bib | .pdf ]
[3] M. Hellmund, “A lattice calculation in (1+1)-dimensional QCD by the Hamiltonian ensemble projector Monte Carlo method,” Phys. Lett. B166 (1986) 214. [ bib | .pdf ]
[2] M. Hellmund, “Test of a Hamiltonian variational method for SU(3) lattice gauge theory in (3+1)-dimensions,” J. Phys. G10 (1984) 859. [ bib | .pdf ]
[1] M. Hellmund and G. Ranft, “Gauge vector boson pair production at anti-p p collider energies,” Zeit. Phys. C12 (1982) 333. [ bib | .pdf ]
ยท Last modified: Tue Mar 8 17:53:16 2016
Valid CSSValid HTML 5Debian