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For the heterotic string we compute the critical exponent of  the multi-loop free energy F near the Hagedorn temperature Tw 
With d uncompactified dimensions we find in particular the two-loop critical behaviour F t2~ ~ ( TH -- T) ca-2~/2, in contrast to the 
one-loop (free string) result F ( t )~ ( T  H -  T) a/2. For d =  3, we correspondingly obtain a finite pressure but a diverging two-loop 
energy density at the Hagedorn temperature which would appear as a limiting temperature in this case. Cosmological conse- 
quences are studied. 

The behaviour of string theories is expected to dif- 
fer significantly from that of point particle theories 
at short distances. There are essentially two regimes 
where this would in principle be observable. One is 
in high cncrgy scattering, where it has been shown [ 1 ] 
that wide angle string scattering actually does not test 
very short distances, no matter how large the energy 
is. The other relevant case is that of high temperature 
which has attracted much interest recently (see rcfs. 
[2-11 ], also for a list of further rcfcrences). 

The standard expectation based on the behaviour 
of  the one-loop free energy (i.e. a gas of free strings) 
is a phase transition at (or below [ 5 ] ) the Hagedorn 
tcmperature TH. The canonical ensemble does not 
exist for T> Tn but the one-loop energy density is fi- 
nite as T~Tn ,  and the Hagedorn temperature is 
therefore not interpreted as a limiting temperature. 
It should be very interesting to check whether this 
conclusion remains valid when higher order terms in 
string perturbation theory are taken into account. 
Some attempts [6,7] have been made to study two- 
loop contributions, but this question remained 
unanswered. 

As we discuss below we actually find a multi-loop 
contribution to the energy density diverging likc 
(TH--T)-~/2 for the relevant case of three uncom- 
pactified spatial dimensions. This implies a drastic 
change in opinion because now the Hagedorn tem- 
perature would have to be interpreted as limiting 

temperature as it was originally conceived [ 12 ]. 
The backreaction of the interacting string gas on 

the graviton g,~ and the dilaton ¢~ background field is 
described, to first order in sigma model perturbation 
theory, by the equations of motion 

e2¢ 

[3§~ =R,,. +2V,,VoO= 2nflVd g~, ( Oxu OX. )g, 

e2O 
fl*=R-4(V~))2+2V20= 8nflVdg~t ( R ( 2 ) ) g '  ( 1 )  

with R (2) being the genus-g world-sheet curvature. 
The antisymmetric tcnsor (torsion) field may be set 
to zero consistently. 

Eq. ( 1 ) follows from the rcquirement of cancella- 
tion of short-distance singularities against additional 
singularities from modular integrations on higher ge- 
nus world-sheets (Fischler-Susskind mechanism 
[ 13 ] ), which may be rephrased as a cancellation of 
BRST anomalies from tadpoles and background fields 
[14]. For thc bosonic string this has been discussed 
in detail by Polchinski [15 ], the heterotic string is 
discussed in refs. [ 16-18]. 

The thermal expectation values of the tadpoles ap- 
pearing on the right hand side ofeq. ( 1 ) may be eval- 
uated in a euclidean path integral formulation con- 
sidering the string moving on S ~ × Ra× Mcompac t [ 2 ]. 
The inverse temperature fl is given by the period of 
compactified euclidean time. This compactification 
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leads to the appearance of new states (winding 
states ), which are characterized at genus g by 2 g-vec- 
tors n, mET]~ representing the winding numbers 
around the 2g non-trivial cycles of the surface [ 3,4 ]. 
The world-sheet partition function is given by 

Z,, = 7c' 7qu.~g -~  (2) 

with 

Z~'= Vaflexp (zn-m) ~mz ( fn -m)  (3) 

and Z~, u describes the quantum fluctuation around 
the corresponding classical solution, z is the g×g pe- 
riod matrix. 

Since the first-quantized formalism generates only 
connected diagrams, the thermal free energy l"e is es- 
sentially given by Zg and not log Z~ [ 2 ], 

Fg=fl-~Z~. (4) 

The tadpoles ofeq. ( 1 ) can also be expressed in terms 
of Zg, 

( R ( 2 ) ) , , = 4 ~ ( 2 - 2 g )  exp[ ( 2 g - 2 ) 0 ]  Zg, 

( 0X, ~Xj ) g =  - zrg exp [ ( 2 g -  2)~] Zg, 

( 0% ~Xo )g = ( Ox~ ° ~X8 ~ ) + ( axe' ~X~' ) 

= (-r~gZg-rt[323~)exp[(2g-2)O]. (5) 

Thus we obtain the background field equations 

Ru. - ½ g.~R + 2V.V~O+ 2g.~ [ (V,0) 2~ V20] 

= ~ ½ exp(2g0) t~g) ~kt.o ,- 
g 

R-4(VO)2+4V20=- y~ ( g - I )  exp(2gO)f~ (6) 
g 

with ( x ) _  • (g) p ( g ) ,  p (g )  tuv - d m g ( p  , ..., ) the energy-mo- 
mentum tensor of a perfect fluid, 

1 . p ~g) =fg O~ p<~) f~= ~d l'g, + f l ~ ,  = --Ji" • (7) 

Eqs. (6) are consistent with the effective action 

S~ff= f d a + ' x x / - g  ( e x p ( - 2 q ~ ) [ R + 4 ( V 0 )  2] 

-Y~ exp[ (2g-  2)~1J~.(v -/C~goo f l ) ) .  (8) 
g 

The crucial next step is the evaluation of the free en- 
ergy densityfg at higher genus. Techniques for calcu- 
lating higher-loop fermionic string amplitudes have 
made significant progress recently [19,20]. It is 
known how to express all necessary' determinants and 
Green functions on a higher-genus Riemann surface 
by theta functions, the prime form E(z, 09) and the 
holomorphic differential a(z) .  

Possible singularities of the free energy near the 
Hagedorn temperature would have to arise from di- 
vergences of the modular integral, i.e. they are deter- 
mined by the behaviour of the integrand near the 
boundary' of the moduli space. Following ref. [20] 
we denote a boundarT as Ao or A, resp., depending on 
whether a nontrivial or trivial (dividing) homology 
cycle shrinks to zero. We consider the case g =  2 as an 
example, d~ corresponds to the limit r~d iag( r , ,  r2) 
representing two tori with moduli r,, z2 joined at a 
node. This limit provides a diverging contribution to 
the free energy (at anyfl) which is however cancelled 
by a one-loop contribution with a background field 
insertion. The remaining finite contribution behaves 
essentially like the one-loop contribution squared, i.e. 
leads to finite energy density and pressure for fl-,fln, 
d = Y  

The situation is different tbr the contribution com- 
ing from Ao. If e.g. the non-dividing homology cycle 
a~ shrinks to zero one obtains a torus with modular 
parameter z2 and two marked points p~, P2 joined by 
a long thin handle. The period matrix r behaves like 

.02 g. 

~11 --,io¢, /512---+ J d z  , ~22 --+~2 . 

pt 

In this limit, the behaviour of theta functions, prime 
form and other ingredients is well known [21 ]. The 
contribution of internal dimensions can, at least for 
lattice compactifications, bc expressed by general- 
ized lattice theta functions which show a regular be- 
baviour (no poles and no zeroes) in the degeneration 
limit. Therefore the critical exponents will not de- 
pend on the compactification scheme, as discussed at 
one loop in refs. [ 8,9 ]. 

The most singular behaviour, and indeed the only 
one which leads to a divergence above "/'n, appears in 
the Neveu-Schwarz (NS) sector of the long handle. 
For zero winding number it corresponds to the prop- 
agation of a spurious NS tachyon along the handle 
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which is cancelled by summation over the spin struc- 
tures on thc corresponding cycle. For non-zero wind- 
ing numbers this cancellation no longer takes place 
because the mixing of thc  sum over winding numbers 
with the sum over spin structures leads to different 
GSO-like projections requircd for modular  invari- 
ance [ 3,5 ]. The contribution of  this corner of  moduli 
space to the partition function Zg is given by 

ze.-2~ ~ dil l  _5/2+f12/att2+n2/af12 
- ( l o g l t l ) a / 2  Il l  ( 9 )  

o 

Details of  the derivation will be given elsewhere [ 18 ]. 
From eq. (9) we first of  all find the inverse Hagedorn 
temperature 

flH =r t ( l  +V/2)  , (10) 

which is the same as the value derived from the one- 
loop calculation. Approaching fin we obtain 

fg=2 ~ ( f l - [3 . )  ~a-2)/2 d < 2  , 

~ log ( f l -  flu) d =  2 ,  

~ finite d>  2 .  

(11) 

For d = 3  we obtain finite free energy density and 
pressure; the energy density, however, diverges for 

1 
p~2)~ f l ~ / - ~ -  flH ' d = 3 ,  (12) 

as can be seen from the relation (9). This is the main 
of  this paper. It should be contrasted with the one- 
loop result where for d =  3 the energy density is finite 
as fl--'fln. For higher genus the degree of  divergence 
will not increase further as long as the two-loop en- 
ergy is finite, i.e. d>  2. 

We now turn to a discussion of  some of  the cos- 
mological consequences of  the presence of  a dilaton 
and the divergence of  the energy density at the 
Hagedorn temperature. We look for homogeneous 
Robertson-Walker  solutions gu ,=d iag (  - I, a 2, a z, 
a 2) coupled to a homogeneous dilaton ~(t)  in the 
presence o f  the incoherent matter contribution char- 
acterized by 

f = Z  ( g - l )  e x p ( 2 g ~ ) L ,  (13) 
g 

p =  ~ exp (2g~b) p~g), 
g 

p = ~  cxp(2g~) pCX). ( 13 cont 'd)  
g 

Introducing the notation K = b / a ,  a=~  we obtain 
from eq. (6) the evolution equations 

K =  - 3 K 2 +  2aK+ ~ ( p - f ) ,  

(r=a 2 -  3 / 2 K 2 +  ~ ( 3 p -  2f) (14) 

together with the constraint 

3K 2 -  6aK+ a 2 = ~p. ( 15 ) 

Since thc free energy density fvan i shes  to one-loop 
order in string perturbation theory, and is non-sin- 
gular near the Hagedorn temperature, it will be ne- 
glected in the following. The equation of  state could 
be parametrizcd by 

p' - 'ap  (16) 

with ~x--,-~ at low temperatures. Near the Hagedorn 
temperature one finds a - , a <  ], where to one-loop 
order c~ is some small non-vanishing number  which 
depends on the compactification scheme. The two- 
loop singularity ofp  implies 

or--, 0 for T ~  Tn , (17) 

instead of  the non-vanishing one-loop limit 6~. Near 
the singularity it is actually more convenient to use 

p = p ( T )  exp (2~) + O (exp (4.~)) ,  ( 18 ) 

where/~(7') goes to a finite limit O for T ~  TH./~ again 
depends on the compactification scheme. 

The first observation concerning the solution space 
of  eqs. (14),  ( 15 ) is that it contains in a natural way 
the standard radiation-dominatcd universe, with the 
dilaton field approaching a constant. For small cr and 
a = ~ we obtain 

k~- - 2 K 2 + O ( a 2 )  , 6 " - 3 c r K + O ( o ~ - ) ,  (19) 

leading to 

a( t )~- t  ~/2 , ~ ( t ) - ~ c o n s t . + O ( l / x / i ) ,  (20) 

consistent with the assumption of  a being small, O ( 1 / 
/3/2). The other interesting problem is the behaviour 
near the Hagedorn temperature, i.e. close to an initial 
or final singularity. It is not difficult to solve eq. ( 14 ) 
in this limit [using eq. (18) ]. Considering e.g. a col- 
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lapsing universe  we f ind to leading o rde r  

1 1 1 1 
- - - -  ( 2 1 )  K " ~ - - x / / ~ l f _ l ,  cJ~- 1 +  / ~ t f _ / ,  

i.e. 

a(t)~_(t f - - t )~/ . , /3 ,  e x p ( 2 o ) ~ - ( t f - - t )  "-/~-~ . (22 )  

Thus  the un ive r se  is d r i v e n  to zero  str ing coupl ing  at 

the singulari ty.  The  energy d iverges  at the s ingular i ty  

like 

1 (23 )  
p ~ c  t f - t  ' 

where  c is an arb i t ra ry  cons tan t  o f  in tegra t ion .  7" ap- 

proaches  7~ at the s ingular i ty  like 

TH - T -  ~ ( t f - t )  4x/3-  2 . ( 24 )  

O f  course,  there  r emains  the possibi l i ty  o f  hav ing  a 

phase t rans i t ion  occur r ing  below 7h  [5 ] ,  i.e. in the 

present  scenar io  before  reaching  the singulari ty.  

The re  is one  p rob lem that  occurs  in any case before  

the Hagedo rn  t e m p e r a t u r e  is reached,  and that  is the 

b reakdown  o f  s igma mode l  pe r tu rba t ion  theory,  s im- 

ply because  the cu rva tu re  d iverges  at the singulari ty.  

Th is  makes  it even  m o r e  urgent  to s tudy str ing prop-  

agat ion di rec t ly  on cu rved  mani fo lds .  

To summar i ze ,  we have  found  the mul t i - loop  con-  

t r ibut ion  to the d =  3 he tero t ic  s t r ing energy dens i ty  

to d iverge  at the  H a g e d o r n  t empera tu re ,  in cont ras t  

to the one- loop cont r ibut ion  which is f ini le  at 7h.  This  

changes  cosmology  at high t e m p e r a t u r e  significantly.  

Fo r  a col lapsing un ive r se  the  Hagedo rn  t e m p e r a t u r e  

is reached only at the singulari ty.  C u r v a t u r e  f luctua-  

t ions  are now expec ted  to be d r ama t i c  near  the 

Hagedo rn  t empera tu re ,  in add i t i on  to t h e r m o d y -  

namic  f luc tua t ions  which are be t te r  descr ibed  in a 

mic rocanon ica l  fo rmula t ion  [ 9-1 1,22 ]. 

R e f e r e n c e s  

[ 1 ] l).J. Gross and P.I=. Mende, Nucl. Phys. B 303 (1988) 407. 
[2] J. Polchinski, Commun. Math. Phys. 104 (1986) 37. 
[3] K.H. O'Brien and C.-I Tan, Phys. Rev. D 36 (1987) 1184. 
[4] B. McClain and B. Roth, Commun. Math. Phys. 111 (1987) 

539. 
[ 5 ] J.J. Atick and E. Witten, Nucl. Phys. B 310 ( 1988 ) 291. 
[6] Y. Leblanc, Phys. Rev. D 39 (1989) 3731. 
[7] E. Alvarez and M.A.R. Osorio, Physica A 158 (1989) 449. 
[8] I. Antoniadis, J. Ellis and D.V. Nanopoulos, Phys. Left. B 

199 (1987) 402. 
[9] F. Englerl and J. Orloff, preprint ULB-TH 89/08 20; 

S. Frautschi, Phys. Rev. D 3 ( 1971 ) 2821. 
[ 10] M.J. Bowiek and S.B. Giddings, preprint HUTP 89/A007. 
[ 11 ] N. Deo, S. Jain and C.-I. Tan, preprint BROWN-HET 703. 
[ 12 ] R. Hagedorn, Nuovo Cimento Suppl. 3 ( 1965 ) 147. 
[ 13] W. Fischler and L. Susskind, Phys. Lett. B 171 (1986) 383; 

B 173 (1986) 262. 
[14] S.J. Rey, Nucl. Phys. B 316 (1989) 197. 
[ 15 ] J. Polchinski, Nucl. Phys. B 307 ( 1988 ) 61. 
[16] M. Hellmund and J. Kripfganz, Phys. Lett. B 223 (1989) 

67. 
[ 17 ] P. Nelson and H. La, Phys. Rev. Lett. 63 (1989) 24. 
[ 18 ] M. Hellmund and J. Kripfganz, in preparation. 
[ 19 ] E. Vcrlinde and H. Verlinde, Nucl. Phys. B 288 (1987) 35-7; 

Phys. Left. B 192 (1987) 95. 
[ 20 ] J.J. Atick, G. Moore and A. Sen, Nucl. Phys. B 307 (1988) 

221;B 308 (1988) 1. 
[21 ]J.D. Fay, Thcta functions on Riemann surfaces, Springer 

Lecture Notes in Mathematics, Vol. 353 (Springer, Berlin, 
1973). 

[22] R.D. Carlitz, Phys. Rev. D 5 (1972) 3231. 

214 


