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For the heterotic string we compute the critical exponent of the multi-loop free cnergy I ncar the Hagedorn temperature 73,.
With d uncompactified dimensions we find in particular the two-loop critical behaviour F 3 ~ (1} — 7)) ““=2/2 in contrast to the
onc-loop (free string) result F ")~ (T — T)%2, For d=3, we correspondingly obtain a finite pressure but a diverging two-loop
encrgy density at the Hagedom temperature which would appcar as a limiting temperature in this case. Cosmological conse-

quences are studied.

The behaviour of string theories is expected to dif-
fer significantly from that of point particle theories
at short distances. There are essentially two regimes
where this would in principle be observable. One is
in high cncrgy scattering, where it has been shown [ 1]
that wide angle string scattering actually does not test
very short distances, no matter how large the energy
1s. The other rclevant case is that of high temperature
which has attracted much interest recently (sce refs.
[2-11], also for a list of further references).

The standard expectation based on the behaviour
of the one-loop free energy (i.c. a gas of free strings)
is a phase transition at (or below [5]) thec Hagedorn
temperature 7. The canonical ensemble does not
exist for 7> T but the one-loop encrgy density is fi-

nite as T— 7y, and the Hagedorn temperature is.

therefore not interpreted as a limiting temperature.
It should be very interesting to check whether this
conclusion remains valid when higher order terms in
string perturbation theory are taken into account.
Some attempts [6,7] have becn made to study two-
loop contributions, but this question remained
unanswered.

As we discuss below we actually find a multi-loop
contribution to the energy density diverging likc
(Tu—T)~"'/? for the relevant case of three uncom-
pactified spatial dimensions. This implies a drastic
change in opinion because now the Hagedorn tem-
perature would have to be interpreted as limiting

temperaturc as it was originally conceived [12].

The backreaction of the interacting string gas on
the graviton g, and the dilaton ¢ background field is
described, to first order in sigma model perturbation
theory, by the equations of motion
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with R () being the genus-g world-sheet curvature.
The antisymmetric tensor (torsion) field may be set
to zero consistently.

Eq. (1) follows from the requirement of cancella-
tion of short-distance singularities against additional
singularitics from modular integrations on higher ge-
nus world-sheets (Fischler-Susskind mechanism
[13]), which may be rephrased as a cancellation of
BRST anomalies from tadpoles and background fields
[14]. For the bosonic string this has been discussed
in detail by Polchinski [15], the heterotic string is
discussed in refs. [16-18].

The thermal expectation values of the tadpoles ap-
pearing on the right hand side of eq. (1) may be eval-
uated in a euclidean path integral formulation con-
sidering the string moving on S' X RYX M ompact [2].
The inverse temperature 8 is given by the period of
compactified euclidean time. This compactification
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leads to the appearance of new states (winding
statcs ), which arc characicrized at genus g by 2 g-vec-
tors n, meZ® representing the winding numbers
around the 2g non-trivial cycles of the surface [3,4].
The world-sheet partition function is given by
Z=292% (2)
with

BZ

1
Z;’_Vdﬂexp( o= (m—m)l—n—]—‘[(fn—m)> (3)

and 72" describes the quantum fluctuation around
the corresponding classical solution. T is the gX g pe-
riod matrix.

Since the first-quantized formalism generates only
connected diagrams, the thermal free energy I, is es-
sentially given by Z, and not log Z, [2],

Fo=B""%,. (4)

The tadpoles of ¢q. (1) can also be expressed in terms
of Z,,

(R, =4n(2-28) exp[ (26—2)0] Z,
(3X,3X,>, = —ng exp[ (28—2)8] Z,,
(OXyBXo )y = (DX DX >+ (BXE DXT

=< ngZ,—np* — )exp[(2g—2)¢]. (5)

0
Thus we obtain the background field equations
Ry —4% 8,R+2V,V,0+2g,, [(Vo) - V3]

=Y yexp(2g9) (S,
b4
R—4(Vp)?+4V?p=—73 (g—1)exp(2g9) f, (6)
8

with ¢t =diag(p®, p®, ..., p'®) the energy-mo-
mentum tensor of a perfect fluid,

Lo o af,
fg=—13, (8 f+BdB

@ =_f. 7
v, p J (7
Eqgs. (6) are consistent with the effective action

Setr= jd‘”‘x J-g (exp(—2¢) [R+4(V0)?]

—ZCXD[(2g 2)01J( — goﬁ)) (8)
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The crucial next step is the evaluation of the free ¢n-
ergy density f; at higher genus. Techniques for calcu-
lating higher-loop fermionic string amplitudes have
made significant progress recently [19,20]. It 1s
known how to express all necessary determinants and
Green functions on a higher-genus Riemann surface
by theta functions, the prime form £(z, w) and the
holomorphic differential ¢(z).

Possible singularitics of the free energy near the
Hagedorn temperature would have to arise from di-
vergences of the modular integral, i.e. they are deter-
mined by the behaviour of the integrand ncar the
boundary of the moduli space. Following ref. [20]
we denote a boundary as 4, or 4, resp., depending on
whether a nontrivial or trivial (dividing) homology
cycle shrinks to zero. We consider the casc g=2 as an
example. 4, corresponds to the limit r—diag(t,, 1)
representing two tori with moduli 7,, 7, joined at a
node. This limit provides a diverging contribution to
the free energy (at any 8) which is however cancelled
by a onc-loop contribution with a background field
insertion. The remaining finite contribution behaves
essentially like the one-loop contribution squared, 1.e.
leads to finite energy density and pressure for f— Sy,
d=3.

The situation is different for the contribution com-
ing from A,. If e.g. the non-dividing homology cycle
a, shrinks to zero onc obtains a torus with modular
paramcter 7, and two marked points p,, p, joined by

a long thin handle. The period matrix 7 behaves like
f23
T —lcc, Tp— | dz, T

P

In this limit, the behaviour of theta functions, prime
form and other ingredients is well known [21]. The
contribution of internal dimensions can, at least for
lattice compactifications, bc cxpressed by general-
ized lattice theta functions which show a regular be-
haviour (no poles and no zeroes) in the degeneration
limit. Therefore the critical exponents will not de-
pend on the compactification scheme, as discussed at
one loop in refs. [8,9].

The most singular behaviour, and indced the only
one which leads to a divergence above Ty, appears in
the Neveu-Schwarz (NS) sector of the long handle.
For zero winding number it corresponds to the prop-
agation of a spurious NS tachyon along the handle
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which is cancclled by summation over the spin struc-
tures on the corresponding cycle. For non-zero wind-
ing numbers this cancellation no longer takes place
because the mixing of the sum over winding numbers
with the sum over spin structures leads to different
GSO-like projections required for modular invari-
ance [3,5]. The contribution of this corner of moduli
space to the partition function Z, is given by

- 2 /472 4 2 2
| 5/2+ fB2/4n2+n2/48 . (9)

J d|z| y
(log|?] )%

Details of the derivation will be given elsewhere [18].
From eq. (9) we first of all find the inverse Hagedorn
temperature

Bu=n(1+/2), (10)

which is the same as the value derived from the one-
loop calculation. Approaching §;; we obtain

Som2a~(B=Bu) P2 d<2,
~log(B— Bu) d=2, (11)
~ finite a>?2.

For d=3 wec obtain finite free energy density and
pressure; the energy density, however, diverges for

B"“’ﬂl—b
1

PP~ ——,
v B—PBu

as can be seen from the relation (9). This is the main
of this paper. It should be contrasted with the one-
loop resuit where for d=3 the energy density is finite
as f— Bu. For higher genus the degree of divergence
will not increasc further as long as the two-loop c¢n-
ergy is finite, i.e. d> 2.

We now turn to a discussion of some of the cos-
mological conscquences of the presence of a dilaton
and the divergence of the energy density at the
Hagedorn temperature. We look for homogeneous
Robertson-Walker solutions g,,=diag( -1, a2, a?,
a?) coupled to a homogeneous dilaton ¢(¢) in the
presence of the incoherent matter contribution char-
acterized by

/=% (g—1) exp(2g9) f, (13)

d=3, (12)
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p=1Y exp(2g9) p** .
8

p=Y cxp(2g0) p® . (13 cont’d)
14

Introducing the notation K=d/a, o=¢ we obtain

from eq. (6) the evolution cquations

K=-3K*+20K+3(p-1).
6=02-3/2K*+4(3p-2/) (14)
together with the constraint
3K?—66K+a%=1p. (15)

Since the free energy density f vanishes to one-loop
order in string perturbation theory, and is non-sin-
gular near the Hagedorn temperature, it will be ne-
glected in the following. The equation of state could
be parametrized by

p=ap (16)

with a—{ at low temperaturcs. Near the Hagedorn
temperature one finds a—d <}, where 1o one-loop
order & is some small non-vanishing number which
depends on the compactification scheme. The two-
loop singularity of p implies

a0 forT-Ty, (17)

instead of the non-vanishing onc-loop limit &. Near
the singularity it is actually more convenient to use

p=p(T) exp(2¢)+O(exp(49)) , (18)

where §(1°) gocs 1o a finite limit g for T— Ty. p again
depends on the compactification scheme.

The first observation concerning the solution space
of egs. (14), (15) is that it contains in a natural way
the standard radiation-dominated universe, with the
dilaton ficld approaching a constant. For small ¢ and
a =1 we obtain

K~-2K?>+0(0%), é=~-306K+0(0%),  (19)
leading to
a(t)~1"?, ¢(1)~const.+O(1//1), (20)

consistent with the assumption of ¢ being small, O(1/
t3/2). The other interesting problem is the behaviour
ncar the Hagedorn temperature, 1.¢. close to an initial
or final singularity. It is not difficult to solve eq. (14)
in this limit [using eq. (18)]. Considcring c.g. a col-
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lapsing universe we find to leading order

1 1 1

|
Kxe e g — 21

\/3 —1 l+\//§ te—1t" 1)
Le.

a(t) = (t—t)'"~3, exp(29)= (tr—1)v3=1 . (22)

Thus the universe is driven to zero string coupling at
the singularity. The energy diverges at the singularity
like
1
p=c—, (23)
ti—t

where ¢ is an arbitrary constant of intcgration. 7 ap-
proaches 77 at the singularity like

Ty—T=~(ti—1)"3-2. (24)

Of course, there remains the possibility of having a
phase transition occurring below Ty [5], i.c. in the
present scenario before reaching the singularity.

There is one problem that occurs in any case before
the Hagedorn temperature is reached, and that is the
breakdown of sigma model perturbation theory, sim-
ply because the curvature diverges at the singularity.
This makes it even more urgent to study string prop-
agation directly on curved manifolds.

To summarize, we have found the multi-loop con-
tribution to the d=3 heterotic string cnergy density
to diverge at the Hagedorn tempcrature, in contrast
to the one-loop contribution which is finite at 7. This
changes cosmology at high temperature significantly.
For a collapsing universe the Hagedorn temperature
is rcached only at the singularity. Curvature fluctua-
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tions are now expected to be dramatic near the
Hagedorn temperature, in addition to thermody-
namic fluctuations which are better described in a
microcanonical formulation [9-11,22].
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