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The SU(2) gauge theory coupled to one unflavored fermion in two dimensions is studied on the lattice by a local hamiltonian 
Monte Carlo method. The vacuum energy, the quark condensate and the correlation function of the lightest meson are 
measured. For massless quarks the chiral symmetry is unbroken as expected in the continuum. A vanishing condensate is found 
and the meson mass is determined. 

Monte Carlo calculations allow studying nonper- 
turbative properties of gauge theories. Inclusion of 
dynamical fermions in a local way is possible in the 
hamiltonian formulation, but a suitable Hilbert space 
basis (local and, at best, gauge invariant) has to be 
found. We use the ensemble projector method [1] to 
search for the ground state of the hamiltonian. This 
avoids the appearance of large fluctuating scores as in 
the simple projector method [2-4] .  

After the massless [5] and massive [6] Schwinger 
model were successfully studied by local hamfltonian 
methods, we consider a nonabelian model, SU(2) 
gauge theory coupled to one color doublet fermion in 
two dimensions , l .  Similar to QCD4 this theory shows 
asymptotic freedom and color confinement. As a spe- 
cial property of the SU(2) group, complex conjuga- 
tion is equivalent to a unitary transformation, so no 
independent anticolor representations exist. Due to 
this, the qq, qrq and r:l?l-states (baryon, meson and anti- 
baryon) build a mass degenerate triplet [7]. In the 
case of massless quarks the discussion [8,9] has led to 
the conclusion, that this triplet appears as massless 
free particles and that the chiral symmetry is not bro- 
ken [9]. 

The ensemble projector method [1] relies on the 
fact, that during the evolution of a state in imaginary 

,1 During the course of our calculations we received a pre- 
print [4] where this model is studied by the simple projec- 
tor method using essentially the same basic states. 

time excited modes are damped out. I f  I ~ )  has the 
same conserved quantum number (fermion number) 
as the ground state, then 

lim e-rHino)= Iphys. vac.). (1) 
r-+~* 

Contrary to the hamiltonian H, the operator exp ( - rH)  
is not local, but H can be divided into H = H 1 +/-/2, so 
that the Hi are sums of mutually commuting local 
terms and exp( - rHi )  is separable in space into prod- 
ucts of local matrix dements enclosing two lattice 
points. The relation 

e -rn= lim [e -Arnl e-firn2] n (2) 
Ar-~O 
H AT=T 

is used to simulate the time development in small time 
steps. For one step and one local matrix element 

e-ArHI ~i)  = ~ .  aill ~l) (3) 
1 

a final state I~i) is chosen according to the probability 
Pi/= lai/I/F-,/lai/I and it gets the score Si = sgn(ai/) 
× ~,/lai/I. This is done for all matrix elements of i l l  
and after that for all of H2. The quantum state is rep- 
resented by an ensemble of N lattices with scores Si 
(i = 1, ..., N), the products of the local scores. 

Negative matrix elements result in negative scores. 
According to our experience the subset of states with 
negative scores is as representative as the subset with 
positive ones. This is reasonable because a very small 
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local change of a state can move it from one subset to 
the other. In what follows we will therefore ignore the 
sign of the matrix elements. 

In the ensemble method the scores are used to repli- 
cate the states after each time step. Every lattice re- 
mains in the ensemble with the multiplicity 

ni = Int[Si/A + random number] . (4) 

We choose the average score A at every time step using 
the requirement that the number of states in the en- 
semble remains constant. In this way A converges to 
an equilibrium value A0 which characterizes the ground 
state energy, 

A0 = e - a ~ E °  • (5) 
I fA 0 is stable we can start to measure observables. 
The one-dimensional lattice hamiltonian for SU(2) 
gauge theory using temporal gauge and Susskind fer- 
mions is (i, ] = 1, 2) 

L L 
2 2 3  + H = ½aq 2 ~ E 2 + [Xn, iUn,i]Xn+l,] + h.c.] 

n=l 2a n=l 

L 
+ m E  n + ( -1)  Xn, i X n , i  - m 

n=l 

= Hg + Hia + H m . (6) 

Periodic boundary conditions will be assumed in spa- 
tial direction. The anticommuting algebra of the fer- 
mionic operators X can be realized by introducing oc- 
cupation numbers zero or one for each color on each 
lattice point. The field strength Ea is canonically con- 
jugate to the potential, E 2 is the Casimir operator of 
the group. The eigenstates of E 2, the group representa- 
tions, are suitable local basic states of the gauge field, 
invariantly characterized by the quantized electric flux 
] E Z+/2, they carry 

E21]) =j(] + 1)l]). (7) 

Out of these local states we have to construct gauge 
invariant lattice states. Due to Gauss' law the local 
quantum numbers have to fulfill nonlocal constraints 
concerning neighbouring links. Gauge invaliant fermion 
states are described by an occupation number 0, 1 or 
2, where "2"  represents the color singlet state of two 
quarks. If  on one site sit 0 or 2 quarks, the invatiant 

states are 

] ] 
. ~-Tr[...Dia~(Un)D~v(Un+I)... ] . (8) 

The constraint Jn = ln+l is flux conservation, Gauss' 
law. One quark on the site generates a flux jump by 
½. Clebsch-Gordan coefficients couple the link states 
in a gauge invariant way, 

] d±1/2  
v 

1 + 1  ^ -i±1/2 
Tr(... ~ Dl"~Xn, i( f f l i i l j-~bllYse . . . , .  (9) 

\ i=-1/2 / 

We decompose H = H I + H2 in such a way that H 1 
(H2) acts on all even (odd) links and includes the mass 
term with positive (negative) sign and approximate 

exp (--ArH) = exp (-- ½ ArHg) exp ( -  1ArHm) 

X exp (--ArHia) exp ( -  ~ ArHm) exp ( -  ~ ArHg) 

+ O ( A r 3 ) .  (10) 

Hg and Hm are diagonal in our basis. The matrix ele- 
ments of the interaction term exp(--ArHia) can be 
calculated exactly using the orthonormality of the CG 
coefficients and the relation 

(]~]#21]~) = (-1)/'2+'r+~[(2J3 + 1)/(2Jl + 1)] 1/2 

X (j33,J2/31/'a). (11) 

We have taken into account only transitions where at 
most one fermion jumps. Jumps of 2 fermions are sup- 
pressed by a factor At. 

Expectation values of operators diagonal in the 
chosen basis can easily be measured, 

(~Ie--ATHoI~) = (xI'le-arHl~0)(~0l O19). (12) 

The quark condensate 

L 
F = L  - 1 ~  ~ 1,n + n=l ~'- ) Xn, iXn, i (13) 

and the mesonic correlation function are of this type. 
If  after the instant of measurement a configuration is 
replicated n times, the measured value gets in the en- 
semble and time average the weight n. In the computer 
program this is realized by replicating also the vector 
of length N in which the measured values of  the N lat- 

215 



Volume 166B, number 2 PHYSICS LETTERS 9 January 1986 

tices are accumulated in the course of  time. To mea- 
sure a correlation function 

K(r )  = (a ( t )  Q*(t + ~')) (14) 

a vector including Q(t) is generated for every time 
slice t and is replicated from that time on. The mass 
of  lightest meson is given by the exponential  slope of  
the correlation function of  the vector current ]u = 
~i,y~it i  . (In tWO dimensions, the spatial component  
of  a vector is a pseudoscalar.) In our canonical ensem- 
ble, we can get no information from zero momentum 
correlation, we have to detemaine the dispersion law 
by considering [5] 

K(k,  t) = <0l/0(k, r) j~(k, r + t )10) ,  

]z(k,  t ) = f e i k X / u ( x ,  t) dx . (15) 

At large times t >> 1 this is dominated by the lightest 
me s on 

K(k,  t) ~ I<OI/oIM, p = k)l 2 exp[-EM(k) t ]  , (16) 

and for large wavelengths the relativistic dispersion law 
E 2 = k 2 + m 2 is expected. On the lattice this reads: 

/o(k, t) = ~ cos kn X~Xn + i ~ sin kn Y~nXn 

= C(k,  t) + iS(k,  t ) ,  

N T 

K(k, t) =~-~ .~. [C(k, r) iq)C(k, r + t)j 
t , ]  

there have ever been two branches. So in equilibrium 
time symmetry  will be guaranteed by the measuring 
prescription. 

The numerical calculations were done on a ESER 
computer  with extensive use of  a vector coprocessor. 
Our ensemble included 200 configurations each with 
100 spatial lattice points. The initial state was chosen 
invariant under discrete chiral transformations, 100 
lattices with quark occupation numbers 2 - 0 - 2 - 0 -  
and 100 with 0 - 2 - 0 - 2 - .  The links were empty.  
Since we neglected matr ix elements with two simul- 
taneous quark jumps a small time step Ar  = 0.02 ... 
0.05 in units of  the lattice spacing was used. Each 
time step included a replication step. After  200 ... 300 
such iterations equilibrium was reached. 

According to eq. (5) the averaged score provides us 
with the ground state energy (fig. 1). Our results for 
this are in agreement with ref. [4] where the measure- 
ment  was done using the expectat ion value of  the 
hamiltonian. The exactly known value E0 at g = 0, 
m = 0 is reproduced. The measured values of  the quark 
condensate (fig. 2) have a statistical error of  about 
+0.05. For  massless quarks they are scattered around 
zero whereas for massive quarks the nonzero conden- 
sate is clearly visible. 

Fig. 3 shows an example of  the measured correla- 
t ion function and fig. 4a the corresponding fit o f  the 
relativistic law which provides a value m = 0.15 for 
the meson mass at m/g = 2, g = 0.3. A small negative 
mass square is obtained in the case of  massless quarks 

+ S(k ,  7)i(/)S(k , T + t)/] , (17) 

where the notat ion i(1) indicates that  i is the predeces- 
sor in time o f  the configuration ]. The imaginary part  

N T 
1 

Im K(k ,  t) = ~r~ ~ ~ [C(k, r) iq)S(k ,  r + t)] 
~*- i,/ r 

- C(k,  r + t ) /S(k ,  r ) iq)]  (18) 

should of  course be zero because of  time symmetry  
and the ratio Im K/Re K is therefore used as a mea- 
sure of  the statistical error. The ensemble has in time 
the structure of  a tree with dying and ramifying 
branches. For  the measuring process a dying branch 
has never existed and a ramified branch is treated as i f  

12:' 0.~" 0.6 0 ~  g 
i i i ~ r i ! i i 

-.0.% 

+ 

- 0 , ¥  

+ m / 9  = Z . O  

,a m / 9  = 0  

E i I I I i I i I I i 

Fig. 1. Ground state energy per site as a function of the cou- 
pling constant. Eo is the exact energy of two free massless fer- 
mions. 
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Fig. 2. Quark condensate as a function of the coupling con- 
stant. 
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f o r  t he  m o m e n t a  k = 2 1 r k ' / L ,  k '  = 1 ,2 ,  3 , 4  a t g  = 0 .3  a n d  m = 

0.6.  i n d i c a t e d  arc  t he  f i t s  u s e d  t o  e x t r a c t  t h e  energ ies .  
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Fig. 4. The square of the meson energy as a function of k 2 and 
a linear fit with slope 1. (a)g = 0.3, m = 0.6; (b)g = 0.3, m = 0. 

(fig. 4b). This should be a hint  to say the meson is 
massless and confirms the continuum result of  no 
spontaneous breaking of  chiral symmetry.  

In conclusion, the ensemble projector  method is 
well suited to handle QCD2. Expectat ion values of  
local operators as well as correlation functions have 
been measured. The replication trick avoids large fluc- 
tuating scores and makes runs over many time slices 
possible. At  least in the case o f  QCD2 neglecting the 
sign of  the scores is admissible. The advantages of  the 
method include that  a configuration is described by 
quantum numbers, small integers and not  complex 
matrices, and that the method is local even in the 
presence of  dynamical fermions and well implement- 
able on a vector processor. Therefore the extension to 
higher dimensions would be interesting. 

I thank Professor J. Ranft  for many useful discus- 
sions and his valuable help during this work. 
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