Hans-Peter Gittel Universität Leipzig Mathematisches Institut

Übungsaufgaben (11. Serie)

Abgabetermin: 20.01.2020

41. a) Zeige, dass die Zahlenfolgen (a_n) gegen einen Wert a konvergieren, und gib die zugehörige $\varepsilon - n_0$ -Abschätzung an:

$$a_n = \frac{n^2}{n^2 + 2n + 2}$$
, $a_n = \frac{1 - \sqrt{n}}{1 + \sqrt{n}}$.

- b) Bestimme zu $\varepsilon = 10^{-k}$; k = 1, 2, 3 für jede der beiden Folgen das zugehörige $n_0(\varepsilon)$ und gib die tatsächliche Abweichung des Folgengliedes a_n mit $n = n_0 + 10$ vom jeweiligen Grenzwert a an.
- 42. Berechne die Grenzwerte der Zahlenfolgen (a_n) mit

a)
$$a_n = \frac{5n^3 + 4n - 34}{6n^3 - n^2 + 9n}$$
, b) $a_n = \left(\frac{-1}{n}\right)^n$,
c) $a_n = \frac{1^3}{n^4} + \frac{2^3}{n^4} + \dots + \frac{n^3}{n^4}$, d) $a_n = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} 2^k$.

43. a) Beweise den Vergleichsatz für Zahlenfolgen:

Sei $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ und $a_n \le b_n$ für alle $n \ge n_1$. Dann gilt $a \le b$.

- b) Gib ein Beispiel zweier Zahlenfolgen (a_n) , (b_n) an, wobei $a_n < b_n$ für alle $n \in \mathbb{N}$ gilt, aber $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ ist.
- c) Sei $\lim_{n\to\infty} a_n = 0$ und $a_n \ge 0$ für alle $n \in \mathbb{N}$.

Zeige, dass die Zahlenfolge $(\sqrt[k]{a_n})$ mit $k \in \mathbb{N}$ gegen 0 konvergiert.

Gilt diese Aussage auch für $(\sqrt[n]{a_n})$? (Beweis oder Gegenbeispiel)

44. Es werde eine Zahlenfolge (a_n) rekursiv definiert durch die Vorschrift

$$a_1 = 1$$
, $a_{n+1} = \frac{1}{4}a_n^2 + \frac{1}{2}a_n$ für $n = 1, 2, 3, \dots$

Zeige deren Konvergenz mittels Monotoniekriterium und bestimme $\lim_{n\to\infty} a_n$.

(*Hinweis*: Nachweis der Monotonie und Beschränktheit von (a_n) mittels vollständiger Induktion)