A CONJECTURAL NON-COMMUTATIVE GENERALIZATION OF A VOLUME FORMULA OF MCMULLEN-SCHNEIDER

TOBIAS FINIS AND EREZ LAPID

1. Preliminaries

Let V be a real vector space of dimension d and V^* its dual space. By a *cone* in V^* we will always mean a closed polyhedral cone σ with apex 0 such that $\sigma \cap -\sigma = \{0\}$. Let Σ be a *fan* in V^* , i.e., a collection of cones such that

- (1) if $\sigma \in \Sigma$ then any face of σ belongs to Σ ,
- (2) if $\sigma_1, \sigma_2 \in \Sigma$ then $\sigma_1 \cap \sigma_2$ is a face in both.

We will assume that Σ is *complete*, that is $\cup \Sigma = V^*$. The elements of Σ are called *faces*. We denote by $\Sigma(i)$ the set of *i*-dimensional faces of Σ . In particular, $\Sigma(d)$, $\Sigma(d-1)$ and $\Sigma(1)$ are the sets of *chambers*, walls and rays of Σ respectively. Two chambers are adjacent if they intersect in a wall. Any wall is contained in exactly two chambers (which are adjacent). We will write $\sigma \stackrel{\tau}{\longleftrightarrow} \tilde{\sigma}$ if σ and $\tilde{\sigma}$ are adjacent with common wall $\tau = \sigma \cap \tilde{\sigma}$. If we want to distinguish σ we will write $\sigma \stackrel{\tau}{\to} \tilde{\sigma}$ and speak of a directed wall ω emerging from σ . We denote by $\tilde{\omega}$ the opposite directed wall $\tilde{\sigma} \stackrel{\tau}{\to} \sigma$. Henceforth, we will assume that Σ is simplicial, that is, each cone in Σ is simplicial. Equivalently, any chamber σ has precisely d directed walls emerging from it.

For any cone σ we denote by $\mathcal{V}(\sigma)$ its linear span and by σ^{\perp} its annihilator in V. A d-tuple (τ_1, \ldots, τ_d) of walls is called transversal if $\sum_{i=1}^d \tau_i^{\perp} = V$, i.e. if $\bigcap_{i=1}^d \mathcal{V}(\tau_i) = 0$. A basic example of a simplicial fan is the normal fan Σ_P of a simple convex polytope P

A basic example of a simplicial fan is the normal fan Σ_P of a simple convex polytope P in V, whose affine hull is V. It is given by $\Sigma_P = \{\tau(F) : F \in \mathcal{F}(P)\}$ where $\mathcal{F}(P)$ denotes the lattice of faces of P and

$$\tau(F) = \{\lambda \in V^* : \lambda|_P \text{ attains its maximum on } F\}.$$

Note that $\tau : \mathcal{F}(P) \to \Sigma_P$ is an inclusion reversing bijection and dim $F + \dim \tau(F) = d$. (We recall that not every fan is the normal fan of a polytope.)

Given $\sigma \in \Sigma$ we say that $v \in V$ is positive with respect to σ if $\langle \lambda, v \rangle > 0$ for any $\lambda \in \operatorname{relint} \sigma$. Given a directed wall $\omega : \sigma \xrightarrow{\tau} \tilde{\sigma}$, a directed normal for ω , or an ω -directed normal, is an element of τ^{\perp} which is positive with respect to σ . Such a vector is uniquely determined up to multiplication by a positive scalar.

Date: October 31, 2008.

Authors partially supported by a grant from the German-Israeli Foundation.

2. Piecewise polynomial functions

Let $S = \operatorname{Sym}(V)$ be the ring of polynomial functions on V^* . For any face $\sigma \in \Sigma$ we denote by \mathfrak{I}_{σ} the ideal of S generated by the subspace σ^{\perp} of V.

A piecewise polynomial with respect to Σ is a function on V^* whose restriction to any chamber (hence, to any face) is a polynomial. We denote by $\mathcal{A} = \mathcal{A}_{\Sigma}$ the graded algebra of piecewise polynomials with respect to Σ . It is known that \mathcal{A} is a free S-module, and is generated as an algebra by its degree 1 elements (the piecewise linear functionals). Moreover, the dimension of \mathcal{A}_1 is the number of rays in Σ .

We can view an element of \mathcal{A} as a collection X_{σ} of elements of S, one for each chamber σ , such that $X_{\sigma_1} - X_{\sigma_2} \in \mathfrak{I}_{\sigma_1 \cap \sigma_2}$ for any two chambers σ_1, σ_2 . (It is enough to check this condition for σ_1, σ_2 adjacent.) For any directed wall $\omega : \sigma \xrightarrow{\tau} \tilde{\sigma}$ we write $X_{\omega} = X_{\sigma} - X_{\tilde{\sigma}} \in \mathfrak{I}_{\tau}$.

More generally if M is an S-module we define $M_{\Sigma} := M \otimes_S \mathcal{A}_{\Sigma}$ to be the \mathcal{A}_{Σ} -module of Σ -piecewise elements of M. If M is flat over S then an element of M_{Σ} can be described as a collection $m_{\sigma} \in M$, $\sigma \in \Sigma(d)$ such that $m_{\sigma_1} - m_{\sigma_2} \in \mathfrak{I}_{\sigma_1 \cap \sigma_2} M$ for any chambers σ_1, σ_2 .

Suppose that P is a polytope in V whose normal fan is Σ . Then the vertices of P are indexed by the chambers of Σ and give rise to a piecewise linear form L_P on V^* with respect to Σ . We say that L_P is the piecewise linear form defined by P. These piecewise linear forms are characterized by the property that X_{ω} is positive with respect to σ for any directed wall $\omega : \sigma \xrightarrow{\tau} \tilde{\sigma}$.

Fix $0 \neq \beta = \beta_{\Sigma} \in (\wedge^d V)^*$.

Let σ be a chamber and let $\omega_i : \sigma \xrightarrow{\tau_i} \sigma_i$, $i = 1, \ldots, d$ be the directed walls emerging from σ . Set

$$\theta_{\sigma} = \frac{v_1 \dots v_d}{|\beta(v_1 \wedge \dots \wedge v_d)|} \in S$$

where v_i is a directed normal of ω_i . As the notation suggests, θ_{σ} depends only on σ and not on the choice of the v_i 's or the order of the ω_i 's.

It is well-known (e.g. [Bri97]) that we have an S-linear map $\delta_{\Sigma}: \mathcal{A}_{\Sigma} \to S$ defined by

$$(X_{\sigma})_{\sigma \in \Sigma(d)} \mapsto \sum_{\sigma \in \Sigma(d)} \frac{X_{\sigma}}{\theta_{\sigma}}.$$

Extending scalars, we get for any S-module M an S-linear map

$$\delta = \delta_{\Sigma M} : M_{\Sigma} \to M.$$

3. The setup

Let $\mathbb{C}[[V]]$ denote the algebra of formal power series in V, i.e. the completion of S at the origin, which is also the dual space of the vector space $\mathbb{C}[V]$ of polynomials on V. We denote by $[\cdot, \cdot] : \mathbb{C}[V] \times \mathbb{C}[[V]] \to \mathbb{C}$ the pairing.

For any vector space U we set $U[[V]] = \mathbb{C}[[V]] \otimes U$. We write $[\cdot, \cdot] : \mathbb{C}[V] \times U[[V]] \to U$ for the bilinear pairing. Given a bilinear map $\circ : U_1 \times U_2 \to U_3$ we will continue to denote by \circ the $\mathbb{C}[[V]]$ -bilinear map $\circ : U_1[[V]] \times U_2[[V] \to U_3[[V]]$ obtained by extending the scalars.

Henceforth, whenever V' is a subspace of V we will identify $\mathbb{C}[[V']]$ with a subalgebra of $\mathbb{C}[[V]]$.

Definition 3.1. An intertwining family with respect to Σ consists of the following data

- (1) For each chamber σ , a finite-dimensional vector space W_{σ} ,
- (2) For any pair of chambers $\sigma_1, \sigma_2 \in \Sigma(d)$, an element $A_{\sigma_2|\sigma_1} \in \text{Hom}(W_{\sigma_1}, W_{\sigma_2})[[(\sigma_1 \cap \sigma_2)^{\perp}]]$,

with the following properties

- (1) $A_{\sigma|\sigma} = \mathrm{id}_{W_{\sigma}} \otimes 1$ for all chambers σ ,
- (2) For any triple of chambers $\sigma_1, \sigma_2, \sigma_3$ we have

$$A_{\sigma_3|\sigma_1} = A_{\sigma_3|\sigma_2} \circ A_{\sigma_2|\sigma_1}$$

(an equality in $\text{Hom}(W_{\sigma_1}, W_{\sigma_3})[[V]]$) where \circ denotes composition.

Note that the data is determined by $A_{\sigma_2|\sigma_1}$ where σ_1, σ_2 are adjacent. Given a directed wall $\omega : \sigma \xrightarrow{\tau} \tilde{\sigma}$ we write $A_{\omega} = A_{\tilde{\sigma}|\sigma}$.

We fix a chamber σ_0 and consider for any chamber σ the element $m_{\sigma} := A_{\sigma_0|\sigma}(0)A_{\sigma|\sigma_0}$ of $M = \operatorname{End}(W_{\sigma_0})[[V]]$. It is easy to see that this defines a Σ -piecewise element of M. Let $\mathcal{D}_{\sigma_0}A := \delta_{\Sigma;M}((m_{\sigma})_{\sigma \in \Sigma(d)}) \in M$. Observe that $\mathcal{D}_{\tilde{\sigma}_0}A = A_{\tilde{\sigma}_0|\sigma_0}(0) \circ \mathcal{D}_{\sigma_0}A \circ A_{\sigma_0|\tilde{\sigma}_0}$ for any other chamber $\tilde{\sigma}_0$ in Σ .

Let $\omega : \sigma \xrightarrow{\tau} \tilde{\sigma}$ be a directed wall. For any $f \in \mathbb{C}[\tau^{\perp}]$ we set

$$f_{\omega}^{\sigma_0}(A) = A_{\sigma_0|\sigma}(0) \circ A_{\omega}(0)^{-1} \circ [f, A_{\omega}] \circ A_{\sigma|\sigma_0}(0) \in \operatorname{End}(W_{\sigma_0}).$$

Note that if $v^* \in (\tau^{\perp})^* \subseteq \mathbb{C}[\tau^{\perp}]$ then

$$(v^*)^{\sigma_0}_{\tilde{\omega}}(A) = -(v^*)^{\sigma_0}_{\omega}(A).$$

Also,

$$f_{\omega}^{\tilde{\sigma}_0}(A) = A_{\tilde{\sigma}_0|\sigma_0} \circ f_{\omega}^{\sigma_0}(A) \circ A_{\sigma_0|\tilde{\sigma}_0}$$

for any chamber $\tilde{\sigma}_0$.

Let τ_1, \ldots, τ_d be walls. For each $i = 1, \ldots, d$ choose a directed wall $\omega_i : \sigma_i \xrightarrow{\tau_i} \tilde{\sigma}_i$ and a directed normal v_i for ω_i . Let $v_i^* \in (\tau_i^{\perp})^* \subseteq \mathbb{C}[\tau_i^{\perp}]$ be such that $\langle v_i^*, v_i \rangle = 1$. We set

$$\partial_{\tau_1,\dots,\tau_d}^{\sigma_0} A = |\beta(v_1 \wedge \dots \wedge v_d)| (v_1^*)_{\omega_1}^{\sigma_0}(A) \circ \dots \circ (v_d^*)_{\omega_d}^{\sigma_0}(A).$$

Note that this expression depends only on (τ_1, \ldots, τ_d) and not on the choice of the ω_i 's or the v_i 's. Also note that

$$\partial_{\tau_1,\dots,\tau_d}^{\tilde{\sigma}_0}A=A_{\tilde{\sigma}_0|\sigma_0}(0)\circ\partial_{\tau_1,\dots,\tau_d}^{\sigma_0}A\circ A_{\sigma_0|\tilde{\sigma}_0}(0)$$

for any chamber $\tilde{\sigma}_0$.

4. The conjectural formula

Let A be an intertwining family with respect to Σ .

Conjecture 4.1. For any choice of $\vec{\lambda} = (\lambda_1, \dots, \lambda_d) \in (V^*)^d$ in general position with respect to Σ we have

$$\mathcal{D}^{\sigma_0} A(0) = \frac{(-1)^d}{d!} \sum_{(\tau_1, \dots, \tau_d) \in \mathcal{X}_{\overline{\chi}}} \partial_{\tau_1, \dots, \tau_d}^{\sigma_0} A$$

where $\mathcal{X}_{\vec{\lambda}}$ is the set of d-tuples (τ_1, \ldots, τ_d) of transversal walls such that the translates $\lambda_i + \tau_i$, $i = 1, \ldots, d$ intersect (necessarily in a point).

The conjecture is trivially true for d=1. It can be also proved for d=2 by direct computation. A special case of the conjecture for Coxeter fans (corresponding to root hyperplane arrangements) was established in [FLM]. It played a role in the analysis of the spectral side of Arthur's trace formula.

5. Remarks

Suppose that P is a polytope in V and Σ is its normal fan in V^* . Let L_{σ} , $\sigma \in \Sigma(d)$ denote the vertices of P. We can form the intertwining family with $W_{\sigma} = \mathbb{C}$ for all chambers and $A_{\sigma_2|\sigma_1} = e^{L_{\sigma_2} - L_{\sigma_1}}$. Then $\mathcal{D}^{\sigma_0}A$ is the Fourier transform of the translate of P by σ_0 ([Bri97]). Thus, conjecture 4.1 reduces in this case to the McMullen-Schneider's formula ([MS83]) expressing $\operatorname{vol}(P)$ as 1/d! times the sum of the volume of the parallelotope formed by the vectors $\vec{e_1}, \ldots, \vec{e_d}$ as (e_1, \ldots, e_d) range over the d-tuples of edges of P for which there exists $\mu \in V^*$ such that $\max(\mu + \lambda_i)|_P$ is attained on e_i , $i = 1, \ldots, d$. (Here, $\vec{e_i} \in V$ denotes the vector corresponding to e_i .)

Next, we comment about the dependence on $\vec{\lambda}$. Given a fan Σ in U and a a linear surjective map $p: U \to U'$ the quotient fan on U' is defined by the common refinement of $p(\sigma)$, $\sigma \in \Sigma$ (cf. [KSZ91], [BS94]). In the case where $U = V^*$ and Σ is the normal fan of a polytope P in V, the quotient fan is the normal fan of the fiber polytope of P, in the sense of Billera-Sturmfels, with respect to the projection $V \to V/(\operatorname{Ker} p)^{\perp} = (\operatorname{Ker} p)^*$ ([KSZ91, Proposition 2.3]).

In particular, consider V^* embedded diagonally in $(V^*)^d$ and let $p:(V^*)^d\to (V^*)^d/V^*$ be d times

the canonical projection. Let $\Sigma^d = \Sigma \times \cdots \times \Sigma$ (a fan in $(V^*)^d$), and let $\overline{\Sigma}$ be the quotient fan in $(V^*)^d/V^*$. The precise condition on λ to be in general position with respect to Σ is that it lies outside the walls of $\overline{\Sigma}$, i.e. it lies in the interior of a chamber of $\overline{\Sigma}$. Moreover, the set $\mathcal{X}_{\overline{\lambda}}$ depends only on the chamber to which λ belongs.

REFERENCES

- [Bri97] Michel Brion, The structure of the polytope algebra, Tohoku Math. J. (2) $\bf 49$ (1997), no. 1, 1–32. MR MR1431267 (98a:52019)
- [BS94] Louis J. Billera and Bernd Sturmfels, *Iterated fiber polytopes*, Mathematika **41** (1994), no. 2, 348–363. MR MR1316614 (96a:52013)

- [FLM] Tobias Finis, Erez Lapid, and Werner Müller, On the spectral side of Arthur's trace formula II, preprint.
- [KSZ91] M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, *Quotients of toric varieties*, Math. Ann. **290** (1991), no. 4, 643–655. MR MR1119943 (92g:14050)
- [MS83] Peter McMullen and Rolf Schneider, *Valuations on convex bodies*, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 170–247. MR MR731112 (85e:52001)