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Interactive Proof Systems

Definition (interactive proof system)

Pair (A, B)
o mapping A: [J;y({0,1}%)*2 — {0,1}* (Alice)
e randomized polynomial-time algorithm B (of same type) (Bob)
Intuition:

e input w € {0,1}*
@ polynomial number of rounds (in n = |w|)
e round /:

@ Alice sents a; = A(w, a1, by, ..., a1, bi—1) to Bob
@ Bob replies with b; = B(w, a1, by, ..., ai—1, bi—1, a;)

e final round: Bob accepts or rejects w
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Interactive Proof Systems

Message lengths:
e polynomial length for b; (since Bob runs in polynomial time)
@ unbounded g; but Bob B reads only polynomial prefix

e wlog. |a;| < p(|w]|) and |bj| < p(|w|) for some polynomial p
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Interactive Proof Systems

Definition (generated language)

Interactive proof system (A, B) generates language L C {0,1}*
if and only if for all w € {0,1}*:

@ Bob rejects w € L with negligible probability
(i.e., Bob accepts with probability at least 1 — 21"l
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Interactive Proof Systems

Definition (generated language)

Interactive proof system (A, B) generates language L C {0,1}*
if and only if for all w € {0,1}*:
@ Bob rejects w € L with negligible probability
(i.e., Bob accepts with probability at least 1 — 21"l

@ Bob accepts w ¢ L with negligible probability
in every interactive proof system (4’, B)

IP={L C {0,1}* | 3 interactive proof system generating L}

Notes:

e infroduced by Goldwasser, Micali, and Rackoff in 1985
@ Alice is prover and computationally unlimited

@ Bob is verifier and restricted to (deterministic) polynomial time
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Interactive Proof Systems

Intuition:

o Completeness:

If w € L then designed prover A convinces verifier B almost certainly
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Interactive Proof Systems

Intuition:

o Completeness:

If w € L then designed prover A convinces verifier B almost certainly

@ Correctness:

If w ¢ L then any prover convinces B only with negligible probability



Interactive Proof Systems

Theorem
IP C PSPACE J

Proof (1/5)

e L €IP and (A, B) interactive proof system generating L
e w € {0,1}" of length n and polynomial p(x) limiting runtime of B

@ polynomial g(x) limiting number of rounds
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Interactive Proof Systems

Theorem
IP C PSPACE J

Proof (1/5)
e L €IP and (A, B) interactive proof system generating L
e w € {0,1}" of length n and polynomial p(x) limiting runtime of B
@ polynomial g(x) limiting number of rounds

o wlog. length of ..., ag and by, ..., by is p(n)

@ potential Alice

g(n)—1
A ( U {0,1}”“'2”(”)) — {0,177

i=0
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Interactive Proof Systems

Proof (2/5)
@ approach: construct optimal Alice in PSPACE
o fix Alice A and random bit sequence Z € {0,1}9(MP(") ysed by Bob
@ protocol P(A', Z) = aiby - - - aq(,)bg(n) completely determined
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Proof (2/5)
@ approach: construct optimal Alice in PSPACE
o fix Alice A and random bit sequence Z € {0,1}9(MP(") ysed by Bob
@ protocol P(A', Z) = aiby - - - aq(,)bg(n) completely determined
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Proof (2/5)

@ approach: construct optimal Alice in PSPACE
fix Alice A" and random bit sequence Z € {0,1}9("P(") ysed by Bob
protocol P(A’, Z) = aiby - - - ag(n)bg(n) completely determined

aiby---a; and a1b; - - - a;b; protocol prefixes for all 0 < i < g(n)
P < P(A", Z) if P protocol prefix of P(A’, Z)

f(A,P) = ‘{Z € {0,139P(") | p < P(A', Z) and P(A, Z) occepting}‘
f(P) = max {f(A",P) | A" potential Alice}

A optimal for P if f(A, P) = f(P)
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Proof (2/5)

@ approach: construct optimal Alice in PSPACE
fix Alice A" and random bit sequence Z € {0,1}9("P(") ysed by Bob
protocol P(A’, Z) = aiby - - - ag(n)bg(n) completely determined

aiby---a; and a1b; - - - a;b; protocol prefixes for all 0 < i < g(n)
P < P(A", Z) if P protocol prefix of P(A’, Z)

f(A,P) = ‘{Z € {0,139P(") | p < P(A', Z) and P(A, Z) occepting}‘
f(P) = max {f(A",P) | A" potential Alice}

A optimal for P if f(A, P) = f(P)

w accepted with probability p(w) < %

21



Interactive Proof Systems

Proof (3/5)
° % >p(w)>1-2""and f(e) > (1-27") - 20(Mp(n) for all w € L
o otherwise (=) < 277 24("p(")

e compute f(e) recursively in polynomial space
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Interactive Proof Systems

Proof (3/5)
o s > p(w) = 127" and f(g) > (1—27") - 2900 for all w € L
e otherwise f(g) <27". 2a(mp(n)

e compute f(e) recursively in polynomial space

@ complete protocol P = ajby - - - ag(n)bg(n)
» if Bob rejects, then f(P) =0
» otherwise

P) = ‘{Z € {0,1}39P(") | 7 permits P}‘

Z permits P if bit sequence Z yields the responses by, .. ., by, from B
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Interactive Proof Systems

Proof (3/5)
o 1) > p(w) =1-2""and f(e) > (1-27")- 290" forall w € L
o otherwise (=) < 277 24("p(")

e compute f(e) recursively in polynomial space

@ complete protocol P = ajby - - - ag(n)bg(n)
» if Bob rejects, then f(P) =0
» otherwise

P) = ‘{Z € {0,1}39P(") | 7 permits P}‘

Z permits P if bit sequence Z yields the responses by, .. ., by, from B
» can be done in polynomial space
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Interactive Proof Systems

Proof (4/5)
@ incomplete protocol P = a1b; - - - a;_1b; 10,
with final message from Alice 1<i<q(n)

» f(Pb;) with b; € {0,1}7(") known and
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Interactive Proof Systems

Proof (4/5)
@ incomplete protocol P = a1b; - - - a;_1b; 10,
with final message from Alice 1<i<q(n)

» f(Pb;) with b; € {0,1}7(") known and
f(P) = max {f(A”, P) | potential Alice A"}
= max{ Z f(A”, Pb;) | potential Alice A”}

bie{0,1}p(n)
= Z max{f (A}, Pb;) | potential Alice Ay }
bie{0,1}p()

DG

be{0,1}r()

» second-to-last equality follows because Z determines protocol,
so a single Z cannot permit Pb; and Pb! with b; # b!
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Interactive Proof Systems

Proof (4/5)
@ incomplete protocol P = a1b; - - - a;_1b; 10,
with final message from Alice 1<i<q(n)

» f(Pb;) with b; € {0,1}7(") known and
f(P) = max {f(A”, P) | potential Alice A"}
= max{ Z f(A”, Pb;) | potential Alice A”}
bie{0,1}p(n)
= Z max{f (A}, Pb;) | potential Alice Ay }
bie{0,1}p()

DG

be{0,1}r()

» second-to-last equality follows because Z determines protocol,
so a single Z cannot permit Pb; and Pb! with b; # b!
» clearly also polynomial space
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Interactive Proof Systems

Proof (5/5)
@ incomplete protocol P = a1b; -+ - a;_1b;
with final message from Bob 1<i<q(n)

» f(Pa;) with a; € {0,1}P(") known and Alice can select the response
f(P) = max {f(Pa;) | a; € {0,1}F("}

» clearly also polynomial space
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Interactive Proof Systems

Proof (5/5)
@ incomplete protocol P = a1b; -+ - a;_1b;
with final message from Bob 1<i<q(n)

» f(Pa;) with a; € {0,1}P(") known and Alice can select the response
f(P) = max {f(Pa;) | a; € {0,1}P("}
» clearly also polynomial space

Space requirements:
e recursion depth 2q(n)
@ protocol prefix P, messages a; and b;

e currently best value of f and partial sum both limited by 29("P(7) ]
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Interactive Proof Systems

Lemma
IP closed under polynomial-time reductions

LelP for all L=pl’ oand L' €IP

Proof
e f polynomial-time reduction of L to '

e (A, B) interactive proof system generating L and input w
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Interactive Proof Systems

Lemma

IP closed under polynomial-time reductions

LelP for all L=pl’ oand L' €IP

Proof

e f polynomial-time reduction of L to '
e (A, B) interactive proof system generating L and input w

o Alice A’ and Bob B’ compute f(w) and then simulate A and B

2 2
o yields answer for f(w) € L that is correct for w € L O
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Interactive Proof Systems

Theorem (Shamir 1990)
IP = PSPACE J

Adi Shamir (* 1952)

@ isra. computer scientist

@ professor at Weizmann institute and ENS Paris
@ Turing laureate 2002 and ‘S’ in RSA

© Erik Tews
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Interactive Proof Systems

Proof (1/7)
@ we know IP C PSPACE, so only PSPACE C IP remains

@ since IP is closed under polynomial-time reductions and
QBF is PSPACE-complete, we just show QBF < IP

13



Interactive Proof Systems

Proof (1/7)
@ we know IP C PSPACE, so only PSPACE C IP remains

@ since IP is closed under polynomial-time reductions and
QBF is PSPACE-complete, we just show QBF < IP

o let F closed quantified formula over A, V, V, 3 and the literals
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Interactive Proof Systems

Proof (1/7)
@ we know IP C PSPACE, so only PSPACE C IP remains
@ since IP is closed under polynomial-time reductions and
QBF is PSPACE-complete, we just show QBF < IP
o let F closed quantified formula over A, V, V, 3 and the literals
o replace F by arithmetic expression a(F)
» a(x) = x and a(—x) =1 — x for all variables x
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Interactive Proof Systems

Proof (1/7)
@ we know IP C PSPACE, so only PSPACE C IP remains
@ since IP is closed under polynomial-time reductions and
QBF is PSPACE-complete, we just show QBF < IP
o let F closed quantified formula over A, V, V, 3 and the literals
o replace F by arithmetic expression a(F)

» a(x) = x and a(—x) =1 — x for all variables x
» a(RV FR)=a(R)+ a(R)and a(A A FR) = a(R) - a(FR,) forall f and F
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Interactive Proof Systems

Proof (1/7)
@ we know IP C PSPACE, so only PSPACE C IP remains
@ since IP is closed under polynomial-time reductions and
QBF is PSPACE-complete, we just show QBF < IP
o let F closed quantified formula over A, V, V, 3 and the literals

o replace F by arithmetic expression a(F)

» a(x) = x and a(—x) =1 — x for all variables x
» a(RV FR)=a(R)+ a(R)and a(A A FR) = a(R) - a(FR,) forall f and F
> a(3xA) = X ,cqon a(h) and a(VxA) = [T, (0, a(R) for all A
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Interactive Proof Systems

Proof (1/7)
@ we know IP C PSPACE, so only PSPACE C IP remains

@ since IP is closed under polynomial-time reductions and

QBF is PSPACE-complete, we just show QBF < IP
o let F closed quantified formula over A, V, V, 3 and the literals
o replace F by arithmetic expression a(F)

» a(x) = x and a(—x) =1 — x for all variables x
» a(RV FR)=a(R)+ a(R)and a(A A FR) = a(R) - a(FR,) forall f and F
> a(3xA) = X ,cqon a(h) and a(VxA) = [T, (0, a(R) for all A

@ obviously a(F) > 0
e f € QBFif and only if o(F) > 0

8



Interactive Proof Systems

Example: F = VxE!y((x V ay) A 3z(=x A z))

af)= ] (Z ((x+(l—y))' > ((1—X)~Z))>

x€{0,1} \ye{0,1} ze{0,1}
= 11 ( 2 ((x+<1—y)>-<l—x>)>
x€{0,1} \ye{0,1}
= H ((l—x2)+(x—x2)>
x€{0,1}
=0

so the formula is “wrong”
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Interactive Proof Systems

Example: For the negation —=F = EIxVy((ﬂx Ay)VVz(xV —|z)>

= ¥ (T1 (0-m-5+ TT (+0-2))

x€{0,1} \ye{0,1} ze{0,1}

= Z ( H ((1 —x)-g+(x2+x)>>
xe{0,1} \ye{0,1}

= Y (P+x)-(+x)
xe€{0,1}

=4

so the negated formula is “true”

40



Interactive Proof Systems

How large can a(F) be?

4]



Interactive Proof Systems

How large can a(F) be? For formula F the length |F| is
o [0]=[I] = |x| = |~x| =1
e |[FVG|=|FAG|=|F|+|G]
@ |IxF| = |VxF| =1+ |F]
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Interactive Proof Systems

How large can a(F) be? For formula F the length |F| is
0 10 = 1] = |x| = |~x| =1
e |FVG|=|FAG|=|F|+]G]
@ |IxF| = |VxF| =1+ |F]

Lemma
a(F) < 22" J

Proof

e replace each occurrence of IxG by G[x — 0] vV G[x ~ 1] and
each VxG by G[x — 0] A G[x — 1]

e prove |F'| < 2/f! for obtained formula F’ by induction
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Interactive Proof Systems

How large can a(F) be? For formula F the length |F| is
0 10 = 1] = |x| = |~x| =1
e |FVG|=|FAG|=|F|+]G]
@ |IxF| = |VxF| =1+ |F]

Lemma
a(F) < 22" J

Proof

e replace each occurrence of IxG by G[x — 0] vV G[x ~ 1] and
each VxG by G[x — 0] A G[x — 1]

e prove |F'| < 2/f! for obtained formula F’ by induction
o prove a(F') < 2!Fl by induction O
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Interactive Proof Systems

Example: F =Vx;---Vx Jy3z(y V z).

a(F) =

x1€{0]} xke{OI} ye{0,1} ze{01}
X]E{O ]} XkE{O ]}

— H H 4
x€{0,1} x.€{0,1}

— 4
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Interactive Proof Systems

Notes:
o numbers of size 22" require 2/ bits

@ cannot be exchanged in protocol round
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Interactive Proof Systems

Notes:
o numbers of size 22" require 2/ bits
@ cannot be exchanged in protocol round

e compute modulo prime

Lemma [Dietzfelbinger 2004] J

For n > 5 interval [27,2%"] contains at least 2" primes

47



Interactive Proof Systems

Proof (2/7)

e n=|F|and py,..., py primes between 2" and 22n
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Interactive Proof Systems

Proof (2/7)
o n=|F|and pi,. .., p, primes between 2" and 22"
o m— Hf:] pi > (2n)(2") _gn2" S 92" > a(F)
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Interactive Proof Systems

Proof (2/7)
o n=|F|and pi,. .., p, primes between 2" and 22"
o m— Hf:] pi > (2n)(2”) _gn2" S 92" > a(F)

F ¢ QBF < a(F) =0 mod m since a(F) =0
F e QBF < 31 <i<k: a(F)#0 mod p;

because m = H,’f:] pi > a(F), so not all p; can divide a(F)
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Interactive Proof Systems

Proof (3/7)

e for F € QBF Alice computes smallest prime p; > 2"
with a(F) # 0 mod p;

e sends p; < 22" to Bob

o all other computations now modulo p;
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Interactive Proof Systems

Proof (3/7)

e for F € QBF Alice computes smallest prime p; > 2"
with a(F) # 0 mod p;

e sends p; < 22" to Bob

o all other computations now modulo p;

e wlog. F = QxF" with Q € {3,V}

@ polynomial a(F") obtained from a(F)
by removing first product [] or sum >
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Interactive Proof Systems

Proof (3/7)

e for F € QBF Alice computes smallest prime p; > 2"
with a(F) # 0 mod p;

e sends p; < 22" to Bob

o all other computations now modulo p;
e wlog. F = QxF" with Q € {3,V}

@ polynomial a(F") obtained from a(F)
by removing first product [] or sum >

o deg(a(F')) can be exponential in n
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Interactive Proof Systems

Definition (simple formula)

Formula is simple if at most one additional V-quantifier occurs between
quantification Qx with Q € {3,V} and each occurrence of variable x
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Interactive Proof Systems

Definition (simple formula)

Formula is simple if at most one additional V-quantifier occurs between
quantification Qx with Q € {3,V} and each occurrence of variable x

EIx(Vsz(x V(yV z))) A (Vu(u % x)) not simple
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Interactive Proof Systems

Lemma

Each formula can be transformed into equivalent simple formula
in polynomial time

Proof
e replace each subformula YyG(xi, . .., x., y) with free variables
Y, X, ..., x; by
k
VUHUI"'HUk(/\XiHyi/\G(yla--'aykvy)) O

i=1
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Interactive Proof Systems

dx
[
A
7N
x Yy Yu
[ - [
A dx \Y,
7N I VRN
Yy Yu A U X
| | / N
Vz \ X & X Vz
| N\ |
A\ X V
VRN /N
X V X V
AN AN
y z y z
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Interactive Proof Systems

Lemma
deg(a(G')) < 2|G]| for simple formula G = GxG’ with Q € {3,V} J

Proof

e replace in G’ each subformula VyH in which x occurs freely
by H[y — 0] A H[y — 1]
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Interactive Proof Systems

Lemma

deg(a(G')) < 2|G]| for simple formula G = GxG’ with Q € {3,V} J

Proof

e replace in G’ each subformula VyH in which x occurs freely
by H[y — 0] A H[y — 1]

e doubles length of formula since those subformulas are not nested
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Interactive Proof Systems

Lemma
deg(a(G')) < 2|G]| for simple formula G = GxG’ with Q € {3,V} J

Proof

e replace in G’ each subformula VyH in which x occurs freely

by H[y — 0] A H[y — 1]
e doubles length of formula since those subformulas are not nested
o show deg(a(G")) < |G”| for obtained formula G”

@ deg(a(x)) = deg(a(0)) = deg(a(1)) =1
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Interactive Proof Systems

Lemma
deg(a(G')) < 2|G]| for simple formula G = GxG’ with Q € {3,V} J

Proof
e replace in G’ each subformula VyH in which x occurs freely
by H[y — 0] A H[y — 1]
e doubles length of formula since those subformulas are not nested
o show deg(a(G")) < |G”| for obtained formula G”

@ deg(a(x)) = deg(a(0)) = deg(a(1)) =1
Q deg(a(G Vv &) < max{|G|, |G|} < |G|
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Interactive Proof Systems

Lemma
deg(a(G')) < 2|G]| for simple formula G = GxG’ with Q € {3,V} J

Proof
e replace in G’ each subformula VyH in which x occurs freely
by H[y — 0] A H[y — 1]
e doubles length of formula since those subformulas are not nested
o show deg(a(G")) < |G”| for obtained formula G”

@ deg(a(x)) = deg(a(0)) = deg(a(1)) =1
Q deg(a(G Vv &) < max{|G|, |G|} < |G|
Q deg(a(G A &) < |G|+ |G| = |G|

b7



Interactive Proof Systems

Lemma
deg(a(G')) < 2|G]| for simple formula G = GxG’ with Q € {3,V} J

Proof

e replace in G’ each subformula VyH in which x occurs freely
by H[y — 0] A H[y — 1]

e doubles length of formula since those subformulas are not nested
o show deg(a(G")) < |G”| for obtained formula G”

Q deg(a(x)) = deg(a(0)) = deg(a(1)) =1
Q deg( G] vV Gz ) < max{\Gﬂ, ‘Gz|} < ‘GN|
Q deg(a(Ci A Gz ) < |G]| + |Gz| = |G//|
Q deg(a(3yG)) < deg(a(G)) < |G”| for y # x
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Interactive Proof Systems

Lemma
deg(a(G')) < 2|G]| for simple formula G = GxG’ with Q € {3,V} J

Proof

e replace in G’ each subformula VyH in which x occurs freely
by Hly — 0] A H[y — 1]

e doubles length of formula since those subformulas are not nested
o show deg(a(G")) < |G”| for obtained formula G”

Q deg(a(x)) = deg(a(0)) = deg(a(1)) =1
Q deg( G] vV Gz ) < max{\Gﬂ, ‘Gz|} < ‘GN|
Q deg(a(G A &) < |G|+ |G| = |G|
Q deg(a(3yG)) < deg(a(G)) < |G”| for y # x
© deg(a(VyG)) = 0 < |G| since x does not occur in G O

64



Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F

o let F=FA = QixG with p](X]) = G(G]) mod p;
a polynomial (in x)) of degree at most 2n
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Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F
o let F=FA = QixG with p](X]) = G(G]) mod p;
a polynomial (in x)) of degree at most 2n

@ start rounds
@ Alice sends a1 = a(F) mod p;
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Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F
o let F=FA = QixG with p](X]) = O(G]) mod p;
a polynomial (in x)) of degree at most 2n

@ start rounds
@ Alice sends a1 = a(F) mod p;
@ Bob rejects F if aj = 0; otherwise demands proof for g
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Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F
o let F=FA = QixG with p](X]) = O(G]) mod p;
a polynomial (in x)) of degree at most 2n

@ start rounds
@ Alice sends a1 = a(F) mod p;
@ Bob rejects F if aj = 0; otherwise demands proof for g
O Alice sends polynomial pi(x)

658



Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F
o let F=FA = QixG with p](X]) = O(G]) mod p;
a polynomial (in x)) of degree at most 2n
@ start rounds
@ Alice sends a1 = a(F) mod p;
@ Bob rejects F if aj = 0; otherwise demands proof for g

O Alice sends polynomial pi(x)
@ For @ = 3 Bob checks a1 = p1(0) + pi(1) mod p;
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Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F
o let F=FA = QixG with p](X]) = O(G]) mod p;
a polynomial (in x)) of degree at most 2n
@ start rounds
@ Alice sends a1 = a(F) mod p;
@ Bob rejects F if aj = 0; otherwise demands proof for g
O Alice sends polynomial pi(x)
@ For @ = 3 Bob checks a1 = p1(0) + pi(1) mod p;
© For Q) =V Bob checks a1 = pi(0) - pi(1) mod p;
O Bob randomly selects 0 < r; < p;, shares it with Alice and
computes pi1(n) mod p;
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Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F

o let F=FA = QixG with p](X]) = O(G]) mod p;
a polynomial (in x)) of degree at most 2n
@ start rounds
@ Alice sends a1 = a(F) mod p;
@ Bob rejects F if aj = 0; otherwise demands proof for g
O Alice sends polynomial pi(x)
@ For @ = 3 Bob checks a1 = p1(0) + pi(1) mod p;
© For Q) =V Bob checks a1 = pi(0) - pi(1) mod p;
O Bob randomly selects 0 < r; < p;, shares it with Alice and
computes pi1(n) mod p;
@ write a(G)[x1 — n] as b+ c- a(R)[x — n]
with F, subformula of G; starting with first quantifier
© Bob computes 0 < b, c < p;
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Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F

o let F=FA = QixG with p](X]) = O(G]) mod p;
a polynomial (in x)) of degree at most 2n
@ start rounds
@ Alice sends a1 = a(F) mod p;
@ Bob rejects F if aj = 0; otherwise demands proof for g
O Alice sends polynomial pi(x)
@ For @ = 3 Bob checks a1 = p1(0) + pi(1) mod p;
© For Q) =V Bob checks a1 = pi(0) - pi(1) mod p;
O Bob randomly selects 0 < r; < p;, shares it with Alice and
computes pi1(n) mod p;
@ write a(G)[x1 — n] as b+ c- a(R)[x — n]
with F, subformula of G; starting with first quantifier
© Bob computes 0 < b, c < p;
@ Bob acceptsif c=0and pi(n) = b
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Interactive Proof Systems

Proof (4/7)
e play ¢ rounds with ¢ < n the number of quantifiers in F

o let F=FA = QixG with p](X]) = O(G]) mod p;
a polynomial (in x)) of degree at most 2n
@ start rounds
@ Alice sends a1 = a(F) mod p;
@ Bob rejects F if aj = 0; otherwise demands proof for g
O Alice sends polynomial pi(x)
@ For @ = 3 Bob checks a1 = p1(0) + pi(1) mod p;
© For Q) =V Bob checks a1 = pi(0) - pi(1) mod p;
O Bob randomly selects 0 < r; < p;, shares it with Alice and
computes pi1(n) mod p;
@ write a(G)[x1 — n] as b+ c- a(R)[x — n]
with F, subformula of G; starting with first quantifier
© Bob computes 0 < b, c < p;
@ Bob acceptsif c=0and pi(n) = b
@ otherwise Bob computes a; = (pi(r) — b) - ¢~ mod p;
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Interactive Proof Systems

Proof (5/7)
e for correct polynomial pi(x) = a(G))
[X]»—>r]]—b p](n)—b

a(F)ln > n) = AW ZE 0V g, og

o let = QzXsz and ,02(X2) = G(Gz)[X] — I‘]]
@ start round 2
@ Bob demands proof for a(F,)[x; — n] = a; mod p;
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Interactive Proof Systems

Proof (5/7)
e for correct polynomial pi(x) = a(G))

()l s n) = A ALZE A ZD oy,

o let = QzXsz and ,02(X2) = G(Gz)[X] — l‘]]

e start round 2
@ Bob demands proof for a(F,)[x; — n] = a; mod p;
O Alice sends polynomial py(x2)
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Interactive Proof Systems

Proof (5/7)
e for correct polynomial pi(x) = a(G))

()l s n) = A ALZE A ZD oy,

o let = QzXsz and ,02(X2) = G(Gz)[X] — l‘]]

e start round 2
@ Bob demands proof for a(F,)[x; — n] = a; mod p;
O Alice sends polynomial py(x2)
@ For Q, = 3 Bob checks a; = p2(0) + p2(1) mod p;
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Interactive Proof Systems

Proof (5/7)
e for correct polynomial pi(x) = a(G))

()l s n) = A ALZE A ZD oy,

o let = QzXsz and ,02(X2) = G(Gz)[X] — l‘]]
@ start round 2
@ Bob demands proof for a(F,)[x; — n] = a; mod p;
O Alice sends polynomial py(x2)
@ For Q, = 3 Bob checks a; = p2(0) + p2(1) mod p;
@ For Q, =V Bob checks a; = p2(0) - p2(1) mod p;
@ Bob randomly selects 0 < r, < p;, shares it with Alice and
computes p,(r;) mod p;
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Interactive Proof Systems

Proof (5/7)
e for correct polynomial pi(x) = a(G))

()l s n) = A ALZE A ZD oy,

o let = QzXsz and pz(Xz) = G(Gz)[X] — l‘]]
e start round 2
@ Bob demands proof for a(F,)[x; — n] = a; mod p;
O Alice sends polynomial py(x2)
@ For Q, = 3 Bob checks a; = p2(0) + p2(1) mod p;
@ For Q, =V Bob checks a; = p2(0) - p2(1) mod p;
@ Bob randomly selects 0 < r, < p;, shares it with Alice and
computes p,(r;) mod p;
@ write a(G))[x1 = n,xo = n]as b+ c-a(FR)[x — n,x; — ]
with F3 subformula of G, starting with first quantifier
© Bob computes 0 < b, c < p;
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Interactive Proof Systems

Proof (5/7)
e for correct polynomial pi(x) = a(G))

()l s n) = A ALZE A ZD oy,

o let = QzXsz and pz(Xz) = G(Gz)[X] — l‘]]
e start round 2
@ Bob demands proof for a(F,)[x; — n] = a; mod p;
O Alice sends polynomial py(x2)
@ For Q, = 3 Bob checks a; = p2(0) + p2(1) mod p;
@ For Q, =V Bob checks a; = p2(0) - p2(1) mod p;
@ Bob randomly selects 0 < r, < p;, shares it with Alice and
computes p,(r;) mod p;
@ write a(G))[x1 = n,xo = n]as b+ c-a(FR)[x — n,x; — ]
with F3 subformula of G, starting with first quantifier
© Bob computes 0 < b, c < p;
@ Bob accepts if c =0 and py(rn) = b
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Interactive Proof Systems

Proof (5/7)
e for correct polynomial pi(x) = a(G))

()l s n) = A ALZE A ZD oy,

o let = QzXsz and pz(Xz) = G(Gz)[X] — l‘]]
e start round 2
@ Bob demands proof for a(F,)[x; — n] = a; mod p;
O Alice sends polynomial py(x2)
@ For Q, = 3 Bob checks a; = p2(0) + p2(1) mod p;
@ For Q, =V Bob checks a; = p2(0) - p2(1) mod p;
@ Bob randomly selects 0 < r, < p;, shares it with Alice and
computes p,(r;) mod p;
@ write a(G))[x1 = n,xo = n]as b+ c-a(FR)[x — n,x; — ]
with F3 subformula of G, starting with first quantifier
© Bob computes 0 < b, c < p;
@ Bob accepts if c =0 and py(rn) = b
@ otherwise Bob computes a3 = (po(r2) — b) - ¢

"'mod p;
90



Interactive Proof Systems

Proof (6/7)
@ other rounds accordingly
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Interactive Proof Systems

Proof (6/7)
@ other rounds accordingly
@ Bob accepts F € QBF with probability 1
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Interactive Proof Systems

Proof (6/7)
@ other rounds accordingly
@ Bob accepts F € QBF with probability 1
o let F ¢ QBF and thus a(F) = 0 mod p;
e what is probability that Bob accepts? Suppose Bob does
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Interactive Proof Systems

Proof (6/7)
@ other rounds accordingly
@ Bob accepts F € QBF with probability 1
o let F ¢ QBF and thus a(F) = 0 mod p;
e what is probability that Bob accepts? Suppose Bob does
@ Alice sends a1 # a(Ff) = 0 mod p; in round 1

Q4



Interactive Proof Systems

Proof (6/7)
@ other rounds accordingly
@ Bob accepts F € QBF with probability 1
o let F ¢ QBF and thus a(F) = 0 mod p;
e what is probability that Bob accepts? Suppose Bob does
@ Alice sends a1 # a(Ff) = 0 mod p; in round 1
@ Bob checks a1 = p1(0) ® pi(1) mod p;,
so the sent polynomial p1(x) # a(G) is wrong
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Interactive Proof Systems

Proof (6/7)
@ other rounds accordingly
@ Bob accepts F € QBF with probability 1
let F ¢ QBF and thus a(F) = 0 mod p;
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 # a(f) = 0 mod p; in round 1
Bob checks a; = p1(0) @ pi(1) mod p;,
so the sent polynomial p1(x) # a(G) is wrong
p(x) — a(G) has degree at most 2n and thus at most 2n roots

e pi(n) = a(G)[xi — n] holds for at most 2n values 0 < r < p;
2n
Prob p1(n) = a(G)lx — nl| < 22

for uniform r since p; > 2"
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Interactive Proof Systems

Proof (6/7)
@ other rounds accordingly
@ Bob accepts F € QBF with probability 1
let F ¢ QBF and thus a(F) = 0 mod p;
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 # a(f) = 0 mod p; in round 1
Bob checks a; = p1(0) @ pi(1) mod p;,
so the sent polynomial p1(x) # a(G) is wrong
p(x) — a(G) has degree at most 2n and thus at most 2n roots

e pi(n) = a(G)[xi — n] holds for at most 2n values 0 < r < p;
2n
Prob p1(n) = a(G)lx — nl| < 22

for uniform r since p; > 2"
e pi(n) =a(G)[x — n| <= ay = a(R)[x1 — n] provided ¢ # 0
Q7



Interactive Proof Systems

Proof (7/7)
e Prob[pi(n) # a(G)[x — n]] >1— 2 at start of round 2

e argument repeats with demand for proof of a; = a(F,)[x; — n]
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Interactive Proof Systems

Proof (7/7)
e Prob[pi(n) # a(G)[x — n]] >1— 2 at start of round 2
e argument repeats with demand for proof of a; = a(F,)[x; — n]
e at most ¢ rounds

e probability of correct answer “F ¢ QBF" is at least

since (1—x)">1—nxfor0<x <1

90



Interactive Proof Systems

Proof (7/7)
e Prob[pi(n) # a(G)[x — n]] >1— 2 at start of round 2
e argument repeats with demand for proof of a; = a(F,)[x; — n]
e at most £ rounds
e probability of correct answer “F ¢ QBF" is at least
2n\*¢ 2n\n 2n
(1-32) 2(-%) 21-n5

since (1—x)">1—nxfor0<x <1

2

@ probability of wrong answer “F € QBF” is at most =7

20



Interactive Proof Systems

Proof (7/7)
e Prob[pi(n) # a(G)[x — n]] >1— 2 at start of round 2
e argument repeats with demand for proof of a; = a(F,)[x; — n]

o at most ¢ rounds

probability of correct answer “F ¢ QBF" is at least

since (1—x)">1—nxfor0<x <1

@ probability of wrong answer “F € QBF” is at most 22%2
e rerun of protocol lowers it to (22”:)2 = ‘é’z’: < 27" for large n O

Q1



