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Interactive Proof Systems

De�nition (interactive proof system)
Pair (A, B)

mapping A :
⋃
i∈N({0, 1}∗)1+2i → {0, 1}∗ (Alice)

randomized polynomial-time algorithm B (of same type) (Bob)

Intuition:

input w ∈ {0, 1}∗

polynomial number of rounds (in n = |w|)
round i :

1 Alice sents ai = A(w, a1, b1, . . . , ai−1, bi−1) to Bob
2 Bob replies with bi = B(w, a1, b1, . . . , ai−1, bi−1, ai)

�nal round: Bob accepts or rejects w
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Interactive Proof Systems

Message lengths:

polynomial length for bi (since Bob runs in polynomial time)

unbounded ai but Bob B reads only polynomial pre�x

wlog. |ai | ≤ p(|w|) and |bi | ≤ p(|w|) for some polynomial p
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Interactive Proof Systems

De�nition (generated language)
Interactive proof system (A, B) generates language L ⊆ {0, 1}∗
if and only if for all w ∈ {0, 1}∗:

Bob rejects w ∈ L with negligible probability
(i.e., Bob accepts with probability at least 1− 2−|w|)

Bob accepts w /∈ L with negligible probability
in every interactive proof system (A′, B)

IP = {L ⊆ {0, 1}∗ | ∃ interactive proof system generating L}

Notes:

introduced by Goldwasser, Micali, and Racko� in 1985

Alice is prover and computationally unlimited

Bob is veri�er and restricted to (deterministic) polynomial time
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Interactive Proof Systems

Intuition:

Completeness:

If w ∈ L then designed prover A convinces veri�er B almost certainly

Correctness:

If w /∈ L then any prover convinces B only with negligible probability
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Interactive Proof Systems

Theorem
IP ⊆ PSPACE

Proof (1/5)

L ∈ IP and (A, B) interactive proof system generating L

w ∈ {0, 1}∗ of length n and polynomial p(x) limiting runtime of B

polynomial q(x) limiting number of rounds

wlog. length of a1, . . . , aq(n) and b1, . . . , bq(n) is p(n)

potential Alice

A′ :

(q(n)−1⋃
i=0

{0, 1}n+i·2p(n)
)
→ {0, 1}p(n)
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Interactive Proof Systems

Proof (2/5)

approach: construct optimal Alice in PSPACE

�x Alice A′ and random bit sequence Z ∈ {0, 1}q(n)p(n) used by Bob

protocol P(A′, Z ) = a1b1 · · · aq(n)bq(n) completely determined

a1b1 · · · ai and a1b1 · · · aibi protocol pre�xes for all 0 ≤ i ≤ q(n)

P ≤ P(A′, Z ) if P protocol pre�x of P(A′, Z )

f (A′, P) =
∣∣∣{Z ∈ {0, 1}q(n)p(n) | P ≤ P(A′, Z ) and P(A′, Z ) accepting

}∣∣∣
f (P) = max

{
f (A′′, P) | A′′ potential Alice

}
Ā optimal for P if f (Ā, P) = f (P)

w accepted with probability ρ(w) ≤ f (ε)
2q(n)p(n)
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Interactive Proof Systems

Proof (3/5)
f (ε)

2q(n)p(n)
≥ ρ(w) ≥ 1− 2−n and f (ε) ≥ (1− 2−n) · 2q(n)p(n) for all w ∈ L

otherwise f (ε) ≤ 2−n · 2q(n)p(n)

compute f (ε) recursively in polynomial space

1 complete protocol P = a1b1 · · · aq(n)bq(n)
I if Bob rejects, then f (P) = 0.
I otherwise

f (P) =
∣∣∣{Z ∈ {0, 1}q(n)p(n) | Z permits P

}∣∣∣
Z permits P if bit sequence Z yields the responses b1, . . . , bq(n) from B

I can be done in polynomial space
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Interactive Proof Systems

Proof (4/5)
2 incomplete protocol P = a1b1 · · · ai−1bi−1ai

with �nal message from Alice 1 ≤ i ≤ q(n)
I f (Pbi) with bi ∈ {0, 1}p(n) known and

f (P) = max
{
f (A′′, P) | potential Alice A′′

}
= max

{ ∑
bi∈{0,1}p(n)

f (A′′, Pbi) | potential Alice A′′
}

=
∑

bi∈{0,1}p(n)
max{f (A′′bi , Pbi) | potential Alice A

′′
bi}

=
∑

bi∈{0,1}p(n)
f (Pbi)

I second-to-last equality follows because Z determines protocol,
so a single Z cannot permit Pbi and Pb′i with bi 6= b′i

I clearly also polynomial space
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Interactive Proof Systems

Proof (5/5)
3 incomplete protocol P = a1b1 · · · ai−1bi−1

with �nal message from Bob 1 ≤ i ≤ q(n)
I f (Pai) with ai ∈ {0, 1}p(n) known and Alice can select the response

f (P) = max
{
f (Pai) | ai ∈ {0, 1}p(n)

}
I clearly also polynomial space

Space requirements:

recursion depth 2q(n)

protocol pre�x P , messages ai and bi
currently best value of f and partial sum both limited by 2q(n)p(n)
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Interactive Proof Systems

Lemma
IP closed under polynomial-time reductions

L ∈ IP for all L �P L′ and L′ ∈ IP

Proof

f polynomial-time reduction of L to L′

(A, B) interactive proof system generating L′ and input w

Alice A′ and Bob B′ compute f (w) and then simulate A and B

yields answer for f (w)
?
∈ L′ that is correct for w

?
∈ L
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Interactive Proof Systems

Theorem (Shamir 1990)
IP = PSPACE

Adi Shamir (∗ 1952)
isra. computer scientist

professor at Weizmann institute and ENS Paris

Turing laureate 2002 and ‘S’ in RSA

© Erik Tews
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Interactive Proof Systems

Proof (1/7)

we know IP ⊆ PSPACE, so only PSPACE ⊆ IP remains

since IP is closed under polynomial-time reductions and
QBF is PSPACE-complete, we just show QBF ∈ IP

let F closed quanti�ed formula over ∧, ∨, ∀, ∃ and the literals
replace F by arithmetic expression a(F )

I a(x) = x and a(¬x) = 1− x for all variables x
I a(F1 ∨ F2) = a(F1) + a(F2) and a(F1 ∧ F2) = a(F1) · a(F2) for all F1 and F2
I a(∃xF1) =

∑
x∈{0,1} a(F1) and a(∀xF1) =

∏
x∈{0,1} a(F1) for all F1

obviously a(F ) ≥ 0

F ∈ QBF if and only if a(F ) > 0
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Interactive Proof Systems

Example: F = ∀x∃y
(

(x ∨ ¬y) ∧ ∃z(¬x ∧ z)
)
.

a(F ) =
∏

x∈{0,1}

( ∑
y∈{0,1}

((
x + (1− y)

)
·
∑

z∈{0,1}

(
(1− x) · z

)))

=
∏

x∈{0,1}

( ∑
y∈{0,1}

((
x + (1− y)

)
· (1− x)

))

=
∏

x∈{0,1}

(
(1− x2) + (x − x2)

)
= 0

so the formula is “wrong”
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Interactive Proof Systems

Example: For the negation ¬F = ∃x∀y
(

(¬x ∧ y) ∨ ∀z(x ∨ ¬z)
)

a(¬F ) =
∑

x∈{0,1}

( ∏
y∈{0,1}

(
(1− x) · y +

∏
z∈{0,1}

(
x + (1− z)

)))

=
∑

x∈{0,1}

( ∏
y∈{0,1}

(
(1− x) · y + (x2 + x)

))

=
∑

x∈{0,1}

(x2 + x) · (1 + x2)

= 4

so the negated formula is “true”
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Interactive Proof Systems

How large can a(F ) be?

For formula F the length |F | is
|0| = |1| = |x| = |¬x| = 1

|F ∨ G| = |F ∧ G| = |F |+ |G|
|∃xF | = |∀xF | = 1 + |F |

Lemma

a(F ) ≤ 22
|F |

Proof

replace each occurrence of ∃xG by G[x 7→ 0] ∨ G[x 7→ 1] and
each ∀xG by G[x 7→ 0] ∧ G[x 7→ 1]

prove |F ′| ≤ 2|F | for obtained formula F ′ by induction

prove a(F ′) ≤ 2|F
′| by induction
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′| by induction
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How large can a(F ) be? For formula F the length |F | is
|0| = |1| = |x| = |¬x| = 1

|F ∨ G| = |F ∧ G| = |F |+ |G|
|∃xF | = |∀xF | = 1 + |F |

Lemma

a(F ) ≤ 22
|F |

Proof

replace each occurrence of ∃xG by G[x 7→ 0] ∨ G[x 7→ 1] and
each ∀xG by G[x 7→ 0] ∧ G[x 7→ 1]

prove |F ′| ≤ 2|F | for obtained formula F ′ by induction

prove a(F ′) ≤ 2|F
′| by induction
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How large can a(F ) be? For formula F the length |F | is
|0| = |1| = |x| = |¬x| = 1

|F ∨ G| = |F ∧ G| = |F |+ |G|
|∃xF | = |∀xF | = 1 + |F |

Lemma

a(F ) ≤ 22
|F |

Proof

replace each occurrence of ∃xG by G[x 7→ 0] ∨ G[x 7→ 1] and
each ∀xG by G[x 7→ 0] ∧ G[x 7→ 1]

prove |F ′| ≤ 2|F | for obtained formula F ′ by induction

prove a(F ′) ≤ 2|F
′| by induction
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Example: F = ∀x1 · · · ∀xk∃y∃z(y ∨ z).

a(F ) =
∏

x1∈{0,1}

· · ·
∏

xk∈{0,1}

( ∑
y∈{0,1}

∑
z∈{0,1}

(y + z)

)

=
∏

x1∈{0,1}

· · ·
∏

xk∈{0,1}

( ∑
y∈{0,1}

(2y + 1)

)

=
∏

x1∈{0,1}

· · ·
∏

xk∈{0,1}

4

= 42
k
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Interactive Proof Systems

Notes:

numbers of size 22
|F |

require 2|F | bits

cannot be exchanged in protocol round

compute modulo prime

Lemma [Dietzfelbinger 2004]

For n ≥ 5 interval [2n, 22n] contains at least 2n primes
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Notes:

numbers of size 22
|F |

require 2|F | bits

cannot be exchanged in protocol round

compute modulo prime

Lemma [Dietzfelbinger 2004]

For n ≥ 5 interval [2n, 22n] contains at least 2n primes
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Proof (2/7)

n = |F | and p1, . . . , pk primes between 2n and 22n

m =
∏k
i=1 pi ≥ (2n)(2

n) = 2n·2
n
> 22

n ≥ a(F )

F /∈ QBF ⇐⇒ a(F ) ≡ 0 mod m since a(F ) = 0

F ∈ QBF ⇐⇒ ∃1 ≤ i ≤ k : a(F ) 6≡ 0 mod pi

because m =
∏k
i=1 pi > a(F ), so not all pi can divide a(F )
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Proof (2/7)

n = |F | and p1, . . . , pk primes between 2n and 22n

m =
∏k
i=1 pi ≥ (2n)(2

n) = 2n·2
n
> 22

n ≥ a(F )

F /∈ QBF ⇐⇒ a(F ) ≡ 0 mod m since a(F ) = 0

F ∈ QBF ⇐⇒ ∃1 ≤ i ≤ k : a(F ) 6≡ 0 mod pi

because m =
∏k
i=1 pi > a(F ), so not all pi can divide a(F )
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Proof (2/7)

n = |F | and p1, . . . , pk primes between 2n and 22n

m =
∏k
i=1 pi ≥ (2n)(2

n) = 2n·2
n
> 22

n ≥ a(F )

F /∈ QBF ⇐⇒ a(F ) ≡ 0 mod m since a(F ) = 0

F ∈ QBF ⇐⇒ ∃1 ≤ i ≤ k : a(F ) 6≡ 0 mod pi

because m =
∏k
i=1 pi > a(F ), so not all pi can divide a(F )
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Proof (3/7)

for F ∈ QBF Alice computes smallest prime pi ≥ 2n

with a(F ) 6≡ 0 mod pi
sends pi ≤ 22n to Bob

all other computations now modulo pi

wlog. F = QxF ′ with Q ∈ {∃,∀}
polynomial a(F ′) obtained from a(F )
by removing �rst product

∏
or sum

∑
deg
(
a(F ′)

)
can be exponential in n

51



Interactive Proof Systems

Proof (3/7)

for F ∈ QBF Alice computes smallest prime pi ≥ 2n

with a(F ) 6≡ 0 mod pi
sends pi ≤ 22n to Bob

all other computations now modulo pi

wlog. F = QxF ′ with Q ∈ {∃, ∀}
polynomial a(F ′) obtained from a(F )
by removing �rst product

∏
or sum

∑

deg
(
a(F ′)

)
can be exponential in n
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Proof (3/7)

for F ∈ QBF Alice computes smallest prime pi ≥ 2n

with a(F ) 6≡ 0 mod pi
sends pi ≤ 22n to Bob

all other computations now modulo pi

wlog. F = QxF ′ with Q ∈ {∃, ∀}
polynomial a(F ′) obtained from a(F )
by removing �rst product

∏
or sum

∑
deg
(
a(F ′)

)
can be exponential in n
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De�nition (simple formula)
Formula is simple if at most one additional ∀-quanti�er occurs between
quanti�cation Qx with Q ∈ {∃, ∀} and each occurrence of variable x

∃x

∧

∀y

∀z

∨

x ∨
y z

∀u

∨

u x

∃x
(
∀y∀z

(
x ∨ (y ∨ z)

))
∧
(
∀u
(
u ∨ x

))
not simple
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De�nition (simple formula)
Formula is simple if at most one additional ∀-quanti�er occurs between
quanti�cation Qx with Q ∈ {∃, ∀} and each occurrence of variable x

∃x

∧

∀y

∀z

∨

x ∨
y z

∀u

∨

u x

∃x
(
∀y∀z

(
x ∨ (y ∨ z)

))
∧
(
∀u
(
u ∨ x

))
not simple
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Lemma
Each formula can be transformed into equivalent simple formula
in polynomial time

Proof

replace each subformula ∀yG(x1, . . . , xk , y) with free variables
y, x1, . . . , xk by

∀y∃y1 · · · ∃yk
( k∧
i=1

xi ↔ yi ∧ G(y1, . . . , yk , y)
)
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∃x

∧

∀y

∀z

∨

x ∨
y z

∀u

∨

u x

∃x

∧

∀y

∃x

∧
x ↔ x ∀z

∨
x ∨

y z

∀u

∨

u x
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Lemma
deg
(
a(G ′)

)
≤ 2|G| for simple formula G = QxG ′ with Q ∈ {∃,∀}

Proof

replace in G ′ each subformula ∀yH in which x occurs freely
by H[y 7→ 0] ∧ H[y 7→ 1]

doubles length of formula since those subformulas are not nested
show deg

(
a(G ′′)

)
≤ |G ′′| for obtained formula G ′′

1 deg
(
a(x)

)
= deg

(
a(0)

)
= deg

(
a(1)

)
= 1

2 deg
(
a(G1 ∨ G2)

)
≤ max{|G1|, |G2|} < |G ′′|

3 deg
(
a(G1 ∧ G2)

)
≤ |G1|+ |G2| = |G ′′|

4 deg
(
a(∃yG1)

)
≤ deg(a(G1)) < |G ′′| for y 6= x

5 deg
(
a(∀yG1)

)
= 0 < |G ′′| since x does not occur in G1
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Lemma
deg
(
a(G ′)

)
≤ 2|G| for simple formula G = QxG ′ with Q ∈ {∃,∀}

Proof

replace in G ′ each subformula ∀yH in which x occurs freely
by H[y 7→ 0] ∧ H[y 7→ 1]

doubles length of formula since those subformulas are not nested

show deg
(
a(G ′′)

)
≤ |G ′′| for obtained formula G ′′

1 deg
(
a(x)

)
= deg

(
a(0)

)
= deg

(
a(1)

)
= 1

2 deg
(
a(G1 ∨ G2)

)
≤ max{|G1|, |G2|} < |G ′′|

3 deg
(
a(G1 ∧ G2)

)
≤ |G1|+ |G2| = |G ′′|

4 deg
(
a(∃yG1)

)
≤ deg(a(G1)) < |G ′′| for y 6= x

5 deg
(
a(∀yG1)

)
= 0 < |G ′′| since x does not occur in G1
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Lemma
deg
(
a(G ′)

)
≤ 2|G| for simple formula G = QxG ′ with Q ∈ {∃,∀}

Proof

replace in G ′ each subformula ∀yH in which x occurs freely
by H[y 7→ 0] ∧ H[y 7→ 1]

doubles length of formula since those subformulas are not nested
show deg

(
a(G ′′)

)
≤ |G ′′| for obtained formula G ′′

1 deg
(
a(x)

)
= deg

(
a(0)

)
= deg

(
a(1)

)
= 1

2 deg
(
a(G1 ∨ G2)

)
≤ max{|G1|, |G2|} < |G ′′|

3 deg
(
a(G1 ∧ G2)

)
≤ |G1|+ |G2| = |G ′′|

4 deg
(
a(∃yG1)

)
≤ deg(a(G1)) < |G ′′| for y 6= x

5 deg
(
a(∀yG1)

)
= 0 < |G ′′| since x does not occur in G1
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Lemma
deg
(
a(G ′)

)
≤ 2|G| for simple formula G = QxG ′ with Q ∈ {∃,∀}

Proof

replace in G ′ each subformula ∀yH in which x occurs freely
by H[y 7→ 0] ∧ H[y 7→ 1]

doubles length of formula since those subformulas are not nested
show deg

(
a(G ′′)

)
≤ |G ′′| for obtained formula G ′′

1 deg
(
a(x)

)
= deg

(
a(0)

)
= deg

(
a(1)

)
= 1

2 deg
(
a(G1 ∨ G2)

)
≤ max{|G1|, |G2|} < |G ′′|

3 deg
(
a(G1 ∧ G2)

)
≤ |G1|+ |G2| = |G ′′|

4 deg
(
a(∃yG1)

)
≤ deg(a(G1)) < |G ′′| for y 6= x

5 deg
(
a(∀yG1)

)
= 0 < |G ′′| since x does not occur in G1
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Lemma
deg
(
a(G ′)

)
≤ 2|G| for simple formula G = QxG ′ with Q ∈ {∃,∀}

Proof

replace in G ′ each subformula ∀yH in which x occurs freely
by H[y 7→ 0] ∧ H[y 7→ 1]

doubles length of formula since those subformulas are not nested
show deg

(
a(G ′′)

)
≤ |G ′′| for obtained formula G ′′

1 deg
(
a(x)

)
= deg

(
a(0)

)
= deg

(
a(1)

)
= 1

2 deg
(
a(G1 ∨ G2)

)
≤ max{|G1|, |G2|} < |G ′′|

3 deg
(
a(G1 ∧ G2)

)
≤ |G1|+ |G2| = |G ′′|

4 deg
(
a(∃yG1)

)
≤ deg(a(G1)) < |G ′′| for y 6= x

5 deg
(
a(∀yG1)

)
= 0 < |G ′′| since x does not occur in G1
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Lemma
deg
(
a(G ′)

)
≤ 2|G| for simple formula G = QxG ′ with Q ∈ {∃,∀}

Proof

replace in G ′ each subformula ∀yH in which x occurs freely
by H[y 7→ 0] ∧ H[y 7→ 1]

doubles length of formula since those subformulas are not nested
show deg

(
a(G ′′)

)
≤ |G ′′| for obtained formula G ′′

1 deg
(
a(x)

)
= deg

(
a(0)

)
= deg

(
a(1)

)
= 1

2 deg
(
a(G1 ∨ G2)

)
≤ max{|G1|, |G2|} < |G ′′|

3 deg
(
a(G1 ∧ G2)

)
≤ |G1|+ |G2| = |G ′′|

4 deg
(
a(∃yG1)

)
≤ deg(a(G1)) < |G ′′| for y 6= x

5 deg
(
a(∀yG1)

)
= 0 < |G ′′| since x does not occur in G1
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Lemma
deg
(
a(G ′)

)
≤ 2|G| for simple formula G = QxG ′ with Q ∈ {∃,∀}

Proof

replace in G ′ each subformula ∀yH in which x occurs freely
by H[y 7→ 0] ∧ H[y 7→ 1]

doubles length of formula since those subformulas are not nested
show deg

(
a(G ′′)

)
≤ |G ′′| for obtained formula G ′′

1 deg
(
a(x)

)
= deg

(
a(0)

)
= deg

(
a(1)

)
= 1

2 deg
(
a(G1 ∨ G2)

)
≤ max{|G1|, |G2|} < |G ′′|

3 deg
(
a(G1 ∧ G2)

)
≤ |G1|+ |G2| = |G ′′|

4 deg
(
a(∃yG1)

)
≤ deg(a(G1)) < |G ′′| for y 6= x

5 deg
(
a(∀yG1)

)
= 0 < |G ′′| since x does not occur in G1
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n

start rounds
1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi

2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1

3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)

4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi

5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi

7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]
with F2 subformula of G1 starting with �rst quanti�er

8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi

9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b

10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (4/7)
play ` rounds with ` ≤ n the number of quanti�ers in F
let F = F1 = Q1x1G1 with ρ1(x1) = a(G1) mod pi
a polynomial (in x1) of degree at most 2n
start rounds

1 Alice sends a1 = a(F1) mod pi
2 Bob rejects F if a1 = 0; otherwise demands proof for a1
3 Alice sends polynomial ρ1(x1)
4 For Q1 = ∃ Bob checks a1 ≡ ρ1(0) + ρ1(1) mod pi
5 For Q1 = ∀ Bob checks a1 ≡ ρ1(0) · ρ1(1) mod pi
6 Bob randomly selects 0 ≤ r1 < pi , shares it with Alice and

computes ρ1(r1) mod pi
7 write a(G1)[x1 7→ r1] as b + c · a(F2)[x1 7→ r1]

with F2 subformula of G1 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ1(r1) = b
10 otherwise Bob computes a2 = (ρ1(r1)− b) · c−1 mod pi
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Proof (5/7)
for correct polynomial ρ1(x1) = a(G1)

a(F2)[x1 7→ r1] =
a(G1)[x1 7→ r1]− b

c
=
ρ1(r1)− b

c
= a2 mod pi

let F2 = Q2x2G2 and ρ2(x2) = a(G2)[x1 7→ r1]
start round 2

2 Bob demands proof for a(F2)[x1 7→ r1] = a2 mod pi

3 Alice sends polynomial ρ2(x2)
4 For Q2 = ∃ Bob checks a2 ≡ ρ2(0) + ρ2(1) mod pi
5 For Q2 = ∀ Bob checks a2 ≡ ρ2(0) · ρ2(1) mod pi
6 Bob randomly selects 0 ≤ r2 < pi , shares it with Alice and

computes ρ2(r2) mod pi
7 write a(G2)[x1 7→ r1, x2 7→ r2] as b + c · a(F3)[x1 7→ r1, x2 7→ r2]

with F3 subformula of G2 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ2(r2) = b
10 otherwise Bob computes a3 = (ρ2(r2)− b) · c−1 mod pi
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Proof (5/7)
for correct polynomial ρ1(x1) = a(G1)

a(F2)[x1 7→ r1] =
a(G1)[x1 7→ r1]− b

c
=
ρ1(r1)− b

c
= a2 mod pi

let F2 = Q2x2G2 and ρ2(x2) = a(G2)[x1 7→ r1]
start round 2

2 Bob demands proof for a(F2)[x1 7→ r1] = a2 mod pi
3 Alice sends polynomial ρ2(x2)

4 For Q2 = ∃ Bob checks a2 ≡ ρ2(0) + ρ2(1) mod pi
5 For Q2 = ∀ Bob checks a2 ≡ ρ2(0) · ρ2(1) mod pi
6 Bob randomly selects 0 ≤ r2 < pi , shares it with Alice and

computes ρ2(r2) mod pi
7 write a(G2)[x1 7→ r1, x2 7→ r2] as b + c · a(F3)[x1 7→ r1, x2 7→ r2]

with F3 subformula of G2 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ2(r2) = b
10 otherwise Bob computes a3 = (ρ2(r2)− b) · c−1 mod pi
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Interactive Proof Systems

Proof (5/7)
for correct polynomial ρ1(x1) = a(G1)

a(F2)[x1 7→ r1] =
a(G1)[x1 7→ r1]− b

c
=
ρ1(r1)− b

c
= a2 mod pi

let F2 = Q2x2G2 and ρ2(x2) = a(G2)[x1 7→ r1]
start round 2

2 Bob demands proof for a(F2)[x1 7→ r1] = a2 mod pi
3 Alice sends polynomial ρ2(x2)
4 For Q2 = ∃ Bob checks a2 ≡ ρ2(0) + ρ2(1) mod pi

5 For Q2 = ∀ Bob checks a2 ≡ ρ2(0) · ρ2(1) mod pi
6 Bob randomly selects 0 ≤ r2 < pi , shares it with Alice and

computes ρ2(r2) mod pi
7 write a(G2)[x1 7→ r1, x2 7→ r2] as b + c · a(F3)[x1 7→ r1, x2 7→ r2]

with F3 subformula of G2 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ2(r2) = b
10 otherwise Bob computes a3 = (ρ2(r2)− b) · c−1 mod pi
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Interactive Proof Systems

Proof (5/7)
for correct polynomial ρ1(x1) = a(G1)

a(F2)[x1 7→ r1] =
a(G1)[x1 7→ r1]− b

c
=
ρ1(r1)− b

c
= a2 mod pi

let F2 = Q2x2G2 and ρ2(x2) = a(G2)[x1 7→ r1]
start round 2

2 Bob demands proof for a(F2)[x1 7→ r1] = a2 mod pi
3 Alice sends polynomial ρ2(x2)
4 For Q2 = ∃ Bob checks a2 ≡ ρ2(0) + ρ2(1) mod pi
5 For Q2 = ∀ Bob checks a2 ≡ ρ2(0) · ρ2(1) mod pi
6 Bob randomly selects 0 ≤ r2 < pi , shares it with Alice and

computes ρ2(r2) mod pi

7 write a(G2)[x1 7→ r1, x2 7→ r2] as b + c · a(F3)[x1 7→ r1, x2 7→ r2]
with F3 subformula of G2 starting with �rst quanti�er

8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ2(r2) = b
10 otherwise Bob computes a3 = (ρ2(r2)− b) · c−1 mod pi
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Interactive Proof Systems

Proof (5/7)
for correct polynomial ρ1(x1) = a(G1)

a(F2)[x1 7→ r1] =
a(G1)[x1 7→ r1]− b

c
=
ρ1(r1)− b

c
= a2 mod pi

let F2 = Q2x2G2 and ρ2(x2) = a(G2)[x1 7→ r1]
start round 2

2 Bob demands proof for a(F2)[x1 7→ r1] = a2 mod pi
3 Alice sends polynomial ρ2(x2)
4 For Q2 = ∃ Bob checks a2 ≡ ρ2(0) + ρ2(1) mod pi
5 For Q2 = ∀ Bob checks a2 ≡ ρ2(0) · ρ2(1) mod pi
6 Bob randomly selects 0 ≤ r2 < pi , shares it with Alice and

computes ρ2(r2) mod pi
7 write a(G2)[x1 7→ r1, x2 7→ r2] as b + c · a(F3)[x1 7→ r1, x2 7→ r2]

with F3 subformula of G2 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi

9 Bob accepts if c = 0 and ρ2(r2) = b
10 otherwise Bob computes a3 = (ρ2(r2)− b) · c−1 mod pi

78



Interactive Proof Systems

Proof (5/7)
for correct polynomial ρ1(x1) = a(G1)

a(F2)[x1 7→ r1] =
a(G1)[x1 7→ r1]− b

c
=
ρ1(r1)− b

c
= a2 mod pi

let F2 = Q2x2G2 and ρ2(x2) = a(G2)[x1 7→ r1]
start round 2

2 Bob demands proof for a(F2)[x1 7→ r1] = a2 mod pi
3 Alice sends polynomial ρ2(x2)
4 For Q2 = ∃ Bob checks a2 ≡ ρ2(0) + ρ2(1) mod pi
5 For Q2 = ∀ Bob checks a2 ≡ ρ2(0) · ρ2(1) mod pi
6 Bob randomly selects 0 ≤ r2 < pi , shares it with Alice and

computes ρ2(r2) mod pi
7 write a(G2)[x1 7→ r1, x2 7→ r2] as b + c · a(F3)[x1 7→ r1, x2 7→ r2]

with F3 subformula of G2 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ2(r2) = b

10 otherwise Bob computes a3 = (ρ2(r2)− b) · c−1 mod pi
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Interactive Proof Systems

Proof (5/7)
for correct polynomial ρ1(x1) = a(G1)

a(F2)[x1 7→ r1] =
a(G1)[x1 7→ r1]− b

c
=
ρ1(r1)− b

c
= a2 mod pi

let F2 = Q2x2G2 and ρ2(x2) = a(G2)[x1 7→ r1]
start round 2

2 Bob demands proof for a(F2)[x1 7→ r1] = a2 mod pi
3 Alice sends polynomial ρ2(x2)
4 For Q2 = ∃ Bob checks a2 ≡ ρ2(0) + ρ2(1) mod pi
5 For Q2 = ∀ Bob checks a2 ≡ ρ2(0) · ρ2(1) mod pi
6 Bob randomly selects 0 ≤ r2 < pi , shares it with Alice and

computes ρ2(r2) mod pi
7 write a(G2)[x1 7→ r1, x2 7→ r2] as b + c · a(F3)[x1 7→ r1, x2 7→ r2]

with F3 subformula of G2 starting with �rst quanti�er
8 Bob computes 0 ≤ b, c < pi
9 Bob accepts if c = 0 and ρ2(r2) = b
10 otherwise Bob computes a3 = (ρ2(r2)− b) · c−1 mod pi
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Interactive Proof Systems

Proof (6/7)
other rounds accordingly

Bob accepts F ∈ QBF with probability 1
let F /∈ QBF and thus a(F ) ≡ 0 mod pi
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 6≡ a(F1) ≡ 0 mod pi in round 1
Bob checks a1 ≡ ρ1(0)⊗ ρ1(1) mod pi ,
so the sent polynomial ρ1(x1) 6= a(G1) is wrong
ρ1(x1)− a(G1) has degree at most 2n and thus at most 2n roots
ρ1(r1) = a(G1)[x1 7→ r1] holds for at most 2n values 0 ≤ r1 < pi

Prob
[
ρ1(r1) = a(G1)[x1 7→ r1]

]
≤ 2n

2n

for uniform r1 since pi ≥ 2n

ρ1(r1) = a(G1)[x1 7→ r1] ⇐⇒ a2 = a(F2)[x1 7→ r1] provided c 6= 0
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Interactive Proof Systems

Proof (6/7)
other rounds accordingly
Bob accepts F ∈ QBF with probability 1

let F /∈ QBF and thus a(F ) ≡ 0 mod pi
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 6≡ a(F1) ≡ 0 mod pi in round 1
Bob checks a1 ≡ ρ1(0)⊗ ρ1(1) mod pi ,
so the sent polynomial ρ1(x1) 6= a(G1) is wrong
ρ1(x1)− a(G1) has degree at most 2n and thus at most 2n roots
ρ1(r1) = a(G1)[x1 7→ r1] holds for at most 2n values 0 ≤ r1 < pi

Prob
[
ρ1(r1) = a(G1)[x1 7→ r1]

]
≤ 2n

2n

for uniform r1 since pi ≥ 2n

ρ1(r1) = a(G1)[x1 7→ r1] ⇐⇒ a2 = a(F2)[x1 7→ r1] provided c 6= 0
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Interactive Proof Systems

Proof (6/7)
other rounds accordingly
Bob accepts F ∈ QBF with probability 1
let F /∈ QBF and thus a(F ) ≡ 0 mod pi
what is probability that Bob accepts? Suppose Bob does

Alice sends a1 6≡ a(F1) ≡ 0 mod pi in round 1
Bob checks a1 ≡ ρ1(0)⊗ ρ1(1) mod pi ,
so the sent polynomial ρ1(x1) 6= a(G1) is wrong
ρ1(x1)− a(G1) has degree at most 2n and thus at most 2n roots
ρ1(r1) = a(G1)[x1 7→ r1] holds for at most 2n values 0 ≤ r1 < pi

Prob
[
ρ1(r1) = a(G1)[x1 7→ r1]

]
≤ 2n

2n

for uniform r1 since pi ≥ 2n

ρ1(r1) = a(G1)[x1 7→ r1] ⇐⇒ a2 = a(F2)[x1 7→ r1] provided c 6= 0
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Interactive Proof Systems

Proof (6/7)
other rounds accordingly
Bob accepts F ∈ QBF with probability 1
let F /∈ QBF and thus a(F ) ≡ 0 mod pi
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 6≡ a(F1) ≡ 0 mod pi in round 1

Bob checks a1 ≡ ρ1(0)⊗ ρ1(1) mod pi ,
so the sent polynomial ρ1(x1) 6= a(G1) is wrong
ρ1(x1)− a(G1) has degree at most 2n and thus at most 2n roots
ρ1(r1) = a(G1)[x1 7→ r1] holds for at most 2n values 0 ≤ r1 < pi

Prob
[
ρ1(r1) = a(G1)[x1 7→ r1]

]
≤ 2n

2n

for uniform r1 since pi ≥ 2n

ρ1(r1) = a(G1)[x1 7→ r1] ⇐⇒ a2 = a(F2)[x1 7→ r1] provided c 6= 0
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Interactive Proof Systems

Proof (6/7)
other rounds accordingly
Bob accepts F ∈ QBF with probability 1
let F /∈ QBF and thus a(F ) ≡ 0 mod pi
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 6≡ a(F1) ≡ 0 mod pi in round 1
Bob checks a1 ≡ ρ1(0)⊗ ρ1(1) mod pi ,
so the sent polynomial ρ1(x1) 6= a(G1) is wrong

ρ1(x1)− a(G1) has degree at most 2n and thus at most 2n roots
ρ1(r1) = a(G1)[x1 7→ r1] holds for at most 2n values 0 ≤ r1 < pi

Prob
[
ρ1(r1) = a(G1)[x1 7→ r1]

]
≤ 2n

2n

for uniform r1 since pi ≥ 2n

ρ1(r1) = a(G1)[x1 7→ r1] ⇐⇒ a2 = a(F2)[x1 7→ r1] provided c 6= 0
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Interactive Proof Systems

Proof (6/7)
other rounds accordingly
Bob accepts F ∈ QBF with probability 1
let F /∈ QBF and thus a(F ) ≡ 0 mod pi
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 6≡ a(F1) ≡ 0 mod pi in round 1
Bob checks a1 ≡ ρ1(0)⊗ ρ1(1) mod pi ,
so the sent polynomial ρ1(x1) 6= a(G1) is wrong
ρ1(x1)− a(G1) has degree at most 2n and thus at most 2n roots
ρ1(r1) = a(G1)[x1 7→ r1] holds for at most 2n values 0 ≤ r1 < pi

Prob
[
ρ1(r1) = a(G1)[x1 7→ r1]

]
≤ 2n

2n

for uniform r1 since pi ≥ 2n

ρ1(r1) = a(G1)[x1 7→ r1] ⇐⇒ a2 = a(F2)[x1 7→ r1] provided c 6= 0
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Interactive Proof Systems

Proof (6/7)
other rounds accordingly
Bob accepts F ∈ QBF with probability 1
let F /∈ QBF and thus a(F ) ≡ 0 mod pi
what is probability that Bob accepts? Suppose Bob does
Alice sends a1 6≡ a(F1) ≡ 0 mod pi in round 1
Bob checks a1 ≡ ρ1(0)⊗ ρ1(1) mod pi ,
so the sent polynomial ρ1(x1) 6= a(G1) is wrong
ρ1(x1)− a(G1) has degree at most 2n and thus at most 2n roots
ρ1(r1) = a(G1)[x1 7→ r1] holds for at most 2n values 0 ≤ r1 < pi

Prob
[
ρ1(r1) = a(G1)[x1 7→ r1]

]
≤ 2n

2n

for uniform r1 since pi ≥ 2n

ρ1(r1) = a(G1)[x1 7→ r1] ⇐⇒ a2 = a(F2)[x1 7→ r1] provided c 6= 0
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Interactive Proof Systems

Proof (7/7)

Prob
[
ρ1(r1) 6= a(G1)[x1 7→ r1]

]
≥ 1− 2n

2n at start of round 2

argument repeats with demand for proof of a2 = a(F2)[x1 7→ r1]

at most ` rounds

probability of correct answer “F /∈ QBF” is at least(
1− 2n

2n

)`
≥
(
1− 2n

2n

)n
≥ 1− n · 2n

2n

since (1− x)n ≥ 1− nx for 0 ≤ x ≤ 1

probability of wrong answer “F ∈ QBF” is at most 2n2
2n

rerun of protocol lowers it to
(2n2

2n
)2

= 4n4
22n < 2−n for large n
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Interactive Proof Systems

Proof (7/7)

Prob
[
ρ1(r1) 6= a(G1)[x1 7→ r1]

]
≥ 1− 2n

2n at start of round 2

argument repeats with demand for proof of a2 = a(F2)[x1 7→ r1]

at most ` rounds

probability of correct answer “F /∈ QBF” is at least(
1− 2n

2n

)`
≥
(
1− 2n

2n

)n
≥ 1− n · 2n

2n

since (1− x)n ≥ 1− nx for 0 ≤ x ≤ 1

probability of wrong answer “F ∈ QBF” is at most 2n2
2n

rerun of protocol lowers it to
(2n2

2n
)2

= 4n4
22n < 2−n for large n
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Interactive Proof Systems

Proof (7/7)

Prob
[
ρ1(r1) 6= a(G1)[x1 7→ r1]

]
≥ 1− 2n

2n at start of round 2

argument repeats with demand for proof of a2 = a(F2)[x1 7→ r1]

at most ` rounds

probability of correct answer “F /∈ QBF” is at least(
1− 2n

2n

)`
≥
(
1− 2n

2n

)n
≥ 1− n · 2n

2n

since (1− x)n ≥ 1− nx for 0 ≤ x ≤ 1

probability of wrong answer “F ∈ QBF” is at most 2n2
2n

rerun of protocol lowers it to
(2n2

2n
)2

= 4n4
22n < 2−n for large n
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Interactive Proof Systems

Proof (7/7)

Prob
[
ρ1(r1) 6= a(G1)[x1 7→ r1]

]
≥ 1− 2n

2n at start of round 2

argument repeats with demand for proof of a2 = a(F2)[x1 7→ r1]

at most ` rounds

probability of correct answer “F /∈ QBF” is at least(
1− 2n

2n

)`
≥
(
1− 2n

2n

)n
≥ 1− n · 2n

2n

since (1− x)n ≥ 1− nx for 0 ≤ x ≤ 1

probability of wrong answer “F ∈ QBF” is at most 2n2
2n

rerun of protocol lowers it to
(2n2

2n
)2

= 4n4
22n < 2−n for large n
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