Seminar on Zero Knowledge Interactive Proof Systems and Polynomial Space

Andreas Maletti

May 3, 2019

Definition (interactive proof system)

Pair (A, B)

• mapping $A: \bigcup_{i\in\mathbb{N}}(\{0,1\}^*)^{1+2i} \to \{0,1\}^*$

(Alice)

Definition (interactive proof system)

Pair (*A*, *B*)

- mapping A: $\bigcup_{i\in\mathbb{N}}(\{0,1\}^*)^{1+2i} \to \{0,1\}^*$
- randomized polynomial-time algorithm *B* (of same type)

(Alice) (Bob)

Definition (interactive proof system)

Pair (A, B)

- mapping A: $\bigcup_{i\in\mathbb{N}}(\{0,1\}^*)^{1+2i} \to \{0,1\}^*$
- randomized polynomial-time algorithm B (of same type)

Intuition:

- input $w \in \{0, 1\}^*$
- polynomial number of rounds (in n = |w|)

(Alice)

Definition (interactive proof system)

Pair (A, B)

- mapping A: $\bigcup_{i\in\mathbb{N}}(\{0,1\}^*)^{1+2i} \to \{0,1\}^*$
- randomized polynomial-time algorithm B (of same type)

Intuition:

- input $w \in \{0, 1\}^*$
- polynomial number of rounds (in n = |w|)
- round i:
 - Alice sents $a_i = A(w, a_1, b_1, \dots, a_{i-1}, b_{i-1})$ to Bob

(Alice)

Definition (interactive proof system)

Pair (A, B)

- mapping A: $\bigcup_{i\in\mathbb{N}}(\{0,1\}^*)^{1+2i} \to \{0,1\}^*$
- randomized polynomial-time algorithm B (of same type)

Intuition:

- input $w \in \{0, 1\}^*$
- polynomial number of rounds (in n = |w|)
- round i:
 - Alice sents $a_i = A(w, a_1, b_1, \dots, a_{i-1}, b_{i-1})$ to Bob
 - **2** Bob replies with $b_i = B(w, a_1, b_1, \ldots, a_{i-1}, b_{i-1}, a_i)$

(Alice)

Definition (interactive proof system)

Pair (A, B)

- mapping A: $\bigcup_{i\in\mathbb{N}}(\{0,1\}^*)^{1+2i} \to \{0,1\}^*$
- randomized polynomial-time algorithm B (of same type)

Intuition:

- input $w \in \{0, 1\}^*$
- polynomial number of rounds (in n = |w|)
- round i:
 - Alice sents $a_i = A(w, a_1, b_1, \dots, a_{i-1}, b_{i-1})$ to Bob
 - **2** Bob replies with $b_i = B(w, a_1, b_1, \ldots, a_{i-1}, b_{i-1}, a_i)$
- final round: Bob accepts or rejects w

(Alice)

Message lengths:

• polynomial length for b_i

(since Bob runs in polynomial time)

Message lengths:

- polynomial length for *b_i* (since Bob runs in polynomial time)
- unbounded *a_i* but Bob *B* reads only polynomial prefix

Message lengths:

- polynomial length for *b_i* (since Bob runs in polynomial time)
- unbounded *a_i* but Bob *B* reads only polynomial prefix
- wlog. $|a_i| \le p(|w|)$ and $|b_i| \le p(|w|)$ for some polynomial p

Definition (generated language)

Interactive proof system (A, B) generates language $L \subseteq \{0, 1\}^*$ if and only if for all $w \in \{0, 1\}^*$:

• Bob rejects $w \in L$ with negligible probability

(i.e., Bob accepts with probability at least $1 - 2^{-|w|}$)

Definition (generated language)

Interactive proof system (A, B) generates language $L \subseteq \{0, 1\}^*$ if and only if for all $w \in \{0, 1\}^*$:

- Bob rejects w ∈ L with negligible probability (i.e., Bob accepts with probability at least 1 − 2^{-|w|})
- Bob accepts w ∉ L with negligible probability in every interactive proof system (A', B)

Definition (generated language)

Interactive proof system (A, B) generates language $L \subseteq \{0, 1\}^*$ if and only if for all $w \in \{0, 1\}^*$:

- Bob rejects w ∈ L with negligible probability (i.e., Bob accepts with probability at least 1 − 2^{-|w|})
- Bob accepts w ∉ L with negligible probability in every interactive proof system (A', B)

 $IP = \{L \subseteq \{0,1\}^* \mid \exists \text{ interactive proof system generating } L\}$

Notes:

- introduced by Goldwasser, Micali, and Rackoff in 1985
- Alice is prover and computationally unlimited
- Bob is verifier and restricted to (deterministic) polynomial time

Intuition:

• Completeness:

If $w \in L$ then designed prover A convinces verifier B almost certainly

Intuition:

• Completeness:

If $w \in L$ then designed prover A convinces verifier B almost certainly

Correctness:

If $w \notin L$ then any prover convinces *B* only with negligible probability

Theorem $IP \subset PSPACE$

- $L \in IP$ and (A, B) interactive proof system generating L
- $w \in \{0,1\}^*$ of length *n* and polynomial p(x) limiting runtime of *B*
- polynomial q(x) limiting number of rounds

Theorem IP \subseteq **PSPACE**

<u>Proof</u> (1/5)

- $L \in IP$ and (A, B) interactive proof system generating L
- $w \in \{0,1\}^*$ of length *n* and polynomial p(x) limiting runtime of *B*
- polynomial q(x) limiting number of rounds
- wlog. length of $a_1, \ldots, a_{q(n)}$ and $b_1, \ldots, b_{q(n)}$ is p(n)

potential Alice

$$A': \left(\bigcup_{i=0}^{q(n)-1} \{0,1\}^{n+i\cdot 2p(n)}\right) \to \{0,1\}^{p(n)}$$

- approach: construct optimal Alice in PSPACE
- fix Alice A' and random bit sequence $Z \in \{0,1\}^{q(n)p(n)}$ used by Bob
- protocol $P(A', Z) = a_1 b_1 \cdots a_{q(n)} b_{q(n)}$ completely determined

- approach: construct optimal Alice in PSPACE
- fix Alice A' and random bit sequence $Z \in \{0,1\}^{q(n)p(n)}$ used by Bob
- protocol $P(A', Z) = a_1 b_1 \cdots a_{q(n)} b_{q(n)}$ completely determined
- $a_1b_1 \cdots a_i$ and $a_1b_1 \cdots a_ib_i$ protocol prefixes for all $0 \le i \le q(n)$
- $P \leq P(A', Z)$ if P protocol prefix of P(A', Z)

- approach: construct optimal Alice in PSPACE
- fix Alice A' and random bit sequence $Z \in \{0,1\}^{q(n)p(n)}$ used by Bob
- protocol $P(A', Z) = a_1 b_1 \cdots a_{q(n)} b_{q(n)}$ completely determined
- $a_1b_1 \cdots a_i$ and $a_1b_1 \cdots a_ib_i$ protocol prefixes for all $0 \le i \le q(n)$
- $P \leq P(A', Z)$ if P protocol prefix of P(A', Z)

 $f(A', P) = \left| \left\{ Z \in \{0, 1\}^{q(n)p(n)} \mid P \le P(A', Z) \text{ and } P(A', Z) \text{ accepting} \right\} \right|$ $f(P) = \max \left\{ f(A'', P) \mid A'' \text{ potential Alice} \right\}$

• \overline{A} optimal for *P* if $f(\overline{A}, P) = f(P)$

- approach: construct optimal Alice in PSPACE
- fix Alice A' and random bit sequence $Z \in \{0,1\}^{q(n)p(n)}$ used by Bob
- protocol $P(A', Z) = a_1 b_1 \cdots a_{q(n)} b_{q(n)}$ completely determined
- $a_1b_1 \cdots a_i$ and $a_1b_1 \cdots a_ib_i$ protocol prefixes for all $0 \le i \le q(n)$
- $P \leq P(A', Z)$ if P protocol prefix of P(A', Z)

 $f(A', P) = \left| \left\{ Z \in \{0, 1\}^{q(n)p(n)} \mid P \le P(A', Z) \text{ and } P(A', Z) \text{ accepting} \right\} \right|$ $f(P) = \max \left\{ f(A'', P) \mid A'' \text{ potential Alice} \right\}$

• \overline{A} optimal for *P* if $f(\overline{A}, P) = f(P)$

• w accepted with probability $ho(w) \leq rac{f(arepsilon)}{2^{q(n)
ho(n)}}$

Proof (3/5)

- $\frac{f(\varepsilon)}{2^{q(n)p(n)}} \ge \rho(w) \ge 1 2^{-n}$ and $f(\varepsilon) \ge (1 2^{-n}) \cdot 2^{q(n)p(n)}$ for all $w \in L$
- otherwise $f(\varepsilon) \leq 2^{-n} \cdot 2^{q(n)p(n)}$
- compute $f(\varepsilon)$ recursively in polynomial space

Proof (3/5)

- $\frac{f(\varepsilon)}{2^{q(n)p(n)}} \ge \rho(w) \ge 1 2^{-n}$ and $f(\varepsilon) \ge (1 2^{-n}) \cdot 2^{q(n)p(n)}$ for all $w \in L$
- otherwise $f(\varepsilon) \leq 2^{-n} \cdot 2^{q(n)p(n)}$
- compute $f(\varepsilon)$ recursively in polynomial space
- complete protocol $P = a_1 b_1 \cdots a_{q(n)} b_{q(n)}$
 - if Bob rejects, then f(P) = 0.
 - otherwise

 $f(P) = \left\{ Z \in \{0,1\}^{q(n)p(n)} \mid Z \text{ permits } P \right\}$

Z permits P if bit sequence Z yields the responses $b_1, \ldots, b_{q(n)}$ from B

Proof (3/5)

- $\frac{f(\varepsilon)}{2^{q(n)p(n)}} \ge \rho(w) \ge 1 2^{-n}$ and $f(\varepsilon) \ge (1 2^{-n}) \cdot 2^{q(n)p(n)}$ for all $w \in L$
- otherwise $f(\varepsilon) \leq 2^{-n} \cdot 2^{q(n)p(n)}$
- compute $f(\varepsilon)$ recursively in polynomial space
- complete protocol $P = a_1 b_1 \cdots a_{q(n)} b_{q(n)}$
 - if Bob rejects, then f(P) = 0.
 - otherwise

 $f(P) = \left\{ Z \in \{0,1\}^{q(n)p(n)} \mid Z \text{ permits } P \right\}$

Z permits P if bit sequence Z yields the responses b₁,..., b_{q(n)} from B ► can be done in polynomial space

Proof (4/5)

- (a) incomplete protocol $P = a_1 b_1 \cdots a_{i-1} b_{i-1} a_i$ with final message from Alice
 - $f(Pb_i)$ with $b_i \in \{0,1\}^{p(n)}$ known and

 $1 \leq i \leq q(n)$

Proof (4/5)

(2) incomplete protocol $P = a_1 b_1 \cdots a_{i-1} b_{i-1} a_i$ with final message from Alice

$$1 \leq i \leq q(n)$$

• $f(Pb_i)$ with $b_i \in \{0,1\}^{p(n)}$ known and

 $f(P) = \max \left\{ f(A'', P) \mid \text{potential Alice } A'' \right\}$ $= \max \left\{ \sum_{b_i \in \{0,1\}^{p(n)}} f(A'', Pb_i) \mid \text{potential Alice } A'' \right\}$ $= \sum_{b_i \in \{0,1\}^{p(n)}} \max \{ f(A''_{b_i}, Pb_i) \mid \text{potential Alice } A''_{b_i} \}$ $= \sum_{b_i \in \{0,1\}^{p(n)}} f(Pb_i)$

► second-to-last equality follows because Z determines protocol, so a single Z cannot permit Pb_i and Pb'_i with $b_i \neq b'_i$

Proof (4/5)

(a) incomplete protocol $P = a_1 b_1 \cdots a_{i-1} b_{i-1} a_i$ with final message from Alice

$$1 \leq i \leq q(n)$$

• $f(Pb_i)$ with $b_i \in \{0,1\}^{p(n)}$ known and

 $f(P) = \max \left\{ f(A'', P) \mid \text{potential Alice } A'' \right\}$ $= \max \left\{ \sum_{b_i \in \{0,1\}^{p(n)}} f(A'', Pb_i) \mid \text{potential Alice } A'' \right\}$ $= \sum_{b_i \in \{0,1\}^{p(n)}} \max \{ f(A''_{b_i}, Pb_i) \mid \text{potential Alice } A''_{b_i} \}$ $= \sum_{b_i \in \{0,1\}^{p(n)}} f(Pb_i)$

- ► second-to-last equality follows because Z determines protocol, so a single Z cannot permit Pb_i and Pb'_i with $b_i \neq b'_i$
- clearly also polynomial space

Proof (5/5)

incomplete protocol $P = a_1b_1 \cdots a_{i-1}b_{i-1}$ with final message from Bob

- $1 \leq i \leq q(n)$
- ► $f(Pa_i)$ with $a_i \in \{0,1\}^{p(n)}$ known and Alice can select the response

 $f(P) = \max \{ f(Pa_i) \mid a_i \in \{0, 1\}^{p(n)} \}$

clearly also polynomial space

Proof (5/5)

incomplete protocol $P = a_1 b_1 \cdots a_{i-1} b_{i-1}$ with final message from Bob

- $1 \leq i \leq q(n)$
- ▶ $f(Pa_i)$ with $a_i \in \{0,1\}^{p(n)}$ known and Alice can select the response

 $f(P) = \max \{ f(Pa_i) \mid a_i \in \{0,1\}^{p(n)} \}$

clearly also polynomial space

Space requirements:

- recursion depth 2q(n)
- protocol prefix *P*, messages *a*_i and *b*_i
- currently best value of f and partial sum both limited by $2^{q(n)p(n)}$

Lemma

IP closed under polynomial-time reductions

 $L \in \mathbf{IP}$ for all $L \preceq_{\mathbf{P}} L'$ and $L' \in \mathbf{IP}$

Proof

- *f* polynomial-time reduction of *L* to *L'*
- (A, B) interactive proof system generating L' and input w

Lemma

IP closed under polynomial-time reductions

 $L \in \mathbf{IP}$ for all $L \preceq_{\mathbf{P}} L'$ and $L' \in \mathbf{IP}$

Proof

- f polynomial-time reduction of L to L'
- (A, B) interactive proof system generating L' and input w
- Alice A' and Bob B' compute f(w) and then simulate A and B
- yields answer for $f(w) \stackrel{?}{\in} L'$ that is correct for $w \stackrel{?}{\in} L$

Theorem (Shamir 1990)

IP = PSPACE

Adi Shamir (* 1952)

- isra. computer scientist
- professor at Weizmann institute and ENS Paris
- Turing laureate 2002 and 'S' in RSA

© Erik Tews

Proof (1/7)

- we know IP \subseteq PSPACE, so only PSPACE \subseteq IP remains
- since IP is closed under polynomial-time reductions and QBF is PSPACE-complete, we just show QBF ∈ IP

<u>Proof</u> (1/7)

- we know $IP \subseteq PSPACE$, so only $PSPACE \subseteq IP$ remains
- since IP is closed under polynomial-time reductions and QBF is PSPACE-complete, we just show QBF ∈ IP
- let F closed quantified formula over $\land,\lor,\forall,\exists$ and the literals

Proof (1/7)

- we know $IP \subseteq PSPACE$, so only $PSPACE \subseteq IP$ remains
- since IP is closed under polynomial-time reductions and QBF is PSPACE-complete, we just show QBF ∈ IP
- let F closed quantified formula over \land , \lor , \forall , \exists and the literals
- replace F by arithmetic expression a(F)
 - a(x) = x and $a(\neg x) = 1 x$ for all variables x

Proof (1/7)

- we know $IP \subseteq PSPACE$, so only $PSPACE \subseteq IP$ remains
- since IP is closed under polynomial-time reductions and QBF is PSPACE-complete, we just show QBF ∈ IP
- let F closed quantified formula over $\land,\lor,\forall,\exists$ and the literals
- replace F by arithmetic expression a(F)
 - a(x) = x and $a(\neg x) = 1 x$ for all variables x
 - $a(F_1 \vee F_2) = a(F_1) + a(F_2)$ and $a(F_1 \wedge F_2) = a(F_1) \cdot a(F_2)$ for all F_1 and F_2

Proof (1/7)

- we know $IP \subseteq PSPACE$, so only $PSPACE \subseteq IP$ remains
- since IP is closed under polynomial-time reductions and QBF is PSPACE-complete, we just show QBF ∈ IP
- let F closed quantified formula over $\land,\lor,\forall,\exists$ and the literals
- replace F by arithmetic expression a(F)
 - a(x) = x and $a(\neg x) = 1 x$ for all variables x
 - $a(F_1 \vee F_2) = a(F_1) + a(F_2)$ and $a(F_1 \wedge F_2) = a(F_1) \cdot a(F_2)$ for all F_1 and F_2
 - $a(\exists xF_1) = \sum_{x \in \{0,1\}} a(F_1)$ and $a(\forall xF_1) = \prod_{x \in \{0,1\}} a(F_1)$ for all F_1

<u>Proof</u> (1/7)

- we know $IP \subseteq PSPACE$, so only $PSPACE \subseteq IP$ remains
- since IP is closed under polynomial-time reductions and QBF is PSPACE-complete, we just show QBF ∈ IP
- let F closed quantified formula over $\land,\lor,\forall,\exists$ and the literals
- replace F by arithmetic expression a(F)
 - a(x) = x and $a(\neg x) = 1 x$ for all variables x
 - $a(F_1 \vee F_2) = a(F_1) + a(F_2)$ and $a(F_1 \wedge F_2) = a(F_1) \cdot a(F_2)$ for all F_1 and F_2
 - $a(\exists xF_1) = \sum_{x \in \{0,1\}} a(F_1)$ and $a(\forall xF_1) = \prod_{x \in \{0,1\}} a(F_1)$ for all F_1
- obviously $a(F) \ge 0$
- $F \in QBF$ if and only if a(F) > 0

Example:
$$F = \forall x \exists y ((x \lor \neg y) \land \exists z (\neg x \land z)).$$

$$a(F) = \prod_{x \in \{0,1\}} \left(\sum_{y \in \{0,1\}} ((x + (1 - y)) \cdot \sum_{z \in \{0,1\}} ((1 - x) \cdot z)) \right)$$

$$= \prod_{x \in \{0,1\}} \left(\sum_{y \in \{0,1\}} ((x + (1 - y)) \cdot (1 - x)) \right)$$

$$= \prod_{x \in \{0,1\}} \left((1 - x^2) + (x - x^2) \right)$$

$$= 0$$

so the formula is "wrong"

Example: For the negation $\neg F = \exists x \forall y ((\neg x \land y) \lor \forall z (x \lor \neg z))$

$$a(\neg F) = \sum_{x \in \{0,1\}} \left(\prod_{y \in \{0,1\}} \left((1-x) \cdot y + \prod_{z \in \{0,1\}} \left(x + (1-z) \right) \right) \right)$$
$$= \sum_{x \in \{0,1\}} \left(\prod_{y \in \{0,1\}} \left((1-x) \cdot y + (x^2 + x) \right) \right)$$
$$= \sum_{x \in \{0,1\}} (x^2 + x) \cdot (1 + x^2)$$
$$= 4$$

so the negated formula is "true"

How large can a(F) be?

How large can a(F) be? For formula F the length |F| is

- $|0| = |1| = |x| = |\neg x| = 1$
- $|F \lor G| = |F \land G| = |F| + |G|$
- $|\exists xF| = |\forall xF| = 1 + |F|$

How large can a(F) be? For formula F the length |F| is

- $|0| = |1| = |x| = |\neg x| = 1$
- $|F \vee G| = |F \wedge G| = |F| + |G|$
- $|\exists xF| = |\forall xF| = 1 + |F|$

Lemma

 $a(F) \leq 2^{2^{|F|}}$

<u>Proof</u>

• replace each occurrence of $\exists x G$ by $G[x \mapsto 0] \lor G[x \mapsto 1]$ and each $\forall x G$ by $G[x \mapsto 0] \land G[x \mapsto 1]$

• prove $|F'| \leq 2^{|F|}$ for obtained formula F' by induction

How large can a(F) be? For formula F the length |F| is

- $|0| = |1| = |x| = |\neg x| = 1$
- $|F \vee G| = |F \wedge G| = |F| + |G|$
- $|\exists xF| = |\forall xF| = 1 + |F|$

Lemma

 $a(F) \leq 2^{2^{|F|}}$

<u>Proof</u>

- replace each occurrence of $\exists xG$ by $G[x \mapsto 0] \lor G[x \mapsto 1]$ and each $\forall xG$ by $G[x \mapsto 0] \land G[x \mapsto 1]$
- prove $|F'| \leq 2^{|F|}$ for obtained formula F' by induction
- prove $a(F') \leq 2^{|F'|}$ by induction

Example: $F = \forall x_1 \cdots \forall x_k \exists y \exists z (y \lor z).$

$$a(F) = \prod_{x_1 \in \{0,1\}} \cdots \prod_{x_k \in \{0,1\}} \left(\sum_{y \in \{0,1\}} \sum_{z \in \{0,1\}} (y+z) \right)$$
$$= \prod_{x_1 \in \{0,1\}} \cdots \prod_{x_k \in \{0,1\}} \left(\sum_{y \in \{0,1\}} (2y+1) \right)$$
$$= \prod_{x_1 \in \{0,1\}} \cdots \prod_{x_k \in \{0,1\}} 4$$
$$= 4^{2^k}$$

Notes:

- numbers of size $2^{2^{|F|}}$ require $2^{|F|}$ bits
- cannot be exchanged in protocol round

Notes:

- numbers of size $2^{2^{|F|}}$ require $2^{|F|}$ bits
- cannot be exchanged in protocol round
- compute modulo prime

Lemma [Dietzfelbinger 2004]

For $n \ge 5$ interval $[2^n, 2^{2n}]$ contains at least 2^n primes

Proof (2/7)

• n = |F| and p_1, \ldots, p_k primes between 2^n and 2^{2n}

Proof (2/7)

- n = |F| and p_1, \ldots, p_k primes between 2^n and 2^{2n}
- $m = \prod_{i=1}^{k} p_i \ge (2^n)^{(2^n)} = 2^{n \cdot 2^n} > 2^{2^n} \ge a(F)$

Proof (2/7)

- n = |F| and p_1, \ldots, p_k primes between 2^n and 2^{2n}
- $m = \prod_{i=1}^{k} p_i \ge (2^n)^{(2^n)} = 2^{n \cdot 2^n} > 2^{2^n} \ge a(F)$

 $F \notin QBF \iff a(F) \equiv 0 \mod m$ since a(F) = 0 $F \in QBF \iff \exists 1 \le i \le k : a(F) \not\equiv 0 \mod p_i$

because $m = \prod_{i=1}^{k} p_i > a(F)$, so not all p_i can divide a(F)

Proof (3/7)

- for F ∈ QBF Alice computes smallest prime p_i ≥ 2ⁿ with a(F) ≠ 0 mod p_i
- sends $p_i \leq 2^{2n}$ to Bob
- all other computations now modulo p_i

Proof (3/7)

- for F ∈ QBF Alice computes smallest prime p_i ≥ 2ⁿ with a(F) ≠ 0 mod p_i
- sends $p_i \leq 2^{2n}$ to Bob
- all other computations now modulo *p_i*
- wlog. F = QxF' with $Q \in \{\exists, \forall\}$
- polynomial *a*(*F*') obtained from *a*(*F*) by removing first product ∏ or sum ∑

<u>Proof</u> (3/7)

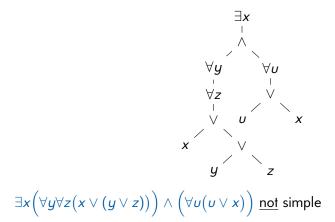
- for F ∈ QBF Alice computes smallest prime p_i ≥ 2ⁿ with a(F) ≠ 0 mod p_i
- sends $p_i \leq 2^{2n}$ to Bob
- all other computations now modulo *p_i*
- wlog. F = QxF' with $Q \in \{\exists, \forall\}$
- polynomial *a*(*F*') obtained from *a*(*F*) by removing first product ∏ or sum ∑
- deg(a(F')) can be exponential in *n*

Definition (simple formula)

Formula is simple if at most one additional \forall -quantifier occurs between quantification Qx with $Q \in \{\exists, \forall\}$ and each occurrence of variable x

Definition (simple formula)

Formula is simple if at most one additional \forall -quantifier occurs between quantification Qx with $Q \in \{\exists, \forall\}$ and each occurrence of variable x

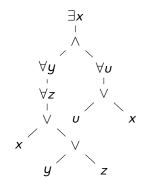


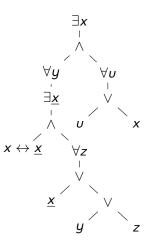
Each formula can be transformed into equivalent simple formula in polynomial time

Proof

• replace each subformula $\forall yG(x_1, \ldots, x_k, y)$ with free variables y, x_1, \ldots, x_k by

$$\forall y \exists y_1 \cdots \exists y_k \Big(\bigwedge_{i=1}^k x_i \leftrightarrow y_i \wedge G(y_1, \dots, y_k, y) \Big)$$





 $deg(a(G')) \leq 2|G|$ for simple formula G = QxG' with $Q \in \{\exists, \forall\}$

Proof

• replace in G' each subformula $\forall yH$ in which x occurs freely by $H[y \mapsto 0] \land H[y \mapsto 1]$

 $deg(a(G')) \leq 2|G|$ for simple formula G = QxG' with $Q \in \{\exists, \forall\}$

- replace in G' each subformula $\forall yH$ in which x occurs freely by $H[y \mapsto 0] \land H[y \mapsto 1]$
- doubles length of formula since those subformulas are not nested

 $deg(a(G')) \leq 2|G|$ for simple formula G = QxG' with $Q \in \{\exists, \forall\}$

- replace in G' each subformula $\forall yH$ in which x occurs freely by $H[y \mapsto 0] \land H[y \mapsto 1]$
- doubles length of formula since those subformulas are not nested
- show $deg(a(G'')) \leq |G''|$ for obtained formula G''
 - $\deg(a(x)) = \deg(a(0)) = \deg(a(1)) = 1$

 $deg(a(G')) \leq 2|G|$ for simple formula G = QxG' with $Q \in \{\exists, \forall\}$

- replace in G' each subformula $\forall yH$ in which x occurs freely by $H[y \mapsto 0] \land H[y \mapsto 1]$
- doubles length of formula since those subformulas are not nested
- show $deg(a(G'')) \leq |G''|$ for obtained formula G''
 - $\deg(a(x)) = \deg(a(0)) = \deg(a(1)) = 1$
 - $deg(a(G_1 \vee G_2)) \le max\{|G_1|, |G_2|\} < |G''|$

 $deg(a(G')) \leq 2|G|$ for simple formula G = QxG' with $Q \in \{\exists, \forall\}$

- replace in G' each subformula $\forall yH$ in which x occurs freely by $H[y \mapsto 0] \land H[y \mapsto 1]$
- doubles length of formula since those subformulas are not nested
- show $deg(a(G'')) \leq |G''|$ for obtained formula G''
 - $\deg(a(x)) = \deg(a(0)) = \deg(a(1)) = 1$
 - $eqt{leg(a(G_1 \vee G_2)) \leq max\{|G_1|, |G_2|\} < |G''| }$
 - deg $(a(G_1 \wedge G_2)) \leq |G_1| + |G_2| = |G''|$

 $deg(a(G')) \leq 2|G|$ for simple formula G = QxG' with $Q \in \{\exists, \forall\}$

- replace in G' each subformula $\forall yH$ in which x occurs freely by $H[y \mapsto 0] \land H[y \mapsto 1]$
- doubles length of formula since those subformulas are not nested
- show $deg(a(G'')) \leq |G''|$ for obtained formula G''
 - $\deg(a(x)) = \deg(a(0)) = \deg(a(1)) = 1$ • $\deg(a(G_1 \lor G_2)) \le \max\{|G_1|, |G_2|\} < |G''|$
 - deg $(a(G_1 \land G_2)) \le |G_1| + |G_2| = |G''|$
 - deg $(a(\exists yG_1)) \leq deg(a(G_1)) < |G''|$ for $y \neq x$

 $deg(a(G')) \leq 2|G|$ for simple formula G = QxG' with $Q \in \{\exists, \forall\}$

- replace in G' each subformula $\forall yH$ in which x occurs freely by $H[y \mapsto 0] \land H[y \mapsto 1]$
- doubles length of formula since those subformulas are not nested
- show $deg(a(G'')) \leq |G''|$ for obtained formula G''
 - $\deg(a(x)) = \deg(a(0)) = \deg(a(1)) = 1$
 - deg $(a(G_1 \lor G_2)) \le \max\{|G_1|, |G_2|\} < |G''|$
 - deg $(a(G_1 \land G_2)) \le |G_1| + |G_2| = |G''|$
 - deg $(a(\exists yG_1)) \leq deg(a(G_1)) < |G''|$ for $y \neq x$
 - deg $(a(\forall yG_1)) = 0 < |G''|$ since x does not occur in G_1

Proof (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in F
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in F
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n
- start rounds

• Alice sends $a_1 = a(F_1) \mod p_i$

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in F
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n
- start rounds
 - Alice sends $a_1 = a(F_1) \mod p_i$
 - 2 Bob rejects F if $a_1 = 0$; otherwise demands proof for a_1

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in F
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n
- start rounds
 - Alice sends $a_1 = a(F_1) \mod p_i$
 - **2** Bob rejects F if $a_1 = 0$; otherwise demands proof for a_1
 - 3 Alice sends polynomial $\rho_1(x_1)$

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in F
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n

- Alice sends $a_1 = a(F_1) \mod p_i$
- **2** Bob rejects F if $a_1 = 0$; otherwise demands proof for a_1
- 3 Alice sends polynomial $\rho_1(x_1)$
- For $Q_1 = \exists$ Bob checks $a_1 \equiv \rho_1(0) + \rho_1(1) \mod p_i$

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in *F*
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n

- Alice sends $a_1 = a(F_1) \mod p_i$
- **2** Bob rejects F if $a_1 = 0$; otherwise demands proof for a_1
- 3 Alice sends polynomial $\rho_1(x_1)$
- For $Q_1 = \exists$ Bob checks $a_1 \equiv \rho_1(0) + \rho_1(1) \mod p_i$
- **(5)** For $Q_1 = \forall$ Bob checks $a_1 \equiv \rho_1(0) \cdot \rho_1(1) \mod p_i$
- Bob randomly selects 0 ≤ r₁ < p_i, shares it with Alice and computes ρ₁(r₁) mod p_i

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in *F*
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n

- Alice sends $a_1 = a(F_1) \mod p_i$
- **2** Bob rejects *F* if $a_1 = 0$; otherwise demands proof for a_1
- 3 Alice sends polynomial $\rho_1(x_1)$
- For $Q_1 = \exists$ Bob checks $a_1 \equiv \rho_1(0) + \rho_1(1) \mod p_i$
- **(5)** For $Q_1 = \forall$ Bob checks $a_1 \equiv \rho_1(0) \cdot \rho_1(1) \mod p_i$
- Bob randomly selects 0 ≤ r₁ < p_i, shares it with Alice and computes ρ₁(r₁) mod p_i
- write $a(G_1)[x_1 \mapsto r_1]$ as $b + c \cdot a(F_2)[x_1 \mapsto r_1]$ with F_2 subformula of G_1 starting with first quantifier
- 8 Bob computes $0 \le b, c < p_i$

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in *F*
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n

- Alice sends $a_1 = a(F_1) \mod p_i$
- **2** Bob rejects *F* if $a_1 = 0$; otherwise demands proof for a_1
- 3 Alice sends polynomial $\rho_1(x_1)$
- For $Q_1 = \exists$ Bob checks $a_1 \equiv \rho_1(0) + \rho_1(1) \mod p_i$
- **(5)** For $Q_1 = \forall$ Bob checks $a_1 \equiv \rho_1(0) \cdot \rho_1(1) \mod p_i$
- Bob randomly selects 0 ≤ r₁ < p_i, shares it with Alice and computes ρ₁(r₁) mod p_i
- write $a(G_1)[x_1 \mapsto r_1]$ as $b + c \cdot a(F_2)[x_1 \mapsto r_1]$ with F_2 subformula of G_1 starting with first quantifier
- 8 Bob computes $0 \le b, c < p_i$
- Solution Bob accepts if c = 0 and $\rho_1(r_1) = b$

<u>Proof</u> (4/7)

- play ℓ rounds with $\ell \leq n$ the number of quantifiers in F
- let $F = F_1 = Q_1 x_1 G_1$ with $\rho_1(x_1) = a(G_1) \mod p_i$ a polynomial (in x_1) of degree at most 2n

start rounds

- Alice sends $a_1 = a(F_1) \mod p_i$
- **2** Bob rejects F if $a_1 = 0$; otherwise demands proof for a_1
- 3 Alice sends polynomial $\rho_1(x_1)$
- For $Q_1 = \exists$ Bob checks $a_1 \equiv \rho_1(0) + \rho_1(1) \mod p_i$
- For $Q_1 = \forall$ Bob checks $a_1 \equiv \rho_1(0) \cdot \rho_1(1) \mod p_i$
- Bob randomly selects 0 ≤ r₁ < p_i, shares it with Alice and computes ρ₁(r₁) mod p_i
- write $a(G_1)[x_1 \mapsto r_1]$ as $b + c \cdot a(F_2)[x_1 \mapsto r_1]$ with F_2 subformula of G_1 starting with first quantifier
- 8 Bob computes $0 \le b, c < p_i$
- Solution Bob accepts if c = 0 and $\rho_1(r_1) = b$
- **(**) otherwise Bob computes $a_2 = (p_1(r_1) b) \cdot c^{-1} \mod p_i$

Proof (5/7)

• for correct polynomial $\rho_1(x_1) = a(G_1)$

$$a(F_2)[x_1\mapsto r_1] = \frac{a(G_1)[x_1\mapsto r_1] - b}{c} = \frac{\rho_1(r_1) - b}{c} = a_2 \mod p_i$$

• let $F_2 = Q_2 x_2 G_2$ and $\rho_2(x_2) = a(G_2)[x_1 \mapsto r_1]$

start round 2

2 Bob demands proof for $a(F_2)[x_1 \mapsto r_1] = a_2 \mod p_i$

Proof (5/7)

• for correct polynomial $\rho_1(x_1) = a(G_1)$

$$a(F_2)[x_1\mapsto r_1] = \frac{a(G_1)[x_1\mapsto r_1] - b}{c} = \frac{\rho_1(r_1) - b}{c} = a_2 \mod p_i$$

• let $F_2 = Q_2 x_2 G_2$ and $\rho_2(x_2) = a(G_2)[x_1 \mapsto r_1]$

start round 2

2 Bob demands proof for $a(F_2)[x_1 \mapsto r_1] = a_2 \mod p_i$

3 Alice sends polynomial $\rho_2(x_2)$

Proof (5/7)

• for correct polynomial $\rho_1(x_1) = a(G_1)$

$$a(F_2)[x_1\mapsto r_1] = \frac{a(G_1)[x_1\mapsto r_1] - b}{c} = \frac{\rho_1(r_1) - b}{c} = a_2 \mod p_i$$

- start round 2
 - **2** Bob demands proof for $a(F_2)[x_1 \mapsto r_1] = a_2 \mod p_i$
 - 3 Alice sends polynomial $\rho_2(x_2)$
 - For $Q_2 \equiv \exists$ Bob checks $a_2 \equiv \rho_2(0) + \rho_2(1) \mod p_i$

Proof (5/7)

• for correct polynomial $\rho_1(x_1) = a(G_1)$

$$a(F_2)[x_1 \mapsto r_1] = \frac{a(G_1)[x_1 \mapsto r_1] - b}{c} = \frac{\rho_1(r_1) - b}{c} = a_2 \mod p_i$$

- start round 2
 - **2** Bob demands proof for $a(F_2)[x_1 \mapsto r_1] = a_2 \mod p_i$
 - 3 Alice sends polynomial $\rho_2(x_2)$
 - For $Q_2 = \exists$ Bob checks $a_2 \equiv \rho_2(0) + \rho_2(1) \mod p_i$
 - For $Q_2 = \forall$ Bob checks $a_2 \equiv \rho_2(0) \cdot \rho_2(1) \mod p_i$
 - Bob randomly selects 0 ≤ r₂ < p_i, shares it with Alice and computes ρ₂(r₂) mod p_i

Proof (5/7)

• for correct polynomial $\rho_1(x_1) = a(G_1)$

$$a(F_2)[x_1\mapsto r_1] = \frac{a(G_1)[x_1\mapsto r_1] - b}{c} = \frac{\rho_1(r_1) - b}{c} = a_2 \mod p_i$$

- start round 2
 - **2** Bob demands proof for $a(F_2)[x_1 \mapsto r_1] = a_2 \mod p_i$
 - 3 Alice sends polynomial $\rho_2(x_2)$
 - For $Q_2 = \exists$ Bob checks $a_2 \equiv \rho_2(0) + \rho_2(1) \mod p_i$
 - For $Q_2 = \forall$ Bob checks $a_2 \equiv \rho_2(0) \cdot \rho_2(1) \mod p_i$
 - Bob randomly selects 0 ≤ r₂ < p_i, shares it with Alice and computes ρ₂(r₂) mod p_i
 - write $a(G_2)[x_1 \mapsto r_1, x_2 \mapsto r_2]$ as $b + c \cdot a(F_3)[x_1 \mapsto r_1, x_2 \mapsto r_2]$ with F_3 subformula of G_2 starting with first quantifier
 - **(a)** Bob computes $0 \le b, c < p_i$

Proof (5/7)

• for correct polynomial $\rho_1(x_1) = a(G_1)$

$$a(F_2)[x_1\mapsto r_1] = \frac{a(G_1)[x_1\mapsto r_1] - b}{c} = \frac{\rho_1(r_1) - b}{c} = a_2 \mod p_i$$

- start round 2
 - **2** Bob demands proof for $a(F_2)[x_1 \mapsto r_1] = a_2 \mod p_i$
 - 3 Alice sends polynomial $\rho_2(x_2)$
 - For $Q_2 = \exists$ Bob checks $a_2 \equiv \rho_2(0) + \rho_2(1) \mod p_i$
 - For $Q_2 = \forall$ Bob checks $a_2 \equiv \rho_2(0) \cdot \rho_2(1) \mod p_i$
 - Bob randomly selects 0 ≤ r₂ < p_i, shares it with Alice and computes ρ₂(r₂) mod p_i
 - write $a(G_2)[x_1 \mapsto r_1, x_2 \mapsto r_2]$ as $b + c \cdot a(F_3)[x_1 \mapsto r_1, x_2 \mapsto r_2]$ with F_3 subformula of G_2 starting with first quantifier
 - **(a)** Bob computes $0 \le b, c < p_i$
 - Solution Bob accepts if c = 0 and $\rho_2(r_2) = b$

Proof (5/7)

• for correct polynomial $\rho_1(x_1) = a(G_1)$

$$a(F_2)[x_1\mapsto r_1] = \frac{a(G_1)[x_1\mapsto r_1]-b}{c} = \frac{\rho_1(r_1)-b}{c} = a_2 \mod p_i$$

- start round 2
 - **2** Bob demands proof for $a(F_2)[x_1 \mapsto r_1] = a_2 \mod p_i$
 - 3 Alice sends polynomial $\rho_2(x_2)$
 - For $Q_2 = \exists$ Bob checks $a_2 \equiv \rho_2(0) + \rho_2(1) \mod p_i$
 - For $Q_2 = \forall$ Bob checks $a_2 \equiv \rho_2(0) \cdot \rho_2(1) \mod p_i$
 - Bob randomly selects 0 ≤ r₂ < p_i, shares it with Alice and computes ρ₂(r₂) mod p_i
 - write $a(G_2)[x_1 \mapsto r_1, x_2 \mapsto r_2]$ as $b + c \cdot a(F_3)[x_1 \mapsto r_1, x_2 \mapsto r_2]$ with F_3 subformula of G_2 starting with first quantifier
 - **(a)** Bob computes $0 \le b, c < p_i$
 - Solution Bob accepts if c = 0 and $\rho_2(r_2) = b$
 - **(**) otherwise Bob computes $a_3 = (\rho_2(r_2) b) \cdot c^{-1} \mod p_i$

Proof (6/7)

• other rounds accordingly

<u>Proof</u> (6/7)

- other rounds accordingly
- Bob accepts $F \in QBF$ with probability 1

Proof (6/7)

- other rounds accordingly
- Bob accepts $F \in QBF$ with probability 1
- let $F \notin QBF$ and thus $a(F) \equiv 0 \mod p_i$
- what is probability that Bob accepts? Suppose Bob does

<u>Proof</u> (6/7)

- other rounds accordingly
- Bob accepts $F \in QBF$ with probability 1
- let $F \notin QBF$ and thus $a(F) \equiv 0 \mod p_i$
- what is probability that Bob accepts? Suppose Bob does
- Alice sends $a_1 \not\equiv a(F_1) \equiv 0 \mod p_i$ in round 1

<u>Proof</u> (6/7)

- other rounds accordingly
- Bob accepts $F \in QBF$ with probability 1
- let $F \notin \text{QBF}$ and thus $a(F) \equiv 0 \mod p_i$
- what is probability that Bob accepts? Suppose Bob does
- Alice sends $a_1 \not\equiv a(F_1) \equiv 0 \mod p_i$ in round 1
- Bob checks a₁ ≡ ρ₁(0) ⊗ ρ₁(1) mod p_i, so the sent polynomial ρ₁(x₁) ≠ a(G₁) is wrong

<u>Proof</u> (6/7)

- other rounds accordingly
- Bob accepts $F \in QBF$ with probability 1
- let $F \notin \text{QBF}$ and thus $a(F) \equiv 0 \mod p_i$
- what is probability that Bob accepts? Suppose Bob does
- Alice sends $a_1 \not\equiv a(F_1) \equiv 0 \mod p_i$ in round 1
- Bob checks a₁ ≡ ρ₁(0) ⊗ ρ₁(1) mod p_i, so the sent polynomial ρ₁(x₁) ≠ a(G₁) is wrong
- $\rho_1(x_1) a(G_1)$ has degree at most 2n and thus at most 2n roots
- $\rho_1(r_1) = a(G_1)[x_1 \mapsto r_1]$ holds for at most 2n values $0 \le r_1 < p_i$

$$\operatorname{Prob}\left[\rho_{1}(r_{1})=a(G_{1})[x_{1}\mapsto r_{1}]\right]\leq\frac{2n}{2^{n}}$$

for uniform r_1 since $p_i \ge 2^n$

<u>Proof</u> (6/7)

- other rounds accordingly
- Bob accepts $F \in QBF$ with probability 1
- let $F \notin QBF$ and thus $a(F) \equiv 0 \mod p_i$
- what is probability that Bob accepts? Suppose Bob does
- Alice sends $a_1 \not\equiv a(F_1) \equiv 0 \mod p_i$ in round 1
- Bob checks a₁ ≡ ρ₁(0) ⊗ ρ₁(1) mod p_i, so the sent polynomial ρ₁(x₁) ≠ a(G₁) is wrong
- $\rho_1(x_1) a(G_1)$ has degree at most 2n and thus at most 2n roots
- $\rho_1(r_1) = a(G_1)[x_1 \mapsto r_1]$ holds for at most 2n values $0 \le r_1 < p_i$

$$\mathsf{Prob}\Big[\rho_1(r_1) = a(G_1)[x_1 \mapsto r_1]\Big] \leq \frac{2n}{2^n}$$

for uniform r_1 since $p_i \ge 2^n$

• $\rho_1(r_1) = a(G_1)[x_1 \mapsto r_1] \iff a_2 = a(F_2)[x_1 \mapsto r_1] \text{ provided } c \neq 0$

Proof (7/7)

• $\operatorname{Prob}[\rho_1(r_1) \neq a(G_1)[x_1 \mapsto r_1]] \ge 1 - \frac{2n}{2^n}$ at start of round 2

• argument repeats with demand for proof of $a_2 = a(F_2)[x_1 \mapsto r_1]$

<u>Proof</u> (7/7)

- $\operatorname{Prob}[\rho_1(r_1) \neq a(G_1)[x_1 \mapsto r_1]] \ge 1 \frac{2n}{2^n}$ at start of round 2
- argument repeats with demand for proof of $a_2 = a(F_2)[x_1 \mapsto r_1]$
- at most ℓ rounds
- probability of correct answer " $F \notin QBF$ " is at least

$$\left(1-\frac{2n}{2^n}\right)^\ell \ge \left(1-\frac{2n}{2^n}\right)^n \ge 1-n \cdot \frac{2n}{2^n}$$

since $(1 - x)^n \ge 1 - nx$ for $0 \le x \le 1$

<u>Proof</u> (7/7)

- $\operatorname{Prob}[\rho_1(r_1) \neq a(G_1)[x_1 \mapsto r_1]] \ge 1 \frac{2n}{2^n}$ at start of round 2
- argument repeats with demand for proof of $a_2 = a(F_2)[x_1 \mapsto r_1]$
- at most ℓ rounds
- probability of correct answer " $F \notin QBF$ " is at least

$$\left(1-\frac{2n}{2^n}\right)^\ell \ge \left(1-\frac{2n}{2^n}\right)^n \ge 1-n \cdot \frac{2n}{2^n}$$

since $(1-x)^n \ge 1 - nx$ for $0 \le x \le 1$

• probability of wrong answer " $F \in QBF$ " is at most $\frac{2n^2}{2^n}$

<u>Proof</u> (7/7)

- $\operatorname{Prob}[\rho_1(r_1) \neq a(G_1)[x_1 \mapsto r_1]] \ge 1 \frac{2n}{2^n}$ at start of round 2
- argument repeats with demand for proof of $a_2 = a(F_2)[x_1 \mapsto r_1]$
- at most ℓ rounds
- probability of correct answer " $F \notin QBF$ " is at least

$$\left(1-\frac{2n}{2^n}\right)^\ell \ge \left(1-\frac{2n}{2^n}\right)^n \ge 1-n \cdot \frac{2n}{2^n}$$

since $(1 - x)^n \ge 1 - nx$ for $0 \le x \le 1$

- probability of wrong answer " $F \in QBF$ " is at most $\frac{2n^2}{2^n}$
- rerun of protocol lowers it to $\left(\frac{2n^2}{2^n}\right)^2 = \frac{4n^4}{2^{2n}} < 2^{-n}$ for large *n*