
The foundations of the
Foundations of cryptography

Summer semester 2019

Claus Diem



Some words about complexity theory



Srings and numbers

We use {0, 1}∗ or N:

100110←→ 011001←→ 1011001←→ (1011001)2

In the following {0, 1}∗. For a string x we denote by |x | its length.



Srings and numbers

We use {0, 1}∗ or N:

100110←→ 011001←→ 1011001←→ (1011001)2

In the following {0, 1}∗. For a string x we denote by |x | its length.



The “polynomial is fast”-paradigma

I Only asymptotic statements are made.

I An algorithm is considered to be fast if its running time is
polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively
fast
One says “polynomial running time” instead of polynomially
“bounded running time”.

Language: L ⊆ {0, 1}∗, corresponds to a function
f : {0, 1}∗ → {0, 1}.
Decision problem for L ⊆ {0, 1}∗ / f : {0, 1}∗ → {0, 1}:
Decide if an input x ∈ {0, 1} lies in L / if f (x) = 1 holds.



The “polynomial is fast”-paradigma

I Only asymptotic statements are made.

I An algorithm is considered to be fast if its running time is
polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively
fast
One says “polynomial running time” instead of polynomially
“bounded running time”.

Language: L ⊆ {0, 1}∗, corresponds to a function
f : {0, 1}∗ → {0, 1}.

Decision problem for L ⊆ {0, 1}∗ / f : {0, 1}∗ → {0, 1}:
Decide if an input x ∈ {0, 1} lies in L / if f (x) = 1 holds.



The “polynomial is fast”-paradigma

I Only asymptotic statements are made.

I An algorithm is considered to be fast if its running time is
polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively
fast
One says “polynomial running time” instead of polynomially
“bounded running time”.

Language: L ⊆ {0, 1}∗, corresponds to a function
f : {0, 1}∗ → {0, 1}.
Decision problem for L ⊆ {0, 1}∗ / f : {0, 1}∗ → {0, 1}:

Decide if an input x ∈ {0, 1} lies in L / if f (x) = 1 holds.



The “polynomial is fast”-paradigma

I Only asymptotic statements are made.

I An algorithm is considered to be fast if its running time is
polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively
fast
One says “polynomial running time” instead of polynomially
“bounded running time”.

Language: L ⊆ {0, 1}∗, corresponds to a function
f : {0, 1}∗ → {0, 1}.
Decision problem for L ⊆ {0, 1}∗ / f : {0, 1}∗ → {0, 1}:
Decide if an input x ∈ {0, 1} lies in L / if f (x) = 1 holds.



Complexity classes

P. Set of languages / 0− 1-functions / problems decidable in
polynomial time by a deterministic Turing machine (TM).

NP. Set of languages / 0− 1-functions / problems decidable in
polynomial time by a non-determistic Turing machine.

BPP. Set of languages / 0− 1-functions / problems probalistically
decidable with bounded error by a (probabilistic) Turing machine.



Complexity classes

P. Set of languages / 0− 1-functions / problems decidable in
polynomial time by a deterministic Turing machine (TM).

NP. Set of languages / 0− 1-functions / problems decidable in
polynomial time by a non-determistic Turing machine.

BPP. Set of languages / 0− 1-functions / problems probalistically
decidable with bounded error by a (probabilistic) Turing machine.



Complexity classes

P. Set of languages / 0− 1-functions / problems decidable in
polynomial time by a deterministic Turing machine (TM).

NP. Set of languages / 0− 1-functions / problems decidable in
polynomial time by a non-determistic Turing machine.

BPP. Set of languages / 0− 1-functions / problems probalistically
decidable with bounded error by a (probabilistic) Turing machine.



The class NP

For L ⊆ {0, 1}∗:
Possible definitions for L ∈ NP:

I There is a non-determistic TM T with:
I T terminates in polynomial time.
I For an input x are equivalent:

I x ∈ L.
I At least one possible output of T applied to x is 1.

I There is a relation R ⊆ {0, 1}∗ × {0, 1}∗, a DTM T and a
positive polynomial p(n) with:

I T computes R: T (x , y) = 1↔ x ∼R y (i.e.,(x , y) ∈ R)
I x ∈ L if and only if there is a y with |y | ≤ p(|x |) and

x ∼R y (i.e.,(x , y) ∈ R).
I T terminates in polynomial time.

Given x , a y with x ∼R y is called a witness or a proof.



The class NP

For L ⊆ {0, 1}∗:
Possible definitions for L ∈ NP:

I There is a non-determistic TM T with:
I T terminates in polynomial time.
I For an input x are equivalent:

I x ∈ L.
I At least one possible output of T applied to x is 1.

I There is a relation R ⊆ {0, 1}∗ × {0, 1}∗, a DTM T and a
positive polynomial p(n) with:

I T computes R: T (x , y) = 1↔ x ∼R y (i.e.,(x , y) ∈ R)
I x ∈ L if and only if there is a y with |y | ≤ p(|x |) and

x ∼R y (i.e.,(x , y) ∈ R).
I T terminates in polynomial time.

Given x , a y with x ∼R y is called a witness or a proof.



The class NP

For L ⊆ {0, 1}∗:
Possible definitions for L ∈ NP:

I There is a non-determistic TM T with:
I T terminates in polynomial time.
I For an input x are equivalent:

I x ∈ L.
I At least one possible output of T applied to x is 1.

I There is a relation R ⊆ {0, 1}∗ × {0, 1}∗, a DTM T and a
positive polynomial p(n) with:

I T computes R: T (x , y) = 1↔ x ∼R y (i.e.,(x , y) ∈ R)
I x ∈ L if and only if there is a y with |y | ≤ p(|x |) and

x ∼R y (i.e.,(x , y) ∈ R).
I T terminates in polynomial time.

Given x , a y with x ∼R y is called a witness or a proof.



The class BPP

For L ⊆ {0, 1}∗:

Definition of L ∈BPP:

There is a probabilistic TM T with:

I T terminates in polynomial time.

I For x ∈ L, T outputs 1 with a probability of ≥ 2
3 .

I For x /∈ L, T outputs 0 with a probability of ≤ 1
3 .

Note: This must hold for all x!

So: The error probability is always ≤ 1
3 . This can be substituted by

any bound c > 0.



The class BPP

For L ⊆ {0, 1}∗:

Definition of L ∈BPP:

There is a probabilistic TM T with:

I T terminates in polynomial time.

I For x ∈ L, T outputs 1 with a probability of ≥ 2
3 .

I For x /∈ L, T outputs 0 with a probability of ≤ 1
3 .

Note: This must hold for all x!

So: The error probability is always ≤ 1
3 . This can be substituted by

any bound c > 0.



The class BPP

For L ⊆ {0, 1}∗:

Definition of L ∈BPP:

There is a probabilistic TM T with:

I T terminates in polynomial time.

I For x ∈ L, T outputs 1 with a probability of ≥ 2
3 .

I For x /∈ L, T outputs 0 with a probability of ≤ 1
3 .

Note: This must hold for all x!

So: The error probability is always ≤ 1
3 . This can be substituted by

any bound c > 0.



The class BPP

For L ⊆ {0, 1}∗:

Definition of L ∈BPP:

There is a probabilistic TM T with:

I T terminates in polynomial time.

I For x ∈ L, T outputs 1 with a probability of ≥ 2
3 .

I For x /∈ L, T outputs 0 with a probability of ≤ 1
3 .

Note: This must hold for all x!

So: The error probability is always ≤ 1
3 . This can be substituted by

any bound c > 0.



The class BPP

For L ⊆ {0, 1}∗:

Definition of L ∈BPP:

There is a probabilistic TM T with:

I T terminates in polynomial time.

I For x ∈ L, T outputs 1 with a probability of ≥ 2
3 .

I For x /∈ L, T outputs 0 with a probability of ≤ 1
3 .

Note: This must hold for all x!

So: The error probability is always ≤ 1
3 . This can be substituted by

any bound c > 0.



Complexity classes

It is obviously P ⊆ NP, P ⊆ BPP.

All unter relationships are unknown.

Is P = NP, P = BPP, NP ⊆ BPP, BPP ⊆ NP?



Complexity classes

It is obviously P ⊆ NP, P ⊆ BPP.

All unter relationships are unknown.

Is P = NP, P = BPP, NP ⊆ BPP, BPP ⊆ NP?



Complexity classes

It is obviously P ⊆ NP, P ⊆ BPP.

All unter relationships are unknown.

Is P = NP, P = BPP, NP ⊆ BPP, BPP ⊆ NP?



The notion of algorithm

In the following:
Algorithm = (randomized) Turing machine or

= informel description of a computation.

Attacker are modeled with (randomized) algorithms.
Fast attackers are polynomial time algorithms (also called
PPT-algorithms)



The notion of algorithm

In the following:
Algorithm = (randomized) Turing machine or

= informel description of a computation.

Attacker are modeled with (randomized) algorithms.
Fast attackers are polynomial time algorithms (also called
PPT-algorithms)



Negligible

For cryptographic protocols,
we define rigorous notions of “secure”.

This is always defined like this:
For a fast attackers (= polynomial time Turing machines) some
computational goal (details!) is only achieved with a negligible
probability.

Motivated by polynomial time paradigma:

Definition. A function ε : N −→ R is called negligible, if for every
e > 0 it holds:

|ε(n)| ≤ 1

ne

for all n with n� 0.



Negligible

For cryptographic protocols,
we define rigorous notions of “secure”.
This is always defined like this:
For a fast attackers (= polynomial time Turing machines) some
computational goal (details!) is only achieved with a negligible
probability.

Motivated by polynomial time paradigma:

Definition. A function ε : N −→ R is called negligible, if for every
e > 0 it holds:

|ε(n)| ≤ 1

ne

for all n with n� 0.



Negligible

For cryptographic protocols,
we define rigorous notions of “secure”.
This is always defined like this:
For a fast attackers (= polynomial time Turing machines) some
computational goal (details!) is only achieved with a negligible
probability.

Motivated by polynomial time paradigma:

Definition. A function ε : N −→ R is called negligible, if for every
e > 0 it holds:

|ε(n)| ≤ 1

ne

for all n with n� 0.



One-way functions



One-way functions

Let f : {0, 1}∗ −→ {0, 1}∗ be efficiently computable, that is, in
polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of x ∈ {0, 1}n for which given f (x) one can
compute efficiently some x ′ with f (x) = f (x ′) is negligible.

One cannot define this “portion”.
For “efficiently” and “negligible” one has to fix an algorithm.
We want to consider all (randomized) algorithms.



One-way functions

Let f : {0, 1}∗ −→ {0, 1}∗ be efficiently computable, that is, in
polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of x ∈ {0, 1}n for which given f (x) one can
compute efficiently some x ′ with f (x) = f (x ′) is negligible.

One cannot define this “portion”.
For “efficiently” and “negligible” one has to fix an algorithm.
We want to consider all (randomized) algorithms.



One-way functions

Let f : {0, 1}∗ −→ {0, 1}∗ be efficiently computable, that is, in
polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of x ∈ {0, 1}n for which given f (x) one can
compute efficiently some x ′ with f (x) = f (x ′) is negligible.

One cannot define this “portion”.
For “efficiently” and “negligible” one has to fix an algorithm.
We want to consider all (randomized) algorithms.



One-way functions

Let f : {0, 1}∗ −→ {0, 1}∗ be efficiently computable, that is, in
polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of x ∈ {0, 1}n for which given f (x) one can
compute efficiently some x ′ with f (x) = f (x ′) is negligible.

One cannot define this “portion”.
For “efficiently” and “negligible” one has to fix an algorithm.
We want to consider all (randomized) algorithms.



One-way functions

Let f : {0, 1}∗ −→ {0, 1}∗ be efficiently computable, that is, in
polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of x ∈ {0, 1}n for which given f (x) one can
compute efficiently some x ′ with f (x) = f (x ′) is negligible.

One cannot define this “portion”.

For “efficiently” and “negligible” one has to fix an algorithm.
We want to consider all (randomized) algorithms.



One-way functions

Let f : {0, 1}∗ −→ {0, 1}∗ be efficiently computable, that is, in
polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of x ∈ {0, 1}n for which given f (x) one can
compute efficiently some x ′ with f (x) = f (x ′) is negligible.

One cannot define this “portion”.
For “efficiently” and “negligible” one has to fix an algorithm.

We want to consider all (randomized) algorithms.



One-way functions

Let f : {0, 1}∗ −→ {0, 1}∗ be efficiently computable, that is, in
polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of x ∈ {0, 1}n for which given f (x) one can
compute efficiently some x ′ with f (x) = f (x ′) is negligible.

One cannot define this “portion”.
For “efficiently” and “negligible” one has to fix an algorithm.
We want to consider all (randomized) algorithms.



One-way functions
Better idea for a definition. A one-way function is an efficiently
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(f (x))) = f (x)] ,

where x ∈ {0, 1}n is uniform, is negligible in n = |x |.

Problem. Like this the function f : x 7→ |x | is a one-way function.

One cannot efficiently compute x from the length of x , because
the output size is exponential in the input size.

This suggets that the definition should be modified.

Possible solution. We say “negligible in n”.
This is alright, but does not correspond to the standard
“framework” of complexity theory.

Solution. We also give 1n =

n−mal︷ ︸︸ ︷
1 · · · 1 as input.



One-way functions
Better idea for a definition. A one-way function is an efficiently
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(f (x))) = f (x)] ,

where x ∈ {0, 1}n is uniform, is negligible in n = |x |.

Problem. Like this the function f : x 7→ |x | is a one-way function.

One cannot efficiently compute x from the length of x , because
the output size is exponential in the input size.

This suggets that the definition should be modified.

Possible solution. We say “negligible in n”.
This is alright, but does not correspond to the standard
“framework” of complexity theory.

Solution. We also give 1n =

n−mal︷ ︸︸ ︷
1 · · · 1 as input.



One-way functions
Better idea for a definition. A one-way function is an efficiently
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(f (x))) = f (x)] ,

where x ∈ {0, 1}n is uniform, is negligible in n = |x |.

Problem. Like this the function f : x 7→ |x | is a one-way function.

One cannot efficiently compute x from the length of x , because
the output size is exponential in the input size.

This suggets that the definition should be modified.

Possible solution. We say “negligible in n”.
This is alright, but does not correspond to the standard
“framework” of complexity theory.

Solution. We also give 1n =

n−mal︷ ︸︸ ︷
1 · · · 1 as input.



One-way functions
Better idea for a definition. A one-way function is an efficiently
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(f (x))) = f (x)] ,

where x ∈ {0, 1}n is uniform, is negligible in n = |x |.

Problem. Like this the function f : x 7→ |x | is a one-way function.

One cannot efficiently compute x from the length of x , because
the output size is exponential in the input size.

This suggets that the definition should be modified.

Possible solution. We say “negligible in n”.
This is alright, but does not correspond to the standard
“framework” of complexity theory.

Solution. We also give 1n =

n−mal︷ ︸︸ ︷
1 · · · 1 as input.



One-way functions
Better idea for a definition. A one-way function is an efficiently
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(f (x))) = f (x)] ,

where x ∈ {0, 1}n is uniform, is negligible in n = |x |.

Problem. Like this the function f : x 7→ |x | is a one-way function.

One cannot efficiently compute x from the length of x , because
the output size is exponential in the input size.

This suggets that the definition should be modified.

Possible solution. We say “negligible in n”.
This is alright, but does not correspond to the standard
“framework” of complexity theory.

Solution. We also give 1n =

n−mal︷ ︸︸ ︷
1 · · · 1 as input.



One-way functions
Better idea for a definition. A one-way function is an efficiently
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(f (x))) = f (x)] ,

where x ∈ {0, 1}n is uniform, is negligible in n = |x |.

Problem. Like this the function f : x 7→ |x | is a one-way function.

One cannot efficiently compute x from the length of x , because
the output size is exponential in the input size.

This suggets that the definition should be modified.

Possible solution. We say “negligible in n”.
This is alright, but does not correspond to the standard
“framework” of complexity theory.

Solution. We also give 1n =

n−mal︷ ︸︸ ︷
1 · · · 1 as input.



One-way functions
Better idea for a definition. A one-way function is an efficiently
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(f (x))) = f (x)] ,

where x ∈ {0, 1}n is uniform, is negligible in n = |x |.

Problem. Like this the function f : x 7→ |x | is a one-way function.

One cannot efficiently compute x from the length of x , because
the output size is exponential in the input size.

This suggets that the definition should be modified.

Possible solution. We say “negligible in n”.
This is alright, but does not correspond to the standard
“framework” of complexity theory.

Solution. We also give 1n =

n−mal︷ ︸︸ ︷
1 · · · 1 as input.



One-way functions

Definition. A (strong) one-way function is a polynomial time
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(1n, f (x))) = f (x)] ,

withx ∈ {0, 1}n uniform is negligible

The “inversion problem” can clearly be solved efficiently on a
non-determistic Turing machine.

Therefore: The “inversion problem” can be reduced to a decision
problem which is in NP.
If there is a one-way function, this decision problem is not in BPP.
So then NP 6⊆BPP.



One-way functions

Definition. A (strong) one-way function is a polynomial time
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(1n, f (x))) = f (x)] ,

withx ∈ {0, 1}n uniform is negligible

The “inversion problem” can clearly be solved efficiently on a
non-determistic Turing machine.

Therefore: The “inversion problem” can be reduced to a decision
problem which is in NP.
If there is a one-way function, this decision problem is not in BPP.
So then NP 6⊆BPP.



One-way functions

Definition. A (strong) one-way function is a polynomial time
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(1n, f (x))) = f (x)] ,

withx ∈ {0, 1}n uniform is negligible

The “inversion problem” can clearly be solved efficiently on a
non-determistic Turing machine.

Therefore: The “inversion problem” can be reduced to a decision
problem which is in NP.
If there is a one-way function, this decision problem is not in BPP.
So then NP 6⊆BPP.



One-way functions

Definition. A (strong) one-way function is a polynomial time
computable function f : {0, 1}∗ −→ {0, 1}∗ with:

For all PPT-algorithms A,

P[f (A(1n, f (x))) = f (x)] ,

withx ∈ {0, 1}n uniform is negligible

The “inversion problem” can clearly be solved efficiently on a
non-determistic Turing machine.

Therefore: The “inversion problem” can be reduced to a decision
problem which is in NP.
If there is a one-way function, this decision problem is not in BPP.
So then NP 6⊆BPP.



One-way functions

Conjecture. The function

{ (m, n) ∈ N×N | dlog2(m)e = dlog2(n)e } −→ N ,

(m, n) 7→ m · n

is / leads to a one-way function.



Families of one-way functions

Idea. Given a security parameter, one chooses first a parameter.
Then for a given parameter, one considers a function with finite
input and output.

Important conjectured example: modulo exponentiation

I Parameter: A prime p and a generator g of (Z/pZ)×.

I Parameter choice: Given n choose a prime p of size n (how?).

I Function: {0, . . . , p − 2} −→ (Z/pZ)×, x 7→ g x

I Inversion: Computation of x
= discrete logarithm



Families of one-way functions

Idea. Given a security parameter, one chooses first a parameter.
Then for a given parameter, one considers a function with finite
input and output.

Important conjectured example: modulo exponentiation

I Parameter: A prime p and a generator g of (Z/pZ)×.

I Parameter choice: Given n choose a prime p of size n (how?).

I Function: {0, . . . , p − 2} −→ (Z/pZ)×, x 7→ g x

I Inversion: Computation of x
= discrete logarithm



Families of one-way functions

More general, for example for G = E (Fq):

I Parameter: A finite group G = (G , ·) with efficient arithmetic
a ∈ G .

I Function: G −→ G , x 7→ ax

I Parameter: A finite abelian group G = (G ,+), a ∈ G .

I Function: G −→ G , x 7→ x · a



Families of one-way functions

More general, for example for G = E (Fq):

I Parameter: A finite group G = (G , ·) with efficient arithmetic
a ∈ G .

I Function: G −→ G , x 7→ ax

I Parameter: A finite abelian group G = (G ,+), a ∈ G .

I Function: G −→ G , x 7→ x · a



Hardcore bits



Idea for Harcdore bits

Let f be a one-way function. Then only for a negligible amount of
x one can compute efficiently from f (x) a preimage.

But: It could be that nonetheless one can extract information on x
from f (x).

For example: The first bit of x could be encoded in f (x).

Then the first bit would not be a hardcore bit.



Idea for Harcdore bits

Let f be a one-way function. Then only for a negligible amount of
x one can compute efficiently from f (x) a preimage.

But: It could be that nonetheless one can extract information on x
from f (x).

For example: The first bit of x could be encoded in f (x).

Then the first bit would not be a hardcore bit.



Idea for Harcdore bits

Let f be a one-way function. Then only for a negligible amount of
x one can compute efficiently from f (x) a preimage.

But: It could be that nonetheless one can extract information on x
from f (x).

For example: The first bit of x could be encoded in f (x).

Then the first bit would not be a hardcore bit.



Idea for Harcdore bits

Let f be a one-way function. Then only for a negligible amount of
x one can compute efficiently from f (x) a preimage.

But: It could be that nonetheless one can extract information on x
from f (x).

For example: The first bit of x could be encoded in f (x).

Then the first bit would not be a hardcore bit.



Hardcore bits

Definition. Let f : {0, 1}∗ −→ {0, 1} be an efficiently computable
function (?). Then a hardcore bit for f is a function
b : {0, 1}∗ −→ {0, 1} with:

For all PPT-algorithms A the success

P[A(1n, f (x)) = b(x)]− 1

2
,

where x ∈ {0, 1}n is uniform, is negligible (in n).

(?) Often “one-way” is required, but we don’t do this.

x � //
_

��

b(x)

f (x)
9

?
<<



Hardcore bits

Definition. Let f : {0, 1}∗ −→ {0, 1} be an efficiently computable
function (?). Then a hardcore bit for f is a function
b : {0, 1}∗ −→ {0, 1} with:

For all PPT-algorithms A the success

P[A(1n, f (x)) = b(x)]− 1

2
,

where x ∈ {0, 1}n is uniform, is negligible (in n).

(?) Often “one-way” is required, but we don’t do this.

x � //
_

��

b(x)

f (x)
9

?
<<



Hardcore bits

Definition. Let f : {0, 1}∗ −→ {0, 1} be an efficiently computable
function (?). Then a hardcore bit for f is a function
b : {0, 1}∗ −→ {0, 1} with:

For all PPT-algorithms A the success

P[A(1n, f (x)) = b(x)]− 1

2
,

where x ∈ {0, 1}n is uniform, is negligible (in n).

(?) Often “one-way” is required, but we don’t do this.

x � //
_

��

b(x)

f (x)
9

?
<<



Hardcore bits

Definition. Let f : {0, 1}∗ −→ {0, 1} be an efficiently computable
function (?). Then a hardcore bit for f is a function
b : {0, 1}∗ −→ {0, 1} with:

For all PPT-algorithms A the success

P[A(1n, f (x)) = b(x)]− 1

2
,

where x ∈ {0, 1}n is uniform, is negligible (in n).

(?) Often “one-way” is required, but we don’t do this.

x � //
_

��

b(x)

f (x)
9

?
<<



Hardcore bits

x � //
_

��

b(x)

f (x)
9

?
<<

Example. Let f (x1 · · · xn) := x2 · · · xn, b(x1 · · · xn) := x1.

Then b is a hardcore bit for f .

But: f is not injective.

Lemma. Let f be injective. If now f has a hardcore bit, then f is a
one-way function.

Expressed differently: If f is injective and not a one-way function,
then it does not have a hardcore bit.



Hardcore bits

x � //
_

��

b(x)

f (x)
9

?
<<

Example. Let f (x1 · · · xn) := x2 · · · xn, b(x1 · · · xn) := x1.

Then b is a hardcore bit for f .

But: f is not injective.

Lemma. Let f be injective. If now f has a hardcore bit, then f is a
one-way function.

Expressed differently: If f is injective and not a one-way function,
then it does not have a hardcore bit.



Hardcore bits

x � //
_

��

b(x)

f (x)
9

?
<<

Example. Let f (x1 · · · xn) := x2 · · · xn, b(x1 · · · xn) := x1.

Then b is a hardcore bit for f .

But: f is not injective.

Lemma. Let f be injective. If now f has a hardcore bit, then f is a
one-way function.

Expressed differently: If f is injective and not a one-way function,
then it does not have a hardcore bit.



Hardcore bits

x � //
_

��

b(x)

f (x)
9

?
<<

Example. Let f (x1 · · · xn) := x2 · · · xn, b(x1 · · · xn) := x1.

Then b is a hardcore bit for f .

But: f is not injective.

Lemma. Let f be injective. If now f has a hardcore bit, then f is a
one-way function.

Expressed differently: If f is injective and not a one-way function,
then it does not have a hardcore bit.



Hardcore bits

x � //
_

��

b(x)

f (x)
9

?
<<

Example. Let f (x1 · · · xn) := x2 · · · xn, b(x1 · · · xn) := x1.

Then b is a hardcore bit for f .

But: f is not injective.

Lemma. Let f be injective. If now f has a hardcore bit, then f is a
one-way function.

Expressed differently: If f is injective and not a one-way function,
then it does not have a hardcore bit.



Results on hardcore bits

Theorem. (Blum & Micali, 1984) Let g be a generator of
(Z/pZ)×.

If {1, . . . , p − 1} −→ (Z/pZ)× ' {1, . . . , p − 1}, x 7→ g x is a
one-way function, then

b : x 7→

{
0, falls x ≤ p−1

2

1, falls x > p−1
2

is a hardcore bit thereof.

Theorem. (Goldreich & Levin, 1989) Let f be a one-way
funkction. Then a random linear combination of x is a hardcore bit
of f .

This means: (x , u) 7→ (f (x), u) mit |x | = |u| is a one-way function
and b : (x , u) 7→ x1u1 + · · ·+ xnun is a hardcore bit thereof.



Results on hardcore bits

Theorem. (Blum & Micali, 1984) Let g be a generator of
(Z/pZ)×.

If {1, . . . , p − 1} −→ (Z/pZ)× ' {1, . . . , p − 1}, x 7→ g x is a
one-way function, then

b : x 7→

{
0, falls x ≤ p−1

2

1, falls x > p−1
2

is a hardcore bit thereof.

Theorem. (Goldreich & Levin, 1989) Let f be a one-way
funkction. Then a random linear combination of x is a hardcore bit
of f .

This means: (x , u) 7→ (f (x), u) mit |x | = |u| is a one-way function
and b : (x , u) 7→ x1u1 + · · ·+ xnun is a hardcore bit thereof.



Results on hardcore bits

Theorem. (Blum & Micali, 1984) Let g be a generator of
(Z/pZ)×.

If {1, . . . , p − 1} −→ (Z/pZ)× ' {1, . . . , p − 1}, x 7→ g x is a
one-way function, then

b : x 7→

{
0, falls x ≤ p−1

2

1, falls x > p−1
2

is a hardcore bit thereof.

Theorem. (Goldreich & Levin, 1989) Let f be a one-way
funkction. Then a random linear combination of x is a hardcore bit
of f .

This means: (x , u) 7→ (f (x), u) mit |x | = |u| is a one-way function
and b : (x , u) 7→ x1u1 + · · ·+ xnun is a hardcore bit thereof.



Results on hardcore bits

Theorem. (Blum & Micali, 1984) Let g be a generator of
(Z/pZ)×.

If {1, . . . , p − 1} −→ (Z/pZ)× ' {1, . . . , p − 1}, x 7→ g x is a
one-way function, then

b : x 7→

{
0, falls x ≤ p−1

2

1, falls x > p−1
2

is a hardcore bit thereof.

Theorem. (Goldreich & Levin, 1989) Let f be a one-way
funkction. Then a random linear combination of x is a hardcore bit
of f .

This means: (x , u) 7→ (f (x), u) mit |x | = |u| is a one-way function
and b : (x , u) 7→ x1u1 + · · ·+ xnun is a hardcore bit thereof.


