
On the complexity of some computational problems

in the Turing model

Claus Diem

November 18, 2013

Abstract

Algorithms for concrete problems are usually described and ana-
lyzed in some random access machine model. This is in particular the
case in the areas such as computational algebra, algorithmic number
and cryptology. In this work the complexity of various computational
problems is studied in the multitape Turing model of computation. It
is shown that “up to logarithmic factors” key results also hold in the
multitape Turing model. Specific problems which are considered are
linear algebra computations, factorization of integers and the compu-
tation of discrete logarithms in various classes of groups.

1 Introduction

The area of computational complexity falls roughly into two parts: On the

one hand we have “abstract” complexity theory and on the other hand, we

have the study of algorithms for particular computational tasks; cf. [San12].

In the first part, exponents in running times are not considered and therefore

it does not matter if an algorithm is analyzed on the basis of a particular

RAM model with logarithmic cost function (and with a reasonable set of

instructions) or in the Turing model of computation. On the other hand,

if one studies algorithms for particular computational tasks, often the ex-

ponents are of crucial interest and consequently it is important that it is

clearly stated what the underlying machine model is.

This work is concerned with the algorithmic side of computational com-

plexity. Here, most of the time one chooses a particular random access

machine (RAM) model as a formal basis for the analysis of an algorithm.

In particular, it is generally postulated that almost immediate transfer of

data from whatever location of the memory to a central processor is pos-

sible. For example, two standard textbooks on algorithms, [AHU74] and

[CLRS01], are written from this point of view.

In [Die11d] we showed that any computation in a RAM model with

“reasonable” commands and time and space measures can be simulated

1

quasi-optimally (optimally up to logarithmic factors) by the successor RAM

model with logarithmic cost function, a RAM model of extreme simplicity.

It is however the multitape Turing model which can be considered to be

the most basic reasonable model for complexity theoretic investigations, and

for various reasons it is of interest to ask for the complexity of computational

problems in this model.

• From a mathematical point of view this is motivated by the simplicity

of the model.

• Asymptotic complexity theory is motivated by physical intuition along

the following thought experiment: How many resources (in terms of

time and space) would one in principle need to perform computations

for longer and longer inputs, assuming that large enough computers

could be built? Of course, for a reasonable thought experiment physi-

cal laws should be kept in mind as much as possible. And this means

that time for transport of data is bounded by the distance divided by

the speed of light.

We expand a bit on this thought experiment: The idea of computers

operating on unboundedly long input sequences and for unboundedly

long times and maybe also with an unboundedly large storage itself

contradicts basic physical laws. Does this mean that because the idea

is anyway unrealistic, it does not matter if we ignore a further physical

law (in this case the fact that light does not travel instantaneously)?

Our answer to this question is that it is still reasonable to obey physical

laws as much as possible.

We also mention another possible counter argument: One might ar-

gue that the observation on the speed of light is not relevant from a

practical point of view. Here we answer that complexity theory as an

area of mathematics is not concerned with practical computations.

• Furthermore, results in RAM models might indeed underestimate the

resources needed from a practical point of view given today’s technol-

ogy. Indeed, for algorithms employing very large amounts of data, it

is unrealistic to assume that all this data can be stored in the random

access memory of the computer. So some external storage is needed.

By the very intuition underlying the multitape Turing model (namely

that one prints and ready symbols on tapes), the model can be con-

sidered to be a basic model of computers with external storage.

Clearly, any multitape Turing machine can be simulated quasi-optimally

by a successor RAM with logarithmic cost function. However, no general

2

quasi-optimal result on the simulation of successor RAMs by multitape Tur-

ing machines is known, and indeed it seems to be a difficult problem to obtain

such a result.

In this work we show that nonetheless up to logarithmic factors, many

complexity theoretic results arising in computational algebra, algorithmic

number theory and cryptology can also be obtained in the multitape Turing

model. Concretely, we are mostly interested in the time complexity or run-

ning time of multitape Turing machines for specific problems. As a second

parameter we always also mention the space requirements. Our approach is

here that the focus is always on the best result concerning running time (up

to multiplicative constants if we employ the O-notation or up to logarithmic

factors if we employ the Õ-notation), and the space requirements are treated

as a second optimizing parameter. All results we state are proven; so-called

heuristic results are not considered in this work.

The specific computational problems we consider are as follows: sorting,

multiplication of square matrices and further problems from linear algebra,

sparse linear algebra, factorization, and the computation of discrete loga-

rithms in various classes of groups. Sorting can be performed efficiently

with a multitape Turing machine via Merge Sort, and most other Turing

algorithms we consider rely on an efficient solution of the sorting problem.

The choice of problems itself is motivated by cryptanalytic applications,

in particular concerning public-key cryptography. But even apart from in-

terest in the problems themselves, we think that it is worthwhile to consider

the proposed Turing algorithms because of the general strategies employed:

Both Merge Sort and the Turing algorithm for multiplication of matrices

are based on recursion with a divide and conquer strategy. Furthermore,

the currently fastest (randomized) RAM algorithms for the computation of

discrete logarithms in the degree 0 class groups (Picard groups) of curves of

fixed genus employ an extensive tree (or graph) which is constantly being

modified. By modifying the tree in “stages”, one can again in an efficient

way use sorting. We are confident that for other computational problems

these and similar techniques lead to quasi-optimal simulations of Random

Access Machines by Turing machines too.

As already mentioned, we reduce many problems to sorting problems,

and we use Merge Sort for efficient sorting. It is difficult to find the key

observation that sorting can be performed efficiently on multitape Turing

machines via Merge Sort in the literature. The algorithm does however ap-

pear as a subroutine of another algorithm in the foundational book [SGV94]

by Schönhage et al. The algorithm (in subsection 6.5.2) is however quite

well hidden – it appears neither in the table of contents nor in the index.

It is the hope of the author that this work helps to publicize the use of this

3

algorithm and the divide and conquer paradigm for Turing machines.

Even though it is hard to find any mentioning of the Merge Sort algo-

rithm and more generally the divide and conquer paradigm in the context

of Turing machines, these ideas are fundamental in works on external disk

storage, as for example [Vet98], [Vet01].

Personally, I learned about the efficiency of Merge Sort on Turing ma-

chines via a conversation with Pierrick Gaudry. I heartily thank him for this

conversation without which this work would not have been possible.

2 Terminology and basic definitions

In this work, the natural numbers are N := {0, 1, 2 . . .}. Moreover, the

length of a bitstring s is denoted |s|. We use the logarithmic function

l : N −→ R≥0 from [AHU74], which is defined via l(n) := 1 if n = 0

and l(n) := blog2(n)c+ 1 otherwise.

In the following, by a Turing machine we mean a deterministic multitape

Turing machine with (read only) input tape and (write only) output tape

on the alphabet {0, 1}. By a randomized Turing machine we mean a non-

deterministic multitape Turing machine with input tape and output tape on

the alphabet {0, 1} such that in each branching there are two possibilities.

In the execution of the machines, for each branching, each branch in chosen

uniformly randomly and independently of the other branchings.

Given some Turing machine M and a bitstring x, we have the running

time and the space requirements of the operation of M on x. Note here

that input and output tape are discarded for the space requirements. For

varying x, the running time and the space requirements are then functions

{0, 1}∗ −→ R≥0 ∪̇ {∞}. We stress this because in complexity theory the

running time and the space requirements (the space complexity) are usu-

ally defined in terms of the input length and not in terms of the input (cf.

[Pap94]). The standard definitions are however inappropriate for the present

work: We would not be able to state the theorems with the standard defi-

nition.

If now a randomized Turing machine M and a bitstring x is given, the

whole computation is a random process and the running time is a random

variable. By taking expected values, we obtain the expected running time

of the application of M to x. For varying x, we then again have a function

{0, 1}∗ −→ R≥0 ∪̇ {∞}.

We give all results concerning deterministic Turing machines in the fol-

lowing form: We state that there exists some Turing machine “with the

following specification”. Then we state input, attributes, output, running

time and space requirements. We explain now what it means that a Turing

4

machine follows such a specification.

As usual, we describe the input to the machine on an abstract “high

level” without indicating how exactly the concerning mathematical objects

are to be represented via bitstrings.

Let us, in order to express the following thoughts accurately, use the

following terminology: We have the abstract input instances of the compu-

tational problem, which are mathematical objects we use for the high-level

description. These objects form a class. Given such a class, we fix a rep-

resentation of the objects in the class by bitstrings (each object is then

represented by at least one bitstring). Except for the algorithms for the

discrete logarithm problem in the degree 0 class groups of curves, there are

always obvious ways to represent the abstract input instances (even though

– as usual – we do not fix all the details). For computations in the degree 0

class groups of curves, we follow [Heß01] and [Die11b]. We assume for the

following that a representation of the objects by bit strings has been fixed.

In the specification, we call the abstract input instances simply input.

Now, in this work, by an attribute we mean an assignment from the class of

abstract input instances to the real numbers. We use the attributes in order

to reason about the output, the running time and the space requirements.

If applied to a bitstring representing some abstract input instance (with

respect to the fixed representation), the machine outputs a bitstring repre-

senting the object given under output. We make no statement concerning

the behavior of the machines if they are applied to other bitstrings.

Many results depend on arithmetic in finite fields. There exists a Turing

machine which performs basic arithmetic (i.e. addition, subtraction, multi-

plication, division) in finite fields in a time of

O(l(q) · (l(l(q)))2 · l(l(l(q)))), where q is the field size. One can obtain such

a machine by combining the Schönhage-Strassen algorithm ([SS71]) with a

fast Euclidean algorithm for integers and then with a fast algorithm for poly-

nomial multiplication and finally a fast Euclidean algorithm for polynomials

(see [GG03, Corollary 11.8, Corollary 11.10]). We note that the Schönhage-

Strassen algorithm for integer multiplication is now superseded by Fürer’s

algorithm ([Für07]), but still it is currently not known whether there exists

a Turing machine which can perform arithmetic in all finite fields is a time

of o(l(q) · (l(l(q)))2 · l(l(l(q)))).
Inspired by this, we define the function A : N −→ R, n 7→ l(n)·(l(l(n)))2 ·

l(l(l(n))). Note that A(n2) ∈ O(A(n)) for n −→∞. The function A can be

substituted by any function on N for which there exists a Turing machine

which performs arithmetic in finite fields in time O(A(q)) and for which

A(q2) ∈ O(A(q)) holds.

Whereas the term “Turing machine” has a precise meaning, we use the

5

term “algorithm” freely and in an informal way. In the same manner, the

phrase “Turing algorithm” is also used informally as a description of a Turing

machine in the form of an algorithm. Consequently, in the following we never

argue about the running time or space requirements of an “algorithm”.

3 Sorting

We begin with the key problem of sorting a list of natural numbers. Let us

recall the idea of the Merge Sort algorithm. We give a recursive form of the

algorithm.

For this, we fix the following notation: Given a list L, L(L) is the list of

the first d#L2 e entries of L and R(L) is the list of the remaining entries.

Furthermore, let Sort be an algorithm which merges two sorted lists into

one sorted list. We then have:

MergeSort

Input: A list L of natural numbers

Output: An ascendingly sorted list obtained by permutation from L.

Select

• If L has no entries, then output the empty list.

• If L has one entry, then output L.

• If L has at least two entries, then output

Sort(MergeSort(L(L)),MergeSort(R(L))).

We wish to adapt the algorithm to the Turing model. Here the following

aspects should be kept in mind: One can perform the algorithm without

copying the lists upon application of MergeSort. Moreover, if two tape heads

point to two sorted lists L1, L2 on two different tapes, one can go along the

two lists to obtain a sorted list on a third tape. With these considerations,

one easily obtains:

Theorem 1 There exists a Turing machine with the following specification:

• Input: A list L of natural numbers

• Attributes:

– n, the size of L

– m, the largest number occurring in L

6

• Output: An ascendingly sorted list which is obtained by permuting L

• Running time: O(n · l(n) · l(m))

• Space requirements: O(|input|) ⊆ O(n · l(m))

We now consider lists of tuples in N × {0, 1}∗. We interpret the first

component of a tuple in the list as a label, and we sort according to the

label. By exactly the same technique as in the algorithm for the previous

theorem, we obtain the following result:

Theorem 2 There exists a Turing machine with the following specification:

• Input: A list L of tuples in N× {0, 1}∗

• Attributes:

– n, the size of L

– m, the largest first component (“label”) of all tuples in L

– B, the length of the largest second component of all tuples in L

• Output: A list which is obtained by permuting L and is sorted ascend-

ingly with respect to the first components

• Running time: O(n · l(n) · (l(m) +B))

• Space requirements: O(|input|) ⊆ O(n · (l(m) +B))

4 Dense linear algebra

In this section, we consider algorithms for operations with matrices in dense

representation over finite fields. We recall that dense representation of vec-

tors means that a vector of length n is stored in a array of length n, with

one field for each entry. Furthermore, a matrix of size m× n is represented

by n consecutive vectors of length m.

It is common to study the complexities of computational problems as-

sociated with matrix computations in non-uniform algebraic models. In

particular, this approach is taken in [BCS91]. In this monograph, first an

algebraic complexity theory is developed, and then this theory is applied

to various computational problems. Here, we wish to transfer basic results

from [BCS91] from non-uniform algebraic models to the Turing model. As

already mentioned, in contrast to [BCS91], we restrict ourselves hereby to

computations over finite fields.

The central question addressed in [BCS91] is arguably the complexity

of matrix multiplication, and a central object of interest is the exponent of

7

matrix multiplication ω. Let us briefly recall some concepts from [BCS91],

following the same notation:

Let us first fix any field k. (In contrast to [BCS91, Chapter 16] we make

no assumption on k.)

Let Mk(m) be the minimum of the total complexities of a straight-line

programs (without divisions) for multiplication of two matrices in km×m

(cf. [BCS91, subsection 15.1 and (4.7)]).

Then the exponent of matrix multiplication is defined as

ωk := inf{τ ∈ R |Mk(h) = O(hτ) for h −→∞} .

This exponent of matrix multiplication is of greatest importance because

many other computational problems associated to matrices reduce in an

efficient way to multiplication of matrices.

For these other computational problems, one changes the model of com-

putations and allows divisions. Because of necessary case distinctions con-

cerning division by zero, one now regards computation trees instead of

straight line programs.

In [BCS91, Chapter 16] the following problems associated to square

matrices over the fixed field k are considered: Computation of the LUP-

decomposition (if it exists), computation of the inverse (if it exists), com-

putation of the determinant, computation of the characteristic polynomial,

computation of the reduced row echelon form, computation of the kernel.

For all these problems, it is shown that if one considers the problems for

square matrices and defines an exponent in a similar way as for matrix mul-

tiplication, then this exponent is ≤ ωk. For all the indicated problems except

for the computation of the reduced row echelon form it is shown that if the

field k is infinite, then the exponent of the corresponding problem is equal

to ωk.

Our goal is now to use these results to obtain upper bounds on the

complexity of the corresponding problems for matrices over finite fields in

the Turing model of computation.

We are first concerned with the central problem of matrix multiplica-

tion. Let us recall the notion of bilinear complexity of matrix multiplication

([BCS91, Section 14.1]).

Let e, h, ` ∈ N≥1. Let r ∈ N, let f1, . . . , fr ∈ k[X1,1, . . . , Xe,h], g1, . . . , gr ∈
k[Y1,1, . . . , Yh,`] be linear forms, and let C1, . . . , Cr ∈ ke×`. If now

M ·N =
r∑

ρ=1

fρ(((mi,j))i,j) gρ(((ni,j))i,j)Cρ

for all M ∈ ke×h, N ∈ kh×`, (f1, g1, C1; . . . ; fr, gr, Cr) is called a bilinear

computation of length r of the matrix multiplication ke×h × kh×` −→ ke×`.

8

The minimal length of such a computation is called the bilinear complexity

of matrix multiplication and is denoted R(〈e, h, `〉) in [BCS91]. (〈e, h, `〉
denotes the tensor defining the matrix multiplication and R(〈`, h, `〉) is also

the rank of this tensor.) Let us – in order to emphasize the dependence

on k – denote the tensor under consideration by 〈e, h, `〉k and consequently

the bilinear complexity for the matrix multiplication under consideration by

R(〈e, h, `〉k).
By [BCS91, Proposition 15.1] we have

ωk = inf{τ ∈ R | R(〈h, h, h〉k) = O(hτ) for h −→∞} .

The proof in fact also shows that

ωk = inf
h∈N≥1

logh(R(〈h, h, h〉k)) .

The proof relies on a divide and conquer strategy which can also be suc-

cessfully applied in the Turing model. Because of this, we recall the key

ingredients of the proof here.

Let θ1 be the first right-hand side and θ2 the second one.

One can show that 1
2R(〈h, h, h〉k) ≤Mk(h). This gives immediately that

θ1 ≤ ωk. Moreover, θ2 ≤ θ1. Indeed, let ε > 0. Then by definition of θ1
there exists a C > 0 such that R(〈h, h, h〉k) ≤ C · hθ1+ε for h large enough.

Let us fix such a C. Then we have logh(R(〈h, h, h〉k) ≤ logh(C) + θ1 + ε for

h large enough. Moreover, for h large enough we have logh(C) ≤ ε. Thus

there exists some h ∈ N with logh(R(〈h, h, h〉k) ≤ θ1+2ε. Thus θ2 ≤ θ1+2ε.

This gives the result.

It remains to show that ωk ≤ θ2. Let for this again ε > 0, and let

m ∈ N with r := R(〈m,m,m〉k) ≤ mθ2+ε. Let (f1, g1, C1; · · · ; fr, gr, Cr) be

a bilinear computation of the multiplication of m×m-matrices over k. We

therefore have

M ·N =
r∑

ρ=1

fρ(((mi,j))i,j) gρ(((ni,j))i,j)Cρ

for all M,N ∈ km×m. If now A is any (not necessarily commutative) k-

algebra, the above equality still holds in Am×m. One applies this with

A = km
i−1×mi−1

for i ∈ N≥1. Block decomposition of matrices gives an

isomorphism (km
i−1×mi−1

)m×m ' km
i×mi

as k-algebras. One obtains that

there exists some C > 0 such that

Mk(m
i) ≤ r ·Mk(m

i−1) + C ·m2i (1)

for all i ≥ 1. Together with the fact that r ≥ m2 (see [BCS91, Re-

mark 14.28]), it follows that

Mk(m
i) ≤ C ·

i∑
j=0

rj · (m2)i−j ≤ C · i · ri ≤ C · i ·m(θ+ε)·i .

9

The result then follows easily.

By these considerations, we obtain for every fixed bilinear computation

(f1, g1, C1; · · · ; fr, gr, Cr) of the multiplication of m×m-matrices over k the

following divide and conquer algorithm.

FastMatrixMultiplication

Input: Square matrices M,N of the same size mi ×mi for some i ∈ N over

the fixed field k

Output: MN .

If i = 0 then output MN .

Otherwise

Divide M and N respectively into blocks of size mi−1 ×mi−1;

let Mi,j , Ni,j ∈ km
i−1×mi−1

be these blocks.

Let R be the mi−1 ×mi−1 zero matrix over k.

For ρ := 1 to r do

R←− R + FastMatrixMultiplication(fρ((Mi,j)i,j), gρ((Ni,j)i,j)) ·Cρ.

Output R.

If one wants to multiply two matrices M,N over k of size n×n for some n,

one can apply the above algorithm to the matrices

(
M O
O O

)
,

(
N O
O O

)
size mdlogm(n)e×dlogm(n)e.

In a suitable uniform algebraic model of computation (an algebraic RAM),

one obtains a machine which operates in O(nlogm(r)) field operations.

Such a machine can then also be applied to matrices over extension fields

of k. Moreover, using the tensor formulation of bilinear complexity, one can

show that R(〈h, h, h〉k) and therefore ωk is invariant under field extensions.

Therefore, it only depends on the characteristic of k ([BCS91, Corollary

15.8]). We therefore define:

Definition Let p be a prime or 0. Then we set ωp as the exponent of

matrix multiplication of fields of characteristic p.

We now describe an efficient adaption of the algorithm

FastMatrixMultiplication for Turing machines for computations of finite fields

of a fixed characteristic. For this we fix a bilinear computation as above over

Fp and consider the following modification of the algorithm for the multi-

plication of matrices over extensions Fq of Fp.
The essential idea is to proceed similarly to MergeSort, described in the

previous section. However, in contrast to the previous, we cannot simply

10

“unroll” the recursion and proceed with the smallest submatrices considered

(that is, m×m-matrices) first. Rather, given two mi×mi-matrices, we have

to iterate over ρ, and for each ρ, we first have to compute the values of the

linear forms fρ and gρ on the matrices.

Recall that usually in function call, the current values of the variables

are stored in a stack. We proceed in exactly the same way, that is, we use

one tape as a stack, and whenever FastMatrixMultiplication is called, we write

the current values of M,N and R to the stack. Let us say for concreteness

that we write to the right whenever we put an element on the stack. Then

in fact, we can even put the current values of M,N and R on the same tape,

to the right of the stored elements in the stack. Note that the result is not

a stack anymore because some data to the right of the tape is is now also of

importance.

A fixed number of further tapes is used for intermediate computations.

In particular, to compute the value of fρ or of gρ, we go over the current

value of M , resp. N and store the result on a third tape. Then we write this

to the right of the stack, followed by the zero matrix for R. Similarly, say

that FastMatrixMultiplication(fρ((Mi,j)i,j), gρ((Ni,j)i,j)) has been computed.

Then we store the multiplication of this and Cρ on a third tape and perform

the addition with R on a forth one.

The running time of a machine as described can be estimated similarly

to (1): Let T (i, q) be the running time for matrices of size mi ×mi over Fq.
Then there exists a constant C > 0 such that for all i ≥ 1 and q,

T (i, q) ≤ r · T (i− 1, q) + C ·m2i · log(q) ,

T (0, q) = A(q) .

By analogous calculations as below (1) one obtains that the running time is

in O(ri ·A(q)) = O(mi logm(r) ·A(q)).

Let now ε > 0. Then we have some m, r ∈ N≥1 and a bilinear com-

putation of length r of the multiplication of m ×m-matrices over Fp with

logm(r) ≤ ωk + ε. This leads to:

Theorem 3 Let a prime number p and ε > 0 be fixed. Then there exists a

Turing machine with the following specification:

• Input: A power q of p and two square matrices M,N over Fq of the

same size

• Attributes: a natural number n with M,N ∈ Fn×nq

• Output: M ·N .

• Running time: O(nωp+ε ·A(q))

11

• Space requirements: O(n2 · log(n) · l(q) +A(q))

We now come to the other computational problems associated with

square matrices mentioned at the beginning of this section. As mentioned,

matrix multiplication is central for studying these problems. The reduction

to matrix multiplication is however not straightforward and is itself based

on recursion. On the other hand, the adaption to the Turing model is quite

similar to the one for matrix multiplication. For this reason, we only give a

very brief description, following [BCS91].

First, one regards the problem to compute an inverse of a triangular

matrix of full rank. This problem can again be tackled with a divide and

counter algorithm, based on division of the matrix into four parts and ma-

trix multiplication. One obtains that an analogous result as Theorem 3

holds also for this problem. In the same spirit, one can reduce the problem

to compute an LUP -decomposition of a square matrix with a divide and

counter algorithm to compute products and inverses of matrices. One again

obtains a result as Theorem 3.

The problem to compute a reduced row echelon form of a square matrix

can be reduced to the problem of matrix computation via three divide and

counter algorithms which are nested in each other and the application of

matrix multiplication. Given this, one can easily compute the kernel of the

matrix. Again these problems can be computed in the time indicated above.

In the same spirit, one can also solve an inhomogeneous system of equations

in the indicated time.

Given that one can compute the kernel in the desired time bound, one

can also decide if a square matrix is non-singular or not. If this is the case,

one can easily compute the determinant using the LUP -decomposition.

With a different algorithm, based on the computation of row echelon

forms, one can also compute a block diagonal matrix which is similar to the

given square matrix and whose blocks are companion matrices of polynomi-

als. From this, one can then read off the characteristic polynomial of the

matrix.

All in all, as already stated, given any ε > 0, one can perform all the com-

putations discussed for an n × n-matrix over Fq in a time of

O(nωp+ε ·A(q)).

We now want to obtain a machines for the tasks discussed above but for

matrices over arbitrary finite fields. We first make the following observation:

Let a bilinear computation Γ = (f1, g1, C1; . . . ; fr, gr, Cr) for multipli-

cation of m ×m-matrices over Q be given. Then for all prime numbers p

for which the p-adic valuation of the coefficients of fi, gi and Ci is ≥ 0, we

can reduce the computation modulo p to obtain a bilinear computation Γ of

matrix multiplication of m×m-matrices over Fp.

12

This implies that every such computation sequence gives rise to an algo-

rithm which for multiplication of square matrices over finite fields of nearly

all characteristics. Such an algorithm can then be combined with algorithms

for the remaining characteristics.

We define:

Definition Let ω := supp ωp, where p ranges over the prime numbers

and 0.

Remark 1 It is known that for all p, ωp < 2.38 ([CW90]). Therefore

ω < 2.38 as well. Note also that the upper bound in [CW90] is equal

for all p, and for every p it is the best known upper bound on ωp.

We obtain immediately:

Theorem 4 Let ε > 0. Then there exists a Turing machine with the fol-

lowing specification:

• Input: A prime power q and M,N , square matrices of the same size

over Fq

• Attributes: a natural number n with M,N ∈ Fn×nq

• Output: M ·N

• Running time: O(nω+ε ·A(q))

• Space requirements: O(n2 · log(n) · l(q) +A(q))

Again, one can perform the other computations discussed above in a

time of O(nω+ε ·A(q)) for any ε > 0.

5 Sparse linear algebra

We now consider algorithms for sparse linear algebra over finite fields. The

goal is to obtain efficient Turing machines for solving systems of sparse

systems of linear equations. As algorithms in the literature for this problem

rely crucially on the multiplication of matrices in sparse representation with

vectors in dense representation, we study this problem first.

Let us first indicate what we mean by sparse representation of matrices

over finite fields: Let first v ∈ Fnq . Then for a sparse representation, we first

represent v by the set of tuples (i, vi) with vi 6= 0. Then we represent this set

by some list whose entries are the elements of the set (without repetition).

We do not impose a condition on the ordering of the list.

13

Let now M be a matrix in Fm×nq . We represent M by the set of tuples

(i, j,mi,j) with mi,j 6= 0 and this set by a list, just as for vectors. Again, we

do not impose a condition on the ordering of the list.

In order to multiply a matrix in sparse representation with a vector

in dense representation, we first consider a Turing machine based on the

following idea: First for each j = 1, . . . , n, the entry vj of v is brought near

to all the entries of column j of the matrix. Then all multiplications are

performed. After this, for each i = 1, . . . ,m, all the resulting products for

row i are brought near to each other. Finally, for each row, the products

are added and the final sum is output.

We now describe in greater detail a Turing algorithm based on this idea.

(The italicized texts are information we need for the description of the al-

gorithm; no computations are performed.)

MultiplicationByVector

Input: A prime power q, a matrix M over Fq in sparse representation and a

vector v over Fq in dense representation such that the width of M is equal to

the length of v.

Output: Mv

Let M ∈ Fm×nq , let LM be the list representing M .

1. Compute a list Lv representing v in sparse representation.

2. Sort LM and Lv jointly in the following way: Let L be the resulting list.

Then L is the join of sublists Lj , j = 1, . . . ,m, where Lj starts with (j, vj),

followed by all tuples (i, j,mi,j) of LM . Let L be stored on tape 1.

3. Rewind all tapes and compute a list L′ on tape 2 in the following way:

Repeat

If L ends here, then exit the Repeat loop.

Read the current entry (j, vj) of L.

Rewind tape 3 and copy vj to tape 3.

Go to the next entry of L.

Repeat

If L ends here, then exist both repeat loops.

If the current entry is (j′, v′j) for some j′,

then exit the present repeat loop.

Read the current entry (i, j,mi,j) and store (i,mi,j · vi) in L′.

Go to the next entry of L.

4. Sort L′ according to the first components of the tuples.

14

5. Rewind all tapes.

We use two variables i0 and s. The variable i0 is stored on tape 3. It

indicates the current row under consideration. The variable s is stored on

tape 4. It is used to compute the sums.

Let i0 ←− 1, s←− 0.

Repeat

If L′ ends here then terminate.

Repeat

Read the first component i of the current entry of L′,

if i 6= i0 then exit the present Repeat loop.

Read the second component c of the current entry of L′,

let s←− s+ c.

Go to the next entry of L′.

If L′ ends here then exit the present Repeat loop.

Output s.

Let i0 ←− i.
Let s←− 0.

Remark 2 The algorithm is reminiscent of Bernstein’s proposal ([Ber01])

to use mesh sorting in order to multiply a matrix in sparse representation

by a vector.

Let N be the number of non-zero entries of the matrix under considera-

tion. Then with this algorithm, one can obtain a Turing machine with a run-

ning time of O((N+n)·l(N+n)·(l(m)+l(n)+l(q))+N ·A(q)+(N+m)·l(q)).
Here, the first term corresponds to the sorting, the second term to the mul-

tiplications and the last term to the computation of the final sums. Because

of the second term, the last term can be substituted by m · l(q). If the zero

in Fq is represented by a constant number of symbols, it can be substituted

by m.

A slight improvement can be made: One can first sort LM according to

the second components and then only save tuples (j, vj) for which column j

of M is non-empty. One then obtains:

Theorem 5 There exists a Turing machine with the following specification:

• Input: A prime power q, a matrix M over Fq in sparse representation

and a vector v over Fq in dense representation such that the width of

M is equal to the length of v.

• Attributes:

– m,n with M ∈ Fm×nq

– N , the number of non-zero entries of M

15

• Output: The vector Mv ∈ Fmq in dense representation

• Running time: O(N ·l(N)·(l(m)+l(n)+l(q))+(m+n)·l(q)+N ·A(q))

• Space requirements: O(N · (l(m) + l(n) + l(q)) +A(q))

One can now for example use a suitable adaption of Lanczos’s algorithm

to finite fields to obtain a randomized Turing machine for solving sparse

inhomogeneous linear systems. Such an adaption together with a rigorous

analysis is given in [EK97, Section 6]. Here, in order to obtain a positive

success probability, it is required that the field size be not too small in

relation to the rank of the matrix. In [EG02, Section 4] it is discussed how

one applies the algorithm to small fields too. The key idea is here to pass

to an extension field and use the trace map to project the solution.

Let a matrix M ∈ Fm×nq of rank r in sparse representation and a vector

b ∈ Fmq in dense representation be given. We consider the inhomogeneous

linear system given by M and b. According to [EK97, Theorem 6.2], if

one applies the algorithm in [EK97, Section 6] to such a matrix, one needs

≤ r + 3 matrix-vector multiplications with M and also ≤ r + 3 matrix-

vector multiplications with M t (both from the right) and O(nr) arithmetic

operations in Fq. However, as already remarked, it is only proven that the

success probability is positive if q is not too small in relation to r.

With the modification in [EG02], one uses a field extension of Fq of size

≤ r2q2. Note that the arithmetic in such a field can be performed in a time

of A(rq).

Altogether, with the algorithm in [EK97, Section 6], the modifications

in [EG02] and the previous theorem one obtains an expected running time

of O((r+1) ·
(
N · l(N) · (l(m)+ l(n)+ l(q))+(m+n) · l(q)+(N+n) ·A(rq)

)
).

This can be slightly improved in the following way:

First, one sorts LM according to the first components. Given this new

list, one computes from M a smaller matrix in sparse representation in which

all zero rows are deleted. At the same time, one computes a corresponding

shorter right-hand side. More precisely: If for some i row i of M is non-zero,

one stores bi. If on the other hand row i of M is zero, one checks if bi is 0,

and if this is not the case, one outputs “failure”.

Second, one computes from M a smaller matrix in sparse representation

in which all zero columns are deleted. Here, a list of indices of non-zero

columns of M has to be stored and used at the very end of the algorithm

again in order to finally compute a solution to the original system.

In this way, one obtains:

Theorem 6 There exists a randomized Turing machine with the following

specification:

16

• Input: A prime power q, a matrix M over Fq in sparse representation

and a vector b over Fq in dense representation such that the height of

M is equal to the length of b.

• Attributes:

– m,n with M ∈ Fm×nq

– r, the rank of M

– N , the number of non-zero entries of M

• Output: A vector x ∈ Fnq in dense representation with Mx = b or

“failure” such that under the condition that the system is solvable, the

probability of “failure” is ≤ 1
2 .

• Running time: O(r ·N · l(N) · (l(m) + l(n) + l(q)) + (m+ n) · l(q) + r ·
N ·A(rq))

• Space requirements: O(N · (l(m) + l(n) + l(q)) + (m+n) · l(q) +A(rq))

6 Factorization

We now come to the problem of integer factorization. The best known

asymptotic result is due to H.W. Lenstra and C. Pomerance ([LP92]) who

obtain an expected time of exp((1 + o(1)) · (l(n) · l(l(n)))
1
2) for the complete

factorization of a natural number n in a randomized RAM model. As will

be seen shortly, the result holds in the randomized Turing model as well.

The essential part of the algorithm in [LP92] is a subalgorithm with the

following characteristic (see Algorithm 10.1, Theorem 10.3 in [LP92]): If

applied to a natural number n which is not a prime power, with a probability

of at least 1
64 it finds a non-trivial factorization of n. Moreover, the expected

running time of the algorithm is the one indicated.

Together with an efficient primality test, one then easily obtains an al-

gorithm which computes a complete factorization and which also runs in the

indicated time. Concerning the primality test, the situation is in fact even

better than at the time the algorithm was proposed because with the AKS-

algorithm ([AKS04]) or a similar algorithm, one can now test for primality

in polynomial time.

We now give some details on the subalgorithm in [LP92] mentioned above

and its adaption to the Turing model.

As all fast randomized algorithms for integer factorization, the algorithm

in [LP92] follows a “relation generation and linear algebra” strategy. A

further key aspect of the algorithm is that the computations take place in

class groups for discriminants of the form −cn for small positive integers c.

17

The algorithm employs a connection, due to Gauß, between ambiguous

classes (classes of order 2 in the class group) and factorizations of the corre-

sponding discriminant. The relation generation and linear algebra strategy

is employed in a very similar way to other, more basic factoring algorithms.

Broadly speaking (and discarding important ideas as well) one proceeds as

follows: First one fixes a discriminant which is of the form multiple of −cn
for a small positive integer c. One then uses a Monte Carlo algorithm to

compute a generating system for the class group to the discriminant c− n.

Let us call the output a potential generating system; it is a system of ele-

ments which is a generating system with probability ≥ 1
2 . One computes a

factor base. After these preliminary steps one tries to find relations between

elements in the potential generating system and the factor base. If this is

not successful after a predefined time, one terminates. Finally, with a lin-

ear algebra computation over F2 based on an algorithm from sparse linear

algebra, one finds a non-trivial ambiguous form, which is used to obtain a

non-trivial factorization.

The factor base has a size of exp
(
(12 + o(1)) · (l(n) · l(l(n)))

1
2

)
, and

thus the linear algebra computation takes place on a sparse matrix of this

size as well. The size of the generating system is asymptotically negligible.

For an adaption to the Turing model we make the following remarks: In a

randomized RAM model, all parts of the algorithm except relation gener-

ation and linear algebra can be performed in an expected running time of

exp
(
o(1) · (l(n) · l(l(n)))

1
2

)
. Obviously, this can be achieved in the Turing

model too. Moreover, one try to find a relation between elements of the po-

tential generating system and factor base elements also has such an expected

running time. So all we have to consider is the expected number of tries and

the expected time for the linear algebra computation. The expected number

of tries is in exp
(
(1+o(1)) · (l(n) · l(l(n)))

1
2

)
, leading to an expected running

time of exp
(
(1 + o(1)) · (l(n) · l(l(n)))

1
2

)
for the relation generation part. By

Theorem 6 and the sparsity of the relation matrix, one can achieve such an

expected running time for the linear algebra part too.

Therefore one obtains:

Theorem 7 There exists a randomized Turing machine with the following

specification:

• Input: Some natural number n

• Output: The factorization of n

• Expected running time: exp
(
(1 + o(1)) · (l(n) · l(l(n)))

1
2

)
• Space requirements: exp

(
(12 + o(1)) · (l(n) · l(l(n)))

1
2

)
18

7 Discrete logarithms

We study discrete logarithm problems in various classes of groups.

7.1 The classical discrete logarithm

A classical algorithm to compute discrete logarithm problems is the baby

step giant step algorithm.

We give here the essential idea of the algorithm.

We start with an observation: Let G be a group and a, b ∈ G with

b ∈ 〈a〉. Let now e be the discrete logarithm of b with respect to a. Let B

be a bound on the order of a. Then e < B, and we can write e = i+j ·d
√
Be

with i, j ∈ {0, 1, . . . , d
√
Be − 1. We therefore have aj·d

√
Be = b · a−i with i, j

as before.

The input to the algorithm is now the groupG, a, b ∈ G and the bound B.

We do not assume that b ∈ 〈a〉. Then the two lists consisting of (j, aj·d
√
Be)

respectively (i, b · a−i) with i, j ∈ {0, 1, . . . , d
√
Be − 1} are computed and

sorted for the second entries. If matches are found, one easily obtains the

discrete logarithm, and if not then b /∈ 〈a〉.
By combining the baby step giant step algorithm with a sorting algorithm

following the specifications of Theorem 2, we obtain:

Theorem 8 There exists a Turing machine with the following specification:

• Input: A prime power q, a, b ∈ F∗q and B ∈ N with B ≥ ord(a).

• Output:

– If b ∈ 〈a〉: the discrete logarithm of b with respect to a

– if b /∈ 〈a〉: “no”

• Running time: O(
√
B · (l(B) · l(q) +A(q)))

• Space requirements: O(
√
B · l(q) +A(q))

One can now also vary the bound B. If we apply the algorithm with

powers of 2 for B, we obtain:

Theorem 9 There exists a Turing machine with the following specification:

• Input: A prime power q and a, b ∈ F∗q.

• Output:

– If b ∈ 〈a〉: the discrete logarithm of b with respect to a

– if b /∈ 〈a〉: “no”

19

• Running time: O(
√

ord(a) · l(ord(a)) · (l(ord(a)) · l(q) +A(q)))

• Space requirements: O(
√

ord(a) · l(q) +A(q))

Just as the problem of factoring integers, the problem of computing

discrete logarithms in a particular class of groups can be approached via a

relation generation and linear algebra method. It is common to refer to this

method as index calculus. (Index is a classical term for discrete logarithm in

multiplicative groups of prime fields with respect to generating elements.)

The most basic index calculus algorithms roughly operate as follows:

First a factor base is fixed. Then relations between the input elements

and elements of the factor base are found. If enough relations have been

obtained, one tries to find a relation involving only the input elements,

using a linear algebra algorithm. From this relation, one tries to derive the

discrete logarithm.

A good overview over index calculus algorithms for various classes of

groups is given in [EG02]. By combining the algorithm for prime fields in

[EG02] with a machine for sparse linear algebra following the specification

of Theorem 6, we obtain the following two theorems.

Theorem 10 There exists a randomized Turing machine with the following

specification:

• Input: A prime number p and a, b ∈ F∗p with a ∈ 〈a〉

• Output: The discrete logarithm of b with respect to a

• Expected running time: exp
(
(
√

2 + o(1)) · (l(p) · l(l(p)))
1
2

)
• Space requirements: exp

(
(1√

2
+ o(1)) · (l(p) · l(l(p)))

1
2

)
There is also an algorithm for extension fields in [EG02]. For the appli-

cation of this algorithm, it is necessary that the ground field of the extension

field is a prime field. With a suitable variant of the representation of ele-

ments and the definition of the factor base, this condition can however be

dropped. The definition of the factor base is in fact easier than the one in

[EG02].

Let us assume that we want to compute a discrete logarithm in F∗qn .

We take Fq as the ground field and fix a monic irreducible polynomial f of

degree n (such that Fqn ' Fq[X]/(f)). Now each element in Fqn is uniquely

represented by a monic polynomial of degree n in Fq[X]. As in [EG02], we

fix a smoothness bound S. We define as factor base the set of all irreducible

monic polynomials of degree ≤ S. (This approach is similar to the approach

for class groups of hyperelliptic curves in imaginary quadratic representation

in [EG02].)

20

Let us now fix some constant θ > 0 and consider instances with n ≥
θ · l(q). Then in particular one has q ∈ exp(o(1) · (l(qn) · l(l(qn)))

1
2). One

obtains:

Theorem 11 Let θ > 0 be fixed. Then there exists a randomized Turing

machine with the following specification:

• Input: A prime power q, a natural number n, and a, b ∈ F∗qn with

b ∈ 〈a〉 and n ≥ θ · l(q)

• Output: The discrete logarithm of b with respect to a

• Expected running time: exp
(
(
√

2 + o(1)) · (l(qn) · l(l(qn)))
1
2

)
• Space requirements: exp

(
((1√

2
+ o(1)) · (l(qn) · l(l(qn)))

1
2

)
Remark 3 In [EG02] it is assumed that l(q) ∈ o(n) in order that the above

bound on the expected running time holds (additionally to the restriction

that q be prime and in a randomized RAM model). However, with the

above remark that one automatically has q ∈ exp(o(1) · (l(qn) · l(l(qn)))
1
2),

it is immediate that the analysis in [EG02] can be improved. A similar

remark holds concerning the analysis for class groups of hyperelliptic curves

in imaginary quadratic representation.

Remark 4 The reader might ask for a reason why one can obtain a better

expected running time for factorization than for the computation of dis-

crete logarithms in prime fields, even though the two problems seem to be

so closely related and both algorithms are based on a relation generation

and linear algebra approach. Briefly, one can give this answer: The fac-

torization algorithm by Lenstra and Pomerance is based on computations

in class groups with discriminants ∆ with −∆ ∈ Θ(n). Now, the order of

the class group of discriminant ∆ is |∆|
1
2
+o(1) for ∆ −→ −∞ by Siegel’s

theorem. If the bound on the expected running time of the factorization

algorithm is expressed in terms of the group order of the class group, then

one sees the similarity of the results for factorization and discrete logarithm

computations.

7.2 The discrete logarithm problem in class groups of curves

We now come to the discrete logarithm problem in degree 0 class groups

(Picard groups) of curves over finite fields. (A curve is always assumed to

be proper and non-singular.)

Let us briefly give some information on the representation of curves

and divisors and divisor classes on curves, as this is not straightforward.

21

Further information on these topics can be found in [Die11b], and even

more information and details can be found in [Die08].

First, curves are given by what we call plane models, that is plane curves

which are birational to the curves under consideration. Following [Heß01],

we take an ideal theoretic approach to the representation of divisors. Di-

visors are represented by tuples of two ideals in two orders of the function

field of the curves, a “finite” and an “infinite” order.

One can show that curves over finite fields have plane models of degree

O(g), where g is the genus of the curve. We represent curves by such models.

Furthermore, every curve over a finite field has a divisor D0 of degree 1 and

height O(g); see [Heß05]. We fix such a divisor D0. We then represent an

arbitrary divisor D by an along D0 reduced divisor. This is an effective

divisor D̃ such that D is linearly equivalent to D̃ + (D − D̃) · D0 and the

linear system |D̃ −D0| is empty.

With the baby step giant step algorithm and arguments in [Die11b, Sec-

tion 2] one can obtain the following theorem. Note here that the class of

inputs in the following specification includes all instances of the elliptic curve

discrete logarithm problem.

Theorem 12 There exists a Turing machine with the following specifica-

tion:

• Input: A prime power q, a curve C/Fq and a, b ∈ Cl0(C)

• Output:

– If b ∈ 〈a〉: the discrete logarithm of b with respect to a

– if b /∈ 〈a〉: “no”

• Running time: Õ(
√

Cl0(C))

• Space requirements: Õ(
√

Cl0(C))

Index calculus algorithms are also available for curves. A very general

result with an attractive expected running time is due to Heß ([Heß05]). By

again using a machine for sparse linear algebra following the specification of

Theorem 6, we immediately obtain the same result in the Turing model. So

we have the following theorem.

Theorem 13 Let ε > 0 and θ > 0 be fixed. Then there exists a randomized

Turing machine with the following specification:

• Input: A prime power q, a curve C/Fq with g ≥ θ · l(q), where g is the

genus, and a, b ∈ Cl0(C) with b ∈ 〈a〉.

22

• Output: The discrete logarithm of b with respect to a.

• Expected running time: exp
(
(
√

32 + ε) · (l(qg) · l(l(qg)))
1
2

)
• Space requirements: exp

(
(
√

8 + ε) · (l(qg) · l(l(qg)))
1
2

)
Remark 5 Just as in [Heß05] we stated the bound on the expected running

time and the space requirements in terms of qg. It is however more satisfying

to state the complexities in terms of the group order, # Cl0(C). Fortunately,

by a result due to Lachaud and Martin-Deschamps ([LMD90]), we have

qg ∈ Õ(# Cl0(C)) for all curves over finite fields. This makes it possible to

replace qg by # Cl0(C). This observation should also be kept in mind for

the following theorems.

Remark 6 As mentioned in [Heß05], if one considers curves given as cov-

erings of the projective line with a bounded covering degree, one can ob-

tain better exponents. For example, for hyperelliptic curves (and again for

g ≥ θ · l(q)) one obtains an expected running time of exp
(
(2 + ε) · (l(qg) ·

l(l(qg)))
1
2

)
for any ε > 0. If one considers merely hyperelliptic curves in

imaginary quadratic representation, one obtains an expected running time

of exp
(√

2 + o(1)) · (l(qg) · l(l(qg)))
1
2

)
. (If the degree 0 class group is cyclic,

this result follows from [EG02], for the general case, the algorithm in [EG02]

can be modified according to the description in [Heß05].) Note here the sim-

ilarity with the previous results on the classical discrete logarithm problem.

Another line of research is to consider only curves of a fixed genus g ≥ 2.

Here it is state of the art to proceed as follows: Let C/Fq be a curve under

consideration. One fixes a factor base F ⊆ C(Fq), and one considers the

set L := C(Fq) − F as “large primes”. (The name comes from the classical

discrete logarithm problem or the problem of integer factorization and is a

bit misplaced here.)

One uses relations between the input elements, factor base elements and

large primes to construct in one way or the other a graph of large prime

relations on L ∪̇ {∗}. For technical reasons, it is common to not use a

full graph of large prime relations for algorithms leading to theoretical re-

sults but rather a tree of large prime relations. But even then, there are

different approaches: In [GTTD07], where the discrete logarithm problem

in hyperelliptic curves in imaginary quadratic representation is considered,

each relation which enlarges the tree is immediately inserted into the tree. In

[Die11b], where arbitrary curves are considered, enlargement is performed in

stages in the following way: Let us call the beginning stage 0. Then in stage

s, only edges linked to points present at the end of stage s− 1 are inserted.

The algorithm in [Nag07] can be interpreted as follows: The computation is

23

performed in stages, and in stage s first a list of relations is generated. After

that such a list is used to enlarge the tree. Here again, only edges linked to

points present at the end of stage s− 1 are inserted.

In [Die11b] it is proven that in a randomized RAM model, one can solve

the discrete logarithm problem in the degree 0 class groups of curves of a

fixed genus g in an expected time of Õ(q
2− 2

g). We wish to obtain such an

expected running time in the Turing model too. Now the construction of

the tree of large prime relations in [Die11b] does not immediately lead to a

suitable algorithm in the Turing model. The reason is that it is not efficient

to insert one edge into the tree at one time. The algorithm can however

easily be modified. Let us in order that we can describe the modification

recall some information from [Die11b].

In the algorithm in [Die11b, Section 2], a “potential generating sys-

tems” s1, . . . , su of Cl0(C) is used. To construct the tree of large prime

relations, c1, . . . , cu are drawn uniformly at random modulo the group order

and reduced divisors D with [D] − deg(D) · [P0] =
∑

j sjcj are computed.

Let us call such an equality a relation (without a condition on D). It is

proven that in each stage of the construction of the tree of large prime re-

lations, the expected number of relations which have to be considered is

≤ 16(g − 1) · q1−
1
g · (q + 1)

2− 2
g .

The modification for adaption to the Turing model is as follows: In stage

s we first generate d32(g− 1) · q1−
1
g · (q+ 1)

2− 2
g e relations, and we store the

relations such that D splits completely into rational points in a list. Then

we copy the tree, and via a sorting algorithm applied to the tree and the

list, we insert new edges into the tree such that the result is as follows:

We again have a tree, and for each large prime P which is not yet in the

tree for which there exists a relation linking P to the tree of stage s − 1,

exactly one new edge occurs in the enlarged tree. If the enlarged tree is

large enough (in the sense of the algorithm in [Die11b]), the next stage is

considered. Otherwise the stage is repeated with the old tree. Note here

that with these modifications, the algorithm can be seen as a close variant

of Nagao’s algorithm ([Nag07]).

The probability that the tree is enlarged with one repetition is then ≥ 1
2 .

(Consider Markov’s inequality applied to the number of relations until the

tree is large enough.) Thus the expected number of repetitions in each stage

is ≤ 2. We obtain:

Theorem 14 Let g ∈ N with g ≥ 2 be fixed. Then there exists a randomized

Turing machine with the following specification:

• Input: A prime power q, a curve C/Fq of genus g and a, b ∈ Cl0(C)
with b ∈ 〈a〉

24

• Output: The discrete logarithm of b with respect to a

• Expected running time: Õ(q
2− 2

g)

• Space requirements: Õ(q
1− 1

g
+ 1

g2)

Note here that for fixed genus g, we have # Cl0(C) ∼ qg.

Remark 7 For fixed g ≥ 3 the expected running time is smaller than the

one given in Theorem 12. For g = 2 the expected running time is up to

logarithmic factors equal to the running time one obtains with Theorem 12.

However, now the space requirements are smaller: In Theorem 12 they are

Õ(q) whereas here they are Õ(q
3
4).

Using the results in [Die11b, Section 4], we now obtain also:

Theorem 15 Let g0 ∈ N with g0 ≥ 3 be fixed. Then there exists a random-

ized Turing machine with the following specification:

• Input: A prime power q, a curve C/Fq of genus g ≥ g0 and a, b ∈
Cl0(C) with b ∈ 〈a〉

• Output: The discrete logarithm of b with respect to a

• Expected running time: Õ(# Cl0(C)
2
g0

(1− 1
g0

)
)

• Space requirements: Õ(# Cl0(C)
1
g0

(1− 1
g0

+ 1

g20
)
)

In particular, for g0 = 3, we obtain an expected running time of Õ(# Cl0(C)
4
9)

with space requirements of Õ(# Cl0(C)
14
27).

In [Die11a] we consider the discrete logarithm problem in the degree

0 class groups of curves which are represented by plane models of a fixed

degree. The algorithms in [Die11a] immediately lead to satisfying Turing

machines. (One should keep in mind the changes under the headline “On

the storage requirements” at the end of Section 2.)

We therefore obtain:

Theorem 16 Let d ∈ N with d ≥ 4 be fixed. Then there exists a randomized

Turing machine with the following specification:

• Input: A prime power q, a curve C/Fq, represented by a plane model of

degree d, where d = 4 or the plane model is reflexive, and a, b ∈ Cl0(C)
with b ∈ 〈a〉

• Output: The discrete logarithm of b with respect to a

25

• Expected running time: Õ(q2−
2

d−2)

• Space requirements: Õ(max{q1−
1

d−2 , q
1− 1

g
+ 1

(d−2)g })

7.3 The discrete logarithm problem in elliptic curves

The discrete logarithm problem in elliptic curves over finite fields is a special

case of the discrete logarithm problem in the degree 0 class groups of curves.

However, no randomized RAM is known which can solve the discrete loga-

rithm problem for elliptic curves in an expected time of o(E(Fq)
1
2), where

E/Fq is the input curve.

On the other hand, for some sequences of finite fields, such a result can be

obtained for all elliptic curves over these fields. Following ideas by Gaudry

([Gau09]), we have shown in [Die11b] that for any fixed n ≥ 2, the discrete

logarithm problem in elliptic curves over fields of the form Fqn , q being a

prime power, can be solved in an expected time of Õ(q2−
2
n) on a randomized

RAM.

By an adaption of the considerations for Theorem 14, we obtain the

following theorem.

Theorem 17 Let n ∈ N with n ≥ 2 be fixed. Then there exists a randomized

Turing machine with the following specification:

• Input: A prime power q, an elliptic curve E/Fqn, a, b ∈ E(Fqn) with

b ∈ 〈a〉

• Output: The discrete logarithm of b with respect to a

• Expected running time: Õ(q2−
2
n)

• Space requirements: Õ(q1−
1
n
+ 1

n2)

As a final remark we mention that there also exists a sequence of finite

fields of strictly increasing cardinality over which the elliptic curve discrete

logarithm problem can be solved in an expected time of exp(O(l(q)
2
3)), where

q is the cardinality of the ground field ([Die11c]). As no statement on the

constant in the exponent is made, clearly this result holds in the Turing

model too.

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of

computer algorithms. Addison-Wesley, 1974.

26

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann.

of Math., 160(2):781–793, 2004.

[BCS91] P. Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Com-

plexity Theory. Springer-Verlag, 1991.

[Ber01] D. Bernstein. Circuits for integer factorization: a proposal.

Available under cr.yp.to/papers/nfscircuit.pdf, 2001.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction

to Algorithms. McGraw-Hill and The MIT Press, 2001. Second

Edition.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via

arithmetic progression. J. Symb. Comp., 9:251–280, 1990.

[Die08] C. Diem. On arithmetic and the discrete logarithm problem in

class groups of curves, 2008. Habilitation thesis.

[Die11a] C. Diem. On the discrete logarithm problem for plane curves.

Submitted, 2011.

[Die11b] C. Diem. On the discrete logarithm problem in class groups of

curves. Math. Comp., 80:443–475, 2011.

[Die11c] C. Diem. On the discrete logarithm problem in elliptic curves.

Compos. Math., 147:75–104, 2011.

[Die11d] C. Diem. On the notion of bit complexity. Bull. Eur. Assoc.

Theor. Comput. Sci. EATCS, 103:35–52, 2011. In the “Com-

plexity Column”.

[EG02] A. Enge and P. Gaudry. A general framework for subexponential

discrete logarithm algorithms. Acta. Arith., 102:83–103, 2002.

[EK97] W. Eberly and E. Kaltofen. On randomized Lanczos algorithms.

In W. Küchlin, editor, Proceedings ISSAC 1997, pages 176–183.

ACM Press, 1997.

[Für07] M. Fürer. Faster integer multiplication. In D. Johnson and U.

Feige, editors, Proceedings of the 39th Annual ACM Symposium

on Theory of Computing, pages 57–66. ACM 2007, 2007.

[Gau09] P. Gaudry. Index calculus for abelian varieties of small dimen-

sion and the elliptic curve discrete logarithm problem. J. Symb.

Comput., 44:1690–1702, 2009.

27

[GG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.

Cambridge Unversity Press, 2003.

[GTTD07] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double

large prime variation for small genus hyperelliptic index calculus.

Math. Comp., 76:475–492, 2007.

[Heß01] F. Heß. Computing Riemann-Roch spaces in algebraic function

fields and related topics. J. Symb. Comput., 11, 2001.

[Heß05] F. Heß. Computing relations in divisor class groups of algebraic

curves over finite fields. Preprint, ca. 2005.

[LMD90] G. Lachaud and M. Martin-Deschamps. Nombre de points des

jacobiennes sur un corps fini. Acta. Arith., 56:329–340, 1990.

[LP92] H.W. Lenstra and C. Pomerance. A rigorous time bound for

factoring integers. J. Amer. Math. Soc., 5, 1992.

[Nag07] K. Nagao. Index calculus attack for Jacobian of hyperelliptic

curves of small genus using two large primes. Japan J. Indust.

Appl. Math., 24, 2007.

[Pap94] C. Papadimitriou. Computational Complexity. Addison Wesley,

1994.

[San12] R. Santhanam. Ironic complicity: satisfiablility algorithms and

circuit lower bounds. Bull. Eur. Assoc. Theor. Comput. Sci.

EATCS, 106:32 – 52, 2012. In the “Computational Complexity

Column”.

[SGV94] A. Schönhage, A. Grotefeld, and E. Vetter. Fast algorithms – a

multitape Turing machine implementation. BI Wissenschaftsver-

lag, Mannheim, 1994.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation großer

Zahlen. Computing, 7:281–292, 1971.

[Vet98] J. Vetter. External memory algorithms and data structures. In

Abello and Vetter, editors, DIMACS Workshop External Mem-

ory Algorithms and Visualization, Series in Discrete Mathemat-

ics and Theoretical Computer Science, pages 1–38. AMS, 1998.

[Vet01] J. Vetter. External Memory Algorithms and Data Struc-

tures: Dealing with Massive Data. ACM Computing Surveys,

33:209271, 2001.

28

Claus Diem

Universität Leipzig

Mathematisches Institut

Augustusplatz 10

04109 Leipzig

Germany

diem@math.uni-leipzig.de

29

