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Abstract

We study the discrete logarithm problem in degree 0 class groups
of curves over finite fields, with particular emphasis on curves of small
genus. We prove that for every fixed g ≥ 2, the discrete logarithm
problem in degree 0 class groups of curves of genus g can be solved

in an expected time of Õ(q2−
2

g ), where Fq is the ground field. This
result generalizes a corresponding result for hyperelliptic curves given
in imaginary quadratic representation with cyclic degree 0 class group,
and just as this previous result, it is obtained via an index calculus
algorithm with double large prime variation.

Generalizing this result, we prove that for fixed g0 ≥ 2 the discrete
logarithm problem in class groups of all curves C/Fq of genus g ≥ g0 can

be solved in an expected time of Õ((qg)
2

g0
(1− 1

g0
)) and in an expected

time of Õ(#Cl0(C) 2

g0
(1− 1

g0
)).

As a complementary result we prove that for any fixed n ∈ N with
n ≥ 2 the discrete logarithm problem in the groups of rational points
of elliptic curves over finite fields Fqn , q a prime power, can be solved

in an expected time of Õ(q2−
2

n ).
Furthermore, we give an algorithm for the efficient construction of

a uniformly randomly distributed effective divisor of a specific degree,
given the curve and its L-polynomial.
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1 Introduction

With a deterministic algorithm, one can solve the discrete logarithm problem
in degree 0 class groups of curves C/Fq in a time of Õ(# Cl0(C) 1

2 ).1

This work is motivated by the following question: Under which condi-
tions on the genera of the curves can one solve the discrete logarithm problem
in degree 0 class groups of curves in an expected time of o(# Cl0(C) 1

2 )? The
underlying model of computation is here and throughout this work a ran-
domized random access machine model with commands as in [AHU74] and
an additional command to choose 0 or 1 uniformly at random. The running
time is then determined with the logarithmic cost function.

We show that the condition that the genus be ≥ 3 is sufficient. Indeed,
we prove that under this condition the discrete logarithm problem can be
solved in an expected time of Õ(# Cl0(C) 4

9 ). It is also natural to bound
running times in terms of gg, where g is the genus. Again we prove that

1This result follows with the baby-step-giant-step algorithm combined with a precom-
putation. It is based on a particular representation of the input curve and input divisor
classes which is described at the end of Section 2.
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under the condition that the genus be ≥ 3 one can obtain an expected
running time of Õ((qg)

4
9 ).

Our main contribution is the following theorem.

Theorem 1 Let some natural number g ≥ 2 be fixed. Then the discrete
logarithm problem in the degree 0 class groups of curves of genus g over
finite fields can be solved in an expected time of

Õ(q
2− 2

g ) ,

where Fq is the ground field of the curve.

The algorithms for this theorem have storage requirements of Õ(q
1− 1

g
+ 1

g2 ).
More concretely, although the algorithms are randomized, there exists a

function in Õ(q
1− 1

g
+ 1

g2 ) such that the storage requirements are bounded by
this function for every run.

This theorem is obtained via index calculus algorithms with double large
prime variation. A corresponding result for hyperelliptic curves in imaginary
quadratic representation and with cyclic degree 0 class groups was obtained
in [GTTD07], and on a heuristic basis an obvious generalization of the
algorithm for the theorem in [GTTD07] already gives rise to the result in
Theorem 1. A related work is [Nag07], in which a similar algorithm is given.
We note however that the main “theorem” in [Nag07] is not proven but only
established on a heuristic basis.

The algorithms in both works are also based on the index calculus
method, and both follow the “double large prime variation strategy”. The
algorithm presented in this work is quite closely related to – albeit different
from – the algorithm in [Nag07].

From Theorem 1 and results in [Heß05], the following theorem follows
quite easily.

Theorem 2 Let some natural number g0 ≥ 2 be fixed. Then the discrete
logarithm problem in the degree 0 class groups of curves C/Fq of genus g ≥ g0
can be solved in an expected time of

Õ((# Cl0(C))
2

g0
(1− 1

g0
)
)

as well as in an expected time of

Õ((qg)
2

g0
(1− 1

g0
)
) .

As a complementary result to Theorem 1, we prove the following theorem
on the elliptic curve discrete logarithm problem over extension fields.
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Theorem 3 Let some natural number n ≥ 2 be fixed. Then the discrete
logarithm problem in the groups of rational points of elliptic curves over
finite fields Fqn, q a prime power, be solved in an expected time of

Õ(q2−
2
n ) .

The algorithms for this theorem are similar to the one for Theorem 1.
The key difference is that we now generate relations by solving systems of
polynomial equations over Fq, in contrast to factoring divisors.

Again on a heuristic basis, the result in Theorem 3 was already estab-
lished in [Gau09] with a similar algorithm.

Overview

We now give an overview on the rest of this work. In the next section we
discuss how we represent curves, divisors and divisor classes. At the end of
the section we indicate how the input data to the algorithms are represented,
and we discuss the representation of divisor classes by unique bit strings.
Note that unique representation of group elements is crucial for the baby-
step-giant-step algorithm and thus for the result mentioned at the beginning
of this work. In Section 3 we give the algorithm for Theorem 1. For this
we first give an algorithm which operates well if applied to an instance as
in Theorem 1 together with a generating system, and we give an algorithm
which with a high probability outputs such a generating system. We show
how these two algorithms can be combined in such a way that Theorem 1
follows. Building on Theorem 1, in Section 4 we give an algorithm for
Theorem 2. In Section 5 we show how the algorithm for Theorem 1 can be
modified in such a way that one obtains Theorem 3. This modification as
well as the analysis of the algorithm rely crucially on algorithms and results
in [Die10].

Acknowledgments

I thank Wulf-Dieter Geyer and Florian Heß for discussions on representations
of divisors and Ralf Gerkmann and Alan Lauder for discussions on point
counting algorithms. I thank Peter Bruin for pointing out a mistake in the
algorithm for the computation of uniformly randomly distributed effective
divisor of a specific degree.

2 Representations and basic computations

In this section we describe how we represent the basic objects of our com-
putation via bit strings: Curves (always assumed to be smooth, proper and
geometrically irreducible) over finite fields and divisors and divisor classes
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on such curves. We also discuss basic computations with these objects. We
fix some notation as we go along.

For the representation of divisors we follow an ideal and function field
theoretic approach which is inspired the by number field theoretic analog.
This approach is convenient for several reasons. First, one can easily adapt
the usual algorithms for arithmetic with ideals in number fields (as for ex-
ample in [Coh96]) to the function field theoretic setting. Second, using the
ideal theoretic approach an efficient and simple algorithm for the computa-
tion of Riemann-Roch spaces L(D) can be given ([Heß01]). The following
exposition is heavily inspired by [Heß01]. Further information, including
proofs of all claims, can be found in [Die08, Chapter 2].

Let k be a field. Then we define A1
k := Spec(k[x]) and P1

k := Proj(k[X,Y]);
we identify k[x] with k[XY ] ⊂ k(P1) via x ←→ X

Y , and we define ∞ :=
(0 : 1) ∈ P1(k). We obtain a canonical inclusion A1

k →֒ P1
k and with

this inclusion a decomposition P1(k) = A1(k) ∪̇ {∞}. Furthermore we
set P2

k := Proj(k[X,Y, Z]).

By a curve over k we mean a smooth, proper and geometrically irre-
ducible 1-dimensional k-scheme.

Curves

In the following, q is always the power of a prime p, and we set k := Fq.

We represent curves via plane models: Let C/k be a curve. Then by
a plane model of C we mean a 1-dimensional closed subscheme Cpm of P2

k

which is birational to C. We represent such a plane model Cpm by a defining
homogeneous polynomial F (X,Y, Z). Note that the degree of Cpm equals
the degree of F ; we denote this degree by d. Furthermore, we denote the
genus of C by g.

The following proposition is [Heß01, Theorem 56].

Proposition 2.1 Every curve over a finite field has a plane model of degree
O(g) (uniformly over all finite fields).

Let us now fix a curve C of genus ≥ 1 with a birational morphism to a
plane model: π : C −→ Cpm.

We set x := X
Z , y := Y

Z and f(x, y) := F (X,Y,Z)
Zd , and we denote the

induced functions on C also by x, y. We assume that the covering x : C −→
P1

k is separable (otherwise the covering y is separable and we can interchange
x and y), and we set r := deg(x) = [k(C) : k(x)].

Divisors

We now come to closed points and divisors. For this, we consider the sub-
rings (x∗OC)(A

1
k) and (x∗OC)∞ of k(C); these rings are the integral closures
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of k[x] and k[ 1x ]( 1
x
) in k(C). They are called finite and infinite order of k(C)

(with respect to x).

Now the closed points of C correspond to the places of k(C), and these
in turn correspond to maximal ideals of (x∗OC)(A

1
k) as well as (x∗OC)∞.

The main idea for the ideal representation of points is to fix bases of these
orders and to represent the points of C by “nice” k[x]- respectively k[ 1x ]( 1

x
)-

bases of the corresponding maximal ideals. In order to have a better control
over the size of this representation, we consider however prime ideals of
(x∗OC)(

1
x(A1

k)) with support “at infinity” instead of prime ideals in (x∗OC)∞.

Now divisors can be represented in two ways: The first way is to take the
representation of points as a basis for what is called a free representation:
The divisors are represented by their support and the coefficient vector, and
the points are represented by maximal ideals of the two orders.

Another way to represent divisors is to consider the isomorphisms

Div(C)−̃→Div((x∗OC)(A
1
k))×Div((x∗OC)∞)

−̃→I((x∗OC)(A
1
k))× I((x∗OC)∞) ,

(1)

where the first isomorphism is induced by pull-back and the second isomor-
phism is induced by the canonical isomorphisms between the divisor and
ideal groups. Via these isomorphisms every divisor corresponds to a pair
of fractional ideals, a “finite” and an “infinite” fractional ideal. To repre-
sent the “infinite” fractional ideal, one furthermore applies the canonical
inclusion I((x∗OC)∞) →֒ I((x∗OC)(

1
x(A1

k))). We call this representation of
divisors the joint ideal representation.

Notation 2.2 Let D be a divisor on C. Then the associated “finite” frac-
tional ideal in I((x∗OC)(A

1
k)) is denoted by Ifin(D). The associated “in-

finite” fractional ideal in I((x∗OC)(
1
x(A1

k))) is denoted by I∞(D), and the
corresponding ideal in I((x∗OC)∞) (the localization of I∞(D) at ∞) by
(I∞(D))∞.

Note here that I∞(D) by definition only has support “at infinity”, and
(I∞(D))∞ is the ideal generated by I∞(D) inside (x∗OC)∞.

We now need to describe how we represent the fractional ideals of the
orders (x∗OC)(A

1
k) and ((x∗OC)(

1
x(A1

k)).

Let f(x, y) =
∑r

i=0 ai(x) y
i. Let ãi(x) := ai(x) ar−i−1

r (x) for i = 0, . . . , r,
ỹ := ar(x) y ∈ k(C) and ˜̃y := ỹ

xc ∈ k(C) with c :=

max{⌈deg(ãi(x))
r−i ⌉ | 0 ≤ i ≤ r}. Then ỹ is integral over k[x] as it is a root of

the monic polynomial
∑r

i=0 ãi(x) · ti ∈ k[x][t] and ˜̃y is integral over k[ 1x ] as

it is a root of the monic polynomial
∑r

i=0
ãi(x)

xc(r−i) · ti ∈ k[ 1x ][t].

Now let w1, . . . , wr be the HNF-basis (HNF = Hermite normal form) of
(x∗OC)(A

1
k) with respect to 1, ỹ, . . . , ỹr−1. Then we represent a fractional
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ideal of (x∗OC)(A
1
k) by the coordinate vectors of its HNF-basis with respect

to w1, . . . , wr.
We proceed similarly with the “infinite order”, substituting ỹ by ˜̃y.
We remark that one can compute the HNF-basis of (x∗OC)(A

1
k) (deter-

ministically) in a time which is polynomially bounded in d · log(q), following
ideas by Zassenhaus and by Grauert and Remmert.

The input to all algorithms for the following computations with divisors
and divisor classes consists of a curve, represented by a plane model, together
with HNF-bases for the two orders and some additional data.

Inspired by [Heß01] we define:

Definition 2.3 Let D be a divisor on C, and let D+ be the “positive part”
and D− be the “negative part of D (such that D+, D− ≥ 0, D+ and D−

have disjoint support and D = D+−D−). Then the height of D is ht(D) :=
max{deg(D+),deg(D−)}.

Now basic divisor arithmetic (addition and inversion) in both free as well
as joint ideal representation can be performed in a time which is polynomi-
ally bounded in d · h · log(q), where h is the maximum of the heights of the
divisors involved.

By this result it is obvious that given a divisor D in free ideal rep-
resentation, one can compute (deterministically) the corresponding divisor
in joint ideal representation in a time which is polynomially bounded in
d · ht(D) · log(q). The opposite computation is possible with a random-
ized algorithm whose expected running time is polynomially bounded in
d · ht(D) · log(q). The randomization is only required to factorize polyno-
mials over finite fields. By using Berlekamp’s absolute algorithm for this
task, one then obtains a deterministic algorithm with a running time of
p · (d ·ht(D) · log(q))O(1), where – as indicated above – p is the characteristic.

For arithmetic in degree 0 class groups the computation of Riemann-
Roch spaces L(D) for a divisor D is crucial. An efficient and simple algo-
rithm using the ideal theoretic representation given here was presented by
Heß in [Heß01]. It relies on the equality

L(D) = Ifin(−D) ∩ I∞(−D)∞

and computes this intersection with a reduction algorithm. In short, one
computes a k[x]-basis v1, . . . , vr of Ifin(−D) and integers d1, . . . , dr such that
xd1v1, . . . , x

drvr is a k[ 1x ]( 1
x
)-basis of I∞(−D)∞. A k-basis of L(D) can then

easily be deduced. For the computation one considers the coordinate matrix
of some k[x]-basis of Ifin(−D) with respect to a k[ 1x ]( 1

x
)-basis of I∞(−D)∞

and applies a reduction algorithm on this matrix. The computation can be
performed in a time which is polynomially bounded in d · ht(D) · log(q).

Also, given a function f ∈ k(C)∗, one can compute the associated prin-
cipal divisor in a time which is polynomially bounded in d · deg(f) · log(q).
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Divisors over extension fields

Let still k := Fq, let K := Fqn with some natural number n, and let C′ be a
curve over K. Let C′ again be given by a plane model in P2

K , as above. Then
there are several obvious possibilities to represent ideals of (x∗OC)(A

1
K).

First, one can proceed as above over K, yielding the usual joint and free
representations. Second, one can proceed analogously to the above but start-
ing from the (not geometrically irreducible) scheme C′ over k (corresponding
to the function field K(C′)|k).

Let now C again be a curve over k, represented by a plane model. Let
C′ := CK , and let α1, . . . , αn be a k-basis of K. Then there is a third possi-
bility to represent divisors: Let w1, . . . , wr be as above. Then the elements
αiwj for i = 1, . . . , n and j = 1, . . . , r form a k[x]-basis of (x∗OC′)(A1

K),
and one can represent fractional ideals of (x∗OC′)(A1

K) via HNF-bases with
respect to this basis.

Of course these considerations also apply to the “infinite ideals” and give
several possibilities to represent divisors on C′.

One can show that one can change between the two or three joint rep-
resentations in a time which is polynomially bounded in d · ht(D) · log(q).

Let now again C′ = CK , let α1, . . . , αn be a k-basis of K with α1 = 1,
and let an ideal I of (x∗OC)(A

1
K) be given in joint or free representation as

described above. Then one immediately obtains the intersection of I with
k(C), again in joint or free representation. In particular, given a divisor D
on C′ in free representation, one can compute its norm with respect to the
covering C′ −→ C in a time which is polynomially bounded in d·ht(D)·log(q).

Divisor classes

Let us recall the following definition (see [Heß01]):

Definition 2.4 Let D0 be a divisor on C of degree ≥ 1, and let D̃ be an
effective divisor on C. Then D̃ is (maximally) reduced along D0 if the linear
system |D̃ −D0| is empty.

Let now D be any divisor on C, and let D̃ be an effective divisor reduced
along D0 such that D ∼ D̃ + rD0 for some r ∈ Z. Then D̃ is called a
reduction of D along D0.

One can easily see that the set of reductions of D along D0 form a
complete linear system. Moreover, if D0 is a k-rational point of C then the
reduction is unique.

Remark 2.5 It does not suffice that D0 has degree 1 (without the con-
dition of being effective) in order that the reduction be unique. Here is a
counterexample.
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Let C be a hyperelliptic curve with a k-rational point P which is not a
Weierstraß point. Let D̃ := P + ι(P ) and let D0 := 2 ι(P ) − P , where ι is
the hyperelliptic involution. Then D̃−D0 = 2P −ι(P ), which is not linearly
equivalent to a point. Thus D̃ is reduced along D0, but |D̃| has dimension 1.

To represent divisor classes, we fix a divisor D0 of degree ≥ 1 and rep-
resent a class a by a corresponding reduced divisor and the degree of a.
For computational purposes one can for example define D0 as the canonical
divisor div(dx). With the formula

div(dx) = −2(x)− +R ,

where R is the ramification divisor of x : C −→ P1
k, this divisor can be

computed in a time which is polynomially bounded in d · log(q). Generally,
if the height of D0 is polynomially bounded in d, then the arithmetic in
Cl0(C) can be performed in a time which is polynomially bounded in d·log(q),
provided divisors are represented in joint ideal representation. For the free
representation, the computation can be performed in an expected time which
is polynomially bounded in d · log(q).

Note that there always exists a divisor of degree 1 on C. In fact, by
the Hasse-Weil bound, for every m ≥ ⌈2 logq(2g)⌉, there is a Fqm-rational
point on C and thus a closed point on C whose degree divides m (cf. [Heß05,
Proposition 32]). One can compute two closed points with degrees dividing
⌈2 logq(2g)⌉ and ⌈2 logq(2g)⌉+ 1 in an expected time which is polynomially
bounded in d·log(q). These then give rise to a divisor of height ⌈2 logq(2g)⌉+
1 and degree 1.

For fixed genus g, one can easily determine if there exists a k-rational
point on C and if so compute such a point in an expected time which is
polynomially bounded in log(q). If one defines D0 as such a point, then
– as already mentioned – the representation of degree 0 divisor classes by
reduced divisors is unique. In the algorithm for Theorem 1 we employ such
a representation.

Let us finally consider the important case that d is polynomially bounded
in g. Then in the statements above d · log(q) can of course be substituted
by g · log(q). Moreover, as shown in [LMD90], one has

# Cl0(C) ≥ (q − 1)2

(q + 1) · q ·
1

g + 1
· qg ≥ 1

6
· 1

g + 1
· qg , (2)

and this implies that d · log(q) can then also be substituted by log(# Cl0(C)).
In particular if the degree of the divisor D0 is also polynomially bounded
in g, the arithmetic in the degree 0 class group can then be performed in a
time which is polynomially bounded in log(# Cl0(C)).
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Representation of input data

We can now describe how the input data in the algorithms for the theorems
are represented.

The curve is always given by a plane model of degree O(g); in Theorem
1 it is therefore given by a plane model of bounded degree. We fix a divisor
D0 of degree 1 and height O(g), and we represent divisor classes by along
D0 reduced divisors. The divisors in turn are given in free or joint ideal
representation as described above.

Unique representation and generic algorithms

For some purposes, for example for the baby-step-giant-step algorithm, one
requires a unique representation of elements of Cl0(C) by bit strings.

One possibility to achieve this is to consider a constant field extension
such that the curve has a rational point. For example, as mentioned above,
with m := ⌈2 logq(2g)⌉, the curve CFqm has a Fqm-rational point, and with a
randomized algorithm, one can compute such a point P0 in an expected time
which is polynomially bounded in d · log(q). All elements of Cl0(CFqm ), thus

in particular those of the subgroup Cl0(C), can then uniquely be represented
by along P0 reduced divisors.

Given an instance of the discrete logarithm problem as described above,
we would like to compute the discrete logarithm deterministically in a time
of Õ(# Cl0(C) 1

2 ).

In the case of genus 1 curves, D0 is linearly equivalent to a unique Fq-
rational point P0. One can therefore apply the baby-step-giant-step algo-
rithm directly, and one obtains the desired result.

We therefore consider the case that the genus is ≥ 2. Again, let p be
the characteristic. In this case we first compute a field extension λ|Fq of
degree ≤ ht(D0) and a λ-rational point P0 on Cλ. Here the field exten-
sion is represented by a multiplication table. We then represent divisor
classes by along P0 reduced divisors and again apply the baby-step-giant-
step algorithm. The baby-step giant step algorithm has a running time of
Õ(# Cl0(C) 1

2 ), and we have to show that the computation of λ and P0 can
be performed (deterministically) in this time as well.

For this, we proceed as follows: First we compute the free representation
of D0, and we fix a prime divisor E occurring in D0. As mentioned above,
this can be achieved deterministically in a time of p·(g ·log(q))O(1). Note also
that deg(E) ≤ ht(D0) ∈ O(g). Assume now that E corresponds to a “finite”
ideal, that is, to an ideal in (x∗OC)(A

1
Fq

) (the other case is similar); let p

be this ideal. An HNF-basis for p easily gives an Fq basis of (x∗OC)(A
1
λ)/p

and a multiplication table; let λ be this field. Then E as a divisor on Cλ
splits completely. So we compute the free representation of E as a divisor
of Cλ and fix one of the points occurring in it. This can again be achieved
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(deterministically) in a time of p · (g · log(q))O(1).

We remark that for genus 1 curves over prime fields the assumption that
D0 has degree 1 is crucial. If we drop this assumption, we do not know how
to perform the computation (deterministically) in the desired time.

3 Index calculus for curves of fixed genus

3.1 Overview

In this section we present an index calculus algorithm with double large
prime variation for curves of a fixed genus g ≥ 2, leading to Theorem 1.

The input of the algorithm consists of a tuple (C/Fq, a, b), where C is a
curve of genus g over Fq, a, b ∈ Cl0(C) and b ∈ 〈a〉. The representation of
the input follows the description given in the previous section: The curve is
represented by a plane model, a divisor D0 of degree 1 is fixed and a, b are
represented by along D0 reduced divisors which in turn is given in free or
joint ideal representation as described above. Here the degree of the plane
model as well as the height of D0 are bounded by some constant.

We now give an outline of the proof of Theorem 1.

First we give an index calculus algorithm with double large prime vari-
ation which gives rise to the following proposition.

Proposition 3.1 Let us fix some g ≥ 2. Then there exists a randomized
algorithm such that the following holds: Upon input of a curve C/Fq of genus
g, elements a, b ∈ Cl0(C) with b ∈ 〈a〉 and a system c1, . . . , cu of elements
of Cl0(C), if the algorithm terminates it outputs the discrete logarithm of b
with respect to a. Moreover, if c1, . . . , cu forms a generating system and u is
polynomially bounded in log(q), the expected running time of the algorithm

is in Õ(q
2− 2

g ).

The algorithm has storage requirements of Õ(q
1− 1

g
+ 1

g2 ). More precisely,

the algorithm uses only the first Õ(q
1− 1

g
+ 1

g2 ) registers, and each register
always contains elements whose bit-length is polynomially bounded in log(q).

The algorithm is given in the next subsection and the analysis in subsection
3.3.

Then we show the that there is an efficient algorithm which outputs a
small system of divisor classes of degree 0 which generates the degree 0 class
group with high probability (see subsection 3.5):

Proposition 3.2 Let us fix some g ≥ 1. Then there exists a randomized
algorithm such that the following holds: Upon input of a curve C/Fq of genus
g and a divisor D0 of degree 1 as above, the algorithm computes a system
of random elements c1, . . . , cu of Cl0(C), represented by along D0 reduced
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divisors, where u := eℓ with e := ⌈log2(# Cl0(C))⌉ and ℓ := ⌈log2(e) + 1⌉.
Moreover, expected running time is polynomially bounded in d and log(q),
and with a probability ≥ 1

2 , the system c1, . . . , cu is a generating system of
Cl0(C).

A problem is however that we do not know how one can in a sufficiently
efficient way certify that the output is indeed a generating system. As a
work-around, we proceed as follows: We assume that we have a generating
system and apply the index calculus algorithm. We stop the computation if
it has not terminated within a predefined time.

An obvious consequence of Proposition 3.1 is:

Proposition 3.3 Let us fix some g ≥ 2. Then there exists a randomized al-
gorithm such that the following holds: Upon input of a curve C/Fq of genus g,
elements a, b ∈ Cl0(C) with b ∈ 〈a〉 and a system c1, . . . , cu of elements in
Cl0(C) with u polynomially bounded in log(q), the algorithm either outputs
“failure” or the discrete logarithm of b with respect to a. The running time

of the algorithm is in Õ(q
2− 2

g ), and if c1, . . . , cu is a generating system,
the probability of failure is ≤ 1

2 . The algorithm has storage requirements of

Õ(q
1− 1

g
+ 1

g2 ).

Indeed, let us fix a RAM Π satisfying the claim in Proposition 3.1, and

let δ ∈ N such that the RAM terminates in an expected time of q
2− 2

g · log(q)δ

if applied to an instance as in Proposition 3.1. We apply this RAM with the

input of Proposition 3.3 and terminate the execution if ⌈2 · q2−
2
g · log(q)δ⌉

commands are executed (or with other words, if the uniform running time is

⌈2·q2−
2
g ·log(q)δ⌉) – provided Π has not terminated at this point in time. (For

this, we insert a “control unit”.) Note that then the running time of Π (as

always measured with the logarithmic cost measure) is ≥ ⌈2 · q2−
2
g · log(q)δ⌉.

By Markov’s bound we have: If c1, . . . , cu is a generating system, with a
probability of ≥ 1

2 , the algorithm outputs the discrete logarithm of b with
respect to a.

By assumption, each operation performed by Π has a running time which
is polynomially bounded in log(q). Therefore, the total running time is in

Õ(q
2− 2

g ). 2

The proof of Theorem 1 is now easy:

Let g ≥ 2 be fixed. Now given an instance (C, a, b) with g(C) = g as
described above, we proceed as follows: First we apply an algorithm for
which Proposition 3.2 holds; let the result be c1, . . . , cu. Then we apply an
algorithm for which Proposition 3.3 holds to C, a, b and the system c1, . . . , cu.

The expected running time is then in Õ(q
2− 2

g ), and moreover, the probability
of failure is ≤ 3

4 . This implies Theorem 1. 2
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3.2 The index calculus algorithm

Again, let g ≥ 2 be fixed. We now describe an index calculus algorithm which
leads to Proposition 3.1. As already stated, the algorithm uses double large
prime variation. We do so by computing a tree of large prime relations.
The main challenge resides in controlling the growth of the tree of large
prime relations as well as its depth, that is, the maximal distance of any
vertex to the root. This task is more difficult than for hyperelliptic curves
in imaginary quadratic representation, where one has a concrete description
of the effective divisors which are reduced along the point at infinity, and
one knows that the growth process is very regular.

We now give an overview over the algorithm. Subroutines for the various
steps are discussed on pages 15 – 18 in greater detail.

Broadly speaking, we proceed as follows: First we compute the group
order and its factorization. We fix an Fq-rational point P0 and a factor
base F . We construct a tree of large prime relations, using a “stage-wise”
approach. After a tree of a suitable size has been constructed, we use the
tree to generate relations over the factor base. The main idea is here that we
can – via the tree – substitute large primes occurring in relations by sums
of factor base elements. Finally we solve the discrete logarithm problem via
sparse linear algebra.

More precisely, the factor base is a set F ⊆ C(Fq)−{P0} of size ⌈q1−
1
g ⌉,

and the set of so-called “large primes” is L := C(Fq)− (F ∪ {P0}). Now the
tree of large prime relations is a tree T whose set of vertices is contained in
L ∪̇ {∗}. In the following, we denote the set of vertices of T also by T . How
the tree is computed is discussed below (see again pages 15 and following).

Apart from the computation of the tree of large prime relations, the
algorithm is closely related to the algorithm in [EG02]. A relatively minor
difference is that in [EG02] it is assumed that the group is cyclic or a basis
of it is known whereas we use only a generating system.

The input data for the algorithm are represented as described at the end
of the previous section.

The algorithm for curves of a fixed genus g

Input: A curve C/Fq of genus g, elements a, b ∈ Cl0(C) with b ∈ 〈a〉, c1, . . . , cu ∈
Cl0(C), given by an along D0 reduced divisors.

Output: The discrete logarithm of b with respect to a.

1. Compute N ←− # Cl0(C) and factorize N . (Let N =
∏v

i=1 ℓ
ei
i with

ei ∈ N and pairwise distinct prime elements ℓi.)

2. Enumerate C(Fq). Choose an Fq-rational point P0 and a factor base F =

{F1, F2, . . . , Fk} ⊆ C(Fq)− {P0} of size ⌈q1−
1
g ⌉. (If this is not possible,
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terminate.) Represent a, b, c1, . . . , cu by along P0 reduced divisors.

3. Construct a labeled rooted tree T with root ∗ whose set of vertices is
contained in L ∪̇ {∗}, as described below.

4. 4.1. Let t←− ⌈log2(k + u) + log2(2 log2(N))⌉+ 1

4.2. Construct matrices R ∈ (Z/NZ)(2(k+u)·t)×k and S ∈
(Z/NZ)(2(k+u)·t)×u in sparse representation as well as vectors α, β ∈
(Z/NZ)2(k+u)·t as follows:

4.2.1. For i = 1, . . . , (k + 2u) · t do
Choose uniformly and independently randomly α, β,
s1, . . . , su ∈ Z/NZ and compute the unique along P0

reduced divisor D with [D]− deg(D) · [P0] =
∑

j sjcj +
αa+ βb in free representation.

Until D splits into elements of F ∪ T .
Use the tree T to substitute these elements by sums of mul-
tiples of elements of F . Let

∑

j

ri,j [Fj ]− ri[P0] =
∑

j

si,jcj + αia+ βib

with ri =
∑

j ri,j be the relation generated.

4.2.2. For i1 = 1, . . . , k
For i2 = 1, . . . , t

Let i←− (i1 − 1) · t+ i2 + (k + 2u) · t.
Choose uniformly and independently randomly
α, β, s1, . . . , su ∈ Z/NZ and compute the unique
along P0 reduced divisor D with [D]−deg(D)·[P0] =
[Fi1 ]− [P0] +

∑

j sjcj + αa+ βb.
Until D splits into elements of F ∪ T .
Use the tree T to substitute these elements by sums of
multiples of elements of F . Let

∑

j

ri,j [Fj ]− ri[P0] =
∑

j

sjcj + αia+ βib

with ri =
∑

j ri,j be the relation generated.

5. Try to compute a row vector γ ∈ (Z/NZ)1×(2(k+u)·t) with γ(R|S) = 0
and [γ]ℓ 6= 0 for all prime divisors ℓ of N with an algorithm for sparse
linear algebra as discussed below.2 If this fails, go back to Step 4.

6. If
∑

i γiβi ∈ (Z/NZ)∗, let ξ := −
∑

i γiαi
∑

i γiβi
, otherwise go back to Step 4.

2For an integer a and a natural number n we denote the residue class of a in Z/nZ by
[a]n.
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7. Compute ord(a), using the factorization of N .
Output the unique non-negative number x ∈ {0, . . . , ord(a) − 1} with
[x]ord(a) = [ξ]ord(a).

It is immediate that the algorithm is correct, that is, if it terminates it
outputs the discrete logarithm of b with respect to a.

As already mentioned, details on the various steps of the algorithm will
be given below. However, merely under an assumption on the linear alge-
bra algorithm, we can already now give an upper bound on the number of
expected iterations of Steps 4 – 6, conditionally to any outcome of Step 3:

Proposition 3.4 Let the linear algebra algorithm be such that the following
holds: If applied to a matrix M in sparse representation over Z/NZ, then

• the algorithm terminates in a finite expected time, and it either outputs
a vector γ over Z/NZ with γM = 0 and [γ]ℓ 6= 0 for all prime divisors
ℓ of N or it outputs “failure”,

• if moreover the matrix M has full column rank, the algorithm succeeds
(that is, outputs a vector as desired) with a probability of Ω(1).

If then c1, . . . , cu forms a generating system, conditionally to any outcome
of Step 3, the probability that the algorithm fails in Step 5 or Step 6 (that
is, it returns to Step 4) is in O(log log(q)).

This proposition is essentially proven in [EG02]. We recall two major ingre-
dients of the proof.

First, one can show that the probability that the matrix (R|S) has full
column rank is in Ω(1). This follows from Lemma 4.1 in [Pom87] and the
subsequent remarks. We note that the proof in [Pom87] is very sketchy; a
more complete argument is given in [Heß05] (see part (i) of [Heß05, Lemma
64]).

Moreover, the random vector β is independent of (R|S). This im-

plies that the probability that
∑

i γiβi is invertible is ϕ(N)
N , which is in

Ω( 1
log log(N)) = Ω( 1

log log(q)) (see [RS62]). 2

Subroutines

We now give some more information on various steps of the algorithm.

Step 1 – Computation of the group order and factorization

The L-polynomial of a curve over Fq given by a plane model of bounded
degree can be computed (with a deterministic algorithm) in a time which
is polynomially bounded in log(q). (This follows from [Pil91, Theorem H]
which in turn relies on Pila’s extension of the point counting algorithm by
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Schoof ([Sch85]) to abelian varieties ([Pil90]).) This means in particular that
the order of the degree 0 class group can be computed in polynomial time
in log(q).

It is well known that an integer N can be factored in subexponential
time in log(N); see for example [Pom87].

Step 2 – Construction of the factor base

As assumed in the previous section, let x : C −→ P1
k be separable. Then one

can iterate over all points of C(Fq) in an expected time of Õ(q) as follows:
One iterates over all points P ∈ P1(Fq) and factorizes the ideal x−1(P ) (that
is, one computes a free representation). For each point P , this step requires
an expected time which is polynomially bounded in log(q). In total Step 2
can be performed in an expected time of Õ(q).

Step 3 – Generation of the tree of large prime relations

The tree of large prime relations is a labeled rooted tree whose vertex set is
contained in L ∪̇ {∗} with root ∗. It is constructed as follows:

We repeatedly choose uniformly randomly s1, . . . , su ∈ Z/NZ and com-
pute the along P0 reduced effective divisor D in free representation with

[D]− deg(D) · [P0] =
u

∑

j=1

sj cj , (3)

where P0 ∈ C(Fq) is the point computed above.3 Note that as mentioned in
the previous section, the computation of D is possible in an expected time
which is polynomially bounded in log(q).

Following [GTTD07] and other works, we define:

Definition 3.5 A relation involving only input elements and factor base
elements, that is, a relation of the form

∑

j rj [Fj ] =
∑

j sjcj + αa + βb is
called a Full relation. A relation which additionally involves one large prime,
that is, a relation of the form

∑

j rj [Fj ] + rP [P ] =
∑

j sjcj + αa + βb with
P ∈ L and rP 6= 0 is called an FP relation. A relation which involves two
large primes, that is, a relation of the form

∑

j rj [Fj ] + rP [P ] + rQ[Q] =
∑

j sjcj + αa + βb with P,Q ∈ L, P 6= Q and rP , rQ 6= 0 is called a PP
relation. Here rj , rP , rQ ∈ Z/NZ.

As usual, during the construction of the tree, FP relations are stored as
labeled edges connecting the large prime with the root ∗, and PP relations
are stored as labeled edges connecting the two large primes.

3Note here that if we represent divisor classes by along P0 reduced divisors in free
representation, to compute the divisor D is the same as computing the sum

Pu
j=1 sj cj in

the degree 0 class group.
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As already mentioned, we construct the tree in stages. During each stage
we only attach edges to the tree which are connected to vertices constructed
in the previous stages. In Stage 1, we attach ⌈q1−1/g⌉ edges coming from FP
relations to the root ∗. Thereafter, we terminate Stage s and start Stage
s+ 1 whenever the tree has 2s−1 · ⌈q1−1/g⌉ edges.

The construction of the tree is abandoned if a predefined number of
edges Nmax is reached. We could for example set Nmax := ⌈q/4⌉. We will
however argue in the analysis of the algorithm in the next subsection that
Nmax := ⌈q1−1/g+1/g2⌉ suffices. This smaller value of Nmax only lowers the
time for the construction of the tree by a constant factor but decreases
the storage requirements substantially. This is analogous to the situation
in [GTTD07].

Altogether, we have the following procedure for construction of a suitable
tree of large prime relations. In the procedure we construct a labeled tree
called T . The edges of the tree are labeled with the corresponding relations;
the vertices are labeled too, namely with the stage at which they inserted
into the tree. We denote the subtree of T which has been constructed until
(including) stage s by Ts. In other words: A vertex of T occurs in Ts if and
only if its label is ≤ s.

Procedure: Construction of the tree of large prime relations

Construct a labeled rooted tree T with vertex set contained in L ∪̇ {∗} as

follows:

Let T consist only of the root ∗, labeled with 0.

Let Nmax ←− ⌈q1−1/g+1/g2⌉.
Let s←− 1.

Repeat

Repeat

Choose s1, . . . , su ∈ Z/NZ uniformly and independently at random.

Compute the along P0 reduced divisor D in free representation with

[D]− deg(D) · [P0] =
∑

j sjcj .

If D splits as D =
∑

j rjFj +Q with Q ∈ L − (F ∪ T ),

insert an edge from ∗ to Q into T , labeled with (rj)j (in sparse

representation).

If D splits as D =
∑

j rjFj +rPP+Q with P ∈ Ts−1, Q ∈ L−(F∪T )

and rP > 0,

insert an edge from P to Q into T , labeled with (rj)j and rP .

In both cases label Q with s and the edge with (rj)j (in sparse repre-

sentation).

Until T contains min{2s−1 · ⌈q1−1/g⌉, Nmax} edges.

If the number of edges equals Nmax, STOP.
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Let s←− s+ 1.

This construction of the tree guarantees that the depth of the tree is
always in O(log(q)) (see also inequality (7) in the next subsection). The
main difficulty of the analysis of the procedure resides in proving that a tree
of sufficient size can be constructed in an expected time of Õ(q2−2/g). This
is verified in the next subsection.

Step 5 – Linear algebra

For the linear algebra computation we use an algorithm which satisfies the
following condition (and thus also Proposition 3.4).

If applied to a matrix M ∈ (Z/NZ)m×n with m ≥ n and weight ω in
sparse representation,

• the algorithm always terminates in an expected time of Õ(n · (m +
ω) · log(mN)O(1)), and it either outputs a vector γ over Z/NZ with
γM = 0 and [γ]ℓ 6= 0 for all prime divisors ℓ of N or it outputs
“failure”,

• if moreover the matrix M has full column rank, the algorithm succeeds
with a probability of Ω(1).

Here the weight of a matrix is the number of non-zero entries.
Such an algorithm is given in [EG02, Section 4].

Step 7 – Computation of the order of a

The computation of ord(a) can be performed efficiently (in polynomial time
in log(N) ∈ O(log(q))) along the following lines:

As in the algorithm, let N =
∏v

i=1 ℓ
ei
i with ei ∈ N and pairwise distinct

prime numbers ℓi. Now let Li := N
ℓ
ei
i

, and let oi := min{j ∈ 0, . . . , ei | ℓjiLi ·
a = 0} for i = 1, . . . , v. Then

∏v
i=1 ℓ

oi
i is the order of a.

3.3 Analysis of the index calculus algorithm

We now show that with the algorithm outlined in the previous subsection,
one can compute a solution to the discrete logarithm problem for curves
of the fixed genus g in an expected time of Õ(q2−2/g) – provided that the
system c1, . . . , cu is a generating system and u is polynomially bounded in
log(q).

Steps 1 and 2 – computation of the group order, factorization,

construction of the factor base

We have already argued that one can perform these steps in an expected
time of Õ(q).
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Step 3 – construction of the tree of large prime relations

The analysis of the growth of the tree relies crucially on the following propo-
sition.

Proposition 3.6 For curves of fixed genus g over finite fields Fq, the num-
ber of special effective divisors of degree g is in O(qg−1).

Recall that an effective divisor D is called special if the linear system |K−D|
is non-empty, where K is a canonical divisor. Note that by the Riemann-
Roch theorem, an effective divisor of degree g is non-special if and only if
the linear system |D| merely contains D itself.

Note that map D 7→ [D] gives an injection from the set of non-special
divisors of degree g into the set of divisor classes of degree g, and therefore,
the map D 7→ [D − g · P0] gives an injection from the set of non-special
divisors of degree g into the degree 0 divisor class group. Then we can
apply the bijection between the degree 0 class group and the set of along P0

reduced divisors.

Explicitly, let D be a non-special effective divisor of degree g, and let
D′ be the unique effective divisor of minimal degree with D′ + (deg(D) −
deg(D′)) · P0 = D. Then D′ is reduced along P0, and it is the along P0

reduced divisor which represents the class [D − g ·D0].

We assume that Proposition 3.6 is well known to many experts in curves
and function fields. For the lack of a suitable reference we give a proof in the
next subsection. Note that a straightforward application of the Hasse-Weil
bound merely gives that the number in question is in O(qg−1/2).

This proposition makes it possible to discard all special divisors in the
analysis of the construction of the tree of large prime relations.

Let C > 0 be such that for all curves of genus g over any finite fields Fq

the number of special divisors of degree g is ≤ C · qg−1.

As in the previous subsection, let Nmax := ⌈q1−1/g+1/g2⌉ be the number
of edges (that is, the number of vertices different from ∗) at which the
construction of the tree is stopped.

The conditions

Nmax + #F ≤ q/4 #(C(Fq)− {P0}) ∈ [max{q1−
1
g , q/2}, 2q]

# Cl0(C) ≤ 2qg q ≥ (4 · g! · C)g

hold for q large enough; we assume that they are satisfied.

Note that by our assumption that c1, . . . , cu generate Cl0(C), if s1, . . . , su

are uniformly distributed random elements from Z/NZ,
∑

i sici is uniformly
distributed in Cl0(C). This means that the divisor D in (3) is uniformly
distributed in the set of all effective divisors which are reduced along P0.
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By our assumptions on q, we always have

#(C(Fq)− (T ∪ F ∪ {P0}) ≥ q/2− q/4 = q/4 . (4)

Let Divg(C) be the set of effective divisors of degree g on C, and let
Divg,ns(C) (resp. Divg,s(C)) be the subset of non-special (resp. special) effec-
tive divisors of degree g.

Let us first assume that we are still in Stage 1, that is, only relations
with one large prime (not yet in the tree) are considered.

Let us thus assume we are given the tree T with < ⌈q1−1/g⌉ edges. We
want to bound the expected number of relations (3) needed until a new edge
is inserted into the tree.

Let

D :=
{

P1 + · · ·+ Pg ∈ Divg(C) | ∀i = 1, . . . , g − 1 : Pi ∈ F ,
Pg ∈ C(Fq)− (T ∪ F ∪ {P0})

}

,

Dns := D ∩Divg,ns(C) .
Note that any divisor D ∈ Dns is reduced along P0 (because P0 is not

contained in the support of D and the linear system |D| consists merely of
D). If a divisor D = P1 + · · ·+Pg as in the set Dns appears in a relation (3),
a new edge is inserted into the tree. (Other divisors might also lead to new
edges: We ignore special divisors, and we ignore divisors of degree < g.)

We have

#D =
(

#F+g−2
g−1

)

·#
(

C(Fq)− (T ∪ F ∪ {P0})
)

≥ #Fg−1

(g−1)! · q/4 by (4)

≥ 1
4(g−1)! · q

(g−1)2

g · q = 1
4(g−1)! · q

g2
−g+1
g = 1

4(g−1)! · q
g−1+ 1

g .

(5)
By our assumption that q ≥ (4 · g! · C)g, we have

# Divg,s(C) ≤ Cqg−1 ≤ 1

4g!
· qg−1+ 1

g ≤ 1

8(g − 1)!
· qg−1+ 1

g . (6)

Inequalities (5) and (6) imply

#Dns ≥ 1

8(g − 1)!
· qg−1+ 1

g .

Together with our assumption that # Cl0(C) ≤ 2qg, this implies that the
probability that a relation (3) enlarges the tree is

≥ #Dns

# Cl0(C) ≥
1

16(g − 1)!
· q−(1− 1

g
) .

The expected number of relations (3) which have to be considered until the
tree is enlarged is thus

≤ 16(g − 1)! · q1−
1
g .
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This implies that the expected number of tries until the tree has ⌈q1−
1
g ⌉

edges is

≤ 16(g − 1)! · q1−
1
g · ⌈q1−

1
g ⌉ ≤ 16(g − 1)! · (q + 1)

2− 2
g .

We now assume that s ≥ 2 and a tree T with < 2s−1 · ⌈q1−1/g⌉ edges
containing a subtree Ts−1 with 2s−2 · ⌈q1−1/g⌉ edges, has already been con-
structed. The task is again to derive a bound on the expected number of
relations (3) needed until the tree is enlarged.

Similarly to the above, let

D :=
{

P1 + · · ·+ Pg ∈ Divg(C)| ∀i = 1, . . . , g − 2 : Pi ∈ F ,
Pg−1 ∈ F ∪ Ts−1, Pg ∈ C(Fq)− (T ∪ F ∪ {P0})

}

,

Dns := D ∩Divg,ns(C) .
We now have

#D =
((

#F+g−2
g−1

)

+
(

#F+g−3
g−2

)

·#(Ts−1 − {∗})
)

·#
(

C(Fq)− (T ∪ F ∪ {P0})
)

≥ (#Fg−1

(g−1)! + #Fg−2

(g−2)! · 2s−2 · q1−1/g) · q/4

≥ ( 1
(g−1)! · q

(g−1)2

g + 1
(g−2)! · 2s−2 · q

(g−1)2

g ) · q/4

= ( 1
4(g−1)! + 1

4(g−2)! · 2s−2) · qg−1+ 1
g .

Together with (6), this implies

#Dns ≥ 1

4(g − 2)!
· 2s−2 · qg−1+ 1

g .

This implies that the probability that a relation (3) enlarges the tree is

≥ 1

8(g − 2)!
· 2s−2 · q−(1− 1

g
)
.

The expected number of relations (3) which have to be considered until the
tree is enlarged is thus

≤ 8(g − 2)! · 1

2s−2
· q1−

1
g .

This implies that given any tree Ts−1 with 2s−2 · ⌈q1−
1
g ⌉ edges, the expected

number of tries until a tree T with min{2s−1 · ⌈q1−
1
g ⌉, Nmax} edges is con-

structed is
≤ 16(g − 2)! · (q + 1)2−

2
g .

We have s ∈ O(log(q)) as can be easily seen: During the execution of
the procedure we always have for s ≥ 2

2q ≥ #(T − {∗}) ≥ #(Ts−1 − {∗}) = 2s−2 · ⌈q1−
1
g ⌉ ,
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i.e.

s ≤ log2(q
1
g ) + 3 =

1

log(2) · g · log(q) + 3 ∈ O(log(q)) . (7)

It follows that in total an expected number of O(log(q) · q2−
2
g ) relations

(3) have to be considered until the tree has Nmax edges. As each of these
relations can be obtained in an expected time which is polynomially bounded
in log(q), we conclude that a tree with Nmax edges can be constructed in an
expected time of

Õ(q
2− 2

g ) .

Note that the depth of the tree is always bounded by s. In particular,
as s ∈ O(log(q)), the depth of the tree is also in O(log(q)).

Step 4 – relation generation

We now assume we have constructed a tree T with Nmax = ⌈q1−
1
g
+ 1

g2 ⌉ edges.

Similarly to the above let

D :=
{

P1 + · · ·+ Pg ∈ Divg(C)| ∀i = 1, . . . , g : Pi ∈ F ∪ (T − {∗})
}

,

Dns := D ∩Dg,ns .

Then D contains ≥ 1
g! · (#F + #(T − {∗}))g ≥ 1

g! · q
g−1+ 1

g elements. By

the first two inequalities of (6), Dns contains at least 3
4g! · q

g−1+ 1
g elements.

This means that the probability that the divisor D in relation (3) splits into
elements of the factor base or vertices of the tree is

≥ 3

8g!
· q−(1− 1

g
)
.

The expected number of relations

[D]− deg(D) · [P0] = αa+ βb (8)

which have to be considered in each iteration of the For-loops is in O(q
1− 1

g ).
As each relation (8) can be obtained in an expected time which is polynomi-
ally bounded in log(qg), this means that the expected running time of one

iteration in the For-loops is in Õ(q
1− 1

g ).

We have to generate 2(k + u) · t ∈ Õ(#F) = Õ(q
1− 1

g ) “combined”
Full relations. This means that the total running time of this step of the

algorithm is in Õ(q
2− 2

g ).
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Step 5 – linear algebra

The linear algebra takes place on a sparse matrix with Õ(q1−1/g) rows and
O(q1−1/g) columns.

As the tree has depth O(log(q)) and the size of the generating system
is by assumption polynomially bounded in log(q), every row of the matrix
(R|S) contains only log(q)O(1) non-zero entries. As pointed out in the previ-
ous subsection, the computation can then be performed in an expected time
of Õ(q2−2/g).

Final result

We have seen that Steps 1 – 5 of the algorithm all have an expected run-

ning time of Õ(q
2− 2

g ). Moreover, by Proposition 3.4 and the properties of
the linear algebra algorithm, after an expected number of O(log log(N)) ⊆
O(log(q)) restarts of the computation of the matrix (R|S), the linear alge-
bra computation leads the solution to the discrete logarithm problem. This
means that the total running time is in

Õ(q
2− 2

g ) ,

in accordance with the statement in Proposition 3.1.

Storage requirements

Clearly one can obtain: Only the first Õ(q
1− 1

g
+ 1

g2 ) registers are used and
the bit-length of each number stored is polynomially bounded in log(q).

3.4 On the number of special divisors

The purpose of this subsection is to prove Proposition 3.6.

We consider curves of a fixed genus g over finite fields.

Let C be such a curve over Fq. Let Divg(C) be the set of effective divisors
of degree g on C, and let E be a divisor of degree g on C. We have the
surjective map Divg(C) −→ Cl0(C), D 7→ [D] − [E]. Note that the set of
special divisors of degree g is exactly the subset of Divg(C) where the map
to Cl0(C) is not injective.

The number of special divisors is therefore bounded from above by
2 (# Divg(C)−# Cl0(C)), and it suffices to prove that # Divg(C)−# Cl0(C) ∈
O(qg−1).

We follow the exposition to the zeta-function in [Sti93]. Note however
that we use different symbols for the indices.

Let L =
∏2g

i=1(1 − αit) ∈ C(t) be the L-polynomial of C, let An be the
number of effective divisors of degree n, let Bn be the number of prime
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divisors of degree n on C, and let4

Sn :=

2g
∑

i=1

αn
i .

As the αi can be arranged such that αiαg+i = q for all i = 1, . . . , g, we have

# Cl0(C) = L(1) ∈ qg − S1 · qg−1 +O(qg−1) .

with S1 ∈ O(
√
q). We thus have to show that

Ag ∈ qg − S1 · qg−1 +O(qg−1) .

We will in fact show the more general statement

An ∈ qn − S1 · qn−1 +O(qn−1) (9)

for any fixed n ∈ N.

Let us fix the following definition.

Definition 3.7 Let D be an effective divisor of degree n on C such that
D =

∑n
ℓ=1Dℓ, where Dℓ is a sum of eℓ prime divisors of degree ℓ. Then the

vector e = (eℓ)ℓ ∈ Nn
0 (with

∑

ℓ ℓeℓ = n) is called the decomposition type of
D.

By sorting effective divisors of degree n by decomposition types, we obtain

An =
∑

e

∏

ℓ

(

Bℓ + eℓ − 1

eℓ

)

, (10)

where the sum runs over all e ∈ Nn
0 with

∑

ℓ eℓℓ = n and the products run
over ℓ ∈ {1, . . . , n}. We have

A1 = B1 = q + 1− S1 ,

which establishes the claim for n = 1. So let n ≥ 2. By [Sti93, Proposition
V.2.9], we have

Bℓ =
1

ℓ
·
∑

m|ℓ

µ
( ℓ

m

)

(qm − Sm) ∈ 1

ℓ
· qℓ +O(qℓ/2)

⊆ 1

ℓ
· qℓ +O(qℓ−1)

(11)

for ℓ ≥ 2.

4The definition of Sn follows Equation (2.25) in [Sti93]. In [Sti93, Corollary V.1.17] an
analogous definition is made with opposite sign.
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This implies that

An ∈
∑

e

1

e1!
(q − S1)

e1 ·
∏

ℓ≥2

1

eℓ!
· 1

ℓeℓ
· qℓ·eℓ +O(qn−1)

⊆
∑

e

(
∏

ℓ

1

eℓ!
· 1

ℓeℓ
) · (qn − e1 · S1 · qn−1) +O(qn−1) .

In order to derive (9) it remains to be shown that

∑

e

∏

ℓ

1

eℓ!
· 1

ℓeℓ
= 1 (12)

and
∑

e

e1 ·
∏

ℓ

1

eℓ!
· 1

ℓeℓ
= 1 . (13)

Equation (12) is equivalent to

∑

e

n! ·
∏

ℓ

1

eℓ!
· 1

ℓeℓ
= n! . (14)

This is true because for any e ∈ Nn
0 with

∑

ℓ eℓℓ = n, the set of permutations
on n elements having exactly eℓ ℓ-cycles (for ℓ = 1, . . . , n) has n! ·∏ℓ

1
eℓ!
· 1

ℓeℓ

elements.

We come to Equation (13). Note that we have a bijection

{e ∈ Nn
0 |

∑

ℓ eℓℓ = n, e1 6= 0} −→ {e′ ∈ Nn−1
0 | ∑

ℓ e
′
ℓℓ = n− 1} ,

e 7→ e′

with e′1 = e1 − 1 and e′i = ei for all i = 1, . . . , n− 1.
Equation (13) is then equivalent to

∑

e′

∏

ℓ

1

e′ℓ!
· 1

ℓe
′

ℓ

= 1 , (15)

where the sum runs over all e′ ∈ Nn−1
0 with

∑

ℓ e
′
ℓℓ = n−1 and the products

run over ℓ ∈ {1, . . . , n− 1}. We already know that this equation holds.

3.5 Finding a generating system

The main purpose of this subsection is to show Proposition 3.2. Note that
in Proposition 3.2 we only consider curves of a fixed genus, represented by
plane models of bounded degree. In this subsection, we consider arbitrary
curves over finite fields. We show below how one can efficiently compute
a small system of degree 0 divisor classes which with a probability ≥ 1

2
generates the degree 0 class group, provided the L-polynomial is known (see
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Proposition 3.17). Proposition 3.2 follows from this statement and the fact
– already mentioned in subsection 3.2 –, that one can then compute the
L-polynomial in a time which is polynomially bounded in log(q) ([Pil90],
[Pil91]). On our way to prove Proposition 3.17, we also show how one can
efficiently compute a uniformly randomly distributed effective divisor of a
specific degree, provided one knows the L-polynomial, a result which might
be of independent interest (see Proposition 3.16).

As usual, curves are represented by plane models, and divisors are given
in ideal representation, as detailed in Section 2.

Proposition 3.8 Given a curve C over a finite field Fq, represented by a
plane model of degree d, and a natural number n, one can with a randomized
algorithm

• decide if C has an Fq-rational point

• if this is the case, compute such a point which is uniformly randomly
distributed in C(Fq)

in an expected time which is polynomially bounded in d · log(q).

Proof. We still assume that the covering x : C −→ P1
Fq

is separable, and as

usual we set r := deg(x).

By the Hasse-Weil bound, we have #C(Fq) ≥ q+1−2gq1/2. This means
that for q ≥ 4g2, C(Fq) is non-empty. The algorithm depends on a case
distinction:

If q < d4 we compute a list of the elements in C(Fq) by iterating over
all elements P of P1(Fq) and computing for each such P the divisor x−1(P )
in free representation. If it turns out that C(Fq) is empty, we output that
this is the case, otherwise we choose one of the points in C(Fq) uniformly at
random. We have already argued in subsection 3.3 that this computation
can be performed in an expected time which is polynomially bounded in
d · q, that is, in an expected time which is polynomially bounded in d as q
is also polynomially bounded in d by assumption.

If q ≥ d4 (such that q > 4g2 and therefore C(F) 6= ∅), we proceed with
the following algorithm.

Algorithm for computation of a uniformly randomly distributed

rational point on a curve over a finite field

Input: A curve C/Fq, represented by a plane model, with C(Fq) 6= ∅.

1. Choose a point P ∈ P1(Fq) uniformly at random.

2. Compute x−1(P ) in free representation.
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3. Let P1, . . . , Pa be the distinct Fq-rational points occurring in x−1(P ).

(The other prime divisors in the support of x−1(P ) are ignored, and a = 0
is possible.)

4. Choose a number i in {1, . . . , r} uniformly at random.

5. If i ≤ a, output Pi, otherwise go back to Step 1.

Without any assumption on q and g, this algorithm computes a uniformly
randomly distributed point in C(Fq) provided that this set is non-empty, as
we show now.

The computation of Steps 1 – 5 can be performed in an expected time
which is polynomially bounded in d · log(q).

Let us analyze the algorithm: After Step 4 the following always holds:
The random variable (P, i) is uniformly distributed on the set P1(Fq) ×
{1, . . . , r}, which has (q+1) · r elements. This means that in every iteration
of the algorithm, the probability that the algorithm terminates in Step 5 is

always
#C(Fq)
(q+1)·r , and if this is the case, every point in C(Fq) is chosen with the

same probability of 1
#C(Fq) .

It follows that the output of the algorithm is a uniformly randomly
distributed element in C(Fq). Moreover, the expected number of iterations

is (q+1)·r
#C(Fq) . In order to prove the proposition, we therefore have to show that

the quantity q+1
#C(Fq) is polynomially bounded in d · log(q); we show that it is

polynomially bounded in g (which in turn is polynomially bounded in d).
We have #C(Fq) ≥ q+1−2gq1/2 by the Hasse-Weil bound. For q ≥ 16g2

we have #C(Fq) ≥ q
2 + 1, and therefore q+1

#C(Fq) ≤ 2. On the other hand, for

q < 16g2 the quantity q+1
#C(Fq) is clearly polynomially bounded in g. 2

Proposition 3.9 Given a curve C over a finite field Fq, represented by a
plane model of degree d and a natural number n, one can with a randomized
algorithm

• decide if C has a prime divisor of degree n

• if this is the case compute such a prime divisor which is uniformly
randomly distributed in the set of all prime divisors of C of degree n

in an expected time which is polynomially bounded in d · n · log(q).

Proof. As in subsection 3.4, let Bn be the number of prime divisors of C of
degree n. Then we have (cf. [Sti93, Corollary V.2.10.]):

Bn ≥
qn

n
− (2 + 7g) · q

n/2

n

For q > (2 + 7g)2/n we therefore have Bn ≥ 1.
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Similarly to the algorithm for the previous proposition, we have a case
distinction according to q > (2 + 7d2)2.

In both cases we consider Fqn-rational points of CFqn . Note that given
such a point, one can compute the associated prime divisor (=closed point)
of C by computing the intersection of the corresponding prime ideal with the
function field Fq(C) in a time which is polynomially bounded in d ·n · log(q)
(cf. Section 2).

If q ≤ (2 + 7d2)2, we iterate over all Fqn-rational points of CFqn (as
described at the beginning of the proof of Proposition 3.8). For each such
point we compute the associated prime divisor (=closed point) of C, and
check if this is a prime divisor of degree n. Like this we check if a prime
divisor of degree n on C exists, and if this is the case, we uniformly randomly
choose one.

So let now q > (2 + 7d2)2. Then in particular q > (2 + 7d2)2/n, and
therefore there is a prime divisor of degree n on C. Then the algorithm
is also easy: We first choose an Fqn-rational point of CFqn uniformly at
random compute the associated prime divisor (=closed point) of C. If the
prime divisor has degree n, we output it, otherwise we repeat this process.

Here we compute the Fqn-rational point using an algorithm for Propo-
sition 3.8, adapted to work over extension fields. The expected time of one
iteration is polynomially bounded in d ·n · log(q). We therefore have to show
that the number of iterations is polynomially bounded in d · n · log(q).

The number of points in C(Fqn) such that the associated prime divisor
of C has degree n is n · Bn. Therefore the probability that a uniformly
distributed point in C(Fqn) does not give rise to a prime divisor of degree

n is
#C(Fqn )−nBn

#C(Fqn ) which is ≤ (2+9g)·qn/2

qn−2gqn/2 = (2+9g)

qn/2−2g
. For q ≥ (4 + 20g)2/n

this is ≤ 1
2 . If this bound in not satisfied, the probability that a uniformly

distributed point in C(Fqn) does give rise to a prime divisor of degree n is
in 1

gΩ(1) . 2

We aim at giving an efficient algorithm to compute a random effective
divisor which is uniformly randomly distributed in the set of all effective
divisors of a specific degree. We give some definitions and notations first for
which we fix a curve C over a finite field.

Definition 3.10 Let n ∈ N0 and m ∈ N. Then, as usual, an effective
divisor on C of degree n which is the sum of prime divisors of degree at
most m is called m-smooth or (n,m)-smooth. An effective divisor on C of
degree n which is the sum of prime divisors of degree exactly m is called
m-homogeneous or (n,m)-homogeneous.

Notation 3.11 Let n ∈ N0 and m ∈ N. Then the number of effective
divisors on C of degree n which split into prime divisors of degree ≤ m (resp.
= m, resp. ≥ m) is denoted by ψ≤(n,m) (resp. ψ=(n,m), resp. ψ≥(n,m)).
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Note that in the notation of subsection 3.4,

ψ≤(n, n) = An and ψ=(n, n) = Bn .

Definition 3.12 Let D be an (r ·m,m)-homogeneous divisor on C. Then
the multiplicity type µ ∈ Nr

0 of D is defined as follows: µi is the number of
prime divisors occurring with multiplicity exactly i in D.

Note that
∑r

i=1 iµi = r.

Proposition 3.13 There exists a randomized algorithm such that the fol-
lowing holds: Given a natural number m, a curve C over a finite field Fq,
represented by a plane model of degree d, such that C has at least one prime
divisor of degree m, the number Bm of prime divisors of degree m on C
as well as another natural number r, the algorithm computes an effective
divisor on C which is uniformly randomly distributed among all (r ·m,m)-
homogeneous effective divisors. Moreover, the expected running time is poly-
nomially bounded in m · r · d · log(q).

Proof. Before we come to the proof, we would like to caution the reader
that it is incorrect to merely choose r prime divisors of degree m uniformly
at random; this would not lead to a uniformly distributed output.

Let an instance as in the proposition be given.

An outline of the algorithm is as follows: First we compute a random
vector µ ∈ Nr

0 whose distribution is equal to the distribution of the multi-
plicity type of an effective divisor which is uniformly randomly distributed
among all (r ·m,m)-homogeneous divisors. Then we choose prime divisors
of degree m Pi,j with i = 1, . . . , r and j = 1, . . . , µi, without repetition such
that the tuple (Pi,j)i,j is uniformly distributed among all such tuples. We
output the divisor

∑r
i=1 i ·

∑µi
j=1 Pi,j . The output is then clearly uniformly

distributed among all (r ·m,m)-homogeneous divisors.

As for the details, we compute the Pi,j iteratively, discarding duplicates.
The expected running time of this part of the computation is then as claimed.
It remains to be shown that the vector µ can be computed in the desired
expected time.

The notion of multiplicity type immediately generalizes to arbitrary free
abelian monoids, where previously we considered the free abelian monoid
generated by prime divisors of degree m on C. And a free abelian monoid on
a finite set P is the same as the set of multisets whose elements are in P (only
the notation is different). As above, let Bm be the number of prime divisors
of degree m on C. Then the multiplicity type of a multiset which is uniformly
randomly distributed among all multisets of cardinality r and elements from
{1, . . . , Bm} has the desired distribution. Now, the multisets of cardinality
r with elements in {1, . . . , Bm} are in canonical bijection with the tuples
(x1, . . . , xr) ∈ {1, . . . , Bm}r with xi ≤ xj for i < j. These tuples are – as is
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well known – in bijection with the tuples (x′1, . . . , x
′
r) ∈ {1, . . . , Bm + r− 1}

with x′i < x′j (via x′i = xi + i−1), and these are in bijection with the subsets
of cardinality r of {1, . . . , Bm + r − 1}.

Note that Bm is part of the input. So, to compute the random vec-
tor µ, we can proceed as follows: We choose a subset of cardinality r from
{1, . . . , Bm + r − 1} uniformly at random. From this set, we compute the
corresponding tuple (x1, . . . , xr) and then the multiplicity type of the cor-
responding multiset. Clearly, all this can be done in an expected time of
(r · log(Bm))O(1) ⊆ (r ·m · log(q))O(1). 2

Lemma 3.14 Given the L-polynomial of a curve of genus g over a finite
field Fq and two natural numbers m ≤ n, one can compute the numbers
ψ≤(n,m), ψ=(n,m) and ψ≥(n,m) in a time which is polynomially bounded
in n · g · log(q).

The proof of this lemma is inspired by the product formula for the zeta-
function. The zeta-function is

∑

i∈N

Ait
i =

∑

D an eff. divisor

tdeg D

=
∏

P a prime divisor

(1− tdeg(P ))−1 =
∏

ℓ∈N

(1− tℓ)−Bℓ .

Similarly, for all m ∈ N,

∑

i∈N

ψ≤(i,m)ti =
∏

ℓ≤m

(1− tℓ)−Bℓ , (16)

∑

i∈N

ψ=(i,m)ti = (1− tm)−Bm , (17)

and
∑

i∈N

ψ≥(i,m)ti =
∏

ℓ≥m

(1− tℓ)−Bℓ . (18)

The algorithm to compute ψ≤(n,m) is as follows:
Let the L-polynomial L(t) be given. We first compute S1, . . . , Sm via

Newton’s identities (that is, via the equation L′(t) = −L(t) · (∑∞
i=1 Sit

i−1))
from the coefficients of the L-polynomial. From these we computeB1, . . . , Bm

using (11). Then we compute
∏

ℓ≤m(1− tℓ)Bℓ and the inverse of its residue

class modulo tn+1, which is
∑n

i=1 ψ≤(i,m) [t] i
(tn+1).

The other algorithms operate similarly. 2

Lemma 3.15 Given the L-polynomial of a curve g over a finite field Fq

and natural numbers n,m with m ≤ n, one can with a randomized algorithm
compute a random tuple e ∈ Nn

0 with
∑

ℓ ℓeℓ = n whose distribution is equal
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to the distribution of the decomposition type of a random effective divisor
on C which is uniformly distributed among all (n,m)-smooth divisors in an
expected time which is polynomially bounded in g · n · log(q).

Proof. The algorithm operates in a recursive way and is based on partition-
ing the set of (n,m)-smooth divisors into subsets, according to how many
prime divisors (with multiplicities) of degree m occur in an (n,m)-smooth
divisor.

If m ≥ 2 and ℓ ∈ {0, . . . , ⌊ n
m⌋}, there are

ψ=(ℓm,m) · ψ≤(n− ℓm,m− 1)

(n,m)-smooth divisors of the form
∑ℓ

i=1 Pi + D′, where the Pi are prime
divisors of degree m and D′ is an m− 1-smooth divisor.

Algorithm for computation of a random tuple reflecting the dis-

tribution type of a random smooth divisor

Input: L, the L-polynomial of a curve over a finite field and two natural numbers
n,m. (The algorithm is called by A(L, n,m)).

If m = 1, output (n, 0, . . . , 0) ∈ Nn
0 . Otherwise:

1. Compute ψ≤(n,m) and the numbers aℓ ←− ψ=(ℓm,m)·ψ≤(n−ℓm,m−
1) for ℓ = 0, . . . , ⌊ n

m⌋.

2. Let bℓ ←−
∑ℓ

i=0 ai for ℓ = 0, . . . , ⌊ n
m⌋; let b−1 ←− 0.

3. Choose a natural number x ≤ ψ≤(n,m) uniformly at random.

4. Determine ℓ such that x ∈ [bℓ−1 + 1, bℓ].

5. Output

(0, . . . , 0, ℓ, 0, . . . , 0) + (A(L, n− ℓm,m− 1) | 0) ∈ Nn
0 ,

where the non-trivial entry in the first tuple is at index m and (A(L, n−
ℓm,m−1) | 0) is the concatenation of the output of the algorithm applied
to L, n− ℓm,m− 1 and the zero-tuple of length ℓm.

By the remarks above the algorithm, the distribution of the random
variable ℓ in Step 4 of the algorithm is equal to the distribution of the number
of (n,m)-smooth divisors being the sum of ℓ prime divisors of degree m and
an m− 1-smooth divisor.

It follows by induction onm that the algorithm operates correctly. More-
over, a running time as claimed can be achieved by Lemma 3.14. 2

We now easily obtain:
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Proposition 3.16 Given a curve C over a finite field Fq, represented by a
plane model of degree d, as well as its L-polynomial, and a natural number
n, one can with a randomized algorithm

• decide if there is an effective divisor of degree n on C

• compute a random effective divisor of degree n which is uniformly ran-
domly distributed in the set of all effective divisors of degree n on C

in an expected time which is polynomially bounded in d · n · log(q).

Proof. The first statement is obvious because the L-polynomial is given.
Given the previous results, the algorithm for this proposition is straight-

forward: We compute a random tuple e ∈ Nn
0 with

∑

ℓ eℓℓ = n whose
distribution is equal to the distribution of the decomposition type of a ran-
dom effective divisor on C which is uniformly distributed among all effective
divisors of degree n.

Then for each ℓ = 1, . . . , n, we compute a uniformly randomly distributed
(eℓℓ, ℓ)-homogeneous effective divisor Dℓ.

We output the divisor
∑

ℓDℓ.

By Proposition 3.13 and Lemma 3.15 these computations can be per-
formed in the claimed expected running time. 2

Proposition 3.17 Given a curve C over a finite field Fq, represented by
a plane model of degree d as well as its L-polynomial and a divisor D0 of
degree 1 whose height is polynomially bounded in d · log(q), one can with
a randomized algorithm compute a uniformly randomly distributed element
of Cl0(C), represented by an along D0 reduced divisor, in an expected time
which is polynomially bounded in d · log(q).

Proof. Every divisor D of degree ≥ 2g− 1 is non-special and thus the linear
system |D| is isomorphic to Pdeg(D)−g(Fq).

Therefore, if D is an effective divisor which is uniformly distributed
among all divisors of some degree n ≥ 2g−1, [D−deg(D) ·D0] is uniformly
distributed in Cl0(C). Moreover, 2g − 1 ≤ (d− 1)(d− 2)− 1.

In order to compute the desired uniformly distributed divisor class, we
first compute a uniformly distributed effective divisor D of degree (d−1)(d−
2)− 1, and then we compute its reduction along D0.

The computations can be performed in the claimed expected running
time by the previous proposition and remarks in Section 2. 2

We now prove:

Proposition 3.18 There exists a randomized algorithm such that the fol-
lowing holds: Given a curve C over a finite field Fq, represented by a plane
model of degree d, as well as its L-polynomial and a divisor D0 of degree 1
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whose height is polynomially bounded in d · log(q), the algorithm computes
a system of elements c1, . . . , cu ∈ Cl0(C), represented by along D0 reduced
divisors, where u := eℓ with e := ⌈log2(# Cl0(C))⌉ and ℓ := ⌈log2(e) + 1⌉.
Moreover, the expected running time is polynomially bounded in d · log(q),
and with a probability ≥ 1

2 , the system c1, . . . , cu is a generating system of
Cl0(C).

The proposition immediately follows from the preceding proposition and
the following lemma (cf. the proof of [Heß05, Lemma 50]).

Lemma 3.19 Let G be a finite abelian group with N elements, let e :=
⌈log2(N)⌉, ℓ := ⌈log2(e) + 1⌉, u := eℓ, and let g1, . . . , gu be uniformly dis-
tributed random elements of G. Then with a probability of ≥ 1

2 , g1, . . . , gu

generate G.

Proof. To begin with, let H be a proper subgroup of G, and let g1, . . . , ga

be uniformly randomly distributed elements from G. Then as #H
#G ≤ 1

2 , with

a probability ≤ 1
2a , all gi lie in H, that is, with a probability ≥ 1 − 1

2a ,
H ( 〈H, g1, . . . , ga〉.

It follows by induction on b: Let a, b ∈ N, and let g1, . . . , gab be uniformly
randomly distributed elements from G. Then with a probability ≥ (1 −
1
2a )b ≥ 1− b

2a , 〈g1, . . . , ga〉 contains at least min{N, 2b} elements.

With b := e and a := ℓ, we have 2b ≥ N and b
2a ≤ 1

2 . The lemma thus
follows. 2

Proposition 3.2 follows from Proposition 3.18 and the fact – already
mentioned in subsection 3.2 – that for curves of a bounded degree over
finite fields, one can compute the L-polynomial in polynomially bounded
time in log(q), where Fq is the ground field.

4 Index calculus for curves of lower-bounded

genus

4.1 Overview

In order to establish Theorem 2, we combine algorithms for Theorem 1 with
an algorithm for “sufficiently high genus curves”. For this second algorithm,
we make use of some results from [Heß05], in particular a certain result on
smoothness probabilities. We note that the result we need is merely an easy
corollary of a result in [Heß05] which contains much more information if the
genus of the curve is in a certain sense large against the bit-length of the
cardinality of the ground field.
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Outline of the proof

We give an outline of the proof of Theorem 2. Below we prove the following
result.

Proposition 4.1 Let C > 0 be fixed. Then there exists some g1 ∈ N such
that one can solve the discrete logarithm problem in the degree 0 class groups
of curves of genus ≥ g1 in an expected time of O((qg)C), where q is the
cardinality of the ground field and g is the genus.

We show now how one can obtain Theorems 2 via this result and Theo-
rem 1. We first consider the second statement in Theorem 2.

Let g0 be a natural number ≥ 2, and let C := 2
g0

(1 − 1
g0

). Let g1 be as
in the proposition for this constant C.

Then given an instance of the discrete logarithm problem with a curve
of genus g ≥ g0, we first compute its genus g. Then we proceed with a
case distinction. If the genus is ≥ g1 we apply an algorithm which satisfies
Proposition 4.1. If the genus is < g1, we apply an algorithm which satisfies
Theorem 1 for genus g curves.

We now come to the first statement in Theorem 2. By the lower bound
on # Cl0(C) from [LMD90] stated in Section 2 (Equation (2) on page 9), qg is
in Õ(# Cl0(C)). The second statement in Theorem 2 therefore immediately
also gives the first statement.

4.2 The algorithm

We now outline an algorithm for Proposition 4.1, accompanied by state-
ments on running times. The algorithm is substantially easier to state than
the index calculus algorithm in Section 3: It is a ”basic” index calculus al-
gorithm without large prime variation. The algorithm is closely related to
the algorithms in [Heß05], and we make use of various results from [Heß05].

For the index calculus algorithm we again need a generating system.
We could proceed as in Section 3: Using a very small system which with
probability ≥ 1

2 is a generating system and terminating the algorithm if a
predefined time bound is reached. However, in the situation we are con-
cerned with here, there is an easier solution: It is shown in [Heß05] that one
can compute a generating system of a size which is polynomially bounded
in q · g in an expected time which is also polynomially bounded in q · g (see
[Heß05, Theorem 34 and Algorithm 35]).

Note that generally if any subroutine of our algorithm has an expected
running time which is polynomially bounded in q · g, then this subroutine
in particular has an expected running time of O(qCg) for g large enough.
Thus if such a subroutine is executed once or even a number of times which
is polynomially bounded in q · g, then the running time of this subroutine is
not critical for the establishment of the desired result.
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In the algorithm, we again first compute the group order N and factor
it. We fix an appropriate smoothness bound S and define the factor base
as the set of prime divisors on C of degree ≤ S. After this, we generate
a relation matrix. Here we follow Step 4 of the algorithm for Theorem 1;
generating the relations in a different way however. After this, we proceed
as in the algorithm for Theorem 1.

We now describe the important steps of the algorithm.

Obviously, we only have to establish Proposition 4.1 for constants C of
the form C = 1

c for c ∈ N. So let c ∈ N be fixed, and let C := 1
c .

As usual, let us fix an instance consisting of a curve C/Fq, a divisor D0

of degree 1, a, b ∈ Cl0(C) with b ∈ 〈a〉 and a generating system c1, . . . , cu.

Computation of the group order and factorization

A. Lauder and D. Wan have shown in [LW08] that one compute the order of
the degree 0 class group of a curve over Fq given by a plane model of degree
d in a time which is polynomially bounded in q · d. (In fact, if q = pe with
p prime and n ∈ N, the running time is polynomially bounded in p · e · d.)
Note that as by our assumption d ∈ O(g), the running time is in particular
polynomially bounded in q · g.

The order can be factored in subexponential time in # Cl0(C) (cf. [Pom87]).
This implies that it can be factored in subexponential time in qg too. There-
fore this computation is not time critical.

Construction of the factor base

We first compute the genus g. We fix a ”smoothness bound” m := ⌈ g
8c⌉,

and let the factor base F be the set of prime divisors of degree ≤ m. Here
we construct the set of prime divisors by iterating over all prime divisors
of degree ≤ m on P1

Fq
and considering the preimages under the covering

x : C −→ P1
Fq

.

The factor base has ≤ r · (q + 1)m elements, where r := deg(x). For
g ≥ 8c, we have m ≤ g

4c . As furthermore r ≤ d ∈ O(g), the size of the factor

base is then (for g ≥ 8c) in Õ(q
g
4c ), and the expected running time is also

in Õ(q
g
4c ).

Relation generation

Let t ∈ N be defined as in the algorithm for Theorem 1. Now as in the
algorithm for Theorem 1, we generate relations in two different ways: First
we generate (k+2u)·t relations as follows: We choose α, β, s1, . . . , su ∈ Z/NZ

uniformly at random and choose uniformly randomly a divisor D in the class
s1c1 + · · · + sucu + αa + βb + (2g − 1) · [D0]. Second for i1 = 1, . . . , k, we
generate t relations by again choosing α, β, s1, . . . , su ∈ Z/NZ uniformly at
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random and choosing uniformly randomly a divisor D in the class [Fi1 ] −
[D0] + s1c1 + · · · + sucu + αa + βb + (2g − 1) · [D0]. In any case, if D is
m-smooth, we have obtained a relation between input elements and factor
base elements.

Each iteration can be performed in an expected time of (g log(q))O(1) ·u.
Note also that as the random divisor class s1c1 + · · · + sucu + αa + βb +
(2g − 1)[D0] is uniformly distributed in the set of divisor classes of degree
2g−1 and divisors of degree ≥ 2g−1 are non-special, the random divisor D
is uniformly distributed in the set of all effective divisors of degree 2g − 1.

In order to bound the expected running time for the generation of one
relation between input elements and factor base elements, we need a lower
bound on the probability that a uniformly distributed random divisor of
degree 2g − 1 is m-smooth. For this we can use [Heß05, Theorem 8] which
gives a much more precise statement than the one we need. In fact, just
from the fact that m ∈ Ω(2g − 1), we learn from [Heß05, Theorem 8] that
the probability in question is in 1

gΩ(1) .

This establishes that the expected running time needed to generate one
relation is in (g · log(q))O(1) · u, and the total expected time to generate
the relation matrix is therefore in (g · log(q))O(1) · u · Õ(#F). For g ≥ 8c
(such that the size of the factor base is in Õ(q

g
4c )) this is contained in

(g · log(q))O(1) · u · Õ(q
g
4c ).

For g large enough, the expected time for the construction of the relation
matrix is then in Õ(q

g
2c ), as is the number of non-trivial entries.

Linear algebra

We use an algorithm from sparse linear algebra, as in the previous algorithm.

For g large enough the linear algebra then takes an expected time of Õ(q
3g
4c )

Final result

We see that for g large enough, the expected running time is in O(q
g
c ).

5 Index calculus for elliptic curves over extension

fields of a fixed degree

5.1 Overview

In this section we establish Theorem 3. The algorithm is closely related to
the algorithm for Theorem 1, and the structures of the algorithms are the
same. The key differences concern the definition of the factor base and the
relation generation.
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In subsection 5.3 we give an index calculus algorithm with double large
prime variation which leads to the following proposition. We alert the reader
to the similarity with Proposition 3.1.

Proposition 5.1 Let us fix some n ≥ 2. Then there exists a randomized al-
gorithm such that the following holds: Upon input of an elliptic curve E/Fqn,
elements A,B ∈ E(Fqn) with B ∈ 〈A〉 and a system C1, . . . , Cu of elements
of E(Fqn), if the algorithm terminates, it outputs the discrete logarithm of
B with respect to A. Moreover, if C1, . . . , Cu forms a generating system of
E(Fqn) and u is polynomially bounded in log(q), the expected running time

of the algorithm is in Õ(q2−
2
n ).

The algorithm uses only the first Õ(q1−
1
n

+ 1
n2 ) registers, and each register

always contains elements whose bit-length is polynomially bounded in log(q).

Together with the arguments in Section 3 this proposition establishes
Theorem 3.

The algorithm for this proposition is also quite similar to the algorithm
for Proposition 3.1. The only essential difference is that we define the factor
base and generate the relations is a different way.

Briefly, the factor base is defined as follows: We fix a covering ϕ : E −→
P1

Fq
of degree 2 satisfying a certain condition which is stated below (Con-

dition 5.8). Then the factor base is some subset of {P ∈ E(Fqn) | ϕ(P ) ∈
P1(Fq)} consisting of ⌈q1− 1

n ⌉ or ⌈q1− 1
n ⌉+ 1 elements.

Relations are generated by what we call a decomposition algorithm. This
algorithm relies on solving systems of multivariate polynomial equations over
Fq. The systems are derived from so-called summation polynomials.

In the next subsection we give some background information and specify
what exactly we mean by a decomposition algorithm, following [Die10]. We
also give the key result for the analysis of the algorithm in the present
situation. More information and proofs can be found in [Die10]. Then in
subsection 5.3 we discuss the index calculus algorithm.

5.2 The decomposition algorithm

The key properties on the summation polynomials we need are stated in the
following two propositions.

Proposition 5.2 Let E be an elliptic curve over a field k, and let us fix a
covering ϕ : E −→ P1

k of degree 2 with ϕ ◦ [−1] = ϕ. Let m ∈ N with m ≥ 2.
Then there exists an up to multiplication by a non-trivial constant unique ir-
reducible multihomogeneous polynomial Sϕ,m ∈ k[X1,Y1,X2,Y2, . . . ,Xm,Ym]
such that for all P1, . . . , Pm ∈ E(k) we have Sϕ,m(ϕ(P1), . . . , ϕ(Pm)) =
0 ←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} such that ǫ1P1 + · · · ǫmPm = O. The poly-
nomial Sϕ,m has multidegree (2m−2, . . . , 2m−2).
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Definition 5.3 We call a multihomogeneous polynomial Sϕ,m as in the
proposition an mth summation polynomial of E with respect to ϕ.

Remark 5.4 The summation polynomials introduced here are the “homog-
enized variants” of the summation polynomials in [Sem04].

Proposition 5.5 Given an elliptic curve in Weierstraß form over a finite
field Fq m ∈ N with m ≥ 2 and ϕ : E −→ P1

k of degree 2 with ϕ ◦ [−1] = ϕ,
the mth summation polynomial with respect to the covering ϕ : E −→ P1

Fq

can be computed with a randomized algorithm in an expected time which is
polynomially bounded in em

2 · log(q).

Note that for fixed m the expected running time is polynomially bounded
in log(q).

These two propositions are [Die10, Proposition 2.1] and [Die10, Propo-
sition 2.3].

Now let K|k be a field extension of degree n with basis b1, . . . , bn, let E
be an elliptic curve over K (rather than over k!), and let ϕ : E −→ P1

K be
a covering of degree 2 with ϕ ◦ [−1] = ϕ.

Now let P ∈ E(K). Let Sϕ,n+1(X1,Y1, . . . ,Xn,Yn, ϕ(P )) be a polyno-
mial obtained by inserting the coordinates of ϕ(P ) for the variables
Xn+1, Yn+1 in an (n + 1)th summation polynomial of E with respect to ϕ;
note that this polynomial is unique up to multiplication with a non-trivial
constant.

Let S(1), . . . , S(n) ∈ k[X1,Y1, . . . ,Xn,Yn] be defined by

n
∑

j=1

bjS
(j) = Sϕ,n+1(X1,Y1, . . . ,Xn,Yn, ϕ(P )) . (19)

Clearly, if S(j) is non-zero, just as Sϕ,n+1 it is multigraded of multidegree
(2n−1, . . . , 2n−1). Note also that a different basis of K|k would give rise
to a system of polynomials over k which generate the same k-vector space.
The same holds if the summation polynomial is multiplied by a non-trivial
constant or if the coordinates of ϕ(P ) are simultaneously multiplied by a
non-trivial constant. In particular, the subscheme V (S(1), . . . , S(n)) of (P1

k)
n

does not depend on these choices.
For Q1, . . . , Qn ∈ P1(k), the following conditions are equivalent:

• There exist P1, . . . , Pn ∈ E(K) such that P1 + · · · + Pn = P and
x(Pi) = Qi for all i = 1, . . . , n.

• Sϕ,n+1(Q1, . . . , Qn, ϕ(P )) = 0.

• For all j = 1, . . . , n, S(j)(Q1, . . . , Qn) = 0, that is, (Q1, . . . , Qn) is a
k-rational point of V (S(1), . . . , S(n)).
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Definition 5.6 A tuple (P1, . . . , Pn) ∈ E(K)n with P1 + · · ·+ Pn = P and
ϕ(Pi) ∈ P1(k) for i = 1, . . . , n is called a decomposition of P with respect
to ϕ. Let such a decomposition be given and let Qi := ϕ(Pi). If now
(Q1, . . . , Qn) is an isolated point of V (S(1), . . . , S(n)), the decomposition is
called ϕ-isolated.

The “decomposition problem” is now the following computational prob-
lem: Given a prime power q, n ∈ N, an Fq-basis b1, . . . , bn of Fqn |Fq, an
elliptic curve E over Fqn (given by a Weierstraß model), ϕ : E −→ P1

k as
well as P ∈ E(Fqn) of degree 2 with [−1] ◦ϕ = ϕ, output a list of decompo-
sitions of P with respect to ϕ containing all ϕ-isolated decompositions. A
“decomposition algorithm” is then a randomized algorithm for this problem.
By [Die10, Proposition 2.6] we have:

Proposition 5.7 There exists a decomposition algorithm which operates in
an expected time of Poly(en2 · log(q)). For fixed n the expected running time
is therefore polynomially bounded in log(q).

We need a lower bound on the probability that a a uniformly randomly
distributed point has a ϕ-isolated decomposition. For this, we impose the
following condition on the covering ϕ : E −→ P1

Fqn
with deg(ϕ) = 2 and

ϕ ◦ [−1] = ϕ is:

Condition 5.8 There exists a point P ∈ P1(Fq) which is a ramification
point of ϕ such that the points P, σ(P ), . . . , σn−1(P ) are all distinct and ϕ
is not ramified at σ(P ), . . . , σn−1(P ).

The key result for the analysis of the algorithm is now:

Proposition 5.9 Let n be fixed. Then again for elliptic curves E/Fqn and
coverings ϕ such that Condition 5.8 holds the following is true:

a) #{P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)} ∼ q.

b) There exist constants C,D > 0 such that the following holds: Let M
be any subset of {(P1, . . . , Pn) ∈ E(Fqn)n | ϕ(Pi) ∈ P1(Fq) for all i =
1, . . . , n}. Then the number of elements P ∈ E(Fqn) such that there exists
a ϕ-isolated decomposition (P1, . . . , Pn) of ±P with P1, . . . , Pn ∈M is

≥ D ·#M − C · qn−1 .

Part a) of this result follows from [Die10, Proposition 4.10]. Part b) is a
summary of [Die10, Proposition 4.28] for fixed n.
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5.3 The index calculus algorithm

Let n ≥ 2 be fixed. We now describe the index calculus algorithm leading
to Proposition 5.1.

As already mentioned the algorithm has the same structure as the algo-
rithm in subsection 3.2. So we describe the necessary modifications.

Let E/Fqn , A,B,C1, . . . , Cu ∈ E(Fqn) with B ∈ 〈A〉 be given.

Step 1 – Computation of the group order and factorization

We can now use Schoof’s algorithm ([Sch85]) to compute N = #E(Fqn). Of
course, the running time of Step 1 is still subexponential in log(q).

Step 2 – Construction of the factor base

We choose ϕ : E −→ P1
Fqn

satisfying Condition 5.8. By [Die10, Proposition

2.8] except if (q, n) 6= (3, 2) such a covering exists, and moreover it can be
constructed in an expected time which is polynomially bounded in log(q).
We enumerate the set {P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)}.

Then we fix some subset F of cardinality ⌈q1− 1
n ⌉ or ⌈q1− 1

n ⌉+ 1 of {P ∈
E(Fqn) | ϕ(P ) ∈ P1(Fq)} which is invariant under application of [−1]. (Note
that for q large enough this is possible by Proposition 5.9.) The set of large
primes is then L := {E(Fqn) | ϕ(P ) ∈ P1(Fq), P /∈ F}.

Clearly these operations can be performed in an expected time of Õ(q).

Step 3 – Generation of the tree of large prime relations

The construction tree of large prime relations is performed as in subsection
3.2, only that we now use the decomposition algorithm. A minor difference
is that we do not anymore have unique factorization, and we check for each
output of the decomposition algorithm if it leads to a useful FP or PP
relation. The procedure is therefore as follows:



On the discrete logarithm problem in class groups 41

Procedure: Construction of the tree of large prime relations

Construct a labeled rooted tree T with vertex set contained in L ∪̇ {∗} as

follows:

Let T consist only of the root ∗, labeled with 0.

Let Nmax ←− ⌈q1−1/n+1/n2⌉
Let s←− 1.

Repeat

Repeat

Choose s1, . . . , su ∈ Z/NZ uniformly and independently at random.

Apply a decomposition algorithm to
∑

j sjCj ; let L be the output of

the algorithm.

Check for every tuple (P1, . . . , Pn) ∈ L if it leads to a relation of the

form
∑

j

rjFj +Q =
∑

j

sjCj

where Q ∈ L − (F ∪ T ) (“useful FP relation”)

or
∑

j

rjFj + rPP +Q =
∑

j

sjCj

where rP > 0, P ∈ Ts−1 and Q ∈ L−(F ∪T ) (“useful PP relation”).

If this is the case,

fix such a relation.

If we have a “useful FP relation”,

insert Q and an edge from ∗ to Q into T

if we have a “useful PP relation”,

insert Q and an edge from P to Q into T .

In both cases label Q with s and the edge with (rj)j (in sparse

representation).

Until T contains 2s−1 ·⌈q1−1/n⌉ edges or the number of edges equals Nmax.

If the number of edges equals Nmax, STOP.

Let s←− s+ 1.

Here as in subsection 3.2 Ts is the subtree of T consisting of vertices
with label ≤ s, that is, the tree which is constructed until including stage s.

With part b) of Proposition 5.9 the analysis in subsection 3.3 carries
also easily over to the present setting. Let us first consider Stage 1 of the
algorithm, that is, s = 1.

We set

M := Fn−1 × (L − T ) .
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For q large enough (independently of T ) this set has cardinality≥ (q1−
1
n )n−1·

q
4 . Therefore the number of elements in E(Fqn) for which we obtain a new

edge is ≥ D
4 · (q1−

1
n )n−1 · q − C · qn−1 = D

4 · qn−1+ 1
n − Cqn−1. For q large

enough this is

≥ D

8
· qn−1+ 1

n ,

and again for q large enough, the probability that one try (one iteration of
the inner Repeat-loop) leads to a new edge is therefore

≥ D

16
· q−(1− 1

n
) .

Thus for q large enough, the expected number of tries until a tree of size
⌈q1− 1

n ⌉ is constructed is

≤ D

16
· (q + 1)2−

2
n .

Let us now assume that we are in Stage s with s ≥ 2. We set

M := Fn−2 × (F ∪ Ts−1)× (L − T ) .

Now for q large enough (and independently of T , in particular independently

of s) this set has cardinality ≥ (q1−
1
n )n−2 ·2s−2 ·q1− 1

n · q4 = 2s−2 ·(q1− 1
n )n−1 · q4 .

For q large enough the probability to obtain a new edge is

≥ D

16
· 2s−2 · q−(1− 1

n
) .

This implies that for q large enough (independently of s) the following holds:

Given any tree T with 2s−2 ·⌈q1−
1
g ⌉ edges, the expected number of tries until

a tree T with min{2s−1 · ⌈q1− 1
n ⌉, Nmax} edges is constructed is

≤ 32

D
· (q + 1)2−

2
n .

This completes the analysis.

Step 4 – relation generation

The relation generation is also as in subsection 3.2, again with the obvious
difference that we use the decomposition algorithm. Again by item b) of

Proposition 5.9 it is obvious that the expected running time is in Õ(q2−
2
n ).

Steps 5 – 7 are as in the original algorithm.

The overall running time and conclusion

Altogether we obtain an expected running time of Õ(q2−
2
n ), and we have

storage requirements of Õ(q1−
1
n

+ 1
n2 ), as indicated in Proposition 5.1.
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