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Abstract

We present a novel index calculus algorithm for the discrete
logarithm problem (DLP) in degree 0 class groups of curves over finite
fields. A heuristic analysis of our algorithm indicates that asymptoti-
cally for varying q, “essentially all” instances of the DLP in degree 0
class groups of curves represented by plane models of a fixed degree d
over Fq can be solved in an expected time of Õ(q2−2/(d−2)).

A particular application is that heuristically, “essentially all” in-
stances of the DLP in degree 0 class groups of non-hyperelliptic curves
of genus 3 (represented by plane curves of degree 4) can be solved in
an expected time of Õ(q).

We also provide a method to represent “sufficiently general” (non-
hyperelliptic) curves of genus g ≥ 3 by plane models of degree g+1. We
conclude that on heuristic grounds the DLP in degree 0 class groups
of “sufficiently general” curves of genus g ≥ 3 (represented initially by
plane models of bounded degree) can be solved in an expected time of
Õ(q2−2/(g−1)).

1 Introduction

This work is concerned with the discrete logarithm problem (DLP) in de-
gree 0 class groups of arbitrary (non-singular, projective, geometrically ir-
reducible) curves over finite fields. The motivation for the work is derived
from cryptanalytic applications: First, the DLP in degree 0 class groups of
non-hyperelliptic curves of genus 3 has been suggested as a cryptographic
primitive for public key cryptosystems (see e.g. [4], [3] as well as [11], [12]).
Second, the method of “covering attacks” (aka Weil descent attacks) (cf.
[7, Appendix], [8], [21], [13, Section 4.4]) sometimes allows to transfer the
DLP in elliptic curves (or in degree 0 class groups of hyperelliptic curves)
over extension fields into the DLP in degree 0 class groups of curves over
smaller fields. Often, the resulting curves are not hyperelliptic anymore. It
is well-known among many cryptographers that one can in principle adapt
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the known index calculus attacks from hyperelliptic curves to more general
curves but so far the efficiency of these attacks has been questioned.

We present a novel index calculus attack on the DLP in degree 0 class
groups of curves. Our algorithm is particularly efficient if the (non-singular)
curve is represented by a (possibly singular) plane model of small degree. A
heuristic analysis of our algorithm gives rise to (see Section 4):

Heuristic Result 1 Let us consider the DLP in degree 0 class groups of
curves represented by plane models of a fixed degree d ≥ 4 over finite fields
Fq. Then “essentially all” instances of the DLP in such groups can be solved

in an expected time of Õ(q2−
2

d−2 ).

Here, the Õ-notation means that we suppress logarithmic factors.
Additionally to the index calculus algorithm, we present a method to

find plane models of degree g+1 of “sufficiently general” (non-hyperelliptic)
curves of genus g ≥ 3 (see Section 5).

By applying our algorithm to such a plane model, we obtain that on
heuristic grounds the DLP in degree 0 class groups of “sufficiently general”
non-hyperelliptic curves of a fixed genus g ≥ 3 (initially represented by plane
models of bounded degree) can be solved in an expected time of

Õ(q2−
2

g−1 ).

This result should be compared with the following heuristic result which
can be obtained with an adaption of the double large prime variation algo-
rithm by Gaudry, Thériault and Thomé ([15]) as well as Nagao ([28]) from
hyperelliptic to arbitrary curves (see Section 2).

Let us consider the DLP in degree 0 class groups of curves of a fixed
genus g over finite fields Fq represented by plane models of bounded degree.
Then “essentially all” instances of the DLP in such groups can be solved in

an expected time of Õ(q
2− 2

g ).

An important special case for our algorithm is constituted by the DLP in
degree 0 class groups of non-hyperelliptic curves of genus 3 over finite fields
Fq: Every such curve can (via the canonical embedding) be represented as
a plane curve of degree 4. By applying our algorithm to such a model,
we obtain a heuristic running time of Õ(q) whereas the adaption of the
algorithm in [15] and [28] leads to a heuristic running time of Õ(q4/3). Our
heuristic result for non-hyperelliptic genus 3 curves has been confirmed by
an experimental study.

Curves, divisors, etc.

In this work, a curve is always non-singular (i.e. smooth), projective and
geometrically irreducible.
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In the presentation above we implicitly used the following conventions
concerning the representation of curves, divisors and divisor classes:

Let q be a prime power. We fix a homogeneous coordinate systemX,Y,Z
of P2/Fq. We think of every curve in question as being the normalization of
a possibly singular curve in P2. We distinguish the two by calling the latter
one a plane model of the curve. We use a defining homogeneous polynomial
to represent the plane model (and thus the curve itself).

We represent every point of Cpm(Fqr) (with r ≥ 1) by its coordinates in
P2(Fqr). Points of C(Fqr) not lying over singular points are represented by
the corresponding points of Cpm(Fqr). For every singular point of Cpm(Fq),
we fix an enumeration on the corresponding points of C(Fq). We represent
each closed point of C with residue degree r by one of points the correspond-
ing Galois orbit in C(Fqr).

If not stated otherwise, we think of divisors on C as being represented as
a formal sum of closed points in C. Following [20], we call this representation
the free representation.

Let C/Fq be a curve of genus g with a fixed plane model Cpm, and let
P0 ∈ C(Fq) be a fixed point. For some divisor D of C/Fq, let us denote the
corresponding divisor class by [D]. Then by the Riemann-Roch theorem,
every element of Cl0(C/Fq) is of the form [D] − g[P0] for some effective
divisor D of degree g. For our algorithmic purposes, we think of every
element of Cl0(C/Fq) as being represented by such a divisor D. (This applies
in particular to the input values to algorithms.) We note that every element
of Cl0(C/Fq) is uniquely represented by D − sP0 for s being minimal and
some divisor D of degree s, but we do not need this unique representation.

Notation

Throughout the work, we will use the following notation:

Additionally to the homogeneous coordinate systemX,Y,Z on P2/Fq, we
fix a coordinate system Xa, Ya on A2/Fq. We think of A2 as being included
included in P2 via (xa, ya) 7→ (x : y : z) := (xa : ya : 1). Note that via this
inclusion we have Xa = X

Z , Ya = Y
Z .

We fix a defining homogeneous polynomial F (X,Y,Z) of Cpm and let
f(Xa, Ya) := F (Xa, Ya, 1). We denote the “affine plane model” defined by f
(i.e. the intersection of Cpm with A2) by Ca. (We only consider plane models
of curves of genus ≥ 1 such that Cpm cannot be contained in the line Z = 0.)
We use the same notation for a function of A2, its restriction to Ca and the
induced element in Fq(C).

Overview over this work

Our algorithm can be viewed as a variant of the recent double large prime
variation algorithm by Gaudry, Thériault and Thomé ([15]) as well as Na-
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gao ([28]).

To facilitate the description, we start off with the a generalization of the
original index calculus algorithm by Gaudry with an improvement by Harley
(see [14], in particular the “Conclusion”, as well as [33]).

We then present a preliminary algorithm which can be viewed as a vari-
ant of the algorithm by Gaudry and Harley but which can also be viewed
as a (simplified) adaption of the index calculus algorithm by Adleman, De-
Marrais and Huang ([1]) to the small degree (and small genus) situation.
We provide a heuristic analysis of the algorithm which is based on similar
assumptions as the analysis of the algorithm by Adleman, DeMarrais and
Huang in [1].

In Section 4 we include a double large prime variation into our algorithm
and give the corresponding analysis. We note that the final result is heuristic
but arguably the heuristic assumptions are milder than the assumptions for
the heuristic analysis of the preliminary algorithm.

In Section 5 we provide a method to find plane models of degree g + 1
of “sufficiently general” (non-hyperelliptic) curves of genus g.

We finish with a discussion on the “full cost” of our algorithm applied
to genus 3 curves and state some interesting lines for future research.

We have implemented our algorithms in the computer algebra system
Magma. At the end of Sections 3 to 5 (in which we present our new algo-
rithms), we report on experiments conducted with the respective algorithms.
Moreover, at the end of Sections 2 to 4, we give some information on prac-
tical aspects of the algorithms and implicit constants.

Calculating the group order

In our algorithms, we always assume that the order of the cyclic subgroup in
question (or the order of the full class group) is known. From a theoretical
point of view this is however not an obstacle because it can be shown that
the L-polynomials of curves C/Fq represented by plane models of bounded
degree can be calculated in (deterministic) polynomial time in log(q). (This
result follows from [30, Theorem H] which in turn relies on Pila’s extension
of the point counting algorithm by Schoof ([32]) to abelian varieties ([29]).)
Moreover, in cryptographic situations, the order of the cyclic subgroup in
question is always known.

The heuristic nature of our results

The analyses of all index calculus algorithms presented in this work are
heuristic. It is conceivable that there is a sequence of instances which vio-
lates the stated running times. This is why we talk about “essentially all
instances”.

A rigorous interpretation of our claims can be given as follows:
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Let us fix the degree d. Now for a prime power q, let S(q) be the set of
all instances of the DLP in curves over Fq represented by plane models of
degree d. (With the representations described above.)

The (conjectural) claim is now that there exist subsets S1(q) of S(q)
with #S1(q)/#S(q) −→ 1 (q −→ ∞) such that the instances in S1(q) can
be solved in the stated time.

In our variant of the Gaudry-Harley algorithm, we additionally fix the
genus. Here a rigorous interpretation of our heuristic result can be given by
considering all instances with a fixed genus.

We note that for a combination of Heuristic Result 1 and the results of
Section 5, one needs that for a fixed degree d the statement in Heuristic
Result 1 holds for essentially all instances where the curves have genus d−1
(resp. d− 2).

Above, we also used the term “sufficiently general”. This term will be
defined in Section 5.

2 The algorithm by Gaudry and Harley

We assume that the reader is familiar with index calculus algorithms. A
good overview to these algorithms in a general setting is given in [10]. (The
algorithms presented in Sections 3 and 4 are however not specifications of the
general description in [10].) As we are interested in index calculus in class
groups of curves of small genus, all running time estimates in this section
are given with respect to a fixed genus g. In order to bound the running
time for the arithmetic in the class group in terms of field operations, we
further assume that the curves are represented by plane models of bounded
degree.

Index calculus on class groups of hyperelliptic curves (in imaginary qua-
dratic representation) of small genus over finite fields was pioneered by
Gaudry ([14]). Using all rational points as factor base, he obtained that
heuristically, the DLP in class groups of hyperelliptic curves of genus g
can be solved in an expected time of Õ(q2). The running time is thereby
asymptotically dominated by the linear algebra part. In the Conclusions
of [14] an idea of Harley’s is mentioned: One reduces the factor base and
balances the running times of the relation search and the linear algebra part.
With this approach one obtains heuristically an expected running time of
Õ(q2−2/(g+1)) (see also [33]).

In [33], Thériault introduced and analyzed the algorithm with a large
prime variation, and in [15] as well as in [28], Gaudry, Thériault, Thomé as
well as Nagao introduced and analyzed the algorithm with a double large
prime variation. With the double large prime variation one obtains heuris-
tically an expected running time of Õ(q2−2/g).

Our approach leads to analogs of all these four algorithms. Before we
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come to our analogs, we present below an adaption of the reduced factor
base index calculus algorithm by Gaudry and Harley to more general than
hyperelliptic curves. In the next section we discuss what changes one has to
make in order to obtain the corresponding new algorithm, and we present
the algorithm. It is then not difficult to combine this new algorithm with
a double large prime variation, and we study the resulting algorithm in
Section 4.

Arithmetic in class groups of curves

Let C/Fq be a curve of genus g ≥ 1, represented by a plane model Cpm, and
let P0 ∈ C(Fq) be a fixed point (used for the representation of the elements
of Cl0(C/Fq)).

We need an efficient method to add two elements in Cl0(C/Fq), that is,
we need an efficient (randomized) algorithm which given two divisors D1,D2

of degree g on C/Fq calculates a representative D3 − gP0 of [D1] − [gP0] +
[D2]− [gP0]. For this, one can use any algorithm to compute Riemann-Roch
spaces. Indeed, if h is any non-trivial element of the Riemann-Roch space
L(D1 +D2 − gP0) (which is always non-trivial), then D3 := div(h) +D1 +
D2−gP0 is an effective divisor with [D1]− [gP0]+[D2]− [gP0] = [D3]− [gP0].

The following proposition seems to be very classical. It follows for ex-
ample from the work by Volcheck ([34]) as well as Huang and Ierardi ([22])
who use a method by Brill and Noether.

Proposition 2 Let us consider all curves C/Fq represented by plane models
Cpm of bounded degree. (Thus in particular the genus of C is bounded.)

Let C/Fq be one of these curves. Then after some precomputation for
C which takes a randomized polynomial time, one can calculate bases of
Riemann-Roch spaces of divisors of bounded height on C/Fq in a bounded
number of field operations (independent of C).

In particular, if one considers curves C/Fq, represented by plane models
of bounded degree, with a fixed point P0 ∈ C(Fq) (used for the representation
of the elements of Cl0(C/Fq)), an addition of two elements a, b ∈ Cl0(C/Fq)
can be performed in randomized polynomial time. One can thereby guarantee
that the effective divisor used to represent a + b is uniformly distributed
among all possible divisors.

Here, by the height of a divisor we mean the maximum of the degrees of the
zero- and pole-divisor.

In the following, whenever in the algorithms we say that a divisor repre-
senting an element a ∈ Cl0(C/Fq) should be calculated, we mean that the
divisor is selected uniformly at random among all possible effective divisors
D with [D]− [gP0] = a.
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Remark 3 For the calculations in Cl0(C/Fq) (as always in free represen-
tation), it seems to be necessary to factorize polynomials. For this, no
deterministic polynomial-time algorithm is available.

Remark 4 In relation to [34], the running time (after some precomputation
and for suitable models) of the computation of Riemann-Roch spaces (and
thus of the addition in the class group) was later considerably improved
by Heß using an ideal- and function field theoretic approach ([20]) and by
Khuri-Makdisi using a different “geometric” approach ([23]) (see “Practical
aspects” at the end of this section).

Given Proposition 2, it is possible to generalize the known index calculus
algorithms from hyperelliptic curves to the more general situation.

The reduced factor base index calculus algorithm for curves

of small genus by Gaudry and Harley adapted to arbitrary

curves

Input. A curve C/Fq of genus ≥ 1, represented by a plane model, with a fixed
point P0 ∈ C(Fq) (used for the representation of the elements of Cl0(C/Fq)),
a, b ∈ Cl0(C/Fq) such that b ∈ 〈a〉, the number N := #〈a〉, and a positive
rational number r < 1.
Output. An x such that x · a = b.

1. Fix a subset (the “factor base”) F ⊆ C(Fq) and an enumeration
F = {F1, F2, . . .} with #F = ⌈qr⌉, selected uniformly at random from
all possible subsets. (If no such set exists, output “failure” and
terminate.)

2. Construct a sparse matrix R over Z/NZ as follows:
Repeat {

Choose randomly and uniformly α, β ∈ Z/NZ.
Calculate a divisor D such that [D]− [gP0] = αa+ βb.
If D splits completely, i.e. D =

∑g
k=1 Pk for some Pk ∈ C(Fq),

{
determine whether all Pk lie in the factor base,
and if this is the case,
{

determine the relation D =
∑

j rjFj .
(Now we have (

∑

j rj[Fj ])− g[P0] = αa+ βb.)
Store the sparse vector (rj)j as a new row of the

sparse matrix R = (ri,j)i,j over Z/NZ. } }
} until the matrix R has more rows than columns.
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3. Try to find a non-trivial element in γ ∈ ker(Rt) with a randomized
algorithm for sparse linear algebra (with variants of Lanczos’ or
Wiedeman’s algorithms). Thereby do computations modulo the prime
divisors of N and use the Chinese Remainder Theorem to find γ. (If N
is not square-free, use the lifting procedure described in [10, Section 4].)
If the procedure fails, return to Step 2 and include some more relations
into R.

(We now have

(
∑

i

γiαi)a+ (
∑

i

γiβi)b =
∑

i,j

γiri,j(Fj − P0) = 0. )

4. If
∑

i γiβi ∈ (Z/NZ)∗, output

x = −

∑

i γiαi
∑

i γiβi
∈ Z/NZ ,

otherwise return to Step 2.

Remark 5 The “algorithm” is in fact an algorithm scheme because we have
not specified how to do some essential computations (i.e. how to compute a
divisor D with [D]− g[P0] = αa+ βb or how to perform the linear algebra.
Moreover, the “algorithm” is randomized and not deterministic. Nonethe-
less, we refer to it as an “algorithm”. The same remark applies to the
“algorithms” in the following sections.

Complexity

As stated, we give the complexity estimates for fixed genus and bounded
degree.

The factor base can be determined in the following way: First one enu-
merates C(Fq). For this, one calculates for all possible x-coordinates the
corresponding points in C(Fq). This can be done in an expected time of
Õ(q). After that the factor base itself can be determined in an expected
time of Õ(qr).

By Proposition 2, each iteration of Step 2 can be performed in a ran-
domized polynomial time in log(q) (and one can thereby guarantee that D
is selected uniformly at random among all possible divisors). Heuristically,
it seems reasonable to assume that one needs ≈ g! · qr · q(1−r)·g iterations in
Step 2 (leading to an asymptotic running time of Õ(qr · q(1−r)·g)) for “most”
curves and “most” choices of the factor base. As the linear algebra can be
performed in Õ(q2r) operations, we obtain a heuristic running time of

Õ(qr+(1−r)·g + q2r) (1)
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for “most” runs of the algorithm.
For r := 1 − 1/(g + 1), heuristically, the running time of the relation

search then balances asymptotically with the running time of the linear
algebra part (up to logarithmic factors) for “most” runs of the algorithm.

It is however conceivable that for some choices of the factor base, the
number of iterations needed is much worse even though other choices of the
factor base would lead to the stated number of iterations. We thus propose
the following modification of the algorithm:

A modification

Whenever in Step 2 after 2 · g! · qr · q(1−r)·g iterations R does not have more
rows than columns, the algorithm outputs “failure” and terminates.

A crucial heuristic assumption is now that there exists some P < 1 such
that for r = 1 − 1/(g + 1), for essentially all inputs, this happens with
probability < P .

Under this assumption (and some further assumptions for the linear
algebra part), we obtain:

Heuristic Result 6 With the algorithm by Gaudry and Harley for arbi-
trary curves with the modification stated above, one can asymptotically for
varying q solve essentially all instances of the DLP in degree 0 class groups
of curves of a fixed genus g over Fq, represented by plane models of bounded

degree, in an expected time of Õ(q
2− 2

g+1 ).

Remark 7 If one modifies the relation generation step (Step 3) along the
lines of the relation generation step of the general algorithm in [10, Section
3], one can prove that the algorithm has the stated expected running time
when applied to hyperelliptic curves C/Fq in imaginary representation with
Cl0(C/Fq) = 〈a〉.

Remark 8 One can combine the algorithm with a double large prime vari-
ation as presented in [15] and [28]. Although the heuristic analysis in [15]
is only stated for hyperelliptic curves, it also applies in the more general
setting we consider here. One obtains that heuristically, one can solve es-
sentially all instances of the DLP in degree 0 class groups of curves of a
fixed genus g over Fq represented by plane models of bounded degree in an

expected time of Õ(q2−
2
g ). This was already mentioned in the introduction.

Implicit constants and practical aspects

For practical purposes one should consider the following specifications and
modifications of the algorithm and the way the size of the factor base is
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determined. Asymptotically, up to logarithmic factors, these modifications
do not alter the running time.

1. One can construct a factor base in an expected time of Õ(qr) by consid-
ering points with prescribed x-coordinate (instead of first enumerating
C(Fq)).

2. The running time of the relation generation step (Step 2 of the al-
gorithm) depends critically on the efficiency of the arithmetic in the
class groups. Even though every algorithm to compute Riemann-Roch
spaces which fulfills the conclusions of Proposition 2 can be used to
obtain Heuristic Result 6, for practical purposes some algorithms are
more suited than others.

3. Heß ([20]) gave a fast general purpose algorithm to calculate Riemann-
Roch spaces. His algorithm can be viewed as a generalization of the
algorithm by Cantor ([6]) for computations in class groups of hyperel-
liptic curves in imaginary quadratic representation. Let us give some
information on his approach:

The algorithm relies in an ideal theoretic representation of divisors in
a function field theoretic setting:

One chooses a non-constant element X̃ ∈ Fq(C) such that the extension
Fq(C)|Fq(X̃) is separable. After that one needs to calculate bases of
the so-called finite order, the integral closure of Fq[X̃ ], and the infinite
order, the integral closure of O∞, the local ring of the place “infinity”.
These bases can be calculated in polynomial time log(q) and in the
total degree of f , and this has to be done only once.

For the arithmetic itself one represents divisors by two ideals with
respect to the two orders. (The ideals themselves are represented by
a Fq[X̃ ]- and a O∞-basis respectively). The running time thereby
depends crucially on the degree of the extension Fq(C)|Fq(X̃).

According to [18] for every curve C/Fq, there exists a suitable extension
Fq(C)|Fq(X̃) such that the arithmetic in Cl0(C/Fq) in ideal represen-
tation takes O(g4) field operations for varying g (after some precom-
putation). For comparison, the arithmetic (in ideal representation) in
class groups of hyperelliptic curves in imaginary representation takes
O(g2) field operations.

4. Another approach for fast arithmetic in class groups of curves was
provided by Khuri-Makdisi ([23]). His algorithms of geometrical na-
ture rely on an embedding of a symmetric power of the curve into a
Grassmannian. The computations in the class group then reduce to
linear algebra computations. This approach can also be used to cal-
culate bases of Riemann-Roch spaces (which can then in turn be used
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to calculate “free representations” of divisors). Similarly to [20], the
arithmetic (in the specific representation used in the algorithm) can
be performed in O(g4) field operations.

5. Before one calculates a free representation of a divisor, one should first
check whether the projection to some coordinate axis splits completely.
Like this, one avoids unnecessary factorizations of polynomials. (Note
that if the divisor splits completely, so does its projection, and the
converse holds essentially always in practice.)

If one uses the ideal arithmetic, one should include 1 into the basis of
the finite order. Then one can perform the arithmetic in such a way
that the “finite” ideal contains a univariate polynomial in X̃ which
gives the X̃-coordinates. (Note that this is a direct generalization
of the approach in [14] and [33] which uses the so-called “Mumford
representation”.)

6. For special classes of curves, one can use more efficient algorithms to
perform the arithmetic. For example, for non-hyperelliptic genus 3
curves, one can use the algorithms in [4] and [12].

7. If one chooses r = 1−1/(g+1), the relation generation part is usually
much more costly than the linear algebra part. One should rebal-
ance the two by including more elements into the factor base. (Under
certain conditions on g and q, it might even pay off to include all
Fq-rational points into the factor base, as was originally suggested by
Gaudry in [14].)

3 Our variant of the algorithm by Gaudry and

Harley

We now come to our modifications of this algorithm. As above, let C/Fq be
a curve of genus ≥ 1 represented by a plane model Cpm of degree d. Let
ϕ : C −→ Cpm be the canonical projection, and let us denote the associated
morphism C −→ P2 also by ϕ. As stated in the introduction, the affine part
of Cpm is denoted by Ca. Let Ca,ns be the non-singular part of Ca.

In the sequel, we identify zero-dimensional subschemes on C with effective
divisors on C.

As stated in the introduction, we use the same notation for a function on
A2, its restriction to Ca and the induced element in Fq(C). Similarly, we use
the same notation for an element of Γ(P2,O(1)) (the space of “homogeneous
coordinates” on P2) and its pull-backs to Γ(C, ϕ∗(O(1))). (For example, we
write Z instead of ϕ∗(Z).) To distinguish the divisor of zeros of elements of
Γ(C, ϕ∗(O(1))) and their pull-back to Γ(C, ϕ∗(O(1))), we write divC for the
latter. (See [17, II. §7] for information on the divisor of zeros.)
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Definition 9 Let D∞ := divC(Z) ∈ Div(C) be the divisor of zeros of Z
on C.

Remark 10 If C is non-singular “at infinity”, D∞ is the intersection of Cpm

with the hyperplane defined by Z = 0 (regarded as divisor on C). In general,
it is equal to ϕ−1(div(Z)), the scheme-theoretic preimage (or pull-back) in
C of the hyperplane Z = 0, with other words, the scheme-theoretic preimage
of the scheme-theoretic intersection of Cpm with the hyperplane Z = 0 to C.

The same remark holds for divisors defined by pull-back of other “ho-
mogeneous coordinates” to C.

As Cpm has degree d, so has the divisor D∞. We remark that even
though we use D∞ in the following description of our modifications, it does
not occur explicitly in the calculations.

We fix a point P0 ∈ Ca,ns(Fq) which will serve as “base point” as above.
Instead of searching for relations of the form

∑

j

ri,j([Fj ]− [P0]) = αia+ βib

we just search for two relations involving a non-trivial right-hand side:

∑

P∈Ca,ns(Fq)

kP ([P ]− [P0]) = αa

as well as
∑

P∈Ca,ns(Fq)

lP ([P ] − [P0]) = βb

(with α, β 6= (Z/NZ)∗ and kP , lP ∈ N0). Only after we have found these
relations, we fix the factor base which is a subset of Ca,ns(Fq). We thereby
guarantee that the points involved in these relations are in the factor base.
The first two rows of the “relation matrix” R are then made up by the
relations for αa and βb respectively.

All other relations are just between the elements of the factor base:

(
∑

j

ri,j [Fj ])− [D∞] = 0 (with
∑

j

ri,j = d).

We find such relations by intersecting Cpm with lines which are defined by
passing through two points of the factor base. (For more information see
subsection “Correctness” below.)

An important and subtle aspect of our algorithm is that the factor base
has to chosen appropriately in order that we are able to generate enough
relations to solve the DLP. We discuss this below.

In contrast to the previous algorithm, in this algorithm, we restrict our-
selves to the the case that N = #〈a〉 is square-free. (This is because we
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cannot guarantee that the “lifting procedure” in [10, Section 4] can be car-
ried out successfully.) This is however not an obstacle because one can
with repeated calls to the algorithm also tread instances of the DLP with
arbitrary N .

In the algorithm, as stated in the introduction, we denote the coordinate
ring of A2 by Fq[Xa, Ya], and we denote an “affine line” by La.

Our variant of the Gaudry-Harley algorithm

Input. A curve C/Fq of genus ≥ 1, represented by a plane model, with a fixed
point P0 ∈ Ca(Fq) (used for the representation of the elements of Cl0(C/Fq)),
a, b ∈ Cl0(C/Fq) such that b ∈ 〈a〉 a, b ∈ Cl0(C/Fq) such that b ∈ 〈a〉, the
number N := #〈a〉, which is assumed to be square-free, and a positive
rational number r < 1.
Output. An x such that x · a = b or “failure”.

Let F (X,Y,Z) be the defining homogeneous polynomial of the plane model.

1. Calculate the non-singular part Ca,ns of Ca.
If P0 /∈ Ca,ns(Fq), substitute it by a point in Ca,ns(Fq) (also called P0)
and change the representations of a and b.

2. Choose randomly and uniformly α ∈ (Z/NZ)\{0}
and calculate a divisor D with [D]− [gP0] = αa,
until α ∤ N and D splits completely into points of Ca,ns(Fq).

Choose randomly and uniformly β ∈ (Z/NZ)\{0}
and calculate a divisor D with [D]− [gP0] = βb,
until β ∤ N and D splits completely into points of Ca,ns(Fq).

3. Fix a “factor base” F ⊂ Cn,s(Fq) with #F = ⌈qr⌉, such that F
contains the points for the relations for αa and βb, selected uniformly at
random from all possible subsets. (If no such set exists, output “failure”
and terminate.)
Store the “left-hand sides” of the relations in Step 2 as the first two
rows of a sparse matrix R.

4. Let f(Xa, Ya)← F (X,Y, 1) ∈ Fq[Xa, Ya].
Construct a sparse matrix R over Z/NZ as follows:
For all pairs (i, j) with i < j ≤ #F do
{

Calculate the defining polynomial l of the line La : Ya = l(Xa)
passing through Fi and Fj (in A2). (For simplicity we assume
that Xa(Fi) 6= Xa(Fj). If the two are equal, a simple
modification can be applied.)
If the polynomial f(Xa, l(Xa)) splits completely and has degree d,
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{
factorize it and
calculate the Ya-coordinates corresponding to its roots.
If all points obtained in this way lie in the factor base,
{

let (rj)j be the sparse vector whose non-zero entries
correspond to these points with values being the
multiplicities from the polynomial factorization.
Store (rj)j as a new row in the sparce matrix R.

}}}

5. Calculate a random vector γ ∈ ker(Rt) with algorithms from sparse
linear algebra (cf. previous algorithm).

6. If γ1 ∈ (Z/NZ)∗, output x = −γ1α
γ2β ∈ Z/NZ. Otherwise output

“failure”.

Correctness

It follows from the following lemma that each row of the matrix R corre-
sponds to a relation in Cl0(C/Fq).

Lemma 11 Let L : λX + µY + νZ = 0 be a line in P2/Fq, and assume
that L intersects Cpm in non-singular points. Let D be the scheme-theoretic
intersection of L with Cpm, considered as divisor on C. Then the function
λYa + µXa + ν ∈ Fq(C) has the principal divisor D −D∞.

Proof. The function λXa +µYa +ν = λX
Z +µY

Z +λZ
Z ∈ Fq(C) has the divisor

divC(λY + µX + νZ)− divC(Z) which by definition is D −D∞. 2

Say that the affine part of such a line L is given by La : Ya = l(Xa) as in
the algorithm. (As stated in the algorithm, if λ = 0, an easy modification
can be applied.) Let Da be the “affine part” of D, i.e. we disregard points
“at infinity” in the support of D. Then the roots of f(Xa, l(Xa)) in Fq

give the Xa-coordinates of the support of Da over Fq, and the multiplicities
correspond to each other.

Now, in Step 4 of the algorithm, we consider only such lines which in-
tersect C only in Ca,ns. Indeed, we explicitly rule out singular intersection
points. We rule out intersection points “at infinity” by demanding that
deg(f(Xa), l(Xa)) = d which implies that deg(Da) = deg(C) = deg(D∞),
i.e. D = Da.

It follows that a vector (rj)j calculated in Step 4 corresponds to a relation
∑

j(rj [Fj ])− [D∞] = 0 in Cl0(C/Fq).

One easily sees that any γ ∈ ker(Rt) leads to an equation

γ1αa+ γ2βb = 0.
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This proves the correctness of the algorithm.

Complexity

We now discuss the complexity of the various steps of the algorithm. We do
the estimations for a fixed degree d and varying q.

The singular locus of Ca can be determined by considering the common
roots of the two partial derivatives of the defining polynomial f . This can
be performed in a bounded number of field operations in Fq. We note that
there not more than (d − 1)(d − 2)/2 singular points in Ca(Fq) (cf. [17, I,7
Ex. 7.2; IV.1 Ex. 1.8]).

In Step 2 of the algorithm, the representatives of αa and βb can be
calculated in randomized polynomial time by Proposition 2. The probability
that D splits completely is on heuristic grounds 1/g! and thus constant for
varying q. As g ≤ (d− 1)(d− 2)/2, this indicates that this step can also be
performed in a bounded number of field operations in Fq.

The factor base can be determined in an expected time of Õ(q) as in the
previous algorithm.

Each iteration in Step 4 can be performed in randomized polynomial
time in log(q). As there are not more than q2r unordered pairs of elements
in the factor base, the total running time of Step 4 is in Õ(q2r).

The linear algebra in Step 5 can also be performed in time Õ(q2r), and
the final step takes a negligible amount of time.

All in all, we have the following heuristic result:

The algorithm terminates in a time of Õ(q2r).

We now come to the important question under which conditions on g, q
and r we should expect that the algorithm in fact solves the DLP.

In order that one can solve the DLP with linear algebra in Step 5, it is
necessary and sufficient that the second row linearly depends on the other
rows of the matrix. Because it seems difficult to obtain a theoretical results
on this question, we studied it with experiments.

A modification for experiments

For an experimental study, we modified the relation search slightly: The
relation search is terminated if a predefined number of different relations
has been obtained. (For this one should sort the relations while generating
them, for example with a binary search tree ([25, 6.2.2]), and only later build
the relation matrix.)

An experimental observation

We have conducted experiments in order to see how many relations we have
to generate in order that the second row of the relation matrix is linearly
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dependent on the other rows. In our experiments we made the observa-
tion that with very few exceptions this is the case if we have generated as
many different relations as there are elements in the factor base. (See the
“Experimental results” at the end of this section for further information.)

Based on these experiments, we conclude that it should in practice suffice
to generate as many relations as there are elements in the factor base for
“most” curves. For our heuristic analysis below, we make the following
assumption.

Heuristic Assumption 12 There exists a function c = c(d, q, r) which for
fixed d is bounded by a polynomial function in log(qr) such that for essentially
all inputs it holds that for at least half the possible choices of the factor base,
whenever the matrix R has c(d, q, r) · qr rows, the second row is linearly
dependent on the other rows.

Terminology

We call a line L : λX+µY +νZ = 0 completely split if divC(λX+µY +νZ),
the divisor of zeros of λX + µY + νZ on C, is completely split. (Following
[33] one could call this “potentially smooth”.)

Note that a line L is completely spit if and only if principal divisor of
the associated function λXa + µYa + ν ∈ Fq(C) has the form

∑

k Pk −D∞

for some Pk ∈ C(Fq).
We note that if a line intersects C in non-singular points, then it is

completely split if and only if the intersection consists of points in C(Fq).
More generally, a line is completely split if and only if the scheme-theoretic
preimage of its scheme-theoretic intersection with Cpm to C consists of points
in C(Fq).

Moreover, if µ = 1 and the intersection lies in Ca,ns, then the function /
line is completely split if and only if f(Xa, λXa +µ) has degree d and splits
completely into elements of Ca,ns(Fq).

We call a function or the corresponding line smooth if additionally, all
intersection points lie in the factor base (which by definition is a subset of
Ca,ns(Fq)).

The optimal size of the factor base

We now come to the determination of the optimal value of r (and thus of
the optimal size of F) under the condition that we can expect to generate
enough linearly independent relations.

In Step 4 of the algorithm, we consider all smooth lines passing through
at least two points of the factor base, and each such line gives rise to a
different relation which is included as a row in the matrix R. The goal is
now to give a heuristic estimate of the number of such lines (i.e. the number
of different relations generated).
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Below, we give a heuristic estimate of the total number of smooth lines.
The difference between these numbers is equal to the number of smooth lines
passing through exactly one point of Cpm(Fq) (which is then an element of
the factor base). This number is asymptotically negligible, as shown in the
following lemma.

Lemma 13 The number of lines over Fq which intersect Cpm in one point
of Ca,ns(Fq) and no other point of Cpm(Fq) is bounded by #Cl0(C/Fq)[d],
the order of the d-torsion subgroup of Cl0(C/Fq), which in turn is bounded
by d2g.

Proof. Let P ∈ Ca,ns(Fq). Then a line intersects Cpm exactly in P (and no
further point of Cpm(Fq)) if and only if the corresponding function has the
divisor dP −D∞. This implies that first, there is at most one line passing
only through P (and no further point of Cpm(Fq)), and second the points P
with this property are exactly the points of Ca,ns(Fq) for which dP is linearly
equivalent to D∞.

Let P1, P2 be two points with this property. We have [d(P1 −P2)] = 0 ∈
Cl0(C/Fq). But P1 6= P2 and g(C) ≥ 1 implies that [P1] − [P2] 6= 0. Thus
[P1]− [P0] 6= [P2]− [P0].

This means that there cannot be more lines passing through one point of
Cpm(Fq) and no further point of Cpm(Fq) as there are elements of d-torsion
in Cl0(C/Fq). It is well-known that #Cl0(C/Fq)[d] divides d2g. 2

We now try to estimate the total number of smooth lines (as always for
fixed degree and varying q).

By the bounds of Hasse-Weil, the probability that an effective divisor of
degree d splits completely is asymptotically equal to 1/d!.

Heuristically, the probability that a line L : λX + µY + νZ = 0 is
completely split is approximately equal to this probability, i.e. to 1/d!.

The probability that a completely split line is smooth is on heuristic
grounds approximately equal to the probability that all entries of a tuple of
d elements of C(Fq) lie in the factor base, and this is approximately

(

#F

q

)d

≈ q(r−1)·d .

In total, there are approximately q2 lines L : λX + µY + νZ = 0. This
means that heuristically, one should expect that the number of smooth lines
is approximately

q2 ·
1

d!
· q(r−1)·d =

1

d!
· qr·d−(d−2) . (2)

Together with Lemma 13 we conclude that heuristically, (2) gives the ap-
proximate number of different relations generated in Step 4 of the algorithm.
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This number should be larger or equal than c(d, q, r) ·#F ≈ (q, r, d) · qr ,
which means that we should have

qr ≥ (c(d, q, r) · d!)
1

d−1 · q
d−2
d−1 = (c(d, q, r) · d!)

1
d−1 · q1−

1
d−1 . (3)

We remark that this means in particular that we should have

q ≥ d! (4)

if we apply our algorithm. For our asymptotic study for curves of fixed
degree, this condition is satisfied for all but finitely many input values.

The minimal choice for r is given by

qr = (c(d, q, r) · d!)
1

d−1 · q1−
1

d−1 , i.e. (5)

r = 1−
1

d− 1
·

(

1−
log(c(d, q, r)) + log(d!)

log(q)

)

. (6)

Under our heuristic analysis concerning the running time and our as-
sumptions on c(d, q, r) and on the number of smooth lines, we conclude:

Heuristic Result 14 With our variant of the Gaudry-Harley algorithm,
one can asymptotically for varying q solve essentially all instances of the
DLP in degree 0 class groups of curves represented by plane models of a

fixed degree d over Fq in an expected time of Õ(q2−
2

d−1 ).

Remark 15 One can use the heuristic estimate (2) of the number of smooth
lines to derive a heuristic probability that a line passing through two points
of the factor base is smooth:

Heuristically and on the basis of (2), the number of pairs (Fi, Fj) of
elements of the factor base with i < j defining smooth lines is

d(d − 1)

2
·

1

d!
· qr·d−(d−2) =

1

2(d − 2)!
· qr·d−(d−2) .

Dividing this number by q2r/2, the approximate total number of such pairs,
we obtain that with a probability of approximately

1

(d− 2)!
· q(r−1)·(d−2) , (7)

a pair of elements of the factor base defines a smooth line.

As one might expect, this probability is equal to the asymptotic proba-
bility that a divisor of degree d− 2 is smooth.
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Experimental results

We implemented the algorithm in Magma with the “modification for exper-
iments” stated above. We performed experiments with curves of genus 3
to 5 given by equations of degree 4 to 6 over fields F2n with n up to 12.
To facilitate the calculation of the order of the class group, all curves were
obtained by base change from curves over F2. Various possible choices for
the size of the factor base were tried. We thereby included more and more
different rows into the relation matrix and calculated the rank modulo the
prime divisors of N .

Let us fix some notation to describe our experimental results:
Let R0,t be the relation matrix obtained just from Step 4 (i.e. without

the relations for αa and βb after having included t different relations, let
R1,t be the relation matrix without the second row (i.e. without the relation
for βb), and let R2,t be the full relation matrix.

Let us fix a prime divisor ℓ of N = #〈a〉 and #〈b〉 and regard all ma-
trices modulo ℓ. (We keep the same notations.) Note that we always have
Rank(R2,t) ≤ Rank(R1,t) + 1, and we have Rank(R2,t) = Rank(R1,t) if and
only if we can solve the DLP modulo ℓ by linear algebra via R2,t.

Now, in all except in one case (in which we did calculations modulo 5),
in our experiments, we made the following observation:

Experimental Observation 16 As long as Rank(R1,t) < Rank(R2,t), the
rows of R0,t+1 (and of R1,t+1) are linearly independent. (That is, as long as
the row for βb is linearly independent of the rows of R1,t, a “new row” is
linearly independent of the rows of R1,t.)

This observation means in particular that if t = #F , we can expect to
be able to calculate the DLP modulo ℓ by linear algebra via the matrix
R = R2,t.

An example

Here is a particular (typical) example: We considered the curve given by

Y 5 + (X2 ·Z +X ·Z2 +Z3) · Y 2 + (X3 ·Z +X ·Z4) · Y +X5 +X2 ·Z3 = 0

over F212 . This curve has genus 5, and the order of its class group is N =
54 · 37 · 61 · 277 · 337 · 8419249. The 54-torsion subgroup of the class group
has the structure Z/53Z× Z/5Z, thus the 5-torsion subgroup has rank 2.

We deliberately did not use the degree 5 model but used instead several
degree 6 models obtained with the algorithm in Section 5 for our experi-
ments.

Our heuristic analysis for the number of smooth lines indicates that we
would need to include 2893 elements into the factor base in order to obtain
as many different relations as elements of the factor base.
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We included 2884 elements into the factor base and obtained 2902 dif-
ferent relations in Step 4 of the algorithm. (This supports the heuristic
analysis concerning smooth relations.)

For all prime factor of N except 5, we obtained:

The minimal t with Rank(R1,t) = Rank(R2,t) was 2877. For this t, all
rows of the matrix R0,t were linearly independent and the number of non-
zero columns was 2878.

Modulo 5, the minimal t with Rank(R1,t) = Rank(R2,t) was 2876, again
all rows of R0,t where linearly independent and the number of non-zero
columns was also 2878.

We note that modulo all primes, Rank(R0,t) was equal to the number
of non-zero columns minus the rank of the ℓ-torsion subgroup of Cl0(C/Fq).
This relation held most of the times when we included roughly
d!1/(d−1) · q1−1/(d−1) elements into the factor base.

Implicit constants and practical aspects

We give some information on the implicit constants in our heuristic result as
well as some suggestions of variations of the algorithm for practical purposes.
We thereby assume that c(d, q, r) can be set to be 1.

1. One should apply the algorithm only if q > d!.

2. For curves represented by plane models of degree roughly equal to the
genus of the curve, the running time of Step 2 is negligible. However,
in the extreme case, a plane model might itself be non-singular such
that g = (d − 1)(d − 2)/2. In this situation, Step 2 might very well
dominate the running time.

3. In every iteration of Step 4 one has to calculate the polynomial
f(Xa, l(Xa)). For varying d, this can clearly be achieved in O(d3) field
operations. There is however an easy variant of Step 4 which is more
efficient: One first fixes an element Fi of the factor base and performs
a coordinate transformation such that Fi has the coordinates (0, 0).
(I.e. one calculates the polynomial f̃(Xa, Ya) := f(Xa +Xa(Fi), Ya +
Ya(Fi)).) This can be achieved in O(d3) field operations. Then all
lines though (Fi, Fj) with j > i are given by Ya = l(Xa) = λXa for
some λ. The polynomial f̃(Xa, λXa) can be calculated with O(d2)
field operations.

4. Let ktest(d, q), kfac(d, q) be the times in field multiplications to test
whether a polynomial of degree d over Fq splits completely and the
time to factorize a completely split polynomial of degree d over Fq

respectively. Under the condition that the time to access the storage
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is negligible, for our choice of r, the running time of Step 4 can roughly
be estimated as

((

d+ 2

2

)

+ ktest(d, q) +
kfac(d, q)

(d− 2)!

)

· d!
2

d−1 · q2−
2

d−1 (8)

field multiplications in Fq. If Step 5 is performed with Lanczos’ al-
gorithm as in [9], we can expect a time of roughly 2d + 4 multiplica-
tions modulo the factors of N plus the time to factor N . If N is not
highly composite, this is considerably less than the time needed for
Step 4. (That changes however if the access to the storage becomes
more costly.) Step 2 is negligible provided that g and d are roughly
equal.

We remark that the behavior in relation to d is better than one might
expect. (It does not involve a “huge d!-term”.) An analogous remark
also applies to the algorithm presented in the previous section if one
balances the relation generation and the linear algebra part optimally
(and d! ≤ q) (cf. Point 2 in the “practical aspects” in the previous
section).

5. As the relation generation and the linear algebra part take up to loga-
rithmic factors the same running time, one cannot improve the asymp-
totic running time (up to logarithmic factors) by enlarging the factor
base and terminating the relation search early.

A practical improvement is however possible: If one iterates over all
pairs of the factor base, most smooth lines are selected d(d − 1)/2
times. By enlarging the factor base by a constant factor, one drasti-
cally reduce the average number of times a line is reselected.

Historical remark

As is apparent from the headline of this section, we view our algorithm as a
variant of the algorithm by Gaudry and Harley. The algorithm can however
also be viewed as an adaption of the algorithm by Adleman, DeMarrais
and Huang ([1]) for index calculus in class groups of hyperelliptic curves of
large genus. Indeed, our main variation of the algorithm by Gaudry and
Harley, the finding of relations by considering principal divisors (instead
of considering linear combinations of the input elements), is an essential
ingredient of the algorithm by Adleman, DeMarrais and Huang. We note
that the heuristic analysis in [1] relies on a very similar heuristic assumption
as Heuristic Assumption 12.
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4 Our variant of the algorithm by Gaudry and

Harley with double large prime variation

We use [15] as reference for the Gaudry-Harley algorithm with double large
prime variation. We assume that the reader is familiar with this work and
freely use the same notations.

Following the description in [15], it is possible to combine our algorithm
with a double large prime variation (thereby using all points in Ca,ns(Fq)
as “large primes”). We note however that just as in our adaption of the
Gaudry-Harley algorithm itself, we need “enough” elements in the factor
base.

We recall that there are two double large prime algorithms in [15]: In
the first one, for each relation involving two large primes (and otherwise el-
ements from the factor base), an edge in the graph of large prime variation
is inserted, provided that this edge does not lead to a cycle. In the sec-
ond one (which is called “simplified algorithm” in [15]), only the connected
component of the graph corresponding to relations with one large prime is
considered. As the cycles which lead to relations over elements of the factor
base are not constructed, this second graph is in fact a tree; we call it the
tree of large prime variation. The analysis in [15] is carried out for the sim-
plified algorithm whereas in practice one should use the first algorithm. We
also recall that the analysis in [15] involves some heuristic considerations.

When trying to adapt this analysis to our situation, ones encounters a
problem: Whereas the probabilities to generate an Full, FP or PP relation
are constant during the execution of the algorithm, the probabilities to gen-
erate a new Full, FP and PP relation are not. Indeed, the probabilities to
generate new Full and FP relations drop during the execution of the algo-
rithm. This is due to the fact that every Full relation can be obtained via
lines through d(d − 1) different pairs from the factor base whereas an FP
relation can be obtained via (d − 1)(d − 2) different pairs from the factor
base and an PP relation can be obtained via (d − 2)(d − 3) different pairs
of the factor base.

To encounter this problem and in order to avoid an heuristic assumption
on the final matrix as Heuristic Assumption 12 in the previous section, we
proceed as follows:

We first construct the tree of large prime variation using only relations
with one large prime. After that we extend the tree with relations involving
two large primes. In both cases we proceed similarly as in the previous
algorithm. Finally, we use the tree of large prime variation to express linear
combinations of the input elements over the factor base and to construct
the relation matrix R. For exactitude, we can thereby use ideas from [10].

The algorithm is as follows:
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Our variant of the “simplified” Gaudry-Harley algorithm

with double large prime variation

Input. A curve C/Fq of genus ≥ 1, represented by a plane model of degree
≥ 4, with a fixed point P0 ∈ C(Fq) (used for the representation of the elements
of Cl0(C/Fq)), a, b ∈ Cl0(C/Fq) such that b ∈ 〈a〉 a, b ∈ Cl0(C/Fq) such that
b ∈ 〈a〉, the number N := #〈a〉, and a positive rational number r < 1.
Output. An x such that x · a = b.

Let F (X,Y,Z) be the defining homogeneous polynomial of the plane model.

1. Calculate the non-singular part Ca,ns of Ca.
If P0 /∈ Ca,ns(Fq), substitute it by a point in Ca,ns(Fq) (also called P0)
and change the representations of a and b.

2. Fix a “factor base” F ⊂ Cn,s(Fq) with #F = ⌈qr⌉, selected uniformly at
random from all possible subsets. (If no such set exists, output “failure”
and terminate.)

3. [Construction of the tree of large prime variation]

(a) Iterate over all pairs of the factor base as in the previous algorithm
and construct a tree of large prime variation by only considering
relations with one large prime.

(b) Iterate again over all pairs of the factor base and enlarge the tree
of large prime variation (using relations with two large primes, but
only including edges connected to the original connected
component).

4. Construct a sparse matrix R over Z/NZ as follows:
Repeat {

Select randomly and uniformly α, β ∈ Z/NZ.
Calculate a divisor D such that [D]− [gP0] = αa+ βb.
If D splits completely, i.e. D =

∑

k Pk for some Pk ∈ C(Fq),
and all Pk are elements of the factor base or
vertices of the tree of large prime variation,

determine the corresponding relation and include a
corresponding new row in the matrix R.

} until R has more rows than columns.

5. Try to find a non-trivial element γ ∈ ker(Rt) with algorithms from
sparse linear algebra. If the procedure fails, return to Step 4 and include
some more relations into R.

6. If
∑

i γiβi ∈ (Z/NZ)∗, output

x = −

∑

i γiαi
∑

i γiβi
∈ Z/NZ ,
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otherwise return to Step 4.

Complexity

Generation of the sparse matrix and linear algebra

We have presented Step 4 in its most simple form. By using the procedure of
Step 2 in the algorithm in [10], one can under certain conditions rigorously
analyze the running time of this step. The corresponding theoretical result
is:

Proposition 17 Let us (additionally to g and d) fix a function f : N −→ R,
and a positive rational numbers e < 1. Then the following holds:

Consider curves C/Fq of genus g represented by plane curves of degree d
such that Cl0(C/Fq) is cyclic. For these curves it holds that if

• a factor base F = {F1, F2, . . .} of size f(r) has been selected and

• a tree of large prime variation involving more than e · q elements has
already been constructed in which

– all edges correspond to relations of the form

(
∑

j

rj [Fj ]) + [P ]− [D∞] = 0

or

(
∑

j

rj[Fj ]) + [P ] + [Q]− [D∞] = 0

for P,Q ∈ C(Fq) and rj ∈ N0,

– the average distance of an element from the root of the tree is in
Õ(1),

an instance of the DLP in Cl0(C/Fq) can with a randomized algorithm be
solved in an expected time of Õ(f(q)2).

The proof of this result is a very easy adaption of arguments in [10,
Section 4]. We note that for the case that the order of the class group is not
square-free, the arguments rely on a key lemma ([10, Lemma 4]) which can
already be found in [31].

Because of this result, we concentrate on the question what size F should
have in order that the tree of large prime variation has 1

2 ·q elements, say. For
this, we first discuss a minor difficulty which is particular to our algorithm,
the problem of “repeated selections”.
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Repeated selections

Most completely split lines passing through points of the factor base and
exactly two large primes can be defined by specifying (d− 2)(d− 3)/2 pairs
of points of the factor base. Say such a line occurs after the kth

1 and the
kth
2 iteration of Step 3 (b). Then it might happen in the kth

1 iteration, the
corresponding relation is not included in the tree, but – because the tree has
grown in the meantime – in the kth

2 iteration it is.

In the following analysis of the evolvement of the tree of large prime vari-
ation, we disregard repeated selections of the same line, that is we analyze
the algorithm as if every line was only selected once. This means that if our
analysis is correct, the final number of elements in the tree of large prime
variation is larger or equal than the number we state. (Concretely, we will
determine the size of the factor base so that on heuristic grounds we expect
that the number of elements in the tree of large prime variation is at least
1
2 q.)

Method and assumptions

Similarly to the analysis in [15], we use differential equations to study the
evolvement of the tree of large prime variation.

Our heuristic analysis relies on several assumptions: First, similarly to
the previous section, we estimate the number of completely split lines pass-
ing through one or two large primes and otherwise elements of the factor
base. Second, we assume that the large primes occur “equidistributed” such
that the evolvement of the tree of large prime variation can be modeled
by equations of random variables. Third, we switch from discrete to con-
tinuous time (which involves mild heuristic assumptions). Under the first
two assumptions, the evolvement of the tree of large prime variation is then
modeled by a stochastic differential equation. Assuming that the variances
are small (which is the forth assumption), we can study the evolvement by
corresponding usual differential equations.

We note that the last three heuristic assumptions we just stated are
also present in [15] (sometimes in implicit form). However, our assumption
on equidistributiveness on the occurrence of large primes is stronger than
the corresponding assumption in [15]. Indeed, if the algorithm in [15] is
applied to a hyperelliptic curve C/Fq, the factor base is invariant under the
hyperelliptic involution and contains all Weierstraß points and Cl0(C/Fq) =
〈a〉, the large primes are selected uniformly and independently.

Some probabilities and numbers and an assumption

Again the probability that a line is completely split is heuristically
approximately 1/d!. The probability that a completely split line passes
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through points of the factor base and one large prime is heuristically ap-
proximately

d ·

(

#F

q

)d−1

≈ d · q(r−1)·(d−1) . (9)

This suggests that the number of relations involving one large prime one can
obtain with lines passing through two points of the factor base is approxi-
mately

B :=
1

(d− 1)!
· qr·(d−1)−(d−3) . (10)

The probability that a completely split line passes through points of the
factor base and two large primes is heuristically approximately

d · (d− 1)

2
·

(

#F

q

)d−2

≈
d · (d− 1)

2
· q(1−r)·(d−2) , (11)

and this suggests that the number of relations with two large primes one
can obtain is approximately

C :=
1

2 · (d− 2)!
· qr·(d−2)−(d−4) . (12)

As stated in “Method and assumption”, it is not obvious that large
primes hit with the lines we construct occur “equidistributed”. This is the
essence of the following heuristic assumption.

Heuristic Assumption 18 The final number of elements occurring in the
tree of large prime variation constructed is typically close to the expect num-
ber of primes in the tree of large prime variation one obtains by applying
the same procedure and the same number of iterations to the corresponding
formalized model in Section 4.1 of [15].

Constructing the tree of large prime variation

Step 3 (a)

As for our choice of parameters the number of relations with one large prime
is always negligible with respect to q, we can expect that after Step 3 (a)
the tree of large prime variation contains as many elements as there are
relations with one large prime (see (10)). (Under our assumptions, one can
also use the approach via differential equations as in Section 4.1. to derive
this result.)
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Step 3 (b)

We use the approach via differential equations from [15]. As in [15], let u(t)
be the portion of large primes occurring in the tree at time t (where one
“unit of time” corresponds to the section of one line passing through at most
2 large primes).

As a line passing through two large primes leads to a new vertex of
the tree if and only if exactly one of the two large primes is in the tree,
we conclude that we can describe the process roughly via the differential
equation

d(q u) = 2u(t) · (1− u(t)) · dt (13)

with starting value u(0) = B/q given by (10). The equation is equivalent to

dt =
q

2

du

u(1 − u)
. (14)

For our purposes it is convenient to express the time in terms of u. If we do
so, the general solution to (13) is

t =
q

2
log (

u

1− u
) +D (15)

with some constant D. Setting t = 0 gives in our case D = − q
2 log(( B/q

1−B/q ))

which is essentially − q
2 log(B

q ) = q
2 log( q

B ). We obtain

t =
q

2
log (

q

B
·

u

1− u
) . (16)

We want to determine T such that

u(T ) =
1

2
.

This leads to

T =
q

2
· log (

q

B
) . (17)

We simplify this to

T ≤
q

2
· log(q) . (18)

Remark 19 This simplification means that the size of the tree of large
prime variation after Step 3 (a) (i.e. after having merely considered the
relations with one large prime) is irrelevant for our analysis.

We now have to guarantee that the factor base has enough elements such
that we can generate T relations with large primes. The condition is that

C ≥ T .



28 Diem

Using (18) (and the definition of C in (12)), we see that this is satisfied if

qr(d−2)−(d−3) ≥ (d− 2)! · log(q) . (19)

Taking logarithms, we see that this is satisfied if

r(d− 2)− (d− 3) ≥
log(d− 2!) + log log(q)

log(q)
. (20)

The minimal choice for r is

r = 1−
1

d− 2
·

(

1−
log(d− 2!) + log log(q)

log(q)

)

. (21)

(Provided that this is ≤ 1, which is the case asymptotically.)
Let us assume for a moment that the average distance of an element in

the tree from the root grows polynomially in log(q) (this is justified below).
Then with the choice of r as in (21), we obtain a total running time of

Õ(r2−
2

d−2 ). This leads to the following heuristic result (which is based on
the assumptions summarized in “Method and assumptions”, in particular
Heuristic Assumption 18).

Heuristic Result 20 With the randomized algorithm presented above, one
can asymptotically for varying q solve essentially all instances of the DLP in
degree 0 class groups of curves represented by plane models of a fixed degree

d ≥ 4 over Fq in an expected time of Õ(q2−
2

d−2 ).

The average distance

We now justify that we can expect that the average distance of an element
in the tree from the root grows polynomially in log(q). The following (par-
tially heuristic) argument applies to the tree which is actually constructed
in Step 3 (b) of the algorithm as well as to the smaller tree which would be
constructed without “repeated selections”.

The corresponding question in [15] is studied in [15, Section 4.4]. The
argument (in our situation as well as in the situation of [15]) can however
be vastly simplified.

We study the average distance of the elements of the tree of large prime
variation as a function of u, the number of elements in the tree. (This is
more natural than to study it as a function of t because it is irrelevant
how many tries one needs to introduce one element into the tree; it is just
important what happens if one succeeds.)

Let ω = ω(u) be the average distance from the root of the elements of
the tree of large prime variation of size u. (As in [15], we assume that the
variances are small.) The basic observation is: If an element is introduced
into the tree, it has in average the distance of ω + 1 from the root.
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We note that q ·u·ω is the sum of the distances to the root of all elements
in the tree, and we recall that q · u is the number of elements in the tree.
This leads to the differential equation.

d(q uω) = (ω + 1) · d(q u), i.e. (22)

ω du+ u dω = (ω + 1) · du, i.e. (23)

u dω = du. (24)

We obtain

ω = log(u) + E (25)

for some constant E. As for t = 0 we have ω = 1 and u = B/q, we obtain

ω = log(u) + 1− log(
B

q
) = log(u) + 1 + log(

q

B
), i.e. (26)

ω ≤ log(
q

B
) ≤ log(q) (27)

independent of the size of the tree. We remark that again the number B is
irrelevant for our analysis.

This justifies the claim.

Experimental results

We implemented the algorithm of the previous section for non-hyperelliptic
genus 3 curves, represented as plane curves of degree 4 with a double large
prime variation as the “simplified algorithm” in [15]. (That is, the generation
of the tree of does not follow the two-step procedure described here, and the
relation matrix is built during the tree is constructed.)

With our Magma implementation (run on a PC clocked with 1.3 GHz)
applied to curves over F225 we can construct roughly 2000 lines per second
through the factor base and test them for smoothness.

By comparison, with the C/C++ implementation for arithmetic in class
groups of hyperelliptic curves used for the experimental results in [15] one
can perform roughly 200 000 additions in the class group per second for
curves over F225 run on a PC clocked with 1.7 GHz (as reported in [15]).
This means that over F225 the implementation for [15] cannot perform more
than 100 times more tries for the relation search than our algorithm.

It was unclear to us when exactly the relation matrix is large enough
such that the second row (for βb) linearly depends on the other rows. We
terminated the relation generation when the relation matrix had twice as
many rows as columns, and this did always suffice.
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An example and a problem

The genus 3 curve with the largest class group to which we applied the
algorithm was the curve C given by Y 3 +Y +X4 +X3 +X2 +X+1 = 0 over
F219 . The order of Cl0(C/F219) is 2 · ℓ for a prime number ℓ ≈ 256 = 1

2 · 2
19·3.

We included 2442 ≈ 3.3 · 219/2 elements in the factor base. We needed
to consider 1 188 769 tuples of elements of the factor base giving rise to (not
necessarily different) lines passing through at least two points of the factor
base and otherwise large primes to construct a sparse matrix with doubly
as many rows as columns, and the computation needed roughly 2 hours of
CPU time. (The total number of tuples giving rise to such lines was 1 494 568
which is quite close to the heuristic prediction of 24422/4 = 1490 841.)

We tried to use the implementation of Lanczos’ algorithm in Magma
(ModularSolution(Transpose(R), ℓ : Lanczos := true)), but the algorithm
crashed (twice) with an internal error. Doing calculations with other matri-
ces, we noticed that the algorithm consumes much more storage than one
might expect, and due to storage problems or an internal error, we not able
to calculations with (extremely sparse) matrixes R with more than 5000
columns and rows.

To circumvent this problem, we used the structured Gaußian elimination
algorithm in ModularSolution. The algorithm terminated after roughly 3
hours of CPU time using about 1 GByte of RAM. The calculated solution
to the DLP was accurate.

It is reported in [15] that for q ≈ 219, 76 709 007 completely split divisors
had to be considered. This number is roughly 64 times larger than the
number of completely split lines we had to consider.

Implicit constants and practical aspects

It is not necessary to follow the 2-step procedure of the relation generation,
and one should construct the full graph of large prime variation and not just
the tree of large prime variation.

Depending on g, g and the time one needs to perform the arithmetic in
Cl0(C/Fq), it might be advisable to combine the algorithm of the previous
section with a double large prime variation as described in [15] (as we did
in our experiments).

Concerning constants and further tricks, mutatis mutandis the remarks
in the corresponding part of the previous section also apply here.

5 Finding plane models of small degree

In this section, we discuss methods to find a plane model of small degree of
an explicitly given curve. We note that according to our general philosophy
stated in the introduction, we assume that the curve given is also represented
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via a plane model, but that initial model might have a higher degree than
the final model. All complexity estimates are given for curves represented
initially by plane models of bounded degree.

We assume that the reader has some familiarity with divisors, Riemann-
Roch spaces and linear systems.

Definitions and Basic Facts

Definition 21 LetD be a divisor on a curve C (as always a curve is assumed
to be proper, smooth and geometrically irreducible). Then the Riemann-
Roch space of D is denoted by L(D). The complete linear system defined
by D is denoted by |D|. The dimension of D is the (projective) dimension
of the associated complete linear system |D|, i.e.

dim(D) = dim(|D|) = dim(L(D))− 1.

Let us recall some basic facts we need.
Let C be a curve a some fieldK, letD be a divisor on C, let ϕ1, . . . , ϕn+1 ∈

L(D), not all zero, and let V := 〈ϕ1, . . . , ϕn+1〉K .
Then we have a rational map

ϕ : C −→ Pn

given by
P 7→ (ϕ1(P ) : · · · : ϕn+1(P ))

(where P is not a pole of any of the ϕi and P is not a common zero of the
ϕi). The rational map ϕ extends uniquely to a morphism ϕ : C −→ Pn.
This morphism satisfies

deg(ϕ) · deg(C) ≤ deg(D).

If furthermore the linear system determined by (D,V ) is base point free (i.e.
if for every P ∈ C(K), there exists some ψ ∈ V ⊗Fq Fq ⊂ Fq(C) such that
P is not contained in the support of div(ψ) +D), this inequality is satisfied
with equality.

Here deg(ϕ(C)), the degree of ϕ(C) in Pn, is degree of the intersection
cycle of ϕ(C) with any hyperplane which does not contain ϕ(C).

We also note a fact we have already used implicitly: Any plane model
is defined by a single homogeneous equation. This can for example be seen
as follows: If Cpm ⊂ P2 is a plane model, we can view Cpm as a divisor in
P2, and Cpm is the divisor of zeros of the global section 1 ∈ Γ(P2,O(Cpm)).
We have O(Cpm) ≈ O(d) for some d ≥ 1. If s is the global section of O(d)
corresponding to 1 ∈ Γ(P2,O(Cpm)), Cpm is defined by s. The number d
is then the on the one hand the degree of Cpm and on the other hand the
degree of the homogeneous equation s.

We also recall the Riemann-Roch Theorem (see [17, Theorem 1.3]):
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Proposition 22 (Riemann-Roch) Let C be a curve of genus g with canon-
ical divisor K, and let D be a divisor on C. Then

dim(L(D))− dim(L(K −D)) = deg(D) + 1− g,

in particular

g − deg(D) + dim(D) ≥ 0.

Basic Algorithms

All computations are concerned with curves over finite fields. We need
algorithms for some basic tasks. We need:

1. An algorithm to compute bases of Riemann-Roch spaces of divisors.

2. An algorithm to compute canonical divisors.

3. An algorithm which given a curve C/Fq and ϕ1, ϕ2, ϕ3 ∈ Fq(C), not all
zero, computes an equation of ϕ(C) in P2.

The first task was already present several times in this work; we again
refer to [20]. Given an effective divisor D, the number of field operations
required (including calculating the required orders) is polynomial in deg(D)·
log(q) (as always for curves given by plane models of bounded degree). More
generally given any divisor, the number of field operations is polynomial in
height(D) · log(q). This means that for divisors of a bounded height, the
running time is polynomial in log(q).

The second task is for example discussed in Section 9 of [20]. Again the
algorithm terminates in polynomial time in log(q).

The third task can for example be performed via Gröbner base algo-
rithms. Or one can apply the following easy method which works very
efficiently in practice if q is not “too small”:

Let us assume that ϕ(C) has degree d, and let
∑

i,j≤d αi,jX
iY jZd−i−j

be the (unknown) homogeneous equation defining ϕ(C). Then for any point
P ∈ ϕ(C(Fq)), we have

∑

i,j≤d

αi,j · ϕ1(P )i ϕ2(P )j ϕ3(P )d−i−j = 0.

This gives a linear equation on the αi,j. If in this way one has generated

≥
(d+2

2

)

− 1 linear independent equations, one obtains (αi,j)i,j as the unique
solution (up to multiples) of the system. We did experiments, and in these
experiments it always sufficed to generate twice as many equations than
unknowns.
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We conclude that heuristically, given ϕ1, ϕ2, ϕ3, represented as rational
functions involving a bounded number of terms such that ϕ(C) has degree
d, own can with this method one can find an equation of ϕ(C) in a bounded
number of field operations.

By combining 1. and 3., we obtain:

Heuristic Result 23 Given a curve C/Fq (represented by a plane model of
bounded degree) and a divisor D on C of dimension 2 and bounded height, one
can calculate an equation of the image of C in P2 given by a basis ϕ1, ϕ2, ϕ3

of L(D) in a bounded number of field operations.

A first approach

Now let C/Fq be an explicitly given curve of genus g.

As a first idea to find a model of small degree, one might proceed as
follows: One chooses a “random” effective divisor D of degree g + 2 on
C. One might expect that if Fq is “large enough”, such a divisor will be
non-special (i.e. dim(L(K −D)) = 0) with overwhelming probability. The
dimension of |D| will then be 2. Any basis in L(D) defines (as laid out
above) a morphism to P2. As D is “random” one further might expect
that |D| does not have base points and that the morphisms defined by it
are birational unto their image (which then is a plane model of the curve).
Below, we will argue that one should expect that this method works as
described for “sufficiently general” curves. Let us first fix some (classical
and quite general) terminology.

Terminology

By general curve of genus g ≥ 2 we mean a curve obtained by base-change
from the curve corresponding to the generic point of the (coarse) moduli
space Mg of curves of genus g over Spec(Z). (This space exists by [27,
Corollary 7.14.].)

As in the previous parts of this work, we only work with curves over
fields and not over more general base schemes. Let C be a curve over a field
K. We note that for all field extensions L|K, the effective divisors of degree
d on CL are classified by the L-valued points of C(d), the d-fold symmetric
power of C. The effective divisors of dimension ≥ n thereby correspond to
points of a closed subscheme which we call the locus of effective divisors of

degree d and dimension ≥ n in the symmetric power, denoted by C
(d)
n (this

notation is slightly different from the one in [16]).

Analogously, for all field extensions L|K, the complete linear systems of
degree d on CL are classified by the L-valued points of the dth component
of the Picard scheme (of all degrees) of C. This component is a twist of the
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Jacobian of C (i.e. it becomes isomorphic to the Jacobian of C after a base
change Fq|Fq). The complete linear systems of dimension ≥ n again corre-
spond to points of a closed subscheme which we call the locus of complete
linear systems d and dimension ≥ n on a twist of the Jacobian, denoted by
W d

n (this notation is again not in accordance with [16]).
Let C/K be a general curve, letK(C(d)) be the function field of C(d). Then

the effective divisor corresponding to the generic point of C(d) on CK(C(d)),
the curve obtained by base change K(CK(C(d)))|K from C, is called a general
effective divisor on a general curve.

We also talk about general effective divisors of a fixed degree d and di-
mension ≥ n on a general curve. This can also be made precise by consid-
ering generic points of the appropriate loci in C(d).

Below we talk about certain properties of general curves and general
effective divisors of a fixed degree d (and dimension ≥ n) on general curves.
These properties in fact hold in an open part of an appropriate moduli
space. Because of this, it makes sense to speak of sufficiently general curves
or about sufficiently general effective divisors of degree d (and dimension
≥ n) on sufficiently general curves.

Complete linear systems on general curves

We are interested in the dimensions of (sufficiently) general effective divisors
of degree d and dimension ≥ n on (sufficiently) general curves and the
properties of the corresponding morphisms to Pn. Work on these questions
was already pioneered by Brill and Noether and continued among others by
Kleiman and Laskov ([24]) and Griffiths and Harris ([16]). Part a) of the
following proposition is proven in [24] and Part b) in [16]. (The proposition
itself is an excerpt of the “Main Theorem” in [16].)

Proposition 24 Let g, d, n ∈ N and assume that g − d+ n ≥ 0. Let

ρ = ρ(g, d, n) := g − (n+ 1) · (g − d+ n).

Then

a) for any curve of genus g, C
(d)
n has dimension ≥ ρ + n and W d

n has di-
mension ρ.

b) For a general curve of genus g, C
(d)
n is equidimensional of dimension

ρ+ n, and W d
n is equidimensional of dimension ρ.

Part b) of this proposition implies (see Point b) in the introduction of
[16]):

Proposition 25 Let g, d, n ∈ N and assume that g− d+n ≥ 0. Let ρ be as
above.
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Let C be a general curve. Let |D| be a general complete linear system of
degree d and dimension ≥ n on C. Then

• |D| has dimension exactly n,

• |D| has no base points,

• if n ≥ 2, a corresponding morphism C −→ Pn (i.e. a morphism given
by a basis of L(D) as described above) is birational onto its image.

The statements also hold for sufficiently general effective divisors of degree d
and dimension ≥ n.

All these statements follow from simple dimension-arguments. For example,
the first statement follows from ρ(g, d, n′) > ρ(g, d, n) for n′ > n. We note
that it is also true that for ρ ≥ 0 a general effective divisor of degree d
and dimension ≥ n on C has dimension exactly n, but this statement is
weaker than the one in the proposition (it corresponds to ρ(g, d, n′) + n′ >
ρ(g, d, n) + n for n′ > n).

Heuristically, Proposition 25 has the following interpretation:

Heuristic Interpretation 26 Let us fix g, d, n with g − d + n ≥ 0. For
a prime power q, let P (q) be the portion of isomorphism classes of tuples
(C, |D|), where C/Fq is a curve of genus g and |D| is a complete linear system
of degree d and dimension ≥ n on C, for which the statements of Proposition
25 are satisfied. (If for some q no such tuples exist, we set P (q) := 1.) Then
P (q) is in Ω(1− 1

q ) for q −→∞.

Back to the “first approach”

The statement in the “first approach” that one should expect that an effec-
tive divisor of degree g + 2 on a curve of genus g has no base points and
defines a morphisms to P2 which are birational unto their image can now be
made precise: Any sufficiently general divisor of degree g+2 on a sufficiently
general curve of genus g has the properties.

Using special divisors

For sufficiently general curves of genus ≥ 3, there is an easy method to find a
plane model of degree g+1 instead of g+2: First one fixes a canonical divisor
K. Then one chooses an effective divisor D of degree g − 3 and considers
the divisor K −D. By Riemann-Roch this divisor will have dimension ≥ 2.
As is shown in the following proposition, for any sufficiently general divisor
D on a sufficiently general curve C, K −D has dimension 2, no base points
and defines morphisms C −→ P2 which are birational unto their image.
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Proposition 27 Let C be any curve of genus g ≥ 3. Then we have a
birational morphism

C
(g−3)
0 = C(g−3) −→ W g−3

0 −→ W g+1
2

D 7→ |D| 7→ |K −D|.

In particular, for any (sufficiently) general divisor D of degree g − 3 on
a (sufficiently) general curve C, |K − D| has no base points and defines a
morphism to P2 which is birational onto its image.

Proof. The morphism C
(g−3)
0 = C(g−3) −→ W g−3

0 , D 7→ |D| is birational
because on any curve, any general divisor of degree g− δ for some δ > 0 has
dimension 1.

By the Riemann-Roch theorem and the fact that deg(K) = 2g − 2, we
have an isomorphism W g−3

0 −→W g+1
2 , |D| 7→ |K −D|. 2

We note that whereas with this method one can find plane models of
degree g + 1 of sufficiently general curves of genus g ≥ 3, the method does
not work for hyperelliptic curves. (Every special divisor of dimension ≥ 1
on a hyperelliptic curve defines morphism to some projective space whose
image is birational to P1.)

Non-hyperelliptic curves of genus 3

Non-hyperelliptic curves of genus 3 have the nice property that the canonical
linear system itself has dimension 2. One obtains in this way morphisms into
P2 which are in fact embeddings, the so-called canonical embeddings. The
image is a non-singular curve of degree 4, a so-called canonical curve (see
[17, IV,5]).

A problem

One might ask if it there exist divisors on sufficiently general curves of
dimension 2 of smaller degree than g+1. One might also ask for an algorithm
to determine if divisors of a prescribed degree and dimension exist on some
curve, and if that is the case to find them.

Here are some thoughts which might be useful to answer the first ques-
tion. Propositions 24 and 25 imply:

Proposition 28 Let g, d, n ∈ N such that g − d + n ≥ 0 and the number
ρ defined in Proposition 24 is ≥ 0. Then on any sufficiently general curve
over an algebraically closed field, there exists a divisor of degree d and di-
mension n.

In particular, if C is a sufficiently general curve over an algebraically
closed field, there exists a morphism C −→ Pn which is birational towards
its image such that the image has degree d.
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As a special case we obtain:

Proposition 29 Let 2
3g+2 ≤ d ≤ g+2. Then any sufficiently general curve

of genus g over an algebraically closed field has a plane model of degree d.

We are unaware of a similar result over finite fields. We note that it
would be interesting to know if for the general curve C over the generic
point of Mg over Spec(Z), the locus of divisors of dimension 2 and degree
d in C(d) has an irreducible component which is geometrically irreducible.
Heuristically, this would mean that for a fixed genus and degree and for
large q, an overwhelming portion of curves over Fq would have a divisor of
degree d and dimension 2.

We also asked for an algorithm to determine whether divisors of a pre-
scribed degree and dimension exist on some curve, and if that is the case,
to find such a divisor.

As was noticed by Brill and Noether, the loci C
(d)
n in C(d) are (essentially)

defined by subdeterminants of certain matrices, the so-called Brill-Noether
matrices (cf. [24, Remark 6]).

This original method to describe C
(d)
n can rather easily be turned into

an algorithm. We plan to present the algorithm and experimental results
obtained with it in a future work.

Experimental results

We implemented

1. the method to find models of degree g + 2 (the “first approach”),

2. the method to find models of degree g+ 1 (“using special divisors”).

The experiments were conducted with curves of genus 3 to 8. The derivation
of the defining polynomial was carried out as described in Point 3 of “Basic
Algorithms” in the previous section. In our experiments we were always
able to derive the equation of ϕ(C) after having chosen 2 ·

(d+2
2

)

different
points of C(Fq).

In the first method, the divisors were selected with the RandomPlace
function. The results were as follows:

1. We applied the first method to a large variety of curves of genus ≥ 3
(including hyperelliptic curves) and in every case, we obtained a plane
model of the curve of degree g + 2.

2. We tried the second method for various classes of non-hyperelliptic
curves over finite fields of size 1009 and larger (all in all trying several
thousands of curves), and in all cases, we obtained a plane model of



38 Diem

degree g + 1. In particular, we tried the method for the explicit curve
of genus 7 at the end of [7] and 100 other genus 7 curves generated
with the particular instances of the GHS attack in odd characteristic
described in [7, 6.2, 7.3], and we obtained plane models of degree 8.

We view the methods and heuristics presented in this section as being ex-
perimentally confirmed.

6 Discussion and outlook

On the security of systems based on non-hyperelliptic curves

of genus 3

Given our heuristic result and our experimental evidence, one might con-
clude that non-hyperelliptic (canonical) genus 3 curves are cryptographically
weak. Indeed, by considering the respective heuristic running times, one
would be tempted to conclude that a non-hyperelliptic curve of genus 3 over
a field Fq does not provide a better security level than a genus 2 curve over
the same field (but in the former case the key length is 1.5 times as large).

This conclusion would however be to hasty. As pointed out by Amirazizi
and Hellman ([2]), Bernstein ([5]), Wiener ([35]) and other cryptographers, a
better cost estimate than the mere running time is the full cost. According to
Wiener ([35]), “the full cost of an algorithm run on a collection of hardware
is number of components multiplied by the duration of their use”.

Let us fix the following notation: If f, g : N −→ R are two functions,
then f = Θ̃(g) means that f(n) ≤ p(log(n)) ·g(n) and g(n) ≤ q(log(n)) ·f(n)
for all n≫ 0 with two polynomial functions p, q.

Whereas our double large prime variation algorithm has a heuristic run-
ning time of Θ̃(q), due to the memory requirements of Θ(q), the full cost
is Θ̃(q2). This is clearly worse than the full cost Õ(q3/2) of Pollard’s rho
method which only requires very little memory. It is however intuitively
obvious that our (unparallelized) algorithm cannot be optimal for full cost
– one might describe the situation by saying “A huge bulk of memory just
sits around and does nothing”. It is very intuitive that some kind of paral-
lelization should lead to a reduction in the full cost.

As a first step towards a parallelized variant with a better full cost,
we note that the linear algebra part of the algorithm (the solution of an
inhomogeneous sparse linear system of size q1/2) can (heuristically) via a 2-
dimensional mesh of size q1/4× q1/4 be performed with a full cost of Θ̃(q5/4)
instead of Θ̃(q3/2). The heuristic running time is thereby Θ̃(q3/4) (see [5]
and [26]).

Given the definition of full cost cited above, it seems however to be diffi-
cult to derive a parallelized variant of our algorithm whose full cost is below
Õ(q3/2). Indeed, just by the facts that our graph of large prime variation
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needs a storage of Θ(q) and the running time of the linear algebra part is
Θ̃(q3/4), we obtain a running time of Ω(q7/4). (One could now decrease the
number of large primes but that would course other problems.)

Given that the relation collection and the linear algebra part are already
today often performed on different hardware, we now ask whether it is pos-
sible to perform these two tasks separately with a smaller full cost than
O(q3/2).

A suitable factor base can be constructed in an expected time of Θ(q1/2),
leading to a full cost of just Θ(q), even without parallelization.

To analyze a parallelization the relation generation step, we use the
model of [35]: P different processors access a common storage in 3-dimen-
sional space. Using [35, Corollary 2] (and the heuristic analysis in Section 4),
we obtain a heuristic full cost of

Õ(q
4
3 )

for an optimally parallelized construction of the tree of large prime variation
(using Θ(q2/3) processors). Again with Θ(q2/3) processors, the Step 4 of the
algorithm, the relation generation, has a negligible full cost of

Õ(q
5
6 ).

The sum of the costs for the relation search and the linear algebra is thus –
according to our heuristic analysis – asymptotically bounded by the cost of
Õ(q4/3) of the relation search.

We conclude that in a weakened sense and on the basis of a heuristic
analysis, the full cost of an attack on the DLP in degree 0 class groups of
non-hyperelliptic curves with the variant of our algorithm described here is
indeed lower than the full cost of Pollard’s rho method (if the order of the
degree 0 class group is “nearly prime”).

Concluding remarks

We conclude with some general remarks on the feasibility of index calculus
in class groups non-hyperelliptic curves in comparison with hyperelliptic
curves.

From time to time we heard cryptographers or mathematicians express
the opinion that a certain cryptographic system based on non-hyperelliptic
curves should be more secure than a system based on hyperelliptic curves of
the same genus or that certain kinds of covering attacks are “just theoretical”
because the resulting curves are not hyperelliptic. We hope that with this
work we have clarified this issue in two aspects:

First, it does not provide any difficulties to adapt the index calculus
algorithm by Gaudry as well as the essential publicly known improvements
of this algorithm (reduced factor base, (double) large prime variation) to
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more general curves. We stress that the asymptotic results stay the same
if one assumes that the curves are represented by a suitable model of small
degree. (The results are however only heuristic whereas in the hyperelliptic
case and under some conditions on the class groups a rigorous analysis can
be given for a variant of the Gaudry-Harley algorithm.) Moreover, also
from a practical point of view, the algorithms are not much slower than the
algorithms for hyperelliptic curves. Indeed, the arithmetic in hyperelliptic
curves (in imaginary quadratic representation) can be performed in O(q2)
field operations whereas the arithmetic in general curves (represented by a
suitable model of small degree) can be performed in O(g4) field operations
([20, 18]).

Second, independent of the perspective one has in mind (be it theoretical
or practical and be it running time or full cost), our index calculus attack
on the DLP in class groups of non-hyperelliptic genus 3 curves is more ef-
ficient than the currently best publicly known index calculus algorithm for
class groups of hyperelliptic genus 3 curves. Further, again on the basis of
current publicly available knowledge, asymptotically, the DLP in degree 0
class groups of “sufficiently general” curves of other genera can on heuris-
tic grounds also be solved faster than the DLP in degree 0 class groups of
hyperelliptic curves of the same genus.

Future research topics

There are several natural research topics related to this work.

• Conduct more experiments, in particular try to calculate instances of
the DLP in class groups of non-hyperelliptic genus 3 curves over fields
of size > 227 (which is the largest example in [15]).

• Analyze a “large degree” variant of our algorithm (which essentially
generalizes the algorithm by Adleman, DeMarrais and Huang to more
general than hyperelliptic curves) with particular emphasis on the case
that the genus is much larger than the degree. (Such an algorithm was
formulated by Hess in [19].)

• Implement the algorithm to find the locus of divisors of degree d and
dimension ≥ n on C(d) for some curve C, and try to obtain plane models
of small degree with this algorithm.

We plan to address these questions in the near future.
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