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Abstract. We present an index calculus algorithm which is particularly
well suited to solve the discrete logarithm problem (DLP) in degree 0
class groups of curves over finite fields which are represented by plane
models of small degree. A heuristic analysis of our algorithm indicates
that asymptotically for varying q, “almost all” instances of the DLP in
degree 0 class groups of curves represented by plane models of a fixed
degree d ≥ 4 over Fq can be solved in an expected time of Õ(q2−2/(d−2)).
Additionally we provide a method to represent “sufficiently general”
(non-hyperelliptic) curves of genus g ≥ 3 by plane models of degree
g + 1. We conclude that on heuristic grounds, “almost all” instances of
the DLP in degree 0 class groups of (non-hyperelliptic) curves of a fixed
genus g ≥ 3 (represented initially by plane models of bounded degree)
can be solved in an expected time of Õ(q2−2/(g−1)).

1 Introduction

In recent works by Gaudry, Thomé, Thériault and the author ([13]) as well as
Nagao ([22]), a double large prime variation for index calculus in degree 0 class
groups of curves of small genus over finite fields has been introduced.

In this work, we present a different double large prime variation algorithm
which is particularly well suited for the computation of the discrete logarithm
problem (DLP) in degree 0 class groups of curves which are represented by plane
models of small degree.

A heuristic analysis of our algorithm indicates (see Section 4):

Heuristic Result 1 Let d ≥ 4 be fixed. Let us consider the DLP in degree 0
class groups of curves of a fixed genus g ≤ (d− 1)(d− 2)/2 represented by plane
models of degree d over finite fields Fq. Then “almost all” instances of the DLP

in such groups can be solved in an expected time of Õ(q2− 2
d−2 ).

Here, the Õ-notation means that we suppress logarithmic factors.
Additionally to the index calculus algorithm, we present a method to find

plane models of degree g + 1 of “sufficiently general” (non-hyperelliptic) curves
of genus g ≥ 3 (see Section 6).

By applying our algorithm to such a plane model, we obtain that on heuristic
grounds “almost all” instances of the DLP in degree 0 class groups of (non-hyper-
elliptic) curves of a fixed genus g ≥ 3 (initially represented by plane models of
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bounded degree) can be solved in an expected time of

Õ(q2− 2
g−1 ).

This result should be compared with the following provable result which can
be obtained with a variant of one of the algorithms in [13] (see [7]).

Let g ≥ 2 be fixed. Then the DLP in cyclic degree 0 class groups of curves
of genus g represented by plane models of bounded degree can with a randomized
algorithm be solved in an expected time of Õ(q2−2/g).

An important special case for our algorithm is constituted by the DLP in
degree 0 class groups of non-hyperelliptic curves of genus 3 over finite fields
Fq: Every such curve can (via the canonical embedding) be represented as a
plane quartic. By applying our algorithm to such a model, we obtain a heuristic
running time of Õ(q).

This result is of particular importance because the DLP in degree 0 class
groups of non-hyperelliptic genus 3 curves has recently received considerable
attention as a potential cryptographic primitive; it is studied in detail in the
related article [10] in which also some experimental data is presented.

Even though the DLP in degree 0 class groups of non-hyperelliptic curves of
genus larger than 3 has not received much attention as a potential cryptographic
primitive, our algorithm has yet another important application in cryptanalysis:

The method of “covering attacks” (a.k.a. Weil descent attacks) (cf. [8, Ap-
pendix], [9], [17], [12, Section 4.4]) allows to transfer the DLP in groups of ratio-
nal points of certain elliptic curves (or in degree 0 class groups of certain curves
of small genus) over extension fields into the DLP in degree 0 class groups of
curves of rather small genus over smaller fields. The results in the present work
suggest that it is advantageous for the attack if the resulting curves are not
hyperelliptic.

2 Setting and First Remarks

Preliminaries

In this work, if not stated otherwise, a curve is always non-singular, projective
and geometrically irreducible.

In the presentation above we implicitly used the following conventions con-
cerning the representation of curves, divisors and divisor classes:

Let q be a prime power. We let P
2
Fq

:= Proj(Fq[X, Y, Z]); we thus have the

canonical “homogeneous coordinate system” X, Y, Z ∈ Γ (P2
Fq

,O(1)).
We think of every curve in question as being the normalization of a possibly

singular curve in P
2
Fq

. We distinguish the two by calling the latter one a plane
model of the curve, denoted by Cpm. We use a defining homogeneous polynomial
to represent the plane model (and thus the curve itself).

By a divisor on a curve C over Fq we mean a divisor over Fq. We think of
divisors as being represented as a formal sum of closed points in C. (This is called
the free representation in [16].)
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For some divisor D on C, we denote the corresponding divisor class by [D].
We denote the degree 0 class group of C over Fq by Cl0(C).

For fixed genus g and q ≫ 0, C(Fq) is non-empty; we assume that this
is the case and fix some P0 ∈ C(Fq). An effective divisor D on C is called
maximally reduced along P0 if the linear system |D − P0| is empty. By the
Riemann-Roch theorem, maximally reduced divisors have degree ≤ g, and D 7→
[D] − deg(D) · [P0] defines a bijection between the effective maximally reduced
divisors and the elements of the degree 0 class group Cl0(C) (see [16, Prop. 8.2.]).

It is by now a classical result that with this representation of the elements of
the degree 0 class group, the arithmetic in Cl0(C) can – for curves represented
by plane models of bounded degree – be carried out in randomized polynomial
time (cf. e.g. [26], [18], [16], [20], [19]).

Further notation and conventions

We use the same notation for functions on P
2
Fq

, their restriction to Cpm, their pull-

back to C as well as the induced element in the function field Fq(C). Moreover,
if ϕ : C −→ P

2
Fq

is the (fixed) morphism from C to P
2
Fq

, we use the same notation

for elements of Γ (P2
Fq

,O(1)) and their pull-backs to Γ (C, ϕ∗(O(1))).
We identify zero-dimensional closed subschemes on C with effective divisors.

To distinguish the divisor of zeros of an element of W ∈ Γ (P2
Fq

,O(1)) from the

divisor of zeros of the induced element in Γ (C, ϕ∗(O(1))), we write divC(W ) for
the latter. (See [15, II, §7] for information about the divisor of zeros.)

Calculating the group order

We assume that the order of the degree 0 class group is known. From a theoretical
point of view this is however not an obstacle because it can be shown that
the L-polynomials of curves over Fq represented by plane models of bounded
degree can be calculated in (deterministic) polynomial time in log(q). (This
result follows from [24, Theorem H] which in turn relies on Pila’s extension of the
point counting algorithm by Schoof ([25]) to abelian varieties ([23]).) Moreover,
in cryptographic situations, the order of the cyclic subgroup in question is always
known, and this suffices for practical applications of our algorithm.

Overview over the new algorithm

Our algorithm can be viewed as a variant of the recent double large prime
variation algorithms by Gaudry, Thomé, Thériault and the author ([13]) as well
as Nagao ([22]) (see also [3]).

The main difference is that we use principal divisors to construct the graph
of large prime relations, whereas in [13] and [22] random linear combinations of
the two input elements in the degree 0 class group have been used.

More concretely, we find relations by intersecting the plane model with lines
running through two elements of the factor base. We advice the reader to have the
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following intuitive idea about the algorithm and its heuristic analysis in mind:
Every line which runs through the non-singular part of the plane model defines
a divisor of degree d on the curve. If we now intersected the plane model with
arbitrary lines, heuristically we would obtain a running time which is analogous
to the running time of the previous double-large prime-variation algorithms with
g substituted by d. As we however only consider lines which already run through
two points of the factor base, we obtain a running time which is analogous to
the running time of the previous algorithms with g substituted by d− 2.

We recall that there are two algorithms in [13]: the “full algorithm” and the
“simplified algorithm”. Our algorithm is closer to the “full algorithm” but there
is an essential difference: In the full algorithm in [13], recombined relations over
the factor base are already obtained during the construction of the graph. In
contrast, we first try to construct a sufficiently dense graph, and after that we
construct what is known as a shortest path tree. Then we use random linear
combinations of the two input elements to generate recombined relations over
the factor base with the help of the tree.

The heuristic nature of our results

The analysis of the algorithm presented in this work is heuristic. It is conceivable
that there is a sequence of instances which violates the stated running times.
This is why we talk about “almost all” instances.

A rigorous interpretation of our claims can be given as follows:
Let us fix the degree d and the genus g ≤ (d− 1)(d− 2)/2. Now for a prime

power q, let S(q) be the set of all instances of the DLP in curves of genus
g ≤ (d− 1)(d− 2)/2 over Fq represented by plane models of degree d. (With the
representations described above.)

The (conjectural) claim is now that there exist subsets S1(q) of S(q) with
#S1(q)/#S(q) −→ 1 (q −→ ∞) such that the instances in S1(q) can be solved
in the stated time.

Above, we also used the term “sufficiently general”. This term will be defined
in Section 6.

Historical remarks and comparison

The idea to use principal divisors to generate relations in class groups is not new.
For example, the same approach was taken in the work by Adleman, DeMarrais,
Huang ([1]), in which the first algorithm with a heuristic subexponential running
time for the computation of the DLP in degree 0 class groups of hyperelliptic
curves of large genus was given.

We note that to our knowledge, all known index calculus algorithms which
rely on the consideration of principal divisors are analyzed only heuristically.
With our two-step procedure to generate relations we have however eliminated a
crucial hypothesis which previously occurred in the analyses of such algorithms:
the hypothesis that “sufficiently many” of the relations generated are linearly
independent.
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3 The Algorithm

We consider curves over Fq represented by plane models of a fixed degree d ≥ 4.
Let C be such a curve with a fixed plane model Cpm in P

2
Fq

, given by

F (X, Y, Z) = 0 .

Let a, b ∈ Cl0(C) such that b ∈ 〈a〉. The goal is to compute an x ∈ N with
x · a = b.

Let D∞ := divC(Z). Note that this is a divisor of degree d on C. (This divisor
will appear in the description of the algorithm, it is however not necessary to
compute it.)

Let Cns be the non-singular part of Cpm.

We now describe how the partial relations used to construct the graph of
large prime relations are obtained.

The following classical statement from the theory of linear systems is crucial:

Lemma 1. Let W ∈ Γ (P2
Fq

,O(1)) (W 6= 0), and let D := divC(W ). Then D is
linearly equivalent to D∞.

Sketch of the proof. D −D∞ is the principal divisor of W
Z ∈ Fq(C). ⊓⊔

As a reformulation of this we obtain: Let cX , cY , cZ ∈ Fq, not all 0, and let
L be the line defined by cXX + cY Y + cZZ = 0. Let D := L ∩ Cpm be the
(scheme-theoretic) intersection. If then D is contained in Cns, we can regard D
as a divisor on C, and we have

[D]− [D∞] = 0 . (1)

Lemma 2. Given cX , cY , cZ ∈ Fq, not all 0, one can decide in randomized
polynomial time in log(q) if the support of the intersection of Cpm with L consists
of Fq-rational points of Cns and – if this is the case – compute the (completely
split) intersection divisor D.

Proof. Let us (w.l.o.g.) assume that cY = 1. Then the point (0 : 1 : 0) does not lie
on L. The homogeneous polynomial F (X,−cXX− cZZ) ∈ Fq[X, Z] now defines
the image of the intersection under the projection to the (X, Z)-coordinates
(with multiplicities). The support of the intersection of Cpm with L consists of
Fq-rational points of Cpm if and only if this polynomial factors completely. This
factorization can be computed in randomized polynomial time in log(q). The Y -
coordinates of the intersection points can then easily be obtained by using the
equation for the line L. Finally, one can check whether the intersection points
lie in Cns by evaluating the partial derivatives of F . ⊓⊔

Let us now fix a factor base F = {F1, F2, . . .} ⊂ Cns(Fq). Let L := Cns(Fq)−F
be the set of the so-called large primes. Analogously to [13] we define:
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Definition 1. A relation (1) (with D ≥ 0) is called a Full relation if D is a
sum of elements of the factor base. It is called an FP relation if D is a sum of
elements of the factor base and the non-trivial multiple of one large prime. It is
called a PP relation if D is the sum of elements of the factor base and non-trivial
multiples of two large primes.

In the first phase of the algorithm, we construct a graph of large prime rela-

tions on L
·

∪ {∗} using FP and PP relations.
We find such relations by intersecting the curve with lines L : cXX + cY Y +

cZZ = 0 (cX , cY , cZ ∈ Fq) running through two points of the factor base.
For the construction of the graph of large prime relations, we proceed as

follows:
If we have a Full relation, we do nothing. If we have an FP relation with a

large prime P , we consider the edge between ∗ and P , if we have a PP relation
with two large primes P and Q, we consider the edge between P and Q. If the
edge does not yet occur in the graph, we insert it, labeled with the data for the
relation.

Remark 1. The graph we construct here can have many cycles. In contrast, the
graph constructed in the “full algorithm” in [13] is acyclic.

After having constructed a graph with a sufficiently large connected com-
ponent containing ∗, we construct what is known as a shortest path tree with
root ∗.

Definition 2. Let G be an undirected (unweighted) graph, and let ∗ be a vertex
in G. Then a shortest path tree with root ∗ is a tree on a subset of the set of
vertices of G with the following properties:

– The vertices in T are the vertices in the connected component of ∗ in G.
– For any vertex V in T , the distance between ∗ and V in G is equal to the

distance between ∗ and V in T .

Notation 1 The set of vertices of a tree T is also denoted by T .

It is easy to construct a shortest-path tree algorithmically with the so-called
breadth-first search (see [6, Section 22.2]).

As written in Section 2, for every element c ∈ Cl0(C) there is a unique along
F1 maximally reduced effective divisor D such that [D]−deg(D) · [F1] = c (here
as above, F1 is the first element of the factor base).

We use this representation of the elements of the degree 0 class group and
proceed as in Phase 2 of the “simplified algorithm” in [13]. Provided that the
degree 0 class group is cyclic and generated by a this means that we consider
random linear combinations of the inputs a and b which we try to express as
sums of elements of F ∪ T . We then use the tree to substitute the vertices of
T involved by sums of (possibly negative) multiples of elements in the factor
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base and D∞. Finally, we solve the DLP with an algorithm from sparse linear
algebra.

We are now ready to give the complete algorithm. For simplicity we thereby
assume that the group order ℓ is prime. (If the group is cyclic but not of prime
order or the group is arbitrary but its structure is known, Steps 5 and 6 should
be modified according to the descriptions in [13] and [11].)

The algorithm

Input: A curve C/Fq, given by a plane model of degree d,
the group order ℓ := #Cl0(C) and two elements a, b ∈ Cl0(C) with 〈a〉 = Cl0(C).

1. Enumerate Cns(Fq) and choose a factor base F = {F1, F2, . . .} uniformly at ran-
dom from the set of all subsets of Cns(Fq) with ⌈(4 ·(d−2)!)1/(d−2) ·q1−1/(d−2)⌉
elements.
(If Cns(Fq) has fewer elements, terminate.)

2. Construct a graph G on L
·

∪ {∗} (where L := Cns(Fq)−F) as follows:
For all i < j do

Compute the line L through Fi and Fj .
If D := L ∩ Cpm is contained in Cns

and splits completely into points of Cns(Fq), then
if it defines an FP or a PP relation, then

if the corresponding edge does not yet occur in the graph, then
insert the edge in the graph.

3. Construct a shortest path tree T with root ∗ in G.
4. If T has less than 1

log(q) · q vertices or the depth of T is > log2(q), go back to 1.

5. Construct a sparse matrix R over Z/ℓZ as follows:
For i = 1, . . . , #F + 1 do

Repeat
Choose uniformly and independently randomly αi and βi and compute
the unique along F1 maximally reduced effective divisor D with
[D]− deg(D) · [F1] = αia + βib.

Until D splits into elements of F ∪ T .
Use the tree T to substitute these elements
by sums of multiples of elements of F ∪ {D∞}.
If this substitution leads to the relation

∑

j ri,j [Fj ] + ri[D∞] = αia + βib,
store (ri,j)j as the i-th row of R.

6. Compute a non-zero vector γ over Z/ℓZ with γR = 0 with an algorithm
from sparse linear algebra.

7. If
∑

i γiβi ∈ (Z/ℓZ)∗, let

x←− −

∑

i γiαi
∑

i γiβi
,

otherwise go back to 5.
Output x.
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Proposition 1. If the algorithm outputs x, we have x · a = b.

Proof. With the notation in Steps 5 and 6, we have

∑

i

γiαia +
∑

i

γiβib =
∑

i,j

γiri,j [Fj ] +
∑

i

γiri[D∞] =
∑

i

γiri[D∞].

As
∑

i γiαia +
∑

i γiβib has degree 0, we have
∑

i γiri = 0, i.e.
∑

i γiαia +
∑

i γiβib = 0. This implies x · a = b. ⊓⊔

4 Heuristic Analysis

The following heuristic analysis is for fixed degree d and fixed genus g ≤ (d −
1)(d − 2)/2 and q −→ ∞. We note that even though the genus is bounded if
we fix the degree (which suffices for our heuristic analysis), we fix the genus
additionally to the degree because we want to derive statements on almost all
instances for every fixed degree and genus.

A “randomized” factor base as in Step 1 can be found in an expected time
of Õ(q) as follows:

First all points of Cns(Fq) are enumerated. By iterating over the (X, Z)-coor-
dinates and considering the possible Y -coordinates, this can be done in a time of
Õ(q). After this, a factor base as in Step 1 of the algorithm can be constructed
by uniformly randomly choosing points of C(Fq). The expected running time is

then again in Õ(q).

We now come to the task to analyze the size of the tree T as well as its depth.
This task seems to be very difficult, and our analysis relies on several heuristic
assumptions. A key technique of our approach is to use the randomization of
the factor base and to rely on a heuristic comparison of the graph which is
constructed in Step 2 with an appropriate “random graph”.

We will use these notations:

Definition 3. Let (an)n∈N and (bn)n∈N be two sequences of real numbers. Then
we write

an & bn

if lim inf an

bn
≥ 1.

Definition 4. For P, Q ∈ Cns(Fq) with P 6= Q, let pPQ be the probability that
P, Q ∈ L and the unordered pair {P, Q} occurs as an edge in the graph (if we
choose the factor base uniformly at random from the set of all factor bases with
⌈(4 · (d− 2)!)1/(d−2) · q1−1/(d−2)⌉ elements). Let

pav :=
1

#Cns(Fq) · (#Cns(Fq)− 1)
·

∑

P,Q∈Cns(Fq) with P 6=Q

pPQ .

Note that pav can be seen as the average probability that an (unordered) pair of
distinct points in Cns(Fq) occurs as an edge in the graph.
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Lemma 3. For P, Q ∈ Cns(Fq) with P 6= Q such that the line through P and Q
intersects Cpm only in Cns and the intersection divisor splits completely into a
sum of distinct points of Cns(Fq), we have

pPQ ∼ 4 · (d− 2)! ·
1

q
.

Proof. Let D = P +Q+R be the intersection divisor. Then the probability pPQ

is equal to the probability that the factor base contains all d− 2 points from R
and does not contain P and Q.

The probability pPQ is thus

( #Cns(Fq)−d

⌈(4·(d−2)!)1/(d−2)·q1−1/(d−2)⌉−(d−2)

)

( #Cns(Fq)

⌈(4·(d−2)!)1/(d−2)·q1−1/(d−2)⌉

)

.

For q −→∞ this is asymptotically equivalent to

(

(4 · (d− 2)!)1/(d−2) · q1−1/(d−2)

q

)d−2

= 4 · (d− 2)! ·
1

q
.

⊓⊔

By the Hasse-Weil bounds, there are∼ qd divisors of degree d on C of whose∼
1
d!q

d split completely. The probability that a uniformly randomly chosen divisor
on C of degree d is completely split is thus asymptotically equal to 1

d! . This
motivates:

Heuristic Assumption 1 For almost all instances, the probability that a uni-
formly randomly chosen divisor in the linear system |D∞| is completely split is
≥ 1

2 ·
1
d! .

Remark 2. In the case non-hyperelliptic curves of genus 3 (given as plane quar-
tics), it is possible to prove via an effective Chebotarev theorem that the prob-
ability that a uniformly randomly chosen divisor in |D∞| is completely split is
asymptotically equal to 1

4! . Thus Heuristic Assumption 1 is satisfied in this case
(see [10]).

Proposition 2. Under Heuristic Assumption 1, for almost all instances,
pav · q & 2, and the expected number of edges in the graph of large prime re-
lations is & q.

Proof. We restrict ourselves to instances for which Heuristic Assumption 1 is
satisfied.

We first note that the number of divisors in |D∞| which split completely into
sums of distinct points of Cns(Fq) is & 1

2
1
d! · q

2.

Indeed, the number of completely split divisors is by assumption ≥ 1
2

1
d! ·

q3−1
q−1 .

By the formulae for the arithmetic and the geometric genus, the number of
singular points in (Cpm)

Fq
is ≤ (d− 1)(d− 2)/2, thus the number of lines in P

2
Fq
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through singular points is in O(q). Moreover, every divisor in |D∞| which has
the form

∑

P nP P with nP ≥ 2 for some P ∈ Cns(Fq) is defined by a line in P
2
Fq

which is tangential to Cpm. This means that the total number of such divisors is
also in O(q).

For any divisor D in |D∞| which splits completely into a sum of distinct
points of Cns(Fq), there are d·(d−1) ordered pairs of distinct points in Cns(Fq) in
the support of the divisor. Each of these pairs of points fulfills the assumptions of
Lemma 3 (and conversely, any pair of points fulfilling the assumptions of Lemma
3 determines uniquely such a divisor D). Thus there are & 1

2·d! · d(d − 1) · q2 =
1

2·(d−2)! ·q
2 ordered pairs of distinct points of Cns(Fq) which fulfill the assumption

of Lemma 3.

The average probability pav is thus

&
1

q2
· (

1

2 · (d− 2)!
· q2) · (4 · (d− 2)! ·

1

q
) =

2

q
.

If one multiplies the average probability pav by the number of unordered pairs
of points of Cns(Fq), one obtains the claimed asymptotic lower bound on the
expected number of edges. ⊓⊔

It does not seem to be easy to study the number of vertices in the connected
component of ∗ of G (which is equal to the number of vertices in the tree T ) as
well as the depth of the tree.

We note however the following result from the theory of random graphs: Let
G(n, p) denote a random graph on n vertices in which each unordered pair of
vertices appears (independently of the other pairs of vertices) as an edge with
probability p (this is called a Bernoulli random graph in [27]). Then we have
(see [4, Theorem 6.11] together with [4, Theorem 2.2 a)] as well as [5]):

Proposition 3. Let c > 1 be a constant. Then for p · n ≥ c, with probability
converging to 1 for n −→∞, G(n, p) has a “giant connected component” of size
Θ(n), and the diameter of the graph is in O(log(n)).

We now have the following situation: As in the conclusion of Proposition 2,
let pav · q & 2. Then with probability converging to 1, a random graph

G(#L
·

∪ {∗}, pav) has a “giant connected component” of size Θ(q) and diameter
O(log(q)).

Clearly, there are three essential differences between Bernoulli random graphs
and the situation we have here:

1. In contrast to Bernoulli random graphs, many of the pairs of vertices are
never drawn.

2. In contrast to Bernoulli random graphs, the probabilities of two pairs of
vertices appearing as edges in the graph are not independent.

3. In contrast to Bernoulli random graphs, we have the “special vertex” ∗ which
heuristically occurs in much more edges than the vertices in L.



11

The analysis now relies on the heuristic assumption that analogous to a random

graph G(#L
·

∪ {∗}, pav), for almost all instances, “sufficiently often” our graph
has a “giant connected component” of “sufficient size” and “sufficiently small”
diameter containing ∗. As an approach to cope with possible distortions, we
require only that with a probability of Ω̃(1), we have ≥ 1

log(q) · q vertices and the

maximal distance to ∗ is ≤ log2(q) (cf. the conditions in Step 4). (The Ω̃-notation
should be understood analogously to the Õ-notation.)

The above considerations motivate:

Heuristic Result 2 For almost all instances, Step 5 of the algorithm is reached
after at most Õ(1) iterations of 1 – 4.

As there are Θ(q2−2/(d−2)) iterations within Step 2, this step has a running
time of Õ(q2−2/(d−2)).

With the breadth-first algorithm, given a graph on n vertices with m edges
represented by numbers whose bit-length is polynomial in log(n), a shortest-path
tree can be computed in a time of Õ(n+m). As the graph clearly contains O(q)
vertices and O(q2−2/(d−2)) edges, the running time of Step 3 is in Õ(q2−2/(d−2)).

This means that on the basis of Heuristic Result 2, for almost all instances,
Step 5 of the algorithm can be reached in a time of Õ(q2−2/(d−2)).

Under the assumption that the degree 0 class group is cyclic or the group
structure is known, the rest of the algorithm can be analyzed rigorously. For
simplicity, as in the description of the algorithm, we stick to the case that the
degree 0 class group has prime order ℓ. For modifications for the general case,
we refer to [11] and [13].

We have the following general lemma.

Lemma 4. Let us consider curves C over Fq of a fixed genus g together with a

point P0 ∈ C(Fq) and a set of rational points S ⊂ C(Fq) such that #S = Ω̃(q).

Then there are Ω̃(qg) effective divisors D which split completely into sums of
elements of S and are maximally reduced along P0.

Proof. If D is a non-special effective divisor of degree g, then the unique effective
divisor D′ which does not have P0 in its support and satisfies D′+(g−deg(D′)) ·
P0 = D is maximally reduced along P0. Clearly there are Ω̃(qg) effective divi-
sors of degree g which split completely into sums of elements of S, and by the
Hasse-Weil bounds, there are only O(qg−1/2) special divisors of degree g. This
is asymptotically negligible against Ω̃(qg). ⊓⊔

This lemma implies that with a probability of Ω̃(1) one choice of αi and βi in
Step 5 leads to a divisor D which splits over F ∪T . Step 5 then has an expected
running time of Õ(q1−1/(d−2)).

Because of the condition that the depth of T is ≤ log2(q), the expected
average number of elements in each row of the relation matrix is in O(log(q)2).
This implies that Step 6 has a running time of Õ(q2−2/(d−2)). Finally, as argued
in [13],

∑

i γiβi is uniformly randomly distributed over the group Z/ℓZ.
All in all, we have the following heuristic result:
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Heuristic Result 3 For almost all instances, the DLP in Cl0(C) can be com-
puted in a time of Õ(q2−2/(d−2)).

This is essentially the heuristic result stated in the introduction.
We note however that in the introduction we did not assume that the group is

cyclic or the group structure is known. We have to make an additional heuristic
assumption if the relation generation takes place in a proper subgroup of the
degree 0 class group.

5 Practical Aspects

In this section, we briefly discuss some practical aspects of our algorithm and
possible variants for concrete computations.

1. For practical purposes it might be advisable not to first construct the graph,
then the shortest path tree and then to use this tree to derive relations via
random linear combinations of the input values. Instead, one can proceed as
follows:

– First, one computes representatives of multiples αa and βb of the input
values a and b which split completely into sums of points of Cns(Fq).

– One chooses the factor base, thereby inserting the points in Cns(Fq) for
the representatives for αa and βb.

– One generates relations by considering lines through points of the factor
base as described in Section 3 but otherwise one proceeds as in the “full
algorithm” of [13]. This means that every time one would obtain a cycle,
one does not insert the corresponding edge in the graph but instead tries
to use this cycle to obtain a relation over the factor base.

– One stops if one has found enough “sufficiently light” cycles. Then one
solves the DLP via linear algebra.

With this approach only for the initial computation of multiples of a and
b one needs an algorithm for arithmetic in the degree 0 class group. If this
initial computation is not time-critical, this might simplify the implementa-
tion.
The approach presented above is particularly advantageous if g is much larger
than d (for example if the plane model itself is non-singular and therefore
g = (d − 1)(d − 2)/2). Note that the initial computation of multiples of a
and b might even dominate the running time.

2. The number of points in the factor base (⌈(4 · (d − 2)!)1/(d−2) · q1−1/(d−2)⌉)
was chosen such that we expect the graph of large prime relations to be
large enough for fixed degree d and q ≫ 0. It might be necessary to choose
the factor base slightly larger for concrete computations. This applies in
particular if one follows the variant presented above.

3. If every pair of points in the factor base is considered to generate the graph,
a line through the factor base defining a PP relation is usually considered
(

d−2
2

)

times. To decrease the occurrence of such “repeated selections”, it
might be advisable to choose the factor base larger than necessary.
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4. For the graph of large prime relations to be large enough, one needs at least
about q divisors in |D∞| which split completely. This implies that one should
have q > d! if one applies the algorithm. The case d! ≈ q can be considered
as a boundary case. In this case, one could try to apply the variant presented
in Point 1 by choosing the factor base equal to Cns(Fq) and ignoring the large
prime variation.

5. To reduce the storage requirements, it might be advisable to combine our
relation generation with the “simplified algorithm” of [13], i.e. when con-
structing the graph of large prime relations, one discards all edges which are
not connected to ∗. The factor base then has to be enlarged by a logarithmic
factor.

6 Finding Plane Models of Degree g+1

In this section we start off with some curve C of genus ≥ 3 over an “effective
field” k. The goal is to find a plane model of degree g + 1 (provided such a
model exists). In order to bound the time for computation of this plane model
we assume that the curve C is initially given by a plane model of bounded degree.

The idea is to define a morphism C −→ P
2
k via a special linear system of

degree g + 1. The case of non-hyperelliptic genus 3 curves is particularly easy:
the canonical system |K| itself defines an embedding into P

2
k. For the general

case we have the following proposition (see Point (b) in the introduction of [14]):

Proposition 4. A general linear system of degree d and (projective) dimension
≥ 2 on a general curve of genus g has dimension 2, no base-points and defines
a morphism to P

2 which is birational onto its image.

Here as usual, by a general curve we mean a curve which is obtained by base-
change from the curve corresponding to the generic point of the (coarse) moduli
spaceMg. (This space exists by [21, Corollary 7.14.].) A general effective divisor
of degree d is the divisor on Ck(Cd) corresponding to the generic point of Cd. Here,
following [2] and [14], Cd denotes the d-fold symmetric power of C.

Let us say that a property holds for sufficiently general curves (of a prescribed
genus) and / or for sufficiently general linear systems of divisors (of a prescribed
degree and dimension) if it holds for curves and divisors in an open part of the
corresponding moduli space.

We can then conclude that the linear system of any sufficiently general linear
system of degree d and dimension ≥ 2 on any sufficiently general curve defines
a morphism to P

2 which is birational onto its image. (As usual, the morphism
is unique up to an automorphism of P

2.)

Following [2] and [14], let us denote the locus of complete linear systems of
degree d and (projective) dimension ≥ n (in a twist of the Jacobian) by Wn

d (C).
We have the following proposition.
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Proposition 5. Let C be any curve of genus g ≥ 3. Then we have birational
morphisms

Cg−3 −→W 0
g−3(C) −→ W 2

g+1(C)

D 7→ |D| 7→ |K −D|.

In particular, for any (sufficiently) general effective divisor D of degree g−3 on a
(sufficiently) general curve C, |K−D| has no base points, (projective) dimension
2 and defines a morphism to P

2 which is birational onto its image.

Proof. The morphism Cg−3 −→ W 0
g−3(C), D 7→ |D| is birational because for

any curve, the linear system of any general effective divisor of degree < g has
dimension 0.

By the Riemann-Roch theorem ([15, IV, Theorem 1.3]) and the fact that
deg(K) = 2g − 2, we have an isomorphism W 0

g−3(C) −→ W 2
g+1(C), |D| 7→

|K −D|. ⊓⊔

Remark 3. Not every curve of genus g has a plane model of degree g + 1. For
example, no hyperelliptic curve has such a model.

We have the following method to compute plane models of degree g + 1:

Computation of a plane model of degree g + 1

Input: Any curve C/k.

1. Compute a canonical divisor K on C.
2. Select any effective divisor D on C of degree g − 3.
3. Compute a basis b1, . . . , bn of the Riemann-Roch space L(K −D).
4. If the basis has more than 3 elements, terminate.
5. Compute a homogeneous polynomial F (X, Y, Z) ∈ k[X, Y, Z] of

minimal degree with F (b1, b2, b3) = 0.
6. If deg(F ) < g + 1, terminate.
7. Output (F ; b1, b2, b3).

The necessary computations of divisors and Riemann-Roch spaces can be
carried out with the algorithms in [16]. Step 5 can be performed by computing
(successively for i = 1, . . . , g + 1) the functions bi1

1 · b
i2
2 · b

i3
3 with i = i1 + i2 + i3

and trying to find a linear relation between them. The latter task is a linear
algebra problem. Over finite fields we have:

Proposition 6. There exists a specification of the above method such that for
curves over finite fields Fq initially represented by plane models of bounded degree
the expected running time is polynomial in log(q).

Example 1. At the end of [8], an elliptic curve E over Fp7 with p = 10000019 is
given such that the DLP in E(Fp7) can be transferred into a DLP in the degree
0 class group of a certain curve C of genus 7 over Fp. An explicit equation for C
is also given. Using the method outlined above, we computed various degree 8
models of this curve.
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comments. I also thank the anonymous referee for suggestions.

References

[1] L. Adleman, J. DeMarrais, and M.-D. Huang. A Subexponential Algorithm for
Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus
Hyperelliptic Curves over Finte Fields. In L. Adleman and M.-D. Huang, edi-
tors, Algorithmic Number Theory – ANTS I, LNCS, pages 28–40, Berlin, 1994.
Springer-Verlag.

[2] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris. Geometry of Algebraic

Curves. Springer-Verlag, 1985.
[3] R. Avanzi and N. Thériault. Index Calculus for Hyperelliptic Curves. In H. Cohen

and G. Frey, editors, Handbook of Elliptic and Hyperelliptic Curve Cryptogrpahy,
chapter 21. Chapman & Hall/CRC, Boca Raton, 2006.

[4] B. Bollobas. Random Graphs. Cambridge University Press, Cambridge, 2001.
[5] F. Chung and L. Lu. The diameter of sparse random graphs. Adv. in Appl. Math.,

26:257–279, 2001.
[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.

McGraw-Hill and The MIT Press, 2001. Second Edition.
[7] C. Diem. Index calculus with double large prime variation for arbitrary curves of

small genus. Forthcoming.
[8] C. Diem. The GHS Attack in odd Characteristic. J. Ramanujan Math. Soc.,

18:1–32, 2003.
[9] C. Diem and J. Scholten. Cover attacks. A report for the AREHCC project,

available under http://www.arehcc.com/documents.htm, 2003.
[10] C. Diem and E. Thomé. Index calculus in class groups of non-hyperelliptic curves

of genus 3. Forthcoming.
[11] A. Enge and P. Gaudry. A general framework for subexponential discrete loga-

rithm algorithms. Acta. Arith., 102:83–103, 2002.
[12] S. Galbraith and A. Menezes. Algebraic curves and cryptography. Finite fields

and applications, 11:544–577, 2005.
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