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1 Statements, objects and statements on objects
and statements

Mathematicians reason about abstract objects, or at least they seem to do so.
In the course of doing so, they routinely make statements on mathematical
statements. In fact, every inference, such as “From equations (5.17) and
(6.2) one obtains the following equation.”, is a statement on mathematical
statements. Other examples of statements on mathematical statements are:
“With the obvious modifications of the proof of Theorem A, one gets a proof
of Theorem B.”, “This proof is really nice.”, “A statement in the language of
rings is true in every algebraically closed field of characteristic zero if and
only if there are infinitely many prime numbers p such that the statement is
true in some algebraically closed field of characteristic p.”, “All of our proofs
can be formulated in ZFC; for convenience of the reader, as usual we present
them informally.”

By the above examples, one notices immediately that there are funda-
mentally different kinds of such statements. An important special case of
statements on statements are statements on the existence of proofs and in
particular formal proofs, such as the last statements above.

The last statement is the kind of statement we are most concerned with
in this note. What kind of statement is actually made here? Shall the
formal proof “in ZFC” be a mathematical object in the same vain as, say,
finite geometries or groups? If so, is the claim then a claim in mathematics?
Shall the claim not rather be a claim on mathematics? But what shall then
the meaning of the claim be?

Clearly, we would want that a claim that there is a proof, in this case
a formal proof, be of a different, “more real” nature than a mere existence
claim in the usual set-theoretic mathematics. But how is it possible to give
such a “more real” interpretation if the alleged formal proof is not written
down, in all likelihood will not be written down and maybe also cannot be

1



written down or even read by humans?
A starting point is here the observation that it seems to be unreasonable

to say that humans can establish infinitely many results, in mathematics
or otherwise. So, we regard any statement that infinitely many results have
been proven to be a priori invalid. To demonstrate this with an easy example:
We have the evidently true mathematical statement “Every prime p > 2 is
odd.”. We hold here that it is improper to say that for every prime p > 2

the statement “p is odd” holds, as this would mean that infinitely many
statements are made.

More generally, when addressing the task to give a “more real” or “most
real” interpretation of claims of alleged formal proofs of mathematical theo-
rems, care has has to be taken not to use any unsubstantial a priori claims
on the existence of certain “abstract” objects.

With these remarks in mind we now give a brief outline of this note:

Outline. We want to be as accurate as possible with respect to statements
of existence, avoiding any unsubstantial claim that certain “abstract” objects
exist. In order to nonetheless attach meaning to mathematical statements,
we start off with an observation of what mathematicians actually do when
doing and speaking about mathematics.

Subsequently, we highlight two important ideas of contemporary math-
ematics: set (and class) theory and formal methods. This leads to a first
reflection on mathematical statements as they are usually made and state-
ments on the existence of formal proofs

In the fourth section, we begin to study claims that statements have
been proven on the basis of a formal system such as ZFC. For this, we do
however not study texts as usually written by mathematicians but only two
rather restricted classes of such texts: The first class consists of texts which
are free from reflections and meta-statements, and the second class of texts
consists of texts consisting of such texts with introductory statements that
the following text can be rewritten in a formal system, for example ZFC.
Noticing that such a claim of rewriting is often literally false, we then ask, in
a “Central Question”, if there is a possibility to read the latter kind of texts
in a “more real” way than the former kind of texts.

To give an answer to this Central Question, we are lead to the consider-
ation of constructive methods, and so in the fifth section we outline how we
envision to use them. To avoid any unnecessary claims of existence, we give
a strict interpretation of constructive statements as used by us with which
we can avoid to talk about infinitely many objects.

In the sixth section, we give possible meanings of statements on the
existence of formal proofs as studied in the forth section via the methods
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from constructive mathematics via three criteria (which can be found in
subsections 6.1 and 6.3).

We then briefly study other kind of statements on statements in math-
ematical texts. Here, similarly to the consideration of the establishment of
formal proofs, we argue that if a mathematical result is applied as a meta-
result in a mathematical argument, this result must be constructive. Again
we formulate this as a criterion.

In the final section, we analyze the possible application of mathematical
results to meta-mathematics and in particular the application of mathemat-
ical results to establish mathematical results (which usually goes under the
name model theory).

An advice. The text can (and as we would urge: should) be read “as is”,
but nonetheless the reader might ask what inspired the authors to consider
the questions studied in the text and to write the text in the way it is written.
Also, the reader might ask how thoughts expressed, for example, the ones
of the next section, relate to previous texts and “schools of thought”. Some
information concerning these questions can be found in a supplement which
is independent of the text and can be found after at the very end.

2 What is mathematics?

According to adherents of Platonic realism, mathematics is (or should be if
properly conducted) the study of certain “ideal” objects. Of course this is
challenged. In what sense is, for example the statement

There exists a unique positive real number whose square is
2 ↑↑ 6− 1,

in which Donald Knuth’s arrow notation (see [coping]) is used, a statement
on any kind of “object” after all?

Indeed, one might argue that as there is no such object, the statement
is wrong. One might also raise the even deeper objection that notions in
the statement (real number, square and maybe also 2 ↑↑ 6 − 1) are void
of meaning, and it therefore is not even reasonable to discuss whether the
sentence is right or wrong. More generally, one might argue that all or at
least a large part of mathematical existence statements which are considered
to be true in mathematics are in fact wrong, because there simply are no
objects of the asserted kind, or even nonsensical.

Now, independent of metaphysical believes, mathematicians do indeed
act as if the asserted imagined objects such as the square root of 2↑↑6 − 1

were real objects. They talk about such objects, they tell themselves stories
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about the objects and they even get emotionally involved when they have
found a new, as mathematicians often say, “beautiful” relationship in their
imagined universe. Interestingly, throughout the history of mathematics,
aesthetic judgments played a crucial role, maybe more than in any other
science.

Let us take the observations of the previous paragraph as a starting
point: We shall call mathematics the activity of mathematicians in their
role as mathematicians, which is meant as a self-identification. What is then
mathematics?

There is then a purely empirical answer, following the above descrip-
tions: Mathematicians act as if imagined “abstract” objects in an imagined
“abstract” universe were real, where the objects and their relationship are
described by “evident” simple rules called “axioms”. They try to find out
what the characteristics of the imagined universe are, what the relationship
between objects in the imagined universe are, and they try to convince others
of their findings.

We note here that we use the word “imagined” for an empirical description
of the activity of mathematicians. Throughout this note we stay neutral
towards the fundamental question in how far the content of mathematical
statements (in particular of statements in infinitely many objects) should be
regarded as being “real” in the sense of being statements on “real abstract
objects”. It is, however, important to us that statements on infinitely many
objects and also statements on large numbers, such as the one mentioned
in the beginning of this section, cannot be regarded as referring to anything
related human experiences.

The activity of mathematicians is similar to the telling of novels, and
indeed one can say that mathematicians tell themselves as an inner thought
or each other stories about imagined abstract objects. There is, however, a
further aspect which is different from pure story telling: Mathematicians do
not tell each other arbitrary stories but rather behave like explorers of the
imagined universe. They then try to convince themselves and each other
that what they perceive to be “true characteristics” of the imagined universe
are indeed such.

An interesting aspect of mathematics (the activity of mathematicians) is
that certain arguments (which by the nature of mathematics are always rela-
tive to “axioms”) are considered to be so rigorous that they are called “proofs”.
This is even more remarkable as there is no clear standard as to when an argu-
ment given by a mathematician shall be called a “proof”. Indeed, throughout
mathematical history, mathematicians have differed greatly in their opinions
as to what they consider a “proof”, and if one now rereads older texts (which
might be from the 19th century), sometimes one obtains the impression that
what is called a “proof” does not have the clarity and strictness one wishes
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to see nowadays. Nonetheless, mathematicians have usually been convinced
that it is in praxis obvious what constitutes a “proof” and what not, and
in case of a dispute mathematicians have usually been able to find – via
discussions and further elaborations – a consensus as to what shall consid-
ered to be proven (again relative to particular axioms) and what not. These
“proofs” together with discussion on them as well as the expressed conviction
that they express a certainty with regards to truth form a major part of the
stories told by mathematicians.

The word “proof” is a strong one, but as stated, more often then not in
the actual praxis of doing mathematics, one can argue if arguments suffice
for a “proof”. Personal judgments play a strong role here. To emphasize this
subjective aspect, we usually speak about a convincing argument instead of
a proof when we refer to what is usually considered a proof. Occasionally,
we also literally write “proof”. This also allows us to distinguish between
“proofs” (in our terminology: convincing arguments) as actually expressed
by mathematicians and (formal) proofs in formal systems, a distinction which
will be of importance later.1

3 Two crucial developments

Two rather recent developments in mathematics are of particular impor-
tance for us: sets as fundamental objects of mathematics and the formalistic
approach to the foundations of mathematics.

3.1 Set theory

Set theory is so embedded to our doing of mathematics that it is hard to
forget the specific, at one time revolutionary, point of view of this way of
thinking: Not only does one regard collections of (imagined) “things” again
as one thing, the “things” so obtained are then regarded as things in just
the same manner, which makes it possible to repeat this process. Moreover,
not just collections of finitely many “things” are considered, but also such of
infinitely many “things”.2

An early idea of the notion of set (Menge) was that every property should
define a set. As this turned out to lead to logical contradictions, a separate
notion of class was introduced, for which this is indeed the case (with an

1It is common to call what we call convincing argument an informal proof (see for
example [informal]). Other researchers, who also emphasize the difference between what
is actually expressed and formal proofs stick with the word “proof” (see for example
[formal-natural].

2Richard Dedekind wrote in [Zahlen]: “Im folgenden verstehe ich unter einem Ding
jeden Gegenstand unseres Denkens.”, that is: “In the following, I mean by thing every
object of our thinking.”
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appropriate definition of “property”) but which cannot be treated as “thing”
in the way a set can. Whether proper classes, i.e. classes which are not
sets, should be seen as objects of the (as we said, imagined) mathematical
universe or statements on proper classes as façon de parler on sets is under
dispute. In order to be neutral to this question, we will speak about “set
and class theory” rather than only about “set theory” or only about “class
theory” (which of course would include sets).

Amazingly, via the idea of sets, different stories about abstract or ideal
objects, numbers, (ideal) geometries, forms, functions and much more can be
and were merged into one grand story, which can be communicated clearly.
This merger was so successful that nowadays the view is dominant that
every object considered in the story of mathematics is (or: can be seen as)
a set or a class. Nevertheless, there are more kinds of mathematics (e.g.
constructive mathematics), which are usually not considered inside some set
and class theory. For the moment, for practical reasons, we will stick to the
mentioned dominant view that all mathematics being studied is some set or
class theory, whereas constructive mathematics, which we will use later, will
be seen as an auxiliary tool. We will discuss and clarify the role of different
kinds of mathematics in subsection 7.1.

3.2 The formalistic approach

By “formalistic approach” we mean the following body of ideas: A formal
language to express mathematics is rigorously described via (easy to follow)
rules according to which certain expressions are called sentences;3 certain
sentences or bodies of sentences are considered to be interpretable (again
via easy to follow rules);4 certain sentences or bodies of sentences (called
“axioms”) are a priori called “true”;5 there are (easy to follow) rules to derive
further “true” or “false” sentences from previously established “true” ones.
Calling the language and the rules a formal system, a “proof in the formal
system” is then a (physically given) (finite) sequence of sentences in the

3One might also speak of “valid sentences” we use the term “sentence” in a sense that
“valid” would be redundant.

4By “interpretability” we mean a formal criterion on texts, i.e. finite sequences of sen-
tences. In propositional logic all sentences are interpretable, but formal languages more in
line with conventional languages are conceivable in which this is not the case. An example
might be a formal language with a sentence like “Let x be an element of X.”.

5We deliberately write “called ’true’ ”, because we want to emphasize that here “true”
and “false” are merely expressions assigned to certain statements, which might be replaced
by any other expressions. The fact that the emotionally strong words “true” and “false”
(which are also used in statements on formal systems in their usual meaning) are used
here is of course not without problems. A particular reader of a particular system might
be of the opinion that the system with a particular interpretation does really establish
true and false statements; but this does not need to be so.
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formal language each of the sentences is interpretable and “true” given the
previous ones (on the basis of the axioms and the rules).

Rigorously following the formalistic approach would mean that all mathe-
matics would be rewritten in formal systems, and then the outline of the
formal systems used and these formal texts written would encompass all of
established mathematics. Motivating and interpreting statements could be
given, but there would be no need for them, and they would not be part of
the body of established mathematics; in particular in this body of established
mathematics, there would be no room for “universes of discourse” in which
the sentences in the proofs are to be interpreted.

Following this line of thought, ideally then mathematicians would even
agree on a single formal system, and there would be an agreement that
mathematics is the production of formal proofs in this unique formal system.
The rules for the formal system could then be seen as defining criteria for
the notion of mathematics, but would themselves lie in meta-mathematics
rather than in mathematics. Needless to say that this vision is very different
from mathematics as the activity of mathematicians at this point of time.

This rigorous approach should be distinguished from the usual process
of doing mathematics, which always involves the effort to find appropriate
precise terms and convincing arguments written in a language which keeps
possible misunderstandings at a minimum.

We note here that the development and the use of a formalistic approach
as described need not go along with a particular attitude with respect to the
“nature” of mathematical statements. In particular, it is independent of the
acceptance or rejection of Platonic realism.6

3.3 The formalistic set theoretic foundation

The formalistic approach can then in particular be applied to set or class
theory, which leads to various (related) formalistic approaches to set or class
theory as the foundation of mathematics. With these approaches, it seems
that the foundations of mathematics as it is usually conducted have reached
a long-lasting nearly stable stage.

There is however another kind of mathematics, constructive mathemat-
ics, for which – among others – not the idea of set but the idea of number
and algorithm is basic. We will argue in the next section that this kind of
mathematics gives (with an appropriate interpretation) the right framework
to argue whether results are established via formal proofs.

6See also the last sentence of footnote 5.
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3.4 The praxis of mathematical story-telling and argumen-
tation

Even though the idea of a formalistic approach is now considered to be
crucial to mathematics, “mathematical proofs” are very seldomly written in
a formal system. In fact, the system which is the most accepted one, namely
ZFC, itself based on first-order logic, is designed in such a way that it is de
facto impossible to tell the stories and arguments mathematicians tell each
other in this system – small examples withstanding. One reason for this is
that it does not allow for definitions and that all sentences are interpretable
without context.

So, rather than actually telling their stories and giving their arguments in
a system such as ZFC, mathematicians usually just use usual language aug-
mented with mathematical symbolisms and occasional formal statements.7

A particular kind of set or class theory is there often not specified. In a more
rigorous approach, such as in the books by Bourbaki, first the axioms are
outlined in plain language (augmented as described) and then the arguments
are also given in plain language with occasional formal statements.

Only seldom, a strict formalistic claim is made, a claim of the following
form: A formal system (for example ZFC) is defined in plain (usual) language,
the claim: “The following can be rewritten in the formal system in such a way
that one obtains a formal proof” is made, and then the usual mathematical
arguments are given.

Nonetheless, when asked what actually the phrase “This is proved on the
basis of set theory” shall mean, mathematicians (maybe after a discussion
that one wants to have a “strict” answer) often reply: “Well it means that
there is a formal proof of the statement in ZFC.” What then is stated here?
Is this now again nothing but an existence claim on imaginary mathematical
objects or does it mean that such a proof can actually be written? Or is
there another meaning one can attach to this phrase? Does it maybe help
to say that “it could be written”?

One notices immediately that there is a substantial difference between
actually writing in the formal system ZFC or just claiming that it “could be
done”. If one reflects what it really would mean to write a proof of a state-
ment in ZFC, one soon realizes that by all human capabilities, it often cannot
be done by humans. What is more, such a writing (which, as mentioned is
anyway not carried out and de facto for many texts even impossible to carry
out by any given human) would end in a result which any mathematician
would consider a worthless accumulation of symbols – worthless because he
or she had the feeling of “not understanding anything”. Indeed, the men-

7Concerning the language used by mathematicians, the reader might find the introduc-
tion to [formalized] interesting.
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tal process and the actual work done by mathematicians would if anything
go in the opposite direction, that is, from the “purely formal” symbols to a
high-level text which highlights some underlying structure in the argument.

With these reflections, we can now give a more detailed description of
the personal and inter-personal process of mathematical story-telling and
arguing in the current state of mathematics: Set or class theory is an agreed
upon foundation, even though the references to set or class theory are not
always made explicit. An important interest of mathematicians is “results”,
which they regard as being “true” on the basis of some (set or class theo-
retic) axiomatic systems.8 These are usually informally given but which can
also be given formally; by default the chosen axiomatic system is Zermelo-
Fraenkel set theory with the axiom of choice. In order to be convinced of
this, they often accept broad arguments, whose validity they have only su-
perficially or not at all checked – often aesthetic judgments and experience
play a strong role here. However, if they are interested in some further
arguments on a detail of a longer argument, they want that this is to be
explained to them. This process might then lead to a more and more formal
argument. Here derivations in formal systems (like ZFC) might play some
role. However, mathematicians are usually unsatisfied with purely formal
derivations (except maybe for short computations); rather they want to gain
an “understanding” or a mental image of the situation which exceeds purely
formal considerations.

4 The claim of possible rewriting

We now analyze further claims of possible rewriting of informal arguments
in formal systems such as ZFC and of claims that statements “are proven in
ZFC” or a related system.

4.1 The substantive and the formalistic story

Contrary to what one might think at first, there is a great diversity in the
kind of statements made in mathematical texts. It is common that math-
ematical statements are mixed with reflections on the mathematical state-
ments or the process of making such statements; examples of this are given
in the beginning of this note.

In this section, we restrict ourselves to texts which are more restricted.
As a basis we consider texts consisting of set- and class-theoretic def-

initions or definitions which can be interpreted set- or class-theoretically,
statements based on these definitions and supporting arguments. So far,

8Mathematicians (as mathematicians) also have other interests, for example finding
what they consider to be the “right” definitions.
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this corresponds to the usual mathematical praxis. However, in contrast to
the way mathematical texts are actually written, we do not allow for reflec-
tions on what is written. For example, we do not allow for reflections on
arguments “from a higher point of view”, as one often finds in introductions,
or on judgments that something is “easy” or “easily seen” or on arguments
based on analogy (like “the proof is similar to the previous one”). Summa-
rizing, we can say that in such a text a set- or class theoretic story is told in
a linear way; correspondingly we speak of a linearly told substantive set- or
class-theoretic story.9

Furthermore, let us call an outline of a formal set or class theoretic system
(such as ZFC) followed by a short claim similar to “The following theorems
and proofs10 can be written in the formal system in such a way that one
obtains formal proofs.” a formalistic header. A story consisting of a formalis-
tic header and a linearly told substantive set- or class-theoretic story is an
example of what we call a formalistic story. Note that the claims in such a
formalistic story are the claims on the possibility of writing; the claims of the
corresponding linearly told substantive set- or class-theoretic story are not
claims of the formalistic story. Nevertheless, the claims of the substantive
story have to exist in the background since it is not possible to speak of some
rewriting if the substantive story is not given in a human understandable way.
The general definition of a formalistic story will be given in subsection 6.3,
after we have analyzed further claims of rewriting.

Let us call a person who thinks that a particular axiom scheme of set
or class theory is true in the sense that it expresses truth about an abstract
universe which indeed exists a Platonic realist with respect to the given
axiomatic scheme. If we now consider a particular linearly told substantive
set- or class-theoretic story based on a particular axiomatic scheme, we can
say: A person who is a Platonic realist with respect to the given axiomatic
scheme and who regards the arguments on the basis of this system to be
convincing is (unless he or she has strangely inconsistent thoughts) convinced
that the statements supported by the arguments are true – again in the sense
that they express truth about the abstract universe.

In contrast, the attitude of formalists is to consider the claims of many
substantive stories to be a priori nonsensical or at least invalid. Some for-
malists (nominalists) might reject all claims on abstract entities, including
numbers, others might reject claims infinitely many objects as nonsensical.
Formalists in the Hilbertian tradition take a middle position and allow claims
on natural numbers but regard claims on, for example, uncountably many
objects to be nonsensical or invalid.

9The word “substantive” was chosen as a translation of the German word “inhaltlich”
(with regards to content); its meaning in law suggests that it is an appropriate choice.

10In our terminology: arguments
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According to formalism, one should rather argue about the truth of for-
malistic stories. Only for pragmatic reasons, one could (and one would) then
behave as if it was reasonable to discuss set- or class theoretic arguments,
but the goal of such a discussion would be no more and no less than to settle
the question of the possibility of writing a formal proof in the mentioned
formal system.

We have already stated at the beginning of Section 2 that the attitude
of Platonic realists is questionable. Moreover, in subsection 3.4 we have ex-
plained that the claims of stories consisting of a formalistic header followed by
a linearly told substantial story are often questionable even if the arguments
in the corresponding substantive stories are considered to be convincing with
respect to the axioms. The central question is then:

Central Question. Can stories consisting of a formalistic header followed
by a linearly told substantive story somehow be regarded as being “less imag-
inary” or “less fictional” than the corresponding substantive stories, in par-
ticular if the alleged rewriting cannot be carried out by humans? Is there an
intermediate realm between true statements and statements which are only
true inside the story told by mathematicians?

To address this question, we study ideas inspired by the idea to actually
(physically) carry out the process of rewriting. Doing so, we however stay
in the realm of some kind of mathematics, that is, we do not address the
question if and in how far it is actually (physically) possible to carry out the
rewriting.

4.2 Ideas for rewriting

An evident idea is to imagine some kind of procedure with which rewriting
from a more “human oriented” formal system to a system like ZFC can be
done. The claim that there is a rewriting procedure would be part of some
(different) story of mathematics (see subsection 7.1), just as the claim that
the procedure can be applied in a particular case. We stress this because
the idea is not to actually perform the computation and check the resulting
first-order text; this would be a different approach which would however be
far away from what is actually done by mathematicians.

Note that the problem of rewriting naturally involves a variety of different
ways to translate the original claim into a formula of the formal system
(say ZFC). Thus one may pose the question if all formulas resulting in this
way are equivalent. But actually the argument would go in the opposite
direction: rewriting procedures have to be compatible in such a way that one
mathematical claim does not lead to non-equivalent formulas. This indicates
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that a mathematician who makes a statement of possible rewriting even
believes that there is some (not necessarily unique) proper way to reformulate
the stated mathematical claims into formulas (of ZFC, for example).

A first approach to apply a rewriting procedure in some concrete example
is to give:

1. a formal system for the input; let us call it I;

2. a rewriting procedure from I to the set-theoretic output system, say
ZFC, translating formal proofs in I to formal proofs in the output
system;

3. a convincing argument that outputs are formal proofs if the inputs are
in I;

4. a formal proof in I for the statement to be established.

The idea here is that the system I is “more humanly oriented” and it might
be possible to directly write formal proofs in I which are also humanly un-
derstandable.

In subsection 6.2 we will discuss how one might use computers to par-
tially accomplish these goals and what problems occur if one tries to do so.
For the moment we just note that humanly understandable texts are usually
not written in a formal language, and one can clearly improve the under-
standability of a text with a less formal writing or strictly speaking (!) just
plainly wrong statements.11

Rather, one would like to argue that a convincing argument written in
natural language can be translated, leading to a formal proof in ZFC, say.

For this reason, it is reasonable to substitute the fourth desideratum by:

4’. a convincing argument that the argument in natural language to be
rewritten can be written in the input language I in such a way that
one obtains a formal proof in I.

Interestingly, the input system I can have a very different “feeling” con-
cerning the allowed constructions than the set-theoretic output system. Let
us say that the goal is a rewriting in terms of ZFC, that is, the output system
is ZFC. Then even though ZFC is untyped, I can be typed, and even though
ZFC does not allow for classes, I can allow for a class for each (individual)
property p(x).

11Just to give one example: If G is a group and g an element of the set underlying
G (strictly formally !), one writes g ∈ G. However, purely set-theoretically, G might be
a tuple (X, f), where X is a set and o an operation on X, and (X, o) might be the set
{X, {X, o}}. Then, again strictly formally, g ∈ G would actually mean that g is either X
or {X, o}.
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An evident problem concerning the first three points is that all these
claims are again non-trivial claims inside some (different) mathematical
story. Independently of this problem, we want to stress a further aspect:
The claim that “it could be done” has a constructive meaning. Now, it might
not be possible to perform the computation on interesting examples. But
nonetheless, it is still an evident requirement that the procedures are actu-
ally constructively given and analyzed and not just claimed “to exist”. This
suggests that one should apply ideas from constructive mathematics, as for
example from [constr-ana], here.

5 Interlude: constructive mathematics

As the reader might not be familiar with constructive mathematics, we now
first provide some information on it. We then discuss how we intend to use
constructive mathematics in arguments on the existence of formal proofs of
theorems one wishes to establish. Finally, we give a particular interpretation
of statements of constructive mathematics, which might be called “hypothet-
ical interpretation”, and which we view as being particularly suitable for our
applications.

5.1 What is constructive mathematics?

Constructive mathematics (including its meta-theories) is a body of ideas
on what statements and arguments are proper in mathematics, how these
statements should be interpreted together with actual mathematical results
following these ideas. It emerged from the “Gundlagenstreit” in the be-
ginning of the 20th century, and according to this, it is often associated
L.E.J. Brouwer’s intuitionism. From the current point of view, constructive
mathematics is broader than intuitionism, or to say it differently, intuition-
ism is one of the schools inside of constructive mathematics. As shall be
made clear below, it is not this school we are interested in for our purposes.

As constructive mathematics is not commonly studied, a first question
is: What ideas are alerted to by the term "constructive mathematics?

According to the opening sentence of the entry on constructive mathe-
matics in the Stanford encyclopaedia ([constructivism]), written by the con-
structive mathematician Douglas Bridges:

Constructive mathematics is distinguished from its traditional
counterpart, classical mathematics, by the strict interpretation
of the phrase “there exists” as “we can construct”.

For us, it is important to note that the phrase “we can construct” is not
taken literally. Rather in constructive mathematics, also stories are told,
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albeit stories different from the ones in classical mathematics.
In constructive mathematics, the starting point of reflection are the nat-

ural numbers, which are a priori assumed to exist.12 Fundamentally, the
mathematical statements are on algorithmic operations on natural numbers
and furthermore on algorithmic operations on algorithms operating on nat-
ural numbers and so on. For example, a sequence of natural numbers is
an algorithm taking natural numbers and outputting natural numbers too.
A function from the sequences of natural numbers to sequences of natural
numbers is then an algorithm taking and outputting such an algorithm.

Care has to be taken, however, because constructive mathematics is not
just computational mathematics with natural numbers. Indeed, according
to the philosophy that everything has to be constructed, the algorithms also
have to be constructed. This means that algorithms claimed to exist have
to be output from previously defined algorithms.

This still does not give a clear criterion what one must do to establish
that an algorithm can be constructed. What kind of arguments are allowed
for this?

The solution is centered around a self-limitation already on the level
of the underlying logic with restrictions around existence statements and
negations. In particular, it is not allowed use implications

(¬∀x : A(x))→ (∃x : ¬A(x)) . (1)

Another aspect of constructivism is: It is emphasized that it is only
reasonable to speak about the truth value of a mathematical statement if
one can convincingly argue for its truth of falseness. The pragmatic rule is
that to make a statement A shall mean exactly the same as to make the
statement “A can be proven.”

This general principle is then applied when sentences made with logical
connectors are to be interpreted.

So a statement A ∨ B shall not only mean that A ∨ B can be proven
but also (by applying the rule internally) that A can be proven or B can be
proven.

Likewise, in constructive mathematics, a statement of the form A → B

has the same meaning as “Every (potential) proof of A can be converted
into a proof of B”, “One can give a procedure that every proof of A can
be converted into a proof of B.”. Moreover, in all the three statements,
one can add without modifying the meaning of the statement the initial
phrase “It is known that” or “One can convincingly argue13 that”. A negation

12See however our interpretation of statements of constructive mathematics in subsec-
tion 5.3.

13In usual terminology: prove
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of a statement, say ¬A of A, means then that it is impossible to prove
A, that is, every try of a proof of A leads to a contradiction. Finally, an
existence statement, say ∃x : A(x) means that one can show that an x0 can
be constructed for which A(x0) holds.

We note that it is then clear why the implication (1) shall not be used,
just in the same way that ¬¬A→ A and A ∨ ¬A shall not be used.

These intuitive rules or reasoning are made precise in the formal sys-
tem “Intuitionistic Predicate Calculus” or IQC, developed by Arend Hey-
ting. In up-to-date expositions on constructive mathematics, such as in
[constructivism], these logical foundations are stressed. Interestingly, the
founder of intuitionism, Brouwer, emphasized the preliminary role of math-
ematics over logic, but as is often the case, an intellectual system has been
created which now has its own philosophy, independently of its historical
origins.

Building on intuitionistic logic, there are different schools of construc-
tivism. There is agreement on the use of the natural numbers and the
importance of the notion of algorithm. However, there are variation con-
cerning what principles of reasoning are allowed, on the style of presen-
tation and on possible interpretations of statements. Information on the
different schools can be found in the books [foundations] (Chapter III) and
[constructivism-in-math] (Chapter I, Section 4), which we also recommend
independently of this.

The different schools allow ways of reasoning which go beyond a pure
algorithmic construction. Most strikingly, Brouwer allowed for the “possibil-
ity to use our free will to decide at each state what the next number in the
sequence will be”, as expressed by Michael Beeson in [foundations], Chapter
III, Section 4. Another principle was used by Andrey Markov Jr. He ar-
gued: If it is not true that a particular algorithm does not terminate (which
means by the principles of constructivism that one can refute every attempt
to prove that the algorithm does not terminate), then it terminates.14

An important extension of purely algorithmic constructive mathemat-
ics is the introduction of the notion of set. As stated in Chapter VIII of
[foundations], there are two approaches: One can add the notion of set (or
class) or one can postulate a “real” constructive set theory. Moreover, often
a constructive axiom of choice is used, for example by Bishop.15

Besides different basic principles, the schools of constructive mathemat-
ics differ concerning the style or writing and the way of arguing. There is

14See [constructivism-in-math], Section 4.6 and note for comparison also [foundations]
Chapter III, Section 1 with the exercises.

15It might seem that in constructive mathematics there is trivially always a choice
function when one desires one because everything that is claimed to exist must come
along with a construction. As explained in [constr-theories, I,4.7] this is not so.
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the “dry” “Russian school” which is essentially recursive function theory with
intuitionistic logic.16 In opposite direction, there is Errett Bishop’s book
Foundations of Constructive Analysis (with a second edition with Douglas
Bridges called Constructive Analysis ([constructivism]). These books high-
light the spirit of constructive mathematics, that is, the construction, while
not putting too much emphasis on foundational questions and ignoring dis-
cussions on foundational formal systems altogether. The first book, pub-
lished in 1967, is of historical importance because it showed that one can
really “do” constructive mathematics, and one can speak of a “Bishop school
of constructive mathematics”; cf. [constructivism]. For us it is of importance
that Bishop’s book is intuitively (in contrast to (overly) formally) written
and is based on intuitionistic logic and the claim that the natural numbers
exist a priori.

5.2 Our use of constructive mathematics

For our purposes, that is, for arguments on the existence of formal proofs of
theorems one wishes to establish, there is no place for free-choice sequences.
As said above, one can integrate set-theoretic arguments into constructive
mathematics. We do not envision this for our applications.

Interesting is now Markov’s principle. We do not want to allow this
principle either because otherwise we could argue for the existence of formal
proofs of mathematical statements by contradiction. We regard this as being
too weak.17

One aspect has not been addressed so far: Is it reasonable to really al-
low all thinkable algorithms? This question can be answered along just as
it is usally answered in constructive mathematics. To illustrate the answer,
let us first consider constructive elementary number theory. Here, finitely
many algorithmically defined functions18 are used to make statements on
natural numbers, and then these statements are analyzed, however, there
are no “higher algorithms” producing algorithms. The important aspect for
us is that it should be obvious that the domain of the functions is total.
This suggests to only consider functions defined by loop-algorithms, or, what
amounts to the same with respect of equality of functions, functions defined

16This evaluation follows [constructivism].
17An abstract version of Markov’s principle says (∀n : (φ(n)∨¬φ(n))∧¬∀n : ¬φ(n))→
∃n : φ(n); cf. [constr-theories, I,7]. We reject this principle in our application for arguments
on formal proofs for the reason given.

18From the point of view of constructive mathematics, functions are the same as algo-
rithms, however, when we speak about functions, we have an extensional notion of equality
in mind and when we speak about algorithms are more refined one. Note here that in
contrast to “usual” set theoretic mathematics, “equality” in constructive mathematics is
not assumed to be a priori given; rather different notions of equality are used depending
on the context.
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by primitive recursion. This idea is formalized in the formal system of Heyt-
ing arithmetic, HA. This system is built on IQC with a function term and
corresponding axioms for each presentation of a primitive recursive function.

One can then “go up” and iterate the idea of operation by primitive recur-
sive function by considering primitive recursion operating on algorithms. For
this, to keep track on what the algorithms actually operate on, one should
work with finite types.19 One then naturally obtains the notions of finite type
recursion and – as a generalization of a primitive recursive function – primi-
tive recursive functional.20 Interestingly, in this way one can also obtain new
functions from N to N: As explained in [constructivism-in-math, 9, 1.4], the
premier example of a totally recursive but not primitively recursive function,
the Ackermann function, can be given in this way. The ideas presented here
have been formalized in a typed formal system called finite-type arithmetic,
HAω.21

In another direction, an important question is how formal an argument
for the existence of a formal proof of a theorem shall be. Would it, for
example, be reasonable to demand that it be written in HAω (with meta-
variables, particularly for the function symbols)?

We can give a clear “no” to this question. Just as set-theoretic math-
ematics, constructive mathematics is never done on this level of formality
(apart from small calculations), and clearly it is not reasonable to demand
that it should be.

Is it then reasonable to demand that at least it “should be possible” to
reformulate / rewrite an argument in this system? Again, we can answer this
with a clear “no”. As our starting point was the question what such a claim
of “should” could mean, it would be ironically inappropriate to carelessly
introduce such a demand here. Note however, that within this argument we
already anticipate (see subsection 7.1) that rewriting also makes sense for
different kinds of mathematics. Up to now, constructive mathematics was
only seen as an auxiliary tool to answer our posed question.

In summary and positively expressed, for arguments on the existence of
formal proofs of mathematical theorems, we envision an informal presen-

19A type is an expression built following these rules: 0 is a type and if σ, τ is a type then
σ× τ and σ → τ is a type. Algorithms of type 0 are the algorithms which do not have an
input and output a natural number. The function associated to such an algorithm can be
identified with the output, that is, one can say that the function is a natural number. For
the interpretation of the statements given in the next subsection it is, however, important
that an algorithm of type 0 is not a natural number – it is an algorithm producing a
natural number.

20These ideas were developed by Kurt Gödel in [dialectica].
21Stictly speaking there are at least two distinct systems with this name. The “most

basic” system is given in [constr-logic&-math], which also gives a nice exposition to con-
structive mathematics. The definition of HAω in [constructivism-in-math] includes a “com-
binator” which is not present in the definition in [constr-logic&-math].
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tation which is “purely algorithmic” along the lines just outlined.22 The
presentation might be similar to that of Bishop’s book with possibly a pre-
sentation of algorithms given by pseudo-code. (But as said, Bishop uses
principles we would not like to use, namely sets and the constructive axiom
of choice.)

We note that with this approach has the nice feature that one can always
“go up” with algorithmic arguments.23 This means that if we envision a meta-
analysis of arguments on the existence of formal proofs, a meta-analysis of
this and so on, we never have to leave the framework outlined.

5.3 Our interpretation of constructive statements

We now come to the interpretation of constructive statements for our ap-
plication in arguments on the existence of formal proofs of theorems, along
with a corresponding suggestion for the use of language.

Following the citation in the beginning of subsection 5.1, “constructive
mathematics is distinguished from [...] classical mathematics by the strict
interpretation of the phrase ’there exists’ as “we can construct”. More pre-
cisely, it seems that there is a general consensus of mathematicians who re-
gard themselves in the constructive tradition that one imagines the natural
numbers and strives to construct everything from this basis – as was pro-
grammatically expressed by Leopold Kronecker (see [on-Kronecker]): “Die
ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.”

For our applications, the evident approach would then be to say that
texts based on a fixed alphabet are represented by natural numbers and
vice versa. Statements as described in the previous subsection then become
statements on transformations of texts via algorithms, transformations of
algorithms on such algorithms and so on. Above, we have tacitly already
used this identification of natural numbes and texts.

Let us reflect on the meaning of the statements on texts which are then
made: We first note that the concept of text is not the same as the concept
of a natural number, or to say it differently, the phrases “text” and “natural
number” have a prescientific meaning is clearly not identical. Texts have the
evident property that they can be given literally; what one writes down is
a text and does not just denote a text. In contrast, the idea of a natural
number is always abstract. Surely, one can represent numbers by texts, for

22In the terminology given by Solomon Feferman in [constr-theories] (which is also
given in [foundations, V,3]), our assessment is that the system HAω as defined in
[constructivism-in-math] is directly adequate and directly in accordance with the envi-
sioned body of arguments on the existence of formal proofs of mathematical theorems,
where texts on a fixed alphabet are identified with natural numbers.

23This corresponds to the formal feature of HAω that for two types σ, τ , there is always
the type σ → τ .
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example using the usual decimal representation or the “elementary” unitary
representation. Nonetheless, if for example somebody writes down “123”
he surely writes down a unique text independently of the meaning of the
symbols, but he only gives a number if a meaning is attached to the text.

So, texts can be given physically-literally,24 but in our application we talk
about texts which are constructed by algorithms without this ever being the
case physically. So we clearly tell ourselves a story about imaginary texts
here.

The goal is now to limit the imaginary aspect of the story to a minimum.
Particularly, we do not want to make statements on the transformation of an
infinite amount of texts via algorithms. Rather we want to make statements
on the transformation of individual texts via algorithms. Also, because algo-
rithms can also take algorithms as inputs and output algorithms, we want to
make statements on the transformation of individual algorithms. This will
then correspond well with the statement made in the introduction that we
regard a statement that infinitely many results have been established to be
a priori invalid (see also subsection 6.3 for this point).

For this, we use what we have already used in the previous subsection:
We can give algorithms by writing down pseudo-code, and we can iterate
this process by using already given algorithms. We can then in particular
consider algorithms which take no input. We then say that the output is
algorithmically given or can be constructed. As a special case of this, we can
consider algorithms which output texts. Again, we then say the output text
is is algorithmically given or can be constructed.

We iterate and stress again that when making these statements, we again
tell a story which should not (and in many applications cannot reasonably)
be interpreted physically. The phrase “is algorithmically given” makes this
clearer than the phrase “can be constructed”, but both phrases are unprob-
lematic if one realizes that a story is being told. We also note that any
literally given text is also algorithmically given (in the story).

As already stated, we do not want to make statements on infinitely many
input instances. Rather, concerning the input instances, we merely want to
make hypothetical statements of the form “Suppose that some x0 is given.
Then A(x0) holds.”.

But what shall it mean that the statement is “hypothetical”? Our idea is
that the reader always only imagines a particular algorithmically given x0.
But this reases again a question as it is not clear what algorithmic construc-
tions shall be allowed. (It does not help to say “all possible constructions”,
because we want to discuss what we shall deem as being possible.) The

24One can then discuss when two texts should be regarded as being equal and also if a
physically given text denotes something like an “abstract text”; in any case it is evident
that texts can be given physically and literally.
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strictest possible solution, the most narrow interpretation which seems to be
reasonable, is: Such a hypothetical statement is on all x0 which have been
algorithmically given or will be algorithmically given by any concious being
shall be allowed. More wider interpretations, which go more in the direction
of story telling, are possible.

This leads to a corresponding interpretation of the forall-quantifier: We
interpret a statement of the form “∀x : A(x)” (including corresponding state-
ments in natural language) as:

Suppose some x0 is algorithmically given. Then A(x0) holds.

Similarly, for “∃x : A(x)” one might then not only say “Some x0 with
A(x0) can be constructed, but also:

Some x0 with A(x0) is algorithmically given.

Is this interpretation always possible, that is, can one reasonably in-
terpret statements of constructive mathematics as outlined in the previous
subsection in this “hypothetical” way? In particular, is the interpretation
consistent with (typed) Intuitionistic Predicate Calculus? The author’s an-
swer is that this is so; after all the only occurrence of the forall-quantifier
in the axiom scheme is the scheme (∀x : A(x)) → A(t), and this is nicely
consistent with our interpretation.

With the outlined “hypothetical” interpretation of forall-statements, there
is no need to imagine infinitely many objects. For this reason, by itself it
would seem to be reasonable to call this interpretation “finitism”. However,
as the term is already used (as far as the authors can tell with rather different
meanings) in a similar way as “constructivism” (based on natural numbers),
we refrain from doing so. We note that our interpretation is different from
ultrafinitism which rejects natural numbers deemed to be “too large”.

In our applications, we want to talk about texts and not natural numbers,
but to complete the picture and to deepen the link to constructive statements
as they are usually made (including in the previous subsection), let us come
back to natural numbers now. As said above, the idea of a natural number
is always abstract. Moreover, as it is based on the idea of counting, an
algorithmic aspect is already present in the notion of natural number. So it is
not at all clear what a “non-algorithmically given” natural number should be.
For this reason we suggest to just speak of a “given natural number”, not an
“algorithmically given natural number” and to also say that the number “has
been constructed”, not just that it “can be constructed”. The “hypothetical”
interpretation can then also be applied to natural numbers.

To given an example of our interpretation, by saying that there is the
rule or algorithm A : (a, b) 7→ a ↑↑ b, one says:
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Suppose a tuple of natural numbers (a, b) is given. Then the
algorithm A gives / constructs a particular number (which is
then denoted by a ↑↑ b).

If the reader then imagines two given numbers a and b, say 82479824 ·
3798217 and 241892741, she or he can construct the corresponding number
a ↑↑ b, in this case (82479824 ·3798217) ↑↑ (241892741), and then this number
is given / has been constructed. The statement is here that whatever two
numbers the reader imagines, she or he can construct the resulting number
by application of the algorithm. We note that again that the statement is a
story without reasonable physical interpretation.

6 Criteria for rewriting

With the ideas of constructive mathematics in mind we now discuss how one
might address the Central Question and questions around it.

6.1 First criteria

We return to the approach in subsection 4.2, as given in items 1. – 3. This
means that an input system I is given, a rewriting procedure is given, and
a convincing argument that the rewriting procedure is correct is given. As
already stated, to study and analyze such a system, it is natural to apply
ideas from constructive mathematics. We now reflect upon how exactly this
might be done:

The procedures should be given in an explicit and concrete way. The
level of concreteness required is a matter of judgment, and indeed, exactly
this question is always a matter of debate in actual applications of the con-
structive paradigm, like for example in [constr-ana]. Ideally, in our opinion,
a detailed “mathematical” description focusing on ideas and on the basis
of constructive mathematics, a description in pseudo-code and an actual,
testable implementation should be given, but at least the first point should
be satisfied.

A reasonable criterion is then:

Criterion 1 The procedures for testing membership in I and the rewrit-
ing procedure have to be given in such an explicit way that humans can
actually perform the computations on examples and such that an implemen-
tation on a physical computer seems to be actually possible. Moreover, the
claims for correctness have to be given by following the rules of constructive
mathematics as outlined in subsection 5.3.
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The criterion is of course vague, but this is unavoidable if we speak
about mathematical arguments (here arguments for the procedures) as they
are actually given and not formal arguments or computer programs.

We give three examples of rewritings with respect to ZFC which satisfy
this demand and which already make a huge difference in usability.

• Definitions as abbreviations for terms

• Syntactic reformulations to make statements better readable, for ex-
ample “Let x ∈ X. Then ...” instead of “∀x : x ∈ X → . . .”.

• If a pure set theory such as ZFC is used: the introduction of class terms
for properties: For each property p(x), the term {x | p(x)} with the
rule

∀y : y ∈ {x | p(x)} ↔ p(y)

is introduced, along with subclass relationships and equality of classes
with the obvious rules. Furthermore, the statements

∃{x | p(x)}

as abbreviations for
∃y : y = {x | p(x)}

are introduced.

We now consider an application to a particular text, following item 4’ of
subection 4.2. The following criterion then seems to be appropriate:

Criterion 2 Let a text of the following kind be given. The text consists of
three parts: A linearly told substantive story that a particular statement A
is proven on the basis of Zermelo-Fraenkel set theory, a constructive story
on a rewriting system following the first three points of subsection 4.2 and a
header of the form: “Based on the following argument for statement A and
the outlined system for rewriting (which follows the approach of subsection
4), one can give a formal proof of A on the basis of ZFC.” Then this shall mean
that Criterion 1 applies to the story on the rewriting system, the substantive
story is convincing on the basis of (informally given) Zermelo-Fraenkel set
theory with the axiom of choice and without too much effort, one can obtain
a formal reformulation A′ of A in ZFC and a convincing argument on the basis
of constructive mathematics that one can construct a valid input instance to
the rewriting system.

We make some remarks:
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• We distinguish between Zermelo-Fraenkel set theory with the axiom
of choice and ZFC: The latter is a formal system whereas the former
is an axiomatic set theory as actually used by mathematicians. (The
particular theories serve as examples.) We note in particular that there
is a psychological difference between convincing oneself that arguments
are valid on the basis of the axioms of Zermelo-Fraenkel set theory and
convincing oneself that from the arguments one can construct (in the
sense of constructive mathematics) a formal proof. The latter task is
usually not considered by mathematicians when they study “proofs”.

• The criterion is clearly vague in several ways. What shall in particular
“without too much effort” and “formal reformulation A′ of A” mean?

One can of course argue about the specific formulations, but there is a
fundamental reason why vagueness cannot be avoided here: All state-
ments on mathematical texts as actually written are vague, already
starting from criteria on “mathematical texts”. For example, in Sec-
tion 2, we already mentioned that there is no clear standard as to what
shall be called a “proof” and what not.

The claim of the reformulation of A is always present when it is claimed
that statements can be expressed formally and cannot be avoided. Con-
cerning “not too much effort” we want to give the rule of thumb that a
person who claims to have understood the “proof” can convince him-
or herself in less time than needed for the understanding of the “proof”
that the criterion is satisfied.

• There are obvious variants for the criterion for other formal set and
class theories, such as, for example NBG; the reason we only make a
statement on ZFC is that we do not want to enter a discussion on what
would be a “reasonable set and class theoretic formal system” and how
it should be given.

6.2 Computer backed systems

Again we come back to the idea of subsection 4.2 to have a procedure for
rewriting and to the approach consisting of the four requirements outlined
there. For a particular suggestion for the first three aspects and for a par-
ticular mathematical argument, it remains to argue that it can be written
in the formal system for the input and holds in there. This is a non-trivial
task for itself, with with one comes back to the original problem of rewriting
actual (non-formally given) mathematical arguments.

One idea is here to write mathematics directly in a humanly oriented
formal system and to check the arguments with the help of a computer. This
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idea was propagated in the “QED manifesto” ([QED]), and several formal
systems for this have subsequently been developed.

The most successful of these is arguably the Mizar project. In this system
a great number of theorems have been written and formally checked with the
help of computers. This is a great success for formalized mathematics. One
should, however, keep the following in mind:

First, such systems are not wildly used and mathematicians most often do
judge arguments to be valid or not on a rather intuitive basis without proofs
in formal systems. So there is indeed a much larger story of mathematics
told outside such formal frameworks than inside.

There is also a fundamental problem with the use of such computer-
based systems: The formal proofs are clearly more difficult to understand
than usual mathematical arguments; for examples of this see [example]. The
difficulty is required because of the rigid structure of the formalized lan-
guage, which would not be necessary for humans and in fact impairs their
understanding. So instead of checking the arguments themselves, humans
now turn to computers. Computers are physical objects designed by engi-
neers based on supposed physical laws found and formulated by physicists.
Physics and engineering rely themselves on mathematics, and the design and
the building of computers has an immense complexity which has accumu-
lated, a complexity which is actually much larger than the complexity of
nearly any argument in mathematics. Furthermore, to use a computer for
proof checking, one uses diverse programs (including programs one maybe
does not have in mind at first, like the operating system), some of which
is so large that it cannot even be read by any human. Now, why should
one assume that programs on computers run correctly if on the other hand
one doubts that humans can check mathematical arguments? There might
be good reasons to check supposed proofs by computers as an additional
check, but fundamentally, one can question a check by computers (built and
programmed by humans) as much as one can question a direct check by
humans.

6.3 Formalistic stories

We end this section with the promised definition of formalistic stories.
Above Criterion 1 we have outlined how procedures for rewriting should

be given and analyzed. We can then combine such rules and their analysis
with a particular convincing set-theoretic argument to obtain an argument
that a formal proof can be constructed (in the sense of constructive mathe-
matics).

More generally, we define: By a formalistic story we mean a story in
constructive mathematics as described in subsection 5.3 whose main claim
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is that a formal proof of a particular result or proofs of finitely many results
can be constructed (on the basis of some formal system).

We have set the definition up in such a way that it corresponds to the
following criterion which reflects our requirements for arguments for formal
proofs.

Criterion 3 Given a set theoretic statement A, the claim “A is proven on
the basis of ZFC.” shall mean: On the basis of constructive mathematics,
one can argue convincingly that one can construct a formal proof of a formal
reformulation of A in ZFC.

So, by this criterion, to establish that A is proven on the basis of ZFC
it is necessary and sufficient to give a convincing formal story for A. Again,
ZFC can be substituted with any other explicitly given set-theoretic formal
system.

In subsection 6.1 we considered particular formal stories and gave criteria
for them. In full generality it is outside of the scope of this note to discuss
when formal stories shall be regarded as being valid. We can just say that
there surely is a great subjective component.

For an application of the criterion, a particular statement A has to be
given. We recall that in the introduction we stated that we regard any
statement that infinitely many mathematical results have been established
to be invalid. Our definition of formalistic stories and the criterion just given
reflects this requirement.

We note that if one follows our interpretation of constructive mathemat-
ics, described in subsection 5.3, as a framework to argue that mathematical
results are established formally, one cannot argue that infinitely many results
are established via formal proofs, just as one cannot argue that there are in-
finitely many natural numbers.25 One can just give methods (such as, for
example, the ones in subsection 4.2) which might then be used to establish
a variety of results.

7 Interpreting actual stories

Mathematical texts as actually written most of the time are neither substan-
tive stories (as defined in subsection 4.1) nor formalistic stories (as defined
in subsection 6.3). Furthermore rewriting procedures do not at all belong to
mathematical practice. Although one usually may interpret mathematical
texts as a set- or class-theoretic story, this is not always the case and there

25Of course, in mathematics, be it constructive or set-theoretic, one can still argue on
infinitely many objects called “formal proofs”. This should not be confused with our study
here whose purpose is to discuss the Central Question in subsection 4.
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are several kinds of mathematics. All these things lead to and contribute
to a variety of interpretations of mathematical texts, some of which will be
discussed in the following.

7.1 Different kinds of mathematics

Up to now we identified mathematics with some set or class theory which
gives a unified foundation of a lot of mathematical practice. In general,
when speaking of some kind of mathematics, we consider a separate story
of mathematics and we always expect that there is some (for humans un-
derstandable) language, a (description of a) collection of axioms and rules
to derive conclusions (with respect to some logic). These conditions give a
very general setting of mathematics. However, usually mathematicians have
a more restricted view which things are really worth being considered as
mathematics and opinions may differ in this issue. A kind of mathematics
is not to be confused with a mathematical theory, like number theory or
K-theory, considered inside some set or class theory - they do not comprise
a separate foundation. Contrary to this, some given theory considered in
model theory serves as an example for a kind of mathematics.

Famous examples for set or class theories are Zermelo-Fraenkel and von
Neumann-Bernays-Gödel set theory, where only the second one uses proper
classes. Model theory indicates that one should expect basically the same re-
sults in these two kinds of mathematics. But there are also weaker, stronger
or different set or class theories. For example one may use a set theory with-
out the axiom of choice or some weaker or stronger version of this axiom.
As another example, one can demand the existence of inaccessible cardinals,
or equivalently of Grothendieck universes. These changes have real consen-
quences on the stories which can the and which are told on the bases of the
axiom schemes.

Kinds of mathematics different from set or class theories may be found
in mathematical history or, as mentioned before, as a theory studied in
model theory. Synthetic (euclidean) geometry, propositional logic, Peano
arithmetic, group theory or some theory of (maybe further specified) fields
as in model theory or even some theory of Sudokus may serve as examples.
However, for these kinds of mathematics it would not be unusual to be
formalized inside some set or class theory.

Constructive mathematics is different. In comparison to the other kinds
of mathematics, constructive mathematics is usually not considered inside a
set or class theory. The main reason for this is that intuitionistic logic, which
is fundamental for constructive mathematics, is different from the classical
logic of usual set or class theory. Since a main motivation and aspect of
constructive mathematics lies in the constructiveness of all algorithms, it

26



would be strange to consider abstract existence claims of classical logic over
constructive statements. Nevertheless model theory of intuitionistic logic
exists.

Given an actual mathematical text, in most cases mathematicians would
interpret it inside some set or class theory. However, usually it is considered
to be irrelevant to give a precise listing of the axioms. This is a feature of
actual mathematics: the claim of rewriting of one mathematical text may
be stated with respect to different foundations. Without mentioning the
claim of rewriting, this is used in actual mathematical papers or books, for
instance as “the usual proof applies to the new axiom system”. Emphasizing
it differently, this means that usual mathematical language may be a tool to
transfer results from one kind of mathematics to a different one.

In the last sections we explained in detail why constructive mathematics
is the right framework for the rewriting procedure of mathematical argu-
ments in Zermelo-Fraenkel set theory to ZFC. In fact, these arguments apply
to all kinds of mathematics. This means that it should be possible to give
rewriting stories for rewriting any convincing mathematical argument to a
corresponding formal systems via constructive mathematics. But in contrast
to set or class theory this rewriting procedure may be easier, and therefore
of less importance, or even unnecessary in “weaker” kinds of mathematics.

Within this context, stories of constructive mathematics and their rewrit-
ing achieve an outstanding role. As mentioned before, this problem may not
be solved finally due to the problem of infinite regression when rewriting
constructive stories. Note that always basically two stories have to be told:
a substantive story in the considered kind of mathematics and a story in
constructive mathematics which supports the claim of rewriting of the cor-
responding formalistic story.

7.2 Statements on statements in actual stories

As already mentioned in the introduction, actual mathematical texts con-
tain a variety of statements, in particular reflections on the process of doing
mathematics. These reflections include remarks inserted for didactic rea-
sons, expressing for example “ideas” before a “proof” is given, or aesthetic
judgments.

To analyze all these different kinds of statements is outside of the scope
of this note; we want to turn attention to a particular kind of statements:
statements on mathematical statements in how far as they are used to (al-
legedly) establish mathematical results. One kind of such statements we
have already considered: Formalistic stories consisting of a formal header
and a linearly told substancive story. Given such a text, one can then also
say that just the formalistic header is a statement on a statement. More
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generally, whenever in a text a sentence or a body of sentences S occurs in
which a statement on on some statement of the text is made, one can say
that S constitutes a statement on a statement in the context of S in the
text.

We give some examples of statements on statements which are used es-
tablish mathematical results as they might actually occur in mathematical
texts.

1. After two sets x and X have been given: “Now the statement that x is
contained in X holds.”

2. After in an argument 27 case distinctions have been made and two
of them have been proven: “We have now proved the first two of the
27 cases, proofs of the remaining 25 cases are analogous. The reader
should keep the changes outlined in the previous two chapters in mind.”

3. “For every three statements A,B,C, the statement (A ∨ B) ∧ C is
equivalent to (A ∧ C) ∨ (B ∧ C).”

In the first example we have the word “statement” which can be seen to
refer to a particular sentence, namely “x is contained in X.”, in the second
example, “proof” refers to a body of sentences, and in the third example
“sentences” are explicitly mentioned.

When analysing these examples, one notices that even among the re-
stricted kind of statements we analyze, a variety of kinds of statements are
made:

The first example is easy: The statement merely says that statement

x is contained in X.

holds. This might have just been stated directly.
The second example is more tricky. The idea is here that inside the

text written there is an instruction as how to generate more text in order to
obtain a more complete argument. A straight-forward answer what shall be
done now is: Well, the text shall be rewritten according to the instruction.
However, an author who makes such a statement in all likelihood does not
expect a reader to really follow his or her instruction. Given this, there
again arises the question what kind of statement is actually made here. An
answer is that the reader should imagine a linearly told substantive set- or
class-theoretic story (and not a formalistic story, as in the previous section).
So the reader should image a story which by itself is a story on imagined
(non-physical) objects. The authors of this note do not in principle object
to this practice, but just remark that such meta-statements are error-prone
and should rather be avoided.
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The third example is yet different. One notices first that it is vague:
What exactly is meant by “three statements A,B,C”? Depending on the
context, there are now different types of interpretations.

One type of interpretation is that this shall be a statement of some for-
mal logic, which is the kind of mathematics being studied. For this, A,B,C

should be specified as, for example, propositional symbols when working in
propositional logic or 0-ary predicate symbols when working in some first-
order logic. In the second case one would tend to allow arbitrary formulas
in A,B,C, which means A,B,C are placeholders for arbitrary formulas.
But this is not allowed within this context since it would lead to an infi-
nite number of mathematical statements. However, if one uses some set or
class theory to study formal logic formalizing the corresponding language
via sets, this problem disappears since this infinite number of statements
may be summarized into one set-theoretical statement. So studying some
formal logic within some bigger kind of mathematics leads to another type
of interpretations inside some mathematics.

Keeping in mind subsection 5.3 one notes that it is also possible to give
a correct interpretation of the third statement if A,B,C are placeholders for
first-order formulas when working in first-order logic. Then the statement
is true for any (in terms of 5.3) given first-order formulas. Note that this is
a statement in constructive mathematics, thus a part of the rewriting story
and not the kind of mathematics being studied.

There are more interpretations of the third statement. For instance one
could take the point of view that such a simple statement is obviously a
statement in propositional logic and when using this statement it should be
interpreted as an application of propositional logic in some kind of mathemat-
ics as described in subsection 7.1. Another possibility is that one interprets
it as a description how to write down a substantive story or even a formal
proof working again outside of the mathematics being studied. However, one
has to be careful using such interpretations since they are not as precise as
the interpretations before.

A conclusion from these considerations is:

Criterion 4 Whenever in a story of mathematics a statement on seemingly
infinitely many sentences (or expressions) are made, the statement must not
be interpreted as giving infinitely many mathematical results. If the state-
ment is later used as a meta-statement on how to obtain an argument or a
formal proof, it must be established on the basis of constructive mathematics.

We remark here that axioms schemes on which a linearly told substantive
story is based are never part of the story; indeed they are part of formalistic
headers. So there is no contradiction between the Criterion and the fact that
in axiom systems, often statements on infinitely many statements are made.
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Of course they are not written down in the formalistic header but there is
the possibility to check in an algorithmic manner if a statement belongs to
the axiom scheme.

8 Mathematics and meta-mathematics

There is an interesting relationship between the use and the theory of for-
mal systems: Formal systems were first introduced (for example by Gottlob
Frege) to study and clarify mathematical arguments, and as already stated in
subsection 3.2, the idea of formal reasonings (formal proofs) is foundational
to the present day doing of mathematics. Now, the idea of formal systems
by itself invites a mathematical study on formal systems, and quickly the
study of formal systems was integrated into mathematics.

On the one hand now, the mathematical study of formal systems has
its motivation in meta-mathematical considerations. Conversely, the mathe-
matical study of formal systems has lead to mathematical results on formal
systems which have an impact on how mathematics is viewed and conducted.
One example is the application of (not immediately obvious) statements from
propositional logic or first-order logic in the story of mathematics.

The (historically surprising) statements on the foundations of set theory
(incompleteness, independence of axioms, etc.) have a particular, one might
say philosophical, impact on the way mathematics is seen and is conducted.
(Explicitly, they have lead to a certain “liberal attitude” towards different
axiom schemes, where no such scheme is regarded to be “absolutely true”.)

It is however not obvious in what sense such results make statements on
mathematics (in particular on the limitations of mathematical endeavors)
rather then in mathematics.

To study this question, slightly more generally, we study the relationship
between arguments (“proofs”) as such and arguments on formal proofs. For
this, we consider two directions of inference which we call “going down” and
“going up”. The direction of “going up” comes in two flavors: “going up for
the existence of proofs” and “going up for the non-existence of proofs”.

8.1 Going down

Recall that in Criterion 3 we said that to claim that a mathematical state-
ment A is proven in ZFC shall mean that on the basis of construtive mathe-
matics one can argue convincingly that one can construct a formal proof of a
formal reformulation of A in ZFC. Now, when a mathematician claims that
he or she has proven a result, he usually just writes down his arguments,
which are by default based on Zermelo-Fraenkel set theory with the axiom
of choice, but he or she does not say that there is a formal proof in ZFC on
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the basis of the arguments. With the terminology of Section 4 we can say
that a substantive story is told, not a formalistic one.

But what if a formalistic header was added, so that really the claim was
made that one can construct a formal proof on the basis of ZFC? Can one a
priori say that this claim is valid?

Given our terminology (in particular again Criterion 3) we can also for-
mulate this in the following brief way: Can one a priori say that every
statement convincingly argued for on the basis of Zermelo-Fraenkel set the-
ory with the axiom of choice can be proven on the basis of ZFC?26 This
question is non-trivial, because mathematicians in their judgment if an ar-
gument is convincing to them do usually not explicitly consider the question
of rewriting.

We answer this question affirmatively with the following thesis:

Thesis. For every (informal) statement A on the basis of Zermelo-Fraenkel
set theory with the axiom of choice for which a convincing mathematical
argument for A on the basis of Zermelo-Fraenkel set theory with the axiom
of choice is given, one can construct a proof of a formal reformulation of A
on the basis of ZFC.

This thesis is in nature similar to the Church-Turing thesis. We stress
that it should not be taken as a definition; in fact, the phrase “convincing
mathematical argument” (what other authors call “informal proof”) already
has a meaning, so it cannot be taken as a definition.

We do however want to suggest that if somebody ever came up with a
counterexample, the mathematical intuition on when a mathematical argu-
ment is seen as convincing (a “proof”) or the axiomatic basis would change
and afterwards the thesis would again be correct.

We note that a related inference as the one in the thesis is present in
Gödel’s argumentation for the First Incompleteness Theorem: He starts with
a formal system F containing Robinson Arithmetic and uses this implication:
If a formal sentence A follows from F , a sentence whose interpretation is “A
can be proven from F ” also follows from F .

Despite this similarity, there are, however, differences between Gödel’s
technique and what we argue for here: The argument by Gödel is purely
mathematical, it is an inference inside of mathematics. Our thesis is however
meta-mathematical, it is about the human endeavor concerning mathemat-
ics.

26Just as in the Criteria, we stick here to ZFC, but similar considerations apply to other
formal set or class theoretic systems.
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8.2 Going up for existence of arguments

Suppose now that for some statement A a mathematician does the following:

1. He or she gives a suitably formalized ZFC-statement A′ of A.

2. He or she argues (“proves”) set-theoretically (!) that there exists a
ZFC-proof of A′

One might then be tempted to say that A “is proven” (has been convincingly
argued for) on the basis of Zermelo-Fraenkel. This would however contradict
our general attitude that in order to say that a result is formally proven (on
the basis of some set-theoretic formal system) one has to constructively argue
that there is a formal proof. Explicitly, this would contradict Criterion 3.

8.3 Going up for non-existence of arguments

We now consider a statement on the non-existence of formal proofs for state-
ments. Examples for this are many, let us state one: One can argue on the
basis of Zermelo set theory that if ZF is consistent, then ZF with ¬C is
also consistent, that is, that the axiom of choice does not follow from ZF.
This result is particularly interesting as the known arguments for it rely on
non-trivial set theory.

We want to “go up” and conclude something on the limitations for humans
and more generally on conscious beings of doing mathematics. Let us stick
with the given example. Here we would like to conclude: Any convincing
argument on the basis of Zermelo-Fraenkel set theory that the axiom of
choice holds would lead to a convincing argument that ZF is inconsistent.

It would be a misconception to immediately conclude from a mathemati-
cal statement on a (seemingly) corresponding statement of the human future.
One can however argue by “going down”:

Assume that someone gives a convincing argument for the axiom of choice
on the basis of Zermelo-Fraenkel set theory. Then assuming the variant of
the Thesis in subsection 8.1 holds for ZF, it would be proven on the basis of
ZF that the axiom of choice holds. By Criterion 2 (for ZF) this would mean
that one can argue on the basis of constructive mathematics that there exists
a formal proof for the axiom of choice from ZF. The conclusion is then that
ZF is inconsistent.

8.4 Example: theorem of soundness and completeness

It is useful to discuss some example which may be interpreted mathematically
and meta-mathematicalyl and may illustrate and even extend the former
subsections. Let us consider the theorem of soundness and completeness of
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first-order logic as a mathematical theorem in set theory (especially Zermelo-
Fraenkel) and statements similar to the statements in this theorem. A usual
formulation of the mathematical theorem is the following:

Let L be a first-order language. For all sets Γ′ of sentences (of L) and
all sentences ϕ′ (of L) the following are equivalent:

(1)′ We can deduce ϕ′ from Γ′.

(2)′ The formula ϕ′ is logically valid in any model of Γ′.

The implication (1)′ → (2)′ is called soundness and the reverse implica-
tion (2)′ → (1)′ is called completeness.

When we consider something as a mathematical theorem in Zermelo-
Fraenkel set theory everything has to be a set. So especially L, Γ′ and ϕ′ are
sets representing a first-order language, a set of sentences or a sentence re-
spectively. Then it seems likely to interpret “Let L be a first-order language.”
as “For all sets L which have the property representing a first-order language
...” – different interpretations will turn out being meta-mathematical ver-
sions later. Now (1)′ is by definition the set-theoretic existence of a formal
proof which shows ϕ′ given Γ′ and this formal proof is again a set. The
usual definition of (2)′ is ϕ′ being “true” in any structure of L where all the
elements of Γ′ are “true”. Here being “true” or “false” is defined by a set-
theoretic recursive definition over the length of the formulas. Since there is
no restriction on the length of the formulas ϕ′ and the formulas in Γ′, the
output of this procedure necessarily has to be a set like 0 (:= ∅) for “false”
and 1 (:= {∅}) for “true”. On the basis of these interpretations, the usual
arguments give rise to the above theorem.

Let us consider the concrete example where L is the language of groups.
So what is meant by this? Since L is a set (a mathematical object), speak-
ing about it (doing mathematics) is the same as describing a set which is
representing the first-order language of groups. Given such a description,
one can apply the above theorem. Abstracting from this example leads to a
different interpretation and a first meta-mathematical version of the theorem
of soundness and completeness where “Let L be a first-order language.” is
interpreted as “Let a first-order language L be algorithmically given.” in the
sense of subsection 5.3. After interpreting the quantification over L in this
constructive way, one can do the same for the quantifications over Γ′ and/or
ϕ′. Here, if only the quantification over ϕ′ and not over Γ′ is interpreted in
a constructive way, one has to change the order of quantification. This leads
to three further meta-mathematical theorems. In each application of these,
one has then a special case of the mathematical theorem. For instance, in
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our example of the language of groups, one may take Γ′ as the group axioms
and ϕ′ as some group-theoretic statement.

Sticking to this example, usually one is not mainly interested in models
of the set of group axioms but rather in groups themselves. Actually, the
starting point is not Γ′ and ϕ′ being given as sets; rather one has some
mathematical statements Γ describing groups and a statement ϕ on groups.
Subsequently, one describes L, Γ′ and ϕ′ corresponding to Γ and ϕ in a
proper way. Note that Γ and ϕ are given in mathematical language which
may correspond to Zermelo-Fraenkel or some proper kind of mathematics in
which it makes sense to formalize objects defined by Γ. The smallest such
kind of mathematics would be the one using Γ as axioms - in this case group
theory. If one abstracts from our example, Γ and ϕ, that is, the descriptions
of mathematical objects, have to be constructively given. Now, we may also
consider:

(1)+ One may give a set-theoretic formal proof of ϕ starting from Γ (in the
sense of subsection 5.3).

(2)+ ϕ holds for the set-theoretic objects defined by Γ.

(1) One may give a formal proof of ϕ starting from Γ (in the sense of
subsection 5.3).

(2) ϕ holds in the kind of mathematics defined by Γ.

Note that (1)+ and (1) are by definition the claims that one may write
down a substantive story and fulfill the claims of the corresponding for-
malistic stories for (2)+ and (2) respectively. While (1)′, (2)′ and (2)+ are
set-theoretic statements, (1)+ and (1) belong to constructive mathematics
and (2) is a statement in the kind of mathematics defined by Γ. In the pre-
vious subsections, we considered (1)′ and (1), where Γ consists of the axioms
of Zermelo-Fraenkel set theory.

We have seen that (1)′ and (2)′ are equivalent. But (2)+ is also equivalent
to (2)′ since set-theoretical objects defined by Γ and models of Γ′ are basically
the same. Nevertheless, this is something one has to prove in each case
separately since it is necessary to show that Γ′ is a proper way to formalize Γ

within set theory.27 Due to this equivalence, the claims to give set-theoretical
formal proofs of (1)′ respectively (2)′ will lead to the same statement as (1)+.

Let us now consider (1) and (1)+ and assume, for the moment, that
(1) is true. Then there is a substantive story showing (2) and one may

27As Γ are statements in mathematics, these are only finitely many statements. It
may still be possible to make Γ′ infinite. Consider, for instance, the case of torsion-
free groups. Then being torsion-free is one mathematical statement by quantifying over
natural numbers which represent the exponents. In the language of groups one would put
infinitely many sentences in Γ′.
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fulfill the claim of the corresponding formalistic story. Since the language
of Zermelo-Fraenkel is able to describe something like “objects defined by
Γ”, the same substantive story applies to set theory. Here it is not clear
if it is again possible to fulfil the claim of the corresponding formalistic
story. This is at least partly caused by the difference between the two kinds
of mathematics which are studied here within constructive mathematics.
Nevertheless, mathematicians usually would accept that (1)+ is proven since
there is a proper substantive story. If one assumes that (1)+ is true, this will
not directly imply (1) since one could use set-theoretic constructions which
are not allowed in convincing arguments for (1).

For further considerations one has to be careful because they belong to
different kinds of mathematics. One could use some kind of mathematics
which is able to study these different kinds of mathematics. But then, we
would end up in some bigger story. To avoid this, we only give some intu-
itive arguments. Since (1)+ and (1) basically say that there are convincing
arguments for (2)+ and (2) respectively, one may say that (1)+ implies (2)+

and (1) implies (2). Furthermore, one will not be able to find cases where
(2)+ or (2) is correct and (1)+ respectively (1) is wrong since it is necessary
to give a convincing argument to show that something is correct. It is also
reasonable to assume that (2) implies (2)+. Indeed, if ϕ holds for all objects
defined by Γ, then it should also hold for all objects defined by Γ inside some
set theory.

The following chart sums up the mentioned relations.

(1)′ oo // (2)′
OO

��
(1)+ oo // (2)+

(1) oo //

OO

(2)

OO

9 On the Central Question

It is now time to come back to the Central Question posed in subsection 4.1.
We have argued that the process of rewriting should be based on construc-
tive mathematics, and we have given an interpretation of the statements of
constructive mathematics for which one does not need to imagine infinitely
many natural numbers or (in our application) texts.

However, the observation of subsection 3.4 that the rewriting process
often cannot be done by humans is of course still valid.

The answer then depends on whether one regards the statements of con-
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structive mathematics in our interpretation as being “less imaginary” than
set-theoretic statements. Given that both are on the one hand “intuitive”
and on the other do not seem to directly correspond to human experiences,
the authors do not see this, but the reader is of course invited to have his or
her point of view.

In any case, it seems to the authors that with the approach presented,
the stories told (on the rewriting) are the closest to actual physical rewriting
that one might hope for if one wants to uphold claims of rewriting that
cannot be carried out physically at all.

Nonetheless, even if one considers constructive mathematics to be as
imaginary as set-theoretic mathematics, in near future the claim of rewriting
will still be the answer when mathematicians are being asked about the
essence of what they call proofs. Therefore, a further reflection on this
philosophical issue may lead to new insights and especially hidden thesis,
which get revealed throughout such discussions, possibly leading to further
developments.
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Supplement: Inspirations and the process of writing

What inspired the authors to write this note and to articulate the perspective
on mathematics presented here?

In 2012, Shinichi Mochizuki made four papers about “Inter-universal
Teichmüller Theory” ([IUTT]) public which contain allegedly a - yet un-
confirmed - proof of the abc conjecture, a central conjecture from number
theory, public. In the last part of the fourth paper, Mochizuki introduces
what he calls the “language of species”. The first author assigned to the sec-
ond author the task for his “Diplomarbeit” to explain “what is going on here”,
and the second author agreed to this task.

It turned out that “species” are nothing but formulae describing cate-
gories, and there are also “mutations” describing functors. For example, a
species defines the underlying class of a category via a property which the
objects shall satisfy; this seems to be similar to the possible introduction of
classes for individual properties in a higher language which can be rewritten
in ZFC as discussed in subsection 4.2. This lead to numerous – sometimes
hours long discussions. The rather concrete question discussed was: Should
the “species” be seen as objects themselves or does Mochizuki merely ad-
vocate a particular point of view, maybe a way to do and to write down
mathematics? What is or what should be the ontological status of “species”?
The authors then realized that to even discuss these question, they have
to consider deeper underlying questions on formalisms in mathematics in
general and on the ontological status of mathematics in general.

The second author expressed a formalistic point of view: If mathemati-
cians claim to have a proven a result, they actually claim that they can write
down such a proof in a formal system, which is by default ZFC, everything
else would be imaginary. The first author countered: This does not corre-
spond to what you are doing yourself if you are doing mathematics. In fact,
you do not formally write down your “proofs in a formal system”, and you are
also not able to do so. So your “formalistic proofs” are also purely imaginary.
Moreover, your view on mathematics does not correspond to your behavior:
I can see you getting excited when you talk about “mathematical objects”.
One can indeed argue that the objects are purely imaginary (as one can also
for the “formalistic proofs”), but when expressing their thoughts, mathemati-
cians do indeed act as it the objects were real; this should be expressed.

The first author stressed then the point of view that questions of realism
should be sidestepped by simply looking at what mathematicians do, and
for this the ideas of mathematical fictionalism should be considered. Math-
ematical fictionalism (see e.g. [fictional]) expresses the thought that even
though mathematical objects are not or might not be real, mathematicians
tell themselves a story in which they are real. According to fictionalism this
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is similar to the usual process of story telling with novels. The second author
emphasize that be that as it may, mathematicians in their quest for certainty
want to be sure that their arguments follow formally from clearly outlined
axioms.

This stress on the formalistic foundations of mathematics became of im-
portance when the authors wanted to write about the proper interpretation
of statements on formal sentences. Here, however, a crucial problem came to
light: What does claim a “The argument could be written in ZFC.” actually
mean? What if such a writing cannot be done by humans? What if the writ-
ing can (or realistically could) be done by computers but then the formal
proof could not be checked by humans?

A statement like “There is a formal proof of Fermat’s last theorem in
ZFC” does indeed “feel” more real than the very starting point of arithmetic:
Counting never stops, or formulated more “platonistically”: Every natural
number has a successor. The first author still remains skeptical of asserting
a label of “less imaginary” to the first claim, because, well, the alleged formal
proof is imaginary. Does it then make sense to label it as “less imaginary”?
Such a qualification should at least require some kind of argument in favor
of the possibility for humans to obtain such a proof in a physical sense.

In any case, statements of rewriting in the form of “it could be done”
are important in the story and the arguments of mathematics as told today,
and it is a challenge to come up with a meaning of such statements. The
authors have attempted to give such a meaning in this note, following ideas of
constructive mathematics. They invite everybody to reflect on this problem
for themselves.
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