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Abstract

Let C be a smooth, non-hyperelliptic curve over an algebraically
closed field of genus g ≥ 4. We show that the projection from the
canonical model of C through (g−3) generic points on C is a birational
morphism to a plane curve which has only finitely many non-ordinary
tangents, that is, flex- or bitangents. For smooth, non-hyperelliptic
curves of a fixed genus g ≥ 4 over finite fields, we show that the proba-
bility that an effective divisor of degree (g−3) defines such an “ordinary
(birational) plane model” converges to 1.

This result has an application to the solution of the discrete loga-
rithm problem for smooth, non-hyperelliptic curves curves of a fixed
genus g over finite fields Fq: By first changing the representation to
such an ordinary plane model and then using an algorithm by the first

author, the problem can be solved in an expected time of Õ(q2− 2
g−1 ).

Another consequence is that for smooth, non-hyperelliptic curves
of a fixed genus g over finite fields Fq, the number of completely split
divisors in the canonical system is ∼ 1

(2g+2)! ⋅ q
q−1.

1 Introduction

Let us consider the discrete logarithm problem in the degree-0 Picard groups
of smooth curves of a fixed genus g. In [Die11] it is shown that this problem
can be solved in an expected time of

Õ(q2−
2
g ) ;

here and in the following the phrase “expected time” refers to an internal
randomization of the algorithm. In [Die12a] it is shown that this can be
improved if C is represented in an appropriate way by what we call a (bira-
tional) plane model ; this is a possibly singular plane curve which is birational
to the curve in question. The basic idea of the algorithm in [Die12a] (and
the previous algorithm in [Die06]) is to generate relations by intersecting
the plane model with lines.

More specifically, consider the discrete logarithm problem for smooth
curves C of genus g over finite fields Fq given by plane models of a fixed
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degree d ≥ 4. This means that the input consists of: First a plane curve
Cpm of degree d over a finite field, say Fq. To this curve the normalization
Cpm, which consists of a smooth curve C over Fq together with a birational
morphism π ∶ C → Cpm, can be associated. A second part of the input is then
an instance of the discrete logarithm problem in Pic0(C).

Just as in [Die11] and in other algorithms for the discrete logarithm
problem for curves of small genus, the factor base is a subset of the set of
Fq-rational points of C. Then the linear system

g2d(π) ∶= {π∗((W )0) ∣ W ∈ Fq[X,Y,Z]1}

that is given by the pullback of lines in P2
Fq

is considered. Relations are
generated by considering effective divisors containing two points of the factor
base. As here the divisors on which conditions are imposed have degree d−2
instead of degree g in the algorithm for the result in [Die11], a first heuristic
analysis suggests that one can obtain an expected running time of

Õ(q2−
2

d−2 )

in this way.
It is show in [Die11] that in this is indeed the case for two kind of

curves given by plane models: First for non-hyperelliptic curves of genus 3
and second provided that there is of at least one divisor in g2d(π) that is
completely and distinctly split, by which we mean that it splits completely
into distinct Fq-rational points. A possibility to fulfill the latter condition is
via a nonsingular point p of the plane model through which only ordinary
tangents, that is, tangents which are neither bitangents nor flex tangents,
run. Indeed, in this case, the number of completely and distinctly split
divisors that contain p is ∼ 1

(d−1)! ⋅ q (see Proposition 14).
We call a plane curve with only finitely many nonsingular points with

non-ordinary tangents an ordinary plane curve. Note here that if the char-
acteristic is not 2 a plane curve is ordinary if and only if it is reflexive,
however in characteristic 2 there are no reflexive plane curves.

For smooth, non-hyperelliptic curves of a fixed genus g ≥ 4, an idea to
improve upon [Die06] is then to generate ordinary plane models of degree
(g + 1) by projection through the hyperplane generated by the image of a
divisor D of degree (g − 3). The corresponding linear system is then the
residual system of D, that is, ∣K −D∣. Here and in the following, K denotes
a canonical divisor on the curve in question. We only consider base point
free systems, which means that the plane model indeed has degree (g + 1).
Let us note here that if we vary D, we obtain in this way all base point free
complete g2g+1’s.

It remains now to show that one can indeed efficiently find in this way
an appropriate plane model. As pointed out by Griffiths & Harris in the
introduction to their work on Brill-Noether theory on special linear systems
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in characteristic 0 ([GH80]), it follows from the theory that a general effective
divisor D of degree (g−3) on a general non-singular (non-hyperelliptic) curve
of genus g ≥ 3 leads to a plane model of degree (g+1) via ∣K −D∣. Since the
relevant statements of Brill-Noether theory are valid in any characteristic
by Gieseker’s work [Gie82], so is this statement.

We show that the obvious generalization of this result to arbitrary non-
singular, non-hyperelliptic curves over algebraically closed fields holds and
the resulting plane model is ordinary:

Theorem 1. Let C be a non-singular, non-hyperelliptic curve over an alge-
braically closed field of genus g ≥ 4. Then the residual system of a general
effective divisor of degree (g −3) on C defines an ordinary plane model of C,
which then has degree (g + 1).

For linear systems over curves over finite fields, we cannot even formulate
this result, but we can ask if a probabilistic variant holds. We show that
this is indeed the case for curves of a fixed genus:

Theorem 2. Let a natural number g ≥ 4 be fixed. Then there exists a
constant C > 0 such that for every smooth, non-hyperelliptic curve C/Fq of
genus g the following holds. Let PC be the probability that a divisor D chosen
uniformly at random from the effective divisors of degree (g − 3) does not
lead to an ordinary plane model of degree (g + 1) via ∣K −D∣. Then

PC ≤
C

q
.

Again for smooth, non-hyperelliptic curves of a fixed genus, it is then
not difficult to efficiently construct appropriate plane models and to trans-
fer instances of the discrete logarithm problem in an efficient way. With
Theorems 1 and 2 of [Die12a] we then obtain:

Theorem 3. Let a natural number g ≥ 3 be fixed. Then the discrete log-
arithm problem for non-hyperelliptic curves of genus g over finite fields Fq
can be solved in an expected time of

Õ(q2−
2

g−1 ) .

With the close connection between ordinary plane models coming from
some ∣K −D∣ with an effective divisor D of degree (g − 3) and the canonical
linear system itself we also show:

Theorem 4. Consider smooth, non-hyperelliptic curves of a fixed genus
g over finite fields Fq. Then the number of completely and distinctly split
divisors in the canonical system of such a curve is in

1

(2g − 2)! ⋅ q
g−1 +O(qg−

3
2 ).
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Outline

To obtain our probabilistic results over finite fields, we need estimates of
the cardinalities of sets of Fq-rational points of schemes and varieties. In
Section 2 we introduce two key ingredients for such an approach: In the first
subsection, we give upper and lower bounds on the number of rational points
in schemes and varieties over finite fields and derive from these bounds on
the number of rational points of fibers of relative schemes. We then recall
that there is a fine moduli space parameterizing curves of fixed genus with
a three-canonical embedding and analyze certain properties of this space.
This enables us to parameterize various schemes linked to curves of fixed
genus and to apply the results on the bounds.

Subsection 2.1 contains some results which are not necessary for the
derivation of Theorem 2 and which we regard to be of independent interest.
These results are also preparatory for our forthcoming work [DK], but also
then we will not need the results in full generality.

In Section 3 we then prove the four theorems given. To prove Theo-
rem 1 and Theorem 2, we closely study hyperplane divisors and tangents
of canonical models of curves. We give motivations and some definitions in
the first subsection and prove the theorems in the second. In order to prove
Theorem 2 we formulate the properties for relative curves in such a way that
we can successfully apply the techniques of Section 2.

We then show the number of completely and distinctly split divisors in
the canonical linear system of C is as claimed in Theorem 4. Briefly, is due to
the fact that line sections on a plane model as considered by us correspond
to certain hyperplane sections on the canonical model.

Finally, we discuss how one can efficiently construct ordinary plane mod-
els and birational morphisms to them both from a theoretic as well as from
a practical point of view and we prove Theorem 3.

Notation and Terminology

Most of the terminology in this work agrees with the generally accepted one
in [Har77] complemented by [ACGH85] and [ACG11].

Let Y be an S-scheme. If h ∶ T → Y is a morphism of S-schemes we call h
a T -valued point of Y and denote the set of all T -valued points on Y by Y (T ).
In the case T = Spec(F) for some field F we denote Y (Spec(F)) by Y (F).
Generally, F will always denote an arbitrary field and k an algebraically
closed field.

A variety over some field F is a geometrically integral and separated
scheme of finite type over F. A curve over F is a one-dimensional variety
that is proper over F. In particular, a curve does not have to be smooth.
If a smooth curve C is under consideration, K always denote a canonical
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divisor on C. If T is an S-scheme we denote the (scheme theoretic) fiber on
T over s ∈ S by Ts.

Let S be a scheme. If we want to emphasize the relative point of view or
wish to introduce the base S, we denote an S-scheme T by T /S, otherwise
we just write T . A smooth relative curve over S is an S-scheme C that
is proper and smooth over S and whose fibers are curves of a fixed genus,
which is then called the genus of the relative curve.

Let C be a smooth curve over a field F. Following [Die12a], we say
that a divisor D on C is completely split if it splits into F-rational points.
Furthermore, we say that it is distinctly split if it splits into distinct (closed)
points. Thus, as already stated above, D is completely and distinctly split
if and only if it splits into distinct F-rational points.

For a natural number d, the effective divisors of degree d on the smooth
curve C over F are in natural bijection with the F-rational points of Cd, the
d-fold symmetric product of C. We identify the two, and in particular, to say
that D shall be an effective divisor of degree d on C, we also write D ∈ Cd(F).

For asymptotic statements, for a function f on a countable set X with val-
ues in R≥0, we make use of the usual sets O(f) and Õ(f) =
⋃a≥0O(max(loga(f),1) ⋅ f). As for example in [Die12a], our use of lan-
guage reflects that O(f) and Õ(f) are in fact sets. As already mentioned,
by the phrase “expected time” we always refer to an internal randomization
of the corresponding algorithm and no input data.
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2 Preliminaries

2.1 Bounds on the Cardinality of Varieties

For a property P on the points of a variety X over an algebraically closed
field k, the statement “the k-rational points of an open subscheme of X
fulfill P” might intuitively be expressed by saying that “almost all k-rational
points of X fulfill P”.

By contrast, if X is a variety over a finite field F, from “the F-rational
points of an open subscheme of X fulfill P” one cannot conclude anything
about the portion of points which fulfill P . By the following results estab-
lished by Lang & Weil in [LW54], there is however a suitable probabilistic
replacement of the result if one considers not just points with values of F
but also in extensions of this field:
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Proposition 1. Let n, d be natural numbers.

a) There exists a constant C = C(n, d) such that for any closed subscheme
A, pure of some dimension r and of degree d, of Pn

Fq
, #A(Fq) ≤ C qr.

b) There exists a constant C = C(n, d) such that for any closed subvariety
V of some dimension r and degree d of Pn

Fq
,

∣#V (Fq) − qr ∣ ≤ (d − 1)(d − 2) qr−
1
2 +C qr−1 .

Here, the statement in a) is Lemma 1 and the statement in b) is Theo-
rem 1 of [LW54]. This result was later reproven and improved with the use
of étale cohomology. With these methods, it was shown in [GL02] that a)
one in fact has #A(Fq) ≤ d ⋅#Pr(Fq). Also, an explicit bound in b) is given.

We want to use these results to obtain a probabilistic result for families
of schemes and closed subschemes in the spirit explained above. As a first
step, we want to obtain bounds for subschemes of affine spaces in terms of
the “complexity” of a defining system of equations. To make this precise,
we use the following definitions which were essentially given by T. Tau in
his blog (see e.g. the discussion for Theorem 4.4.17 in [Tao13]).

Definition 2. Let F be any field. and M > 0.

a) We say a closed subscheme V ⊆ An
F is of complexity at most M if there

are polynomials f1, . . . , fm ∈ F[x1, . . . , xn] of maximal degree d such that
V = V (f1, . . . , fm) and n,m,d ≤M .

b) Likewise we say that a closed subscheme V ⊆ Pn
F is complexity at most

M if there are homogeneous polynomials F1, . . . , Fm ∈ F[x1, . . . , xn] of
maximal degree d such that V = V (F1, . . . , Fm) and n,m,d ≤M .

Note here that the surrounding space (the affine or projective space) is
part of the definition. With the following lemma, we relate this definition
to the results by Lang & Weil:

Lemma 3.

a) Let X be a closed subscheme of Pn
F of complexity at most M and let

for i = 0, . . . , n Xi be the union of irreducibility components of X of
dimension i. (One might call X = ⋃iXi the dimension decomposition of
X.) Then ∑i deg(Xi) ≤MM .

b) Let X be a closed subscheme of An
F of complexity at most M , let X be

the closure of X in Pn
F. Then for i = 0, . . . , n, the union of irreducibility

components of X of dimension i is equal to the closure of Xi in Pn
F; let

this be Xi. Then ∑i deg(Xi) ≤MM .
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Proof. a) We have the following more concrete statement: Let X =
V (F1, . . . , Fm) with deg(Fi) ≤ d. Then deg(Xi) ≤ dn−i. This can be de-
duced easily from Krull’s Hauptidealsatz and the so-called normalization
axiom of intersection theory; this is Axiom A7 in [Har77, Appendix A].
Briefly, if V is an irreducible closed subscheme of Pn

F and F ∈ F[X0, . . . ,Xn]
homogeneous then either V ⊆ V (f) and thus V ∩ V (f) = V or alternatively
dim(V ∩ V (f)) = dim(V ) − 1 and deg(V ∩ V (f)) = deg(V ) ⋅ deg(F ).

b) The closure X is equal to the union of the closures of the irreducibility
components of X. This gives the first statement. Let now X = V (f1, . . . , fm)
and let X̃ be the scheme obtained by homogenizing the polynomials fi.
Then X ⊆ X̃. Also, every irreducibility component of X is an irreducibility
component of X̃, thus Xi ⊆ X̃i. We can now apply the result in a) to get
the desired statement on X.

Putting this together, we obtain:

Proposition 4. For M > 0 there exists a C = C(M) > 0 such that for any
V be a closed subscheme of An

Fq
or of Pn

Fq
of complexity at most M ,

a) #V (Fq) ≤ C ⋅ qdeg(V ),

b) If V is a variety then ∣#V (Fq) − qdim(V )∣ ≤ C ⋅ qdim(V )− 1
2 .

This proposition was also proven by Tao in an entry called “The Lang-
Weil bound” in his blog. In contrast to the proof here, Tao refers to a result
which he has proven by model theoretic means, namely the already cited
Theorem 4.4.17 in [Tao13].

We are now able to prove the following.

Proposition 5. Let X be a scheme of finite type over a noetherian scheme
S. Then there is a constant C > 0 such that

a) for any finite field Fq and s ∈ S(Fq), ∣Xs(Fq)∣ ≤ C ⋅ qdim(Xs),

b) for any finite field Fq and s ∈ S(Fq) such that Xs is a variety,

∣Xs(Fq) − qdim(Xs)∣ ≤ C ⋅ qdim(Xs)−
1
2 .

Proof. Since X is of finite type over S, we can immediately reduce to S being
affine, say S = Spec(Z), and X is a finite union of affine Z-schemes given
by finitely generated Z-algebras, say X = U1 ∪⋯ ∪Uk with Ui = Spec(Ri).

We prove a). Clearly, for s ∈ S(Fq), #Xs(Fq) ≤ ∑i#(Ui)s(Fq). We
can thus reduce to X = Spec(R) with a finitely generated Z-algebra R over
the noetherian ring Z. We can present R as R = Z[x1, . . . , xn]/(f1, . . . , fm).
Speaking geometrically, we have

X = V (f1, . . . , fm) ⊆ An
Z .
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A point s ∈ S(Fq) corresponds to a homomorphism ϕ ∶ Z → Fq, and then

Xs = V (ϕ(f1), . . . , ϕ(fm)) ⊆ An
Fq
.

The claim then follows with Proposition 4 a).
We come to b). If X is affine, we obtain the result just like a) with

Proposition 4 b).
In general, we again use a decomposition X = U1 ∪ ⋯ ∪ Uk with Ui =

Spec(Ri). For each i, we let Ai ∶= X − Ui. The result in a) now holds for
each Ai and the result in b) holds for each Ui.

Let now s ∈ S(Fq) such that Xs is a variety. Then there is a Ui for which
(Ui)s is dense in Xs and which is therefore a variety of the same dimension.
Then (Ai)s is a proper subscheme of Xs and in particular of lower dimension.
By the results a) for Ui and b) for Ai, the statement follows.

This gives immediately the following corollary:

Corollary 6. Let X be a scheme of finite type over a noetherian scheme S
and let A be a constructible subset of X. Then there exists a constant C > 0
such that for any finite field Fq and any s ∈ S(Fq) for Xs is a variety and
As does not contain the generic point of Xs we have

#As(Fq)
#Xs(Fq)

≤ C
q
.

Indeed, a constructible subset is a finite union of locally closed subsets.
Each of these can be given a scheme structure; let us call the resulting
schemes Ai. The result then follows by applying the previous proposition to
X and the Ai.

2.2 Moduli of Curves

In this and the forthcoming article [DK] we want to apply the results of the
previous section to obtain probabilistic results on smooth curves of a fixed
genus and divisors on such curves. For this, we need a smooth relative curve
C/S, such that every curve over every finite field Fq is isomorphic to a fiber
Cs for some s ∈ Fq.

The usual moduli space Mg is not suitable for this, but the so-called
universal tri-canonically embedded curve used by Delingne & Mumford in
their work [DM69] on moduli spaces is. Let us recall this:

Let C/S be a smooth relative curve of genus g with structure morphism
p ∶ C → S. Recall that by [DM69, Section 1], the relative ν-canonical sheaf
Ω⊗ν
C/S

is relatively very ample if ν ≥ 3. By [Gro67, II,Proposition 4.4.4]
there is therefore a canonical immersion C ↪ P(p∗(ω⊗ν

C/S
)). As explained in

[ACG11, Section XXI, §3], the sheaf p∗(ω⊗ν
C/S

) is locally free. Its degree is

(2ν − 1)(g − 1), thus P(p∗(ω⊗ν
C/S

)) is a locally trivial P(2ν−1)(g−1)−1-bundle.
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It is then natural to consider what might be called coordinate systems

on P(p∗(ω⊗ν
C/S

)): isomorphisms P(p∗(ω⊗ν
C/S

))→̃P
(2ν−1)(g−1)−1
S . With these

one can then consider what is called ν-canonically embedded curves: tu-
ples (C/S,φ), where C/S is a smooth relative curve of genus g and φ is an

isomorphism P(p∗(ω⊗ν
C/S

))→̃P
(2ν−1)(g−1)−1
S .

A key result for the construction of moduli spaces of curves is that for
curves of a fixed genus g and for fixed ν the functor assigning to S the set of
isomorphism classes of ν-canonically embedded curves is representable by a
subscheme of a suitable Hilbert scheme. This was first stated in [DM69], a
corresponding statement with proof is [MFK94, 5, §2].

Just as in [DM69] we apply this for ν = 3. Let us fix this notation:

Notation 7. We denote the universal 3-canonically embedded curve of
genus g by Zg/Hg.

And furthermore:

Remark and Definition 8. Let C/S be any smooth relative curve. Then
there is a unique closed subscheme whose geometric points are exactly those
geometric points of S whose fibers are hyperelliptic. We denote this scheme
by Sh and the complement of Sh by Snh. The (geometric) points of Snh are
thus exactly those (geometric) points of S whose fibers are non-hyperelliptic.

In this work, we only need that every smooth curve of genus g over
every finite field, say Fq, can be obtained via an Fq-rational point of Hg. In
addition to this, we have the following nice statement of which we will make
use in our subsequent paper [DK].

Lemma 9. Let q be a prime power. Then a uniformly chosen point in
Hg(Fq) leads to a uniformly chosen isomorphism classes of smooth curves
over Fq. Similarly, a uniformly chosen point in Hhg (Fq) leads to a uniformly
chosen isomorphism classes of smooth hyperelliptic curves over Fq and a
uniformly chosen point in Hnhg (Fq) leads to a uniformly chosen isomorphism
classes of smooth, non-hyperelliptic curves over Fq.

Indeed, let C be a curve over Fq with structure morphism p ∶ C →
Spec(Fq). Then P(p∗(ω⊗3C )) = P(Γ(C, ω⊗3

C
)) is a (5g−6)-dimensional projec-

tive space. There are # PGL5g−6(Fq) coordinate systems on this projective
space, thus the isomorphism class of C is given by # PGL5g−6(Fq) Fq-valued
points of Hg, a number which only depends on q.

The latter two statements then follow immediately.

3 Ordinary Plane Models

In this section, we first give some definitions and preliminary results, par-
ticularly on what we call ordinary plane curves. Then we prove Theorems 1
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and 2. After this, we prove Theorem 4. In the last subsection, we give
an algorithm to compute ordinary plane models given by complete g2g+1’s,
starting from an arbitrary plane model, and to transfer divisors accordingly.
With this, we prove Theorem 3.

3.1 Motivation and definitions

Let us now fix some interrelated definitions. We start with the definition of a
tangent of a point on a smooth curve with respect to a birational morphism
to a plane model which was already used in [Die12a] (for more information
see [Die12a, Section 2]):

Remark and Definition 10. Let C be a nonsingular curve over an alge-
braically closed field k and let π ∶ C → Cpm be a birational morphism to a
plane model of C. Now for a point P ∈ C(k) there is exactly one line T ⊂ P2

k

such that the multiplicity of the divisor π−1(T ) at P is larger than the mul-
tiplicity of the divisor π−1(π(P )) at P . We call this line the plane tangent
at P (with respect to π).

A plane tangent T at P is called a plane bitangent at P if π−1(T ) =
2P + 2P1 +D for some P1 ∈ C(k) and some effective divisor D on C. It is
called a plane flex tangent at P if π−1(T ) = 3P +D for some effective divisor
D on C. A plane tangent T at P is called ordinary if it is neither a plane
bitangent nor a plane flex tangent.

We now introduce two new related notions:

Definition 11. A plane curve Cpm over a field F is called ordinary if
(Cpm)F ∶= Cpm × Spec(F) only has only finitely many non-ordinary tangents.
Likewise, if π ∶ C → Cpm be a birational morphism from a smooth curve to a
plane model of it, then π is called ordinary if Cpm is.

Definition 12. Let again C be a smooth curve over a field F and let
f ∶ C → P1

F be a non-constant function of degree n. Then f is called ordinary
if f has only finitely many branch points (equivalently: if the corresponding
extension of function fields F(C)∣F(P1) is separable) and if the preimage of
every branch point of f ∶ CF → P1

F is of the form 2P1 + P2 + ⋯ + Pn−1 for
distinct points Pi.

Let us make some remarks about these definitions:

Remarks.

a) In Definition 11 we used the “elementary” definition of tangent of a plane
curve. We could also first define that π ∶ C → Cpm as in the definition is
ordinary if C has only finitely many non-ordinary tangents with respect
to π and then define a plane curve Cpm to be ordinary if the canonical
morphism from the normalization of Cpm to Cpm is.
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b) If in the context of Definition 11 the characteristic is ≠ 2 then Cpm is
ordinary if and only if it is reflexive.

c) If in the context of Definition 12 the characteristic is ≠ 2 then the function
is ordinary if and only if it is simple as defined for example in [Ful69].

d) In the context of Definition 11, π ∶ C → Cpm is ordinary if and only if for
nearly all F-rational points of Cpm, the corresponding central projection
is ordinary.

The essential statement is now:

Proposition 13. Let us consider smooth curves of a fixed genus with or-
dinary non-constant functions C → P1

Fq
of a fixed degree n over finite fields

Fq. Then the number of completely and distinctly split divisors in the cor-
responding pencil is in

1

n!
⋅ q +O(q

1
2 ) .

A proof was essentially already given in the course of the proof of [Die12a,
Proposition 10]. Let us briefly recall the argument: Let M be a Galois clo-
sure of Fq(C)∣Fq(P1). A place of Fq(P1) is completely split in Fq(C) (which
includes by definition that it is unramified) if and only if it is completely split
in M ∣Fq(P1). By [Die12a, Proposition 6] the Galois group of MFq ∣Fq(P1)
is isomorphic to Sn, and then so is the Galois group of M ∣Fq(P1). In par-
ticular, Fq is the exact constant field of M . One can now apply the effective
Chebotaryov bound in [MS94] to obtain the result. There is also the fol-
lowing alternative: The Galois group Gal(M ∣P1

Fq
) operates transitively on

the places of M over a fixed place of Fq(P1). The number of completely
split places of Fq(P1) of degree 1 is therefore given by the number of places
of degree 1 of M which are unramified over Fq(P1) divided by n!. One
can then obtain the estimate (and one with an explicit error term) by the
bounds of Hasse & Weil.

An application of Proposition 13 is the following proposition.

Proposition 14. Let an integer d be fixed. We consider smooth curves C
over finite fields Fq together with a birational morphism to a plane model
π ∶ C → Cpm of degree d. Let P ∈ Cpm(Fq) such that only finitely many
plane tangents T ⊆ P2

Fq
pass through P and such that these plane tangents

are all ordinary. Then the number of divisors in the corresponding g2d(π)
that contain P and split completely and distinctly is in

1

(d − 1)! ⋅ q +O
(q

1
2 ).

As already said, if the characteristic is not 2, a plane curve is ordinary if
and only if it is reflexive. These curves were already considered in [Die12a].
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It was proven that the number of non-ordinary tangents to a reflexive plane
curve of a fixed degree is bounded. From this it then follows Theorem 3 of
[Die12a] which states:

Proposition 15. Let an integer d be fixed. We consider smooth curves C
over finite fields Fq together with a birational morphism to a reflexive plane
model π ∶ C → Cpm of degree d. Then the number of completely and distinctly
split divisors in g2d(π) is in

1

d!
⋅ q +O(q

1
2 ).

For curves with morphisms to ordinary plane models given by complete
base point free g2g+1’s, a corresponding proposition will be proven later; see
Proposition 25.

3.2 Proof of Theorems 1 and 2

We are now going to prove Theorems 1 and 2 at the same time. For the
latter theorem, we wish to apply the techniques of Section 2. For this reason,
we consider smooth relative curves. But we also give definitions and derive
results for just curves over fields or algebraically closed fields. For the proof
of Theorem 2 these statements are then applied to the fibers of relative
curves.

Let C be a smooth, non-hyperelliptic curve of genus g ≥ 4 over a field
F. For an effective divisor D of degree (g − 3) on C, the residual linear
system ∣K −D∣ has degree (g + 1) and dimension at least 2, moreover, every
complete linear system with these properties can be obtained in this way.
We recall here that K always denotes a canonical divisor on the curve under
consideration. A first – we known – result is that for every curve over an
algebraically closed field, for a general divisor D, ∣K−D∣ is base point free of
dimension 2. The following statement is a suitable variant of this for relative
curves.

Lemma 16. Let C/S be a smooth relative curve of genus g ≥ 4. Then there
is a unique open subscheme M of Cg−3 such that for every s ∈ S(F), where
F is any field, for a D ∈ (Cs)g−3(F), ∣K −D∣ is base point free of dimension
2 if and only if D ∈M(F). For this scheme M it holds that for s ∈ S, the
fiber Ms ⊆ (Cs)g−3 is non-empty.

Proof. Consider the diagram

Cg−3 × C π //

τ

��

Cg−2 ⊃ C1g−2 ,

Cg−3

12
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where the morphisms π and τ are given by summation and projection, re-
spectively. The morphism τ being proper, τ(π−1(C1g−2)) is a closed set. We
define

A ∶= τ(π−1(C1g−2)) .

Note that C1g−3 is contained in A. For s ∈ S(k) for an algebraically closed
field k and a divisor D ∈ (Cg−3)s(k), D being contained in As(k) means that

• either D ∈ (Cs)1g−3(k), so by Riemann-Roch ∣K −D∣ is of dimension ≥ 3

• or D ∈ As(k)− (C1s)g−3(k), so dim(∣K −D∣) = 2 but ∣K −D∣ is not base
point free.

With M ∶= Cg−3 −A the divisors in Ms(k) (for s ∈ S(k), k an algebraically
close field) are exactly the divisors D on Cs of degree (g−3) for which ∣K−D∣
is base point free and of dimension 2.

As the dimension of a linear system and being base point free are stable
under base change, this also holds for s ∈ S(F) for arbitrary fields F.

The scheme A is closed in Cg−3, and for each s ∈ S, the fiber Ms is
non-empty. For the latter we note that for k algebraically closed, there is an
effective divisor D of degree (g−3) on Cs for which ∣K −D∣ is base point free
of dimension 2: One chooses, starting with the canonical model, successively
non-singular points and considers the images under the central projections
through these points.

Consider now some nonsingular, non-hyperelliptic curve C of genus g ≥ 4
over an algebraically closed field k. We are interested in effective divisors
D of degree (g − 3) on C such that ∣K −D∣ is base point free of dimension
2 defining a birational morphism to an ordinary plane curve (which is then
a plane model of C of degree (g + 1)). Now, if any birational morphism
π ∶ C → Cpm ⊆ P2

k is given, corresponding to a base point free linear system
d, then the plane bitangents of Cpm correspond to the divisors of the form
2P + 2P ′ + D of d and the plane flex tangents of Cpm correspond to the
divisors of the form 3p+D of d. So, in particular we want ∣K −D∣ to contain
only finitely many such divisors. A first simplification of our task is now:

Lemma 17. Let d be a base point free linear system on C of dimension
2 such that there is a point P ∈ C(k) for which no divisor of the form
2P + 2P ′ +D with P ′ ∈ C(k) and D ≥ 0 is contained in d. Then d defines a
birational morphism to a plane model of C with only finitely many bitangents.
If furthermore there is no divisor of the form 3P +D with D ≥ 0 contained
in d, the plane model is ordinary.

Proof. Let π ∶ C ↠ D ⊂ P2
k be a morphism defined by d. We first show that

π is birational: Let D̃ be the normalization of D. The morphism π factors
over D̃; let π̃ ∶ C Ð→ D̃ be the induced morphism. Let the effective divisor
D on C be defined by π̃−1(π̃(P )) = P +D. For the tangent T at π̃(p) (with

13
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respect to D̃ → D) we have 2P +2D ≤ π−1(T ) ∈ d. The premise in the lemma
now implies that D = 0, and this in turn means that π̃ and π are birational.

The further statements follow from the fact that the set of points P ∈
C(k) for which there is a point P ′ ∈ C(k) and an effective divisor D with
2P + 2P ′ +D ∈ d is closed and the set of points p ∈ C for which there is an
effective divisor D with 3P +D ∈ d is closed. This can be seen as follows for
any linear system d:

Let the degree of d be d. Let ∆ ⊂ C2 and ∆3 ⊂ C3 be the diagonals, which
are closed as C is proper.

Let P be the projective subspace of Cd with P(k) = d ⊆ Cd(k). Consider
the commutative diagrams

C × C × Cd−2
π1
��

τ1 //

τ

44Cd−2 ×∆ ×∆ × Cd−2
τ2 // Cd ⊃ P

C

and
C × Cd−2
π2
��

τ3 //

τ̂

55∆3 × Cd−2
τ4 // Cd ⊃ P ,

C
where τ1 and τ3 come from the diagonal morphisms, τ2, τ4 refer to the sum
of divisors and π1, π2 are the projections. Here π1, π2 are proper morphisms
and P is a closed in Cd. The sets of points of C under consideration are
π1(τ−1(d)) and π2(τ̂−1(d)), and these sets are closed in C.

We now want to show: There is a point P ∈ C(k) such that there is a
non-empty open subscheme of Cg−3 whose k-rational points correspond to
divisors D which define systems ∣K −D∣ containing no divisor of the form
2P+2P ′+D′ or 3P+D′′ with P,P ′ ∈ C(k) and D′,D′′ ≥ 0. In the next lemma,
we introduce two open subschemes for each of the conditions separately.
Here, first we do so with variable P in order to find an appropriate P later.
Second, in order to apply the techniques of Section 2, we do so for relative
curves.

Lemma 18. Let C/S be a smooth relative curve of genus g ≥ 4. Then there
are open subschemes M1,M2 ⊆ Cg−3 × C such that

a) for s ∈ S(k) for an algebraically closed field k, a tuple (D,P ) ∈ (Cg−3)s(k)×
Cs(k) lies in (M1)s(k) if and only if ∣K −D − 2P ∣ contains no divisor
of the form 2P ′ + D for P ′ ∈ Cs(k) and D ∈ (Cg−3)s(k), where K is a
canonical divisor on Cs,

b) for s ∈ S(k) for an algebraically closed field k, a tuple (D,P ) ∈ (Cg−3)s(k)×
Cs(k) lies in (M2)s(k) if and only if ∣K −D − 3P ∣ is empty.

14
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Proof. The proof technique is the same as the one for Lemma 17. We now
consider the commutative diagrams

Cg−3 × C × C × Cg−3
π1

��

τ1 //

τ

33
Cg−3 ×∆ ×∆ × Cg−3

τ2 // C2g−2 ⊃ Cg−12g−2

Cg−3 × C

(1)

and
Cg−3 × C × Cg−2

π2

��

τ3 //

τ̂

33
Cg−3 ×∆3 × Cg−2

τ4 // C2g−2 ⊃ Cg−12g−2 ,

Cg−3 × C

(2)

where the notations are as in Lemma 17. Again π1, π2 are proper morphisms,
and similarly to Lemma 17 Cg−12g−2 is a closed subscheme of C2g−2 since it
is given by the corresponding Fitting ideal (see [ACG11, XXI, §3]). In
conclusion, the sets

A1 ∶= π1(τ−1 (Cg−12g−2) )

and
A2 ∶= π2(τ̂−1 (Cg−12g−2) )

are closed in Cg−3 × C.
We set M1 ∶= (Cg−3 × C) −A1 and M2 ∶= (Cg−3 × C) −A2. These spaces

clearly have the desired properties.

So far, we have not shown that any of the spaces considered in Lemma 18
is nonempty. This is what we want to address now. More precisely, we want
to show that for any smooth, non-hyperelliptic curve C over an algebraically
closed field k these spaces are non-empty.

The divisors of the form 2P + 2P ′ + D′ in ∣K − D∣ correspond to the
divisors of the form 2P + 2P ′ +D +D′ of the canonical system ∣K ∣ and that
the divisors of the form 3P +D+D′′ in ∣K −D∣ correspond to the divisors of
the form 3P +D′′ of ∣K ∣. (Here again P and P ′ are points of C and D,D′,D′′

are effective divisors on C.)
This indicates that we should study tangent conditions of divisors on the

canonical model of C. For this we fix the following definitions.

Definition 19. Let C ⊂ Pn
k be a curve of degree d ≥ 4 over some algebraically

closed field k and let H ⊂ Pn
k be a hyperplane. If the hyperplane divisor

corresponding to H is given as

2P1 + 2P2 + P3 + . . . + Pd−2

15
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for not necessarily distinct nonsingular points P1, . . . , Pd−2 ∈ C(k) then H
is called a bitangent hyperplane at P1 (and P2). If the hyperplane divisor
corresponding to H is given as

3P1 + P2 + P3 + . . . + Pd−2

for not necessarily distinct nonsingular points P1, . . . , Pd−2 ∈ C(k) then H is
called a flex tangent hyperplane at P1. If H is neither a bitangent nor a flex
tangent hyperplane but still contains the tangent at a point P1 ∈ C(k) then
we call H an ordinary tangent hyperplane at P1.

Let again a nonsingular non-hyperelliptic curve C over an algebraically
closed field k be fixed. Let M1,M2 be as in Lemma 18. We want to show
that there is a P ∈ C(k) such that the fibers (M1)P , (M2)P ⊆ Cg−3 over
some p ∈ C(k) are nonempty.

More generally, let C ⊂ Pn
k , n ≥ 3, be a nonsingular curve over an alge-

braically closed field k embedded into Pn
k by some linear system gnd . For any

P ∈ C(k) we define

A2P = {D ∈ Cn−2(k) ∣ D+2P +2P ′+D′ ∈ gnd for some P ′ ∈ C,D′ ∈ Cd−n−2(k)},

A3p = {D ∈ Cn−2(k) ∣ D + 3P +D′ ∈ gnd for some D′ ∈ Cd−n−1(k)}.
In the context of Lemma 18, we then apply these definitions for the

canonical system. We then have for p ∈ C(k) the decompositions

Cg−3(k) = (M1)P (k) ∪̇ A2P , Cg−3(k) = (M2)P (k) ∪̇ A3P .

Lemma 20.

a) A2P = Cn−2(k) if and only if each divisor in gnd containing 2P is of the
form D̃ + 2P + 2P ′ with D̃ ∈ Cn−4(k).

b) A3P = Cn−2(k) if and only if each divisor in gnd containing 3P is of the
form D̃ + 3P with D̃ ∈ Cn−3(k).

Proof. The statements “from right to left” is quite easy: They follow from
the general fact that any divisor of degree n is a subdivisor of a divisor of
gnd .

Let now A2P = Cn−2. Let E be any divisor in gnd containing 2P , say
E = E′+2P . Furthermore, let Tp be the tangent through P . Then the divisor
E is given by a hyperplane H, and the hyperplane is uniquely determined by
E. This means that E generates H. Note that this means by definition that
TP and the points in E′ with the appropriate tangent conditions generate
the hyperplane. We therefore have a divisor D of degree n − 2 such that
2P +D generates H. The divisor E is then uniquely determined by 2P +D.
Now D is contained in A2P , and thus E is of the desired form.

Analogously one can prove the statement in b).

16
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We now come to A2P :

Lemma 21. Let C ⊂ Pn
k , n ≥ 3, be a non-degenerate, non-singular curve

over an algebraically closed field k. Then there are at most (n− 2) points P
such that A2P = Cn−2(k) and the tangent at P is not a bitangent.

Proof. We prove the statement by induction on n.
For the induction base, let n = 3.
Let first P be a point with A2P = Cn−2(k). Then by assumption any plane

H ⊆ P3
k containing the tangent TP to C ⊂ P3

k at P contains the tangent TQ
at an additional point Q or meets C at P with at least order 4.

Now, if the second statement is satisfied for two planes containing TP ,
TP meets C with order 4 and thus is a bitangent. (For two planes H1,H2

with intersection TP , we have TP ∩ C = (H1 ∩H2)∩ C = (H1 ∩ C)∩ (H2 ∩ C).)
This leads to two cases: TP is a bitangent or there are infinitely many

tangents to C that meet TP . Now, for points q on the curve, the condi-
tion that Tq passes through TP is a closed condition. Thus if TP is not a
bitangent, the tangents of all points of C pass through P .

We argue now by contradiction: Assume that there are two points P1, P2

with A2P = Cn−2(k) such that the tangents TPi are not bitangents. Now the
tangents of all points pass through both tangents Tpi . In particular TP1

and TP2 intersect; let A be the intersection point. Now all tangents pass
through A as otherwise C would be degenerate (which would contradict
the assumption). This means that C is a strange curve in Pn

k . But by
[Hartshorne, IV, Theorem 3.9] there are no non-singular, non-degenerate,
strange curves in Pn

k for n ≥ 3. We thus have the desired contradiction.
Suppose now that the statement has been proven for some n. We want

to prove it now for n + 1.
We again argue by contradiction. So assume that there (n+1)−2+1 = n

points P1, . . . , Pn with A2Pi = C(n+1)−3(k) such that the tangent Tpi is not a
bitangent.

Let U be the union of the tangent and secant variety of C in Pn+1
k ; by

[Hartshorne, IV, Proposition 3.5 and Corollary 3.6] U is 3-dimensional.
Let Q be any point in Pn+1

k − U and consider the central projection φQ
through Q. Note that the image φQ(C) in Pn+1

k is now again non-singular.
We have A2φQ(Pi)

= φQ(Cn−2)(k). By the induction hypothesis, the
tangents to two of the points φQ(Pi) are bitangents. These bitangents,
lines in Pn

k , correspond to hyperplanes HQ,i in Pn+1
k containing Q and TPi .

Now Hq,i contains the tangent of another point or meets C at Pi with least
order 4.

We now vary Q. For each Q we have two i (a priori depending on q)
such that the stated condition holds. But then there is also a dense subset
such that it holds for two single i, say i = 1,2. As the condition is closed,
we conclude: For i = 1,2 every plane containing TPi contains the tangent of
another point or meets C at Pi with least order 4.

17



Ordinary Plane Models Claus Diem and Sebastian Kochinke

With the same arguments as for n = 3 we arrive at a contradiction.
Indeed, revisiting this case, we see that all that is needed are two points
with the stated property. In particular, the dimension of the projective
space is irrelevant.

We study the spaces A3P only for the canonical system. For this we
use tangents to the canonical model. This relies on yet another notion of
tangency, namely that of the (usual) tangent of a curve C in some projective
space Pn

k :

Definition 22. Let C ⊂ Pn
k , n ≥ 2, be a non-degenerate curve over some

algebraically closed field k. Consider a tangent line T ⊂ Pn
k at some nonsin-

gular P ∈ C(k). We call T a bitangent (at P ) if it either is the tangent at
two distinct nonsingular points on C or if it is a tangent of at least order 4
at P . We call T a flex tangent (at P ) if it is a tangent of at least order 3 at
P . Otherwise we call T an ordinary tangent.

Proposition 23. Let C be a non-hyperelliptic, nonsingular curve of genus
g ≥ 4 over some algebraically closed field k.

a) There are no bitangents of the canonical model of C.

b) The number of flex tangents of the canonical model of C is bounded by 12
if g = 4 and by (g + 2) otherwise.

Proof. We identify C with its canonical model in Pg−1
k .

On a) Assume there is a bitangent at P ∈ C(k). Then by definition there
is a point P ′ ∈ C(k) on this tangent such that

g − 3 = dim(∣K − 2P ∣) = dim(∣K − 2P − 2P ′∣).

So by Riemann-Roch we have

dim(∣2P + 2P ′∣) = deg(2P + 2P ′) − g + 1 + dim(∣K − (2P + 2P ′)∣)
= 4 − g + 1 + g − 3

= 2.

Thus ∣2P +2P ′∣ defines a complete g24 on C. Since C is not hyperelliptic, this
contradicts Clifford’s Theorem (see for instance [Har77, IV], Theorem 5.4).

On b) Consider some P ∈ C(k) such that the tangent to C at P is a flex
tangent. So we get

dim(∣K − 2P ∣) = dim(∣K − 3P ∣).

By a similar calculation to the one above this implies that dim(∣3P ∣) = 1
hence any flex tangent defines a g13 on C.

18
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Since C is not hyperelliptic, any of its g13’s is complete and base point
free. Hence it defines a morphism Φ ∶ C → P1

k of degree 3. The corresponding
extension of function fields k(C)∣k(P1

k) is separable as otherwise it was purely
inseparable and then the genus of C would be 0.

Any divisor 3P as above corresponds to a ramification point of Φ. By
Hurwitz’s Theorem we have

2g − 2 = 3 ⋅ (−2) + deg(R)
where R denotes the ramification divisor of Φ. So deg(R) = 2g + 4; the
number of ramification points of Φ of order 3 is then bounded by (g + 2).

Hence any g13 on C contains at most (g + 2) divisors of the form 3p. By
the analysis following [ACGH85, V, Theorem 1.1] we distinguish two cases:
Either g = 4 and there are at most two g13’s on C or g ≥ 5 and there is at
most one such linear system. By the bound on the ramification points the
result follows.

Remark. We see from the proof that all tangents of the canonical model of
a non-singular, non-hyperelliptic and non-trigonal curve are ordinary.

Now Proposition 23 and Lemma 21 yield a nice result about the number
of those points p ∈ C(k) at which each effective divisor of degree (g−3) leads
to a non-ordinary tangent hyperplane on the canonical model of C:
Proposition 24. Let C be a non-hyperelliptic, nonsingular curve of genus
g ≥ 4 over some algebraically closed field k. Then there are at most

n ∶=
⎧⎪⎪⎨⎪⎪⎩

13 if g = 4

2g − 1 if g ≥ 5

points P ∈ C(k) such that A2P or A3P are all of Cg−3(k).

Proof. Identify C with its canonical model.
Consider some p ∈ C(k) such that A3p = Cg−3(k). Then each tangent

hyperplane at p meets C with order at least 3 at P . We conclude that the
tangent to C at P is a tangent of at least order 3. In particular, this tangent
is a flex tangent. By Proposition 23 there are at most

12 if g = 4 or

g + 2 if g ≥ 5

such points P .
Moreover, as by Proposition 23 there are no bitangents of C, by Lemma 21

there are at most (g−1)−2 = (g−3) points P ∈ C(k) such that A2P = Cn−2(k).
So overall there are at most

n ∶=
⎧⎪⎪⎨⎪⎪⎩

12 + 1 = 13 if g = 4

(g + 2) + (g − 3) = 2g − 1 if g ≥ 5

points P ∈ C(k) such that A2P or A3P are all of Cg−3(k).
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Combining Lemma 16 and Lemma 18 with Lemma 17 and Proposi-
tion 24, we are now able to show that “many” divisors in Cg−3 lead to
an ordinary plane model of degree (g + 1) via their residual, as claimed in
Theorem 1 and Theorem 2:

Proof of Theorem 1 and Theorem 2. Let C/S be a smooth relative curve of
genus g ≥ 4 whose (geometric) fibers are non-hyperelliptic.

We define open subschemes M1,M2 ⊆ Cg−3 × C as in Lemma 18, denote
the complement of A ⊆ Cg−3 by M3 and set

N ∶=M1 ∩M2 ∩ (M × C) .

For s ∈ S(F) and P ∈ Cs(F), by Lemma 17 any divisor D in (Ns)P (F)
leads to an ordinary plane model of degree (g + 1) via ∣K −D∣.

If we apply this to S the spectrum of an algebraically closed field k and
F = k, with Lemma 16, Lemma 17 and Proposition 24 we obtain Theorem 1.

To obtain Theorem 2, we now consider Cg−3 −N as a scheme over C and
apply Proposition 5 a). We conclude: There exists a constant C0 > 0 such
that for any s ∈ S(Fq) and any P ∈ Cs(Fq) for which the fiber (Ns)P is
nonempty (and therefore dense in (Cs)g−3) we have

#(Cg−3 − (Ns)P )(Fq) ≤ C0 ⋅ qg−4 .

This implies that there is a C > 0 such that

#(Cs)g−3(Fq) −#(Ns)p(Fq)
#(Cs)g−3(Fq)

≤ C
q

for any s and p as previously stated.
We know that for any s ∈ S(F) there is a P ∈ Cs(F) such that (Ns)P is

non-empty. We can therefore conclude:
For every s ∈ S(Fq), the probability that a uniformly randomly chosen

effective divisor D of degree (g − 3) on Cs leads to a linear system ∣K −D∣
which does not define an ordinary plane model of degree (g + 1) is ≤ C

q .

If we apply this now to the smooth relative curve Znhg /Hg introduced in
2.2, the result follows.

3.3 Proof of Theorem 4

The following result was already announced after Proposition 15.

Proposition 25. Let some natural number g ≥ 4 be fixed. We consider
smooth, non-hyperelliptic curves C/Fq together with complete base point free
g2g+1’s defining ordinary plane models. Then there are

1

(g + 1)! ⋅ q
2 +O(q

3
2 )

divisors in the g2g+1 that split completely and distinctly.
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As already stated in and above Proposition 15, this statement has al-
ready been proven in [Die12a] provided that the characteristic is not 2, so
we only have to prove it in characteristic 2. The following proof holds in
any characteristic.

Proof. Pick a smooth, non-hyperelliptic curve C/Fq and let π ∶ C → Cpm be
a birational morphism to an ordinary plane model of degree (g + 1). The
number of non-ordinary tangents of C with respect to π is finite. Let us
assume for the moment that it is in O(1), that is, bounded. The number of
singular points of Cpm is also bounded, namely by

g(g−1)
2 − g. By Hasse-Weil

the number of points in C(Fq) is in q +O(q 1
2 ).

If for a point P ∈ Cpm(Fq) only ordinary tangents (of whatever points)
run through p, by Proposition 14 the number of completely and distinctly
split divisors in g2d(π) containing P is in

1

g!
⋅ q +O(q

1
2 ) ,

and so is the number of such divisors containing only non-singular points of
Cpm.

If we vary P , each such divisor is selected exactly g times, thus the
number of divisors which split completely and distinctly into non-singular
points of Cpm is in

1

(g + 1)! ⋅ q
2 +O(q

1
2 ).

By the first considerations, the number of completely and distinctly split
divisors containing a non-singular point or a point which lies on a non-
ordinary tangent is in O(q). This gives the claim.

We still have to show that the number of non-ordinary tangents is
bounded. For this we first consider a smooth relative curve C of genus g
over a noetherian base S. Let M1,M2,M3 and M be as in the proof
of Theorem 2. We consider M as a scheme over Cg−3. For s ∈ S(F) and
D ∈ (M3)s(F) ⊆ (Cg−3)s(F) the F-rational points of the fiber of M over D
correspond to the non-ordinary tangents with respect to the morphism to
the plane model defined by ∣K −D∣. The same holds for extensions of F. In
particular, such a fiber is finite if and only if the plane model is ordinary.

By Proposition 5 a) there is a constant C > 0 such that the number
of F-rational points in the zero-dimensional fibers is bounded by C. Thus
whenever an ordinary curve is defined by a divisor as considered, the number
of non-ordinary tangents is bounded by C.

As in the proof of Theorem 2 we apply this now to Znhg /Hg. This gives
the result.

We can derive Theorem 4:
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Proof of Theorem 4. The case g = 3 has already been treated in [Die12a] as
a special case of Theorem 3, where it is labeled as “d = 4”.

So we may assume that g ≥ 4.
Let C/Fq be as above. By Hasse-Weil, the number of points in C(Fq) is

in q +O(q 1
2 ). So the number of completely and distinctly split divisors in

Cg−3(Fq) is in

(q +O(q 1
2 )

g − 3
) = 1

(g − 3)! ⋅ q
g−3 +O(qg−

7
2 ).

By Theorem 2 the number of effective divisors D of degree (g − 3) on C
for which ∣K −D∣ does not define an ordinary plane model of degree (g + 1)
is in O(qg−4).

Combining this we obtain that the number of completely and distinctly
split divisors D ∈ Cg−3(Fq) that lead, via ∣K − D∣, to a morphism to an
ordinary plane model of degree (g + 1) is in

1

(g − 3)! ⋅ q
g−3 +O(qg−

7
2 ) .

By Proposition 25 for each morphism π to an ordinary plane model the
number of completely and distinctly split divisors in the corresponding linear
system g2g+1(π) is in

1

(g + 1)! ⋅ q
2 +O(q

3
2 ).

In conclusion, the number of pairs (D1,D2) where the completely and
distinctly split divisor D1 ∈ Cg−3(Fq) defines an ordinary plane model of
degree (g+1) (and a morphism to it), say π ∶ C → Cpm, and D2 is a completely
and distinctly split divisor in the corresponding g2g+1(π) is in

( 1

(g − 3)! ⋅ q
g−3 +O(qg−

7
2 )) ( 1

(g + 1)! ⋅ q
2 +O(q

3
2 ))

= 1

(g − 3)! (g + 1)! ⋅ q
g−1 +O(qg−

3
2 ).

So is also the number of pairs (D1,D2) with the given properties and the
additional property that D1 and D2 have disjoint support, that is, define a
completely and distinctly split divisor D1 +D2, which is then a completely
and distinctly split divisor in K.

Now, as there are at most O(qg−4) effective divisors of degree (g − 3)
which do not lead to a morphism to an ordinary plane model, there are at
most O(qg−2) divisors in ∣K ∣ which have a subdivisor of degree (g−3) which
does not lead to a morphism to an ordinary plane model.

So there are 1
(g−3)! (g+1)! ⋅ q

g−1 + O(qg− 3
2 ) pairs (D1,D2) as above such

that with D = D1 +D2 every subdivisor of degree (g − 3) of D leads to a
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morphism to an ordinary plane model. The number of pairs leading to the
same element in ∣K ∣ is

(2g − 2

g − 3
) = (2g − 2)!

(g + 1)! (g − 3)! .

We thus have: There are

1

(2g + 2)! ⋅ q
g−1 +O(qg−

3
2 )

completely and distinctly split divisors D in ∣K ∣ such that every subdivisor
of degree (g − 3) of D leads to a morphism to an ordinary plane model.

Moreover, as already explained the number of completely and distinctly
split divisors in ∣K ∣ which have a subdivisor of degree (g − 3) not leading to
a morphism to an ordinary plane model (which then has degree (g + 1)) is
in O(qg−2).

So overall there are

1

(2g − 2)! ⋅ q
g−1 +O(qg−

3
2 )

completely and distinctly split divisors in ∣K ∣, as claimed.

3.4 Algorithms and proof of Theorem 3

We now give an efficient algorithm to compute ordinary plane models given
by a complete g2g+1 and morphisms to them. After this, we discuss how one
can transfer divisors and how Theorem 3 can be obtained.

3.4.1 Computing an ordinary plane model

Recall that for a non-singular point P of a plane curve, the tangents of
arbitrary points on the curve running through P are given by the intersection
of the curve with the polar curve. This is used in the algorithm.

In the algorithm and afterwards we use the following notation: The input
curve C is represented by a plane model Cpm. The new plane model to be
computed is denoted C′pm and the morphism to the plane model by ϕ. As
always, g is the genus of C. Differently from the above and because of later
considerations, we denote the effective divisor of degree (g − 3) considered
in the construction by D0.

Algorithm

Input. A smooth, non-hyperelliptic curve C of genus g ≥ 4 over Fq, represented
by a plane model Cpm.

Output. An ordinary plane model of C given by a complete base point free g2g+1
and a morphism to it.
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1. Compute a canonical divisor K on C.

2. Compute an effective completely and distinctly split divisor D0 of degree
(g − 3) uniformly at random.

3. Compute a basis f0, f2, f3 of the space L(K −D0). If the dimension is
not 3, go back to Step 2.

(For notation, let ϕ ∶ C → Proj(Fq[X ′, Y ′, Z ′]) be the morphism given
by the basis.)

4. Compute the image C′pm of ϕ (via a homogeneous equation in Fq[X ′, Y ′, Z ′]).

5. If deg(C′pm) < (g + 1), go back to Step 2.

6. Compute a non-singular point P in Cpm(Fq) uniformly at random.

7. Compute the polar curve for the point P .

8. Compute the Fq-rational intersection points Q of the polar curve with
C′pm and then the lines through P and the points Q.

9. If these lines are non-ordinary tangents, go back to Step 2.

10. Output C′pm and ϕ.

It is clear that if the algorithm terminates then the desired plane model
and morphism to it have been computed.

A curve of genus g over a finite field can always be given by a plane model
of degree O(g), so we assume that this is the case. For computation with
divisors and for the computation of the space L(K −D0), one can use ideal
arithmetic for divisors and Heß’ algorithm for the computation of Riemann-
Roch spaces ([Heß01]). With this, these computations can be carried out
in polynomial time. For more information on this, we refer also to [Die11,
Section 2] and also to the considerations in subsection 3.4.3 below.

The computation of the intersection points of the curve with the polar
curve can be performed in expected polynomial time with resultants.

In total, all the individual steps (without repetitions) can be performed
in polynomial time (for curves of varying genus). Finally, for curves of a fixed
genus, by Theorem 2 the number of repetitions converges to 0. Therefore
for curves of a fixed genus the algorithm runs in polynomial time.

We note that in Step 1 we say that the divisor should be chosen uni-
formly among effective completely and distinctly split divisors of degree
(g − 3) rather than that it should be chosen uniformly at random among
all effective divisors of degree (g − 3). For the latter, by our knowledge it
would be necessary to first compute the L-polynomial. This can be done in
polynomial time for curves of a fixed genus but – by current knowledge –
not in polynomial time uniformly for all curves. Moreover, the computation
is in practice very difficult. By using completely and distinctly split divisors
we have an algorithm which is theoretically more pleasing and more relevant
in practice.
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Let us state the theoretical algorithmic result in a brief way:

Proposition 26. For curves of a fixed genus ≥ 4 over finite fields, an or-
dinary plane model of degree (g + 1) and a morphism to it, both given by a
complete linear system, can be computed in polynomial time.

3.4.2 Proof of Theorem 3

If ϕ ∶ C → C′pm is a birational morphism to an ordinary plane model of C as

computed in the algorithm, by Proposition 25 there are ∼ 1
(g+1)! q

2 completely

and distinctly split divisors in the linear system g2g+1(π). This means in
particular that by [Die12a, Theorem 2] the discrete logarithm problem for
the curve in the representation by C′pm can be solved in an expected time of

Õ(q2−
2

g−1 ).
The evident way to prove Theorem 3 is now to show that one can transfer

an instance of the discrete logarithm problem sufficiently efficiently. Actu-
ally, this is not necessary: The algorithm for Theorem 3 in [Die12a] relies
on the consideration of divisors in the linear system given by a plane model,
and for this, one can also consider the system ∣K −D0∣ with respect to the
original representation. We note here the following aspect of the algorithm
in [Die12a], which is the one which requires the most thought with this
approach: The factor base is a subset of the Fq-rational points of the non-
singular part of Cpm. Now, an Fq-rational point P of C is a non-singular
point of Cpm if and only if ∣K −D0 − P ∣ is base point free, and this can be
easily checked.

3.4.3 Transferring divisors

For completeness we now also discuss how one can efficiently map points and
divisors of C with respect to the original plane model Cpm to the normaliza-
tion of C′pm via ϕ. These considerations will also be of relevance in [DK].

We consider first a smooth, non-hyperelliptic curve C of an arbitrary
genus g given by a plane model Cpm ⊆ Proj(Fq[X,Y,Z]) of degree O(g). Let
us denote the pull-back of a linear form W to C by W∣C and of a function f
on P2

Fq
(whose pole divisor does not contain Cpm) to C by f∣C .

Let us first briefly recall ways to represent divisors on C: First, there
is the representation via two ideals already mentioned: Fq(C)∣Fq(x∣C) or
Fq(C)∣Fq(y∣C) is separable; let us assume that Fq(C)∣Fq(x∣C) is. Then a divi-
sor is represented by tuples of two ideals, where one ideal is a Fq[x∣C]-module

and one is a Fq[ 1
x∣C

]-module. We call this ideal theoretic representation.

A divisor D defining a base point free complete linear system ∣D∣ can
be represented by a system of generating global sections of the sheaf O(D),
in particular by a basis of the space L(D) = Γ(C,O(D)). Note that any
divisor of degree at least 2g is base point free. A arbitrary divisor D of
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positive degree can be represented as follows: One chooses any divisor D1 of
degree at least 2g+deg(D) and represents D by systems of generating global
sections of the two spaces L(D1) and L(D1 −D). Let us call this the global
section representation. We assume in the following that D1 is effective with
a degree of O(g + deg(D)) and the systems of global sections are linearly
independent. If one is interested in representing effective divisors of bounded
degree c, one can once and for all choose a divisor D1 of degree at least 2g+a
and a basis of L(D1) and then represent any divisor D in question by the
coordinate matrix of an Fq-basis of L(D1 −D) with respect to the chosen
basis of L(D1). This might be called subspace representation.

In addition, rational points over non-singular points of Cpm can be rep-
resented by their coordinates, and this can be extended to all closed points
over non-singular points of Cpm via a base extension; we speak here of repre-
sentation via coordinates. Note that the representation of rational points via
coordinates can be seen as an incomplete variant of the subspace representa-
tion. Here the fixed divisor D1 is (Z∣C)0 and the fixed system of generating
global sections is 1, x, y. The problem is that for a singular rational point p
of C, ∣(Z∣C)0 − P ∣ is not base point free.

Besides representing divisors as described (with the ideal, the global
section or the subspace representation), they can be represented in free
representation, that is, in factored form, where the individual prime divisors
can be represented in any of the described ways and also in coordinate
representation if possible.

One can change between all the given representations (with the obvious
restrictions for the coordinate representation) in an expected time of g ⋅
log(q) ⋅ ht(D), where ht(D) is the height of D; cf. [Die12a, Definition 2.3].
Here randomization is only required to factor divisors when computing a
free representation.

Let us now suppose we are given a birational morphism ϕ from C to a
(new) plane model C′pm ⊂ Proj(Fq[X ′, Y ′, Z ′]) of C, where C′pm has a degree
of O(g). Concretely, ϕ shall be given by three functions f0, f1, f2. These
functions might be a basis of L(K −D0) for an effective divisor D0 of degree
(g − 3), but need not be. For the following complexity theoretic statements,
we suppose that the system f0, f1, f2 is given via the following unique repre-

sentation: fi is given as
gi(x∣C ,y∣C)

h(x∣C)
, where gi(x, y) and h(x) are polynomials,

the degree of gi(x, y) in y is minimal (that is, smaller than deg(x∣C)) and
with respect to this condition the degree of h(x) is also minimal.

Let x′ ∶= X′

Z′ , y
′ ∶= Y ′

Z′ . We denote the normalization of C′pm by (C′, π′). We
thus have an isomorphism ϕ ∶ C→̃C′, or with other words, (C, π′ ○ ϕ) is also
a normalization of C′pm. Nonetheless, we keep the curves C and C′ separate
because we want to emphasize that a computation has to be performed
via ϕ.
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A first, one might say naive, approach is based on the coordinate rep-
resentation. We can express ϕ also via (g1(x∣C , y∣C), g2(x∣C , y∣C), g3(x∣C , y∣C)),
and we wish to apply these functions to a point to obtain a point in C′. This
computation can fail for three reasons: The point “lies over infinity”, the
result is (0,0,0) or the result is a singular point of C′pm. In the first two
cases one might modify the computation, but in any case one sees that the
number of “failures” is polynomially bounded in the genus.

Now, for arbitrary rational points, given in ideal representation, an ap-
proach to compute images under functions has been described in [Die12b,
Section 5]. Briefly, if ϕ(P ) is not ∞, it is the unique scalar a such that f −a
lies in L((f)∞ − a). With this approach and the consideration of appropri-
ate quotients of the fi, one can also evaluate ϕ(P ) ∈ P2(Fq) at any point
of C. However, also this approach does not give the desired point in C′ if
the image in C′pm is a singular point. Just as the previous computation, this
computation can also be performed in polynomial time in g ⋅ log(q).

A very different approach which works on divisors in non-factored form is
to consider a “transport of functions”. This approach first goes in the oppo-
site direction: We have (x′)∣C ○ϕ = f0

f3
and (y′)∣C ○ϕ = f1

f3
. With this, one can

easily and efficiently transfer, via ϕ−1, a function on C′ (given with respect
to C′pm) to the corresponding function on C (given with respect to Cpm).
One can then also transfer Riemann-Roch spaces and thus also divisors in
global section representation and thus in particular in subspace represen-
tation. The latter two computations can be performed in a time which is
polynomial in g ⋅ log(q) ⋅ht(D). With the obvious limitations concerning sin-
gular points, this can also be applied to points in coordinate representation,
where from the result one can compute for example an ideal representation.

We would like to apply this to ϕ instead of ϕ−1. For this, we desire to
compute ϕ−1, which is given by the triple (x∣C ○ ϕ−1, y∣C ○ ϕ−1,1).

Now, the functions x∣C , y∣C are given by their divisors and the value at
one rational point. So, we want to transfer these divisors and a point to
C′. To transfer a point we can apply the naive approach (possibly over an
extension field). The idea to transfer the divisors of the functions is to factor
the divisors div(x∣C),div(y∣C) and to apply the naive approach to the points
involved (possibly over an extension field). This approach can of course fail.
If this is the case, we apply a coordinate transformation to X∣C , Y∣C , Z∣C (if
the field is too small over an extension field) and try again. Then in the
image we revert the coordinate transformation. If the base field has been
extended, this can then be reverted as well. This computation can then be
performed in polynomial time in g ⋅ log(q).

All in all, the desired computations related to transfer of points and
divisors can be performed as efficiently as one can realistically expect from
a theoretical point of view (up to exponents at least) and can be performed
efficiently in practice as well.
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