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Abstract

We study the elliptic curve discrete logarithm problem over finite
extension fields. We show in particular that there exists a sequence
of (non-prime) finite fields such that the elliptic curve discrete loga-
rithm problem restricted to curves over these fields can be solved in
subexponential expected time in the group size.
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1 Introduction

The classical discrete logarithm problem in finite prime fields can be solved

in an expected time which is subexponential in the group size via the so-

called index calculus method. In contrast, it is not known if the discrete

logarithm problem in the groups of rational points of elliptic curves over

finite fields (the elliptic curve discrete logarithm problem for short) can be

solved in subexponential expected time in the group size. While some infinite

classes of elliptic curves are known for which the problem can be solved in

subexponential expected time (for example supersingular elliptic curves),

it was up to now not known if there exists a sequence of finite fields of

increasing size such that the problem restricted to curves over these fields

can be solved in subexponential expected time.

We prove that such a sequence of finite fields exists. Indeed, we establish

that there exists such a sequence such that the problem restricted to curves

over these fields can be solved in an expected time of

eO(log(q)2/3) ,

where Fq is the ground field.

In the following, q is always a prime power and n a natural number. Our

main result is the following theorem.

Theorem Let c > 0 be fixed. Then the discrete logarithm problem in

the groups of rational points of elliptic curves over finite fields Fqn with

n ≤ c ·
√

log(q) can be solved in an expected time which is polynomially

bounded in q.

The theorem has the following corollary, and the corollary shows that a

sequence of finite fields as claimed above exists.

Corollary Let now positive real numbers a < b be fixed. Then the discrete

logarithm problem in the groups of rational points of elliptic curves over

finite fields Fqn with a ·
√

log(q) ≤ n ≤ b ·
√

log(q) can be solved in an

expected time of

eO(log(qn)2/3) .

Indeed, the theorem implies that restricted to instances as in the corol-

lary, the elliptic curve discrete logarithm problem can be solved in an ex-

pected time which is polynomially bounded in

q = elog(q) = e(log(q))(1+1/2)·2/3
≤ e( 1

a
·n log2(q))

2/3
.
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The underlying model of computation for these results can be chosen to

be a randomized Turing machine or a randomized Random Access Machine.

We note that all results in this work hold for all specified instances; the

averaging only takes place on the running times for a fixed input, and there

is no averaging over input classes.

The method: Index calculus

Just as the algorithms leading to subexponentiality results for the discrete

logarithm problem in the multiplicative groups of finite fields and in degree 0

class groups of curves, the algorithm leading to the Theorem above is based

on the so-called index calculus method. In the classical case of multiplicative

groups of prime fields, the method can very briefly be described as follows:

Let a prime p and a, b ∈ F∗
p, where a is a generating element, be given.

The task is to compute the discrete logarithm (or index in the classical

terminology) of b with respect to a, that is, the smallest number x ∈ N0

with ax = b. For this, one first fixes a so-called smoothness bound S ∈ N

and considers the set of all prime numbers ≤ S; this set is called the factor

base. Then one searches for relations between input elements and classes

mod p of factor base elements. After one has obtained enough relations, one

derives the discrete logarithm by linear algebra.

If one instead considers finite fields of a fixed characteristic, one sub-

stitutes prime numbers by irreducible polynomials whose degree is below a

certain bound; if one considers degree 0 class groups of curves over a fixed

finite field, one considers prime divisors whose degree is below a certain

bound instead.

In the present work, the factor base is defined in an algebraic rather than

an arithmetic way (that is, there is no smoothness bound). Relations are

derived by solving systems of multivariate polynomial equations over Fq.

On the proof

We give here a very brief overview of the algorithm leading to the Theorem

above.

Let E/Fqn be an elliptic curve. Then we compute a covering

ϕ : E −→ P1
Fq

of degree 2 which satisfies ϕ ◦ [−1] = ϕ as well as a cer-

tain additional condition. The factor base is then given by

{P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)} .

The relation generation relies on an algorithm which we call decompo-

sition algorithm. Given an elliptic curve E/Fqn the extension degree n, a

covering ϕ as above and some point P ∈ E(Fqn), this algorithm either fails or
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outputs a tuple (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ P1(Fq) for i = 1, . . . , n

such that

P1 + · · ·+ Pn = P . (1)

The decomposition algorithm is based on solving multivariate systems of

polynomial equations over Fq. Of course it fails if there is no such tuple

(P1, . . . , Pn). But it also fails if the algebraic set defined by the associated

multivariate system is not zero-dimensional. We remark here that the most

difficult part of the proof is to show that for a uniformly distributed point

P ∈ E(Fqn) with a sufficiently high probability the algebraic set defined by

the associated multivariate system is indeed zero-dimensional and contains

an Fq-valued point which gives rise to a relation (1). In order to prove this

result, we pass to higher-dimensional schemes over Fq by using Weil restric-

tions. The proof then relies crucially on intersection theory in products of

projective lines.

Some historical comments

In Feb. 2004 I. Semaev put a preprint on the archive of the International

Association for Cryptographic Research (IACR) in which he discussed the

possibility of index calculus in the groups of rational points on elliptic curves

over prime fields ([Sem04]). In his work, Semaev defined the factor base via

an upper bound on the x-coordinates of points, where the elliptic curve is

given by a Weierstraß model.

He also introduced so-called summation polynomials: Let E be an el-

liptic curve over a field K, given by a Weierstraß model, and let m ∈ N,

m ≥ 2. Then the m-th summation polynomial as defined by Semaev is an

irreducible polynomial f ∈ K[x1, . . . , xm] such that for the following holds:

Given P1, . . . , Pm ∈ E(K)− {O}, we have

f(x(P1), . . . , x(Pm)) = 0←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} : ǫ1P1+· · ·+ǫmPm = O ,

where we identify A1(K) = P1(K) − {∞} with K, the algebraic closure of

K. These summation polynomials have degree 2m−2 in each variable.

Now, any algorithm to determine solutions with “small coordinates” for

multivariate equations of high degree would give rise to an algorithm for

relation generation. However, no efficient algorithm for this task is known

(except for very special equations), and therefore, Semaev’s approach does

(currently) not lead to an algorithm which is faster than generic algorithms

to solve discrete logarithm problems.

Semaev’s work lead however both P. Gaudry and the author to reflect

on the question whether a similar approach over extension fields might not

give algorithms which asymptotically are faster than generic algorithms for

certain input classes.
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In [Gau09] Gaudry argues on a heuristic basis that for any fixed extension

degree n ≥ 2 and q −→ ∞, the elliptic curve discrete logarithm problem

over fields Fqn can be solved in an expected time of

Õ(q2− 2
n )

on a randomized random access machine.1 The author on the other hand

tried if a common variation of n and q would lead to a sequence of finite

fields such that the elliptic curve discrete logarithm problem over these fields

would becomes subexponential, and this study finally lead to the present

work.

We note that all previous results on classes of elliptic curves for which

the discrete logarithm problem can be solved in subexponential expected

time rely on a transfer : First a homomorphism from the group under con-

sideration to another group is applied and then the problem is solved in the

second group. For example, one can solve the discrete logarithm problem in

the groups of rational points of supersingular elliptic curves in an expected

time of

eO((log(q)·log(log(q)))1/2)

via a transfer to the multiplicative group of an extension of degree at most

6 of the ground field Fq (see [MOV93], [FR94] together with [EG02]).

This contrasts to the direct application of index calculus in the groups

of rational points of elliptic curves in [Gau09] and the present work. We

note that one might argue that we implicitly use the isomorphism E(Fqn) ≃

Res
Fqn

Fq
(E)(Fq), where Res

Fqn

Fq
(E) is the Weil restriction of the elliptic curve

E/Fqn with respect to Fqn |Fq. The important aspect is here nonetheless that

no computation is performed in doing so. Weil restrictions are of crucial

importance for the analysis of the algorithm, but the algorithm itself can be

formulated without even mentioning Weil restrictions, and we do so.

An outline

Let us give an outline of the rest of this article:

In the next section, we give the algorithm for the Theorem above. For

this we start off with an overview of the “decomposition algorithm”, fol-

lowed by the index calculus algorithm and finally the subalgorithm for the

computation of a suitable covering ϕ. In Section 3 we give some background

information on systems of multihomogeneous polynomials. In particular we

discuss intersection theory in (P1
k)

n, k a field, and multigraded resultants,

1Using a suitable variant of Gaudry’s algorithm and techniques of the present work, a
proof of this result is given in [Die09].
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including computational aspects. In the next section we introduce homoge-

neous summation polynomials via an abstract approach. Finally, the last

section contains the analysis of the algorithm.

An interesting aspect about the algorithm and its analysis is that the

algorithm can be stated with substantially less theoretical background than

the analysis, and our exposition reflects this fact. In particular, as already

mentioned, it is not necessary to speak about Weil restrictions when describ-

ing the algorithm, and consequently we only introduce Weil restrictions at

the beginning of the analysis.

Notation and Terminology

The algebraic closure of a field k is denoted by k. If R is a ring with an ideal

I and a ∈ R, the residue class of a in R/I is denoted by [a]I . If I = (r), we

also use the notation [a]r.

If X and Y are two subschemes of a scheme Z, then we set X ∩ Y :=

X ×Z Y , the scheme theoretic intersection.

Let now X and Y be locally noetherian schemes. Then a finite and flat

morphism X −→ Y is also called a flat covering.

Products of projective planes play an important role in this work. We

set P1 := Proj(Z[X,Y ]) and x := X
Y . We identify (P1)n componentwise with

Proj(Z[X1, Y1]) × · · · × Proj(Z[Xn, Yn]). Therefore we have bases Xi, Yi ∈

Γ((P1)n,O(0, . . . , 0, 1, 0, . . . , 0)), where the 1 is at the ith position. For any

commutative ring A we have the multigraded homogeneous coordinate ring

A[X1, Y1, . . . ,Xn, Yn] of (P1
A)n. In the following by a multihomogeneous

polynomial in A[X1, Y1, . . . ,Xn, Yn] we mean a polynomial which is homo-

geneous with respect to the multigrading. A multihomogeneous ideal in

A[X1, Y1, . . . ,Xn, Yn] is then an ideal in A[X1, Y1, . . . ,Xn, Yn] which is gen-

erated by multihomogeneous polynomials. Now for some multihomogeneous

ideal I, we denote the subscheme defined by I in (P1
k)

n by V (I). Moreover,

we set xi := Xi
Yi

and An := Spec(Z[x1, . . . , xn]).

Additionally, we set P2 := Proj(Z[X,Y,Z]) and x := X
Z , y := Y

Z . The

elliptic curve E/Fqn under consideration is always given by a Weierstraß

model in P2
Fqn

.

Finally, let f be a partial function from N to R which is defined on an

infinite subset S of N such that f is eventually positive. Then we define the

usual classes O(f) and Õ(f) of functions S −→ R. Additionally, we define

the class of functions which are polynomially bounded in f as

Poly(f) :=

{g : S −→ R : ∃c > 0, N ∈ N : |g(n)| ≤ f(n)c for all n ∈ S with n ≥ N} .
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We do not use the usual “Landau-style notation” g = O(f) etc. but g ∈ O(f)

instead.

Sets O(f) etc. occur frequently in statements on (expected) running

times. We then implicitly fix a (reasonable) representation of the mathe-

matical objects in question (e.g. elliptic curves etc.) by bit-strings, as usual.

2 The key algorithms

In this section we outline the algorithm for the Theorem.

As mentioned in the introduction, the relation generation algorithm re-

lies on a decomposition algorithm. Before we come to the algorithm for the

Theorem, we give an overview over this algorithm.

2.1 The decomposition algorithm

The decomposition algorithm relies on “homogeneous summation polynomi-

als”. These polynomials can be obtained by homogenizing the summation

polynomials introduced by Semaev in [Sem04] in an appropriate way. A more

systematic point of view is however to regard Semaev’s summation polyno-

mials as being obtained by dehomogenization of the homogeneous summa-

tion polynomials. The homogeneous summation polynomials are studied in

detail in Section 4; here we merely mention the key results which are needed

to describe the decomposition algorithm.

In Section 4 we show the following two propositions.

Proposition 2.1 Let E be an elliptic curve over a field k, and let us fix a

covering ϕ : E −→ P1
k of degree 2 with ϕ◦ [−1] = ϕ. Let m ∈ N with m ≥ 2.

Then there exists an up to multiplication by a non-trivial constant unique ir-

reducible multihomogeneous polynomial Sϕ,m ∈ k[X1, Y1,X2, Y2, . . . ,Xm, Ym]

such that for all P1, . . . , Pm ∈ E(k) we have Sϕ,m(ϕ(P1), . . . , ϕ(Pm)) =

0 ←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} such that ǫ1P1 + · · · ǫmPm = O. The poly-

nomial Sϕ,m has multidegree (2m−2, . . . , 2m−2).

Definition 2.2 We call a multihomogeneous polynomial Sϕ,m as in the

proposition an mth summation polynomial of E with respect to ϕ.

Proposition 2.3 Given an elliptic curve in Weierstraß form over a finite

field Fq m ∈ N with m ≥ 2 and ϕ : E −→ P1
Fq

of degree 2 with ϕ ◦ [−1] =

ϕ, the mth summation polynomial with respect to the covering ϕ : E −→

P1
Fq

can be computed with a randomized algorithm in an expected time of

Poly(em2
· log(q)).
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Now let K|k be a finite field extension of degree n with basis b1, . . . , bn,

let E be an elliptic curve over K (rather than over k!), and let ϕ : E −→ P1
K

be a covering of degree 2 with ϕ ◦ [−1] = ϕ.

Now let P ∈ E(K). Let Sϕ,n+1(X1, Y1, . . . ,Xn, Yn, ϕ(P )) be a polyno-

mial obtained by inserting the coordinates of ϕ(P ) for the variables

Xn+1, Yn+1 in an (n + 1)th summation polynomial of E with respect to ϕ;

note that this polynomial is unique up to multiplication with a non-trivial

constant.

Let S(1), . . . , S(n) ∈ k[X1, Y1, . . . ,Xn, Yn] be defined by

n
∑

j=1

bjS
(j) = Sϕ,n+1(X1, Y1, . . . ,Xn, Yn, ϕ(P )) . (2)

Clearly, if S(j) is non-zero, just as Sϕ,n+1 it is multigraded of multidegree

(2n−1, . . . , 2n−1). Note also that a different basis of K|k would give rise

to a system of polynomials over k which generate the same k-vector space.

The same holds if the summation polynomial is multiplied by a non-trivial

constant or if the coordinates of ϕ(P ) are simultaneously multiplied by a

non-trivial constant. In particular, the subscheme V (S(1), . . . , S(n)) of (P1
k)

n

does not depend on these choices.

For Q1, . . . , Qn ∈ P1(k), the following conditions are equivalent:

• There exist P1, . . . , Pn ∈ E(K) such that P1 + · · · + Pn = P and

x(Pi) = Qi for all i = 1, . . . , n.

• Sϕ,n+1(Q1, . . . , Qn, ϕ(P )) = 0.

• For all j = 1, . . . , n, S(j)(Q1, . . . , Qn) = 0, that is, (Q1, . . . , Qn) is a

k-rational point of V (S(1), . . . , S(n)).

By a “decomposition algorithm” we mean an algorithm for the follow-

ing computational problem: Given a prime power q, n ∈ N, an Fq-basis

b1, . . . , bn of Fqn |Fq, an elliptic curve E over Fqn (given by a Weierstraß

model), ϕ : E −→ P1
k as well as P ∈ E(Fqn), determine if the subscheme

V (S(1), . . . , S(n)) of (P1
Fq

)n defined by S(1), . . . , S(n) is zero-dimensional, and

if this is the case, determine all tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈

P1(Fq) for all i = 1, . . . , n and P1 + · · · + Pn = P .

In Section 3 we show the following proposition (see subsection 3.1 and

Proposition 3.17 in subsection 3.3).

Proposition 2.4

a) Let k be a field, and let F1, . . . , Fn ∈ k[X1, Y1, . . . ,Xn, Yn] be multi-

graded polynomials of multidegree (d, d, . . . , d) for some d ∈ N. If then
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V (F1, . . . , Fn) is zero-dimensional, its degree is n!·dn (that is, the number

of solutions over k “with multiplicities” is n! · dn).

b) Given a system of multihomogeneous polynomials F1, . . . , Fn ∈

Fq[X1, Y1, . . . ,Xn, Yn] of multidegree (d, d, . . . , d) for some d ∈ N and

prime power q, one can determine if the system defines a zero-dimensional

scheme and if this is the case compute all solutions over Fq in an expected

time of Poly(n! · dn · log(q)).

Based on the previously mentioned computational results, we have the

following decomposition algorithm.

We have already remarked that one can compute the polynomial Sϕ,n+1

in an expected time of Poly(en2
· log(q)). Thus one can also determine the

polynomials S(1), . . . , S(n) in an expected time of Poly(en2
· log(q)). By the

previous proposition one can then determine if the subscheme

V (S(1), . . . , S(n)) of (P1
Fq

)n is zero-dimensional and if this is the case com-

pute all its Fq-rational points in an expected time of Poly(n! · 2n2
· log(q)) =

Poly(en2
· log(q)).

Assume now that the scheme is indeed zero-dimensional, and that all

Fq-rational points have been computed. We now want to find all tuples

(P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ P1(Fq) for all i = 1, . . . , n and P1 +

· · ·+ Pn = P .

For this we iterate over all Fq-rational points of V (S(1), . . . , S(n)). For

each (Q1, . . . , Qn) ∈ V (S(1), . . . , S(n))(Fq) we consider all possibles tuples

(P1, . . . , Pn) ∈ E(Fqn)n with x(Pi) = Qi for i = 1, . . . , n and check if P1 +

· · ·+ Pn = P . We output all tuples (P1, . . . , Pn) for which this is the case.

Now for each tuple (P1, . . . , Pn) ∈ V (S(1), . . . , S(n))(Fq) we need Õ(2n) ·

Poly(log(q)) bit operations, and we have Poly(en2
) such tuples (P1, . . . , Pn).

The expected total running time is then still in Poly(en2
· log(q)).

We obtain:

Proposition 2.5 Given q, n ∈ N, E, ϕ and P as above, one can determine

if the subscheme V (S(1), . . . , S(n)) of (P1
Fq

)n is zero-dimensional, and if this

is the case determine all tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ P1(Fq)

for i = 1, . . . , n in an expected time of Poly(en2
· log(q)).

Terminology 2.6 We say that “the decomposition algorithm succeeds” if

applied to an instance as described above if the scheme V (F1, . . . , Fn) is zero-

dimensional and there exists a tuple (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈

P1(Fq) and P1 + · · · + Pn = P . Otherwise we say that “the decomposition

algorithm fails”.

In order to analyze the index calculus algorithm we need a lower bound in

the probability that the decomposition algorithm succeeds. Let us mention
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the key result for the analysis of the algorithm for the Theorem, which we

prove in subsection 5.4 (Proposition 5.24):

Proposition 2.7 Let ǫ > 0. Then for n large enough2 and (2 + ǫ) · n2 ≤

log2(q) the following holds: Let E/Fqn be an elliptic curve, and let ϕ : E −→

P1
Fqn

be a covering of degree 2 with ϕ ◦ [−1] = ϕ such that the following

condition holds:

There exists a point P ∈ P1(Fq) which is a ramification point of ϕ such

that the points P, σ(P ), . . . , σn−1(P ) are all distinct and ϕ is not ramified at

σ(P ), . . . , σn−1(P ).

Then the probability that the decomposition algorithm succeeds if applied

to a uniformly randomly distributed element in E(Fqn) is ≥ q−
1
2 .

2.2 The index calculus algorithm

Below we give an algorithm which leads to the following result.

Proposition 2.8 Let ǫ > 0. Then there exists a randomized algorithm such

that the following holds: Given a prime power q, a natural number n with

(2 + ǫ) · n2 ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form) and

two points A,B ∈ E(Fqn) with B ∈ 〈A〉 as well as a system of elements

C1, . . . , Cu of E(Fqn) whose size is polynomially bounded in log(qn), if the

algorithm terminates, it outputs the discrete logarithm of B with respect to

A. Moreover, if C1, . . . , Cu is a generating system, the expected running

time is polynomially bounded in q.

Let us see how one can with this proposition obtain the Theorem.

First, Proposition 2.8 implies:

Proposition 2.9 Let ǫ > 0. Then there exists a randomized algorithm such

that the following holds: Given a prime power q, a natural number n with

(2 + ǫ) · n2 ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form) and

two points A,B ∈ E(Fqn) with B ∈ 〈A〉 as well as a system of elements

C1, . . . , Cu of E(Fqn) whose size is polynomially bounded in log(qn), the

algorithm outputs the discrete logarithm of B with respect to A or “failure”.

Moreover, the running time of the algorithm is polynomially bounded in q,

and if C1, . . . , Cu is a generating system, the probability of failure is ≤ 1
2 .

Proof. We choose some polynomial P (x) such that for qn large enough the

expected running time in the previous proposition is ≤ P (log(qn)). Then we

terminate the previous algorithm if time 2P (log(qn)) is reached. The result

follows with Markov’s bound. 2

2As usual, by the phrase “for n large enough” we mean that there exists a constant
C > 0 such that the statement holds for n ≥ C.
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Lemma 2.10 Let E be an elliptic curve over Fq, and let C1, C2 be two

uniformly randomly distributed points from E(Fq). Then with a probability

of Ω( 1
(log log(q))2

), C1 and C2 generate E(Fq).

Proof. As the Tate modules have rank 1 or 2, there exist, by the elementary

divisor theorem, two uniquely determined natural numbers a, b with b|a and

E(Fq) ≃ Z/aZ×Z/bZ. Let us fix such an isomorphism. Now Ci corresponds

to (m1,i,m2,i) ∈ Z/aZ × Z/bZ. With a probability of Ω( 1
log log(a) ), m1,1 is

invertible (cf. [RS62]). This proves the statement if b = 1.

Let now b > 1. Then conditionally to a being invertible,

m2,2− [m−1
1,1]b m2,1m1,2 is still uniformly distributed and therefore invertible

with a probability of Ω( 1
log log(b)). With a probability of Ω( 1

log log(a)·log log(b)) ⊆

Ω( 1
(log log(q))2

) both conditions are satisfied, and then C1, C2 is a generating

system. 2

We do however not know how to efficiently test if two points from E(Fqn)

do indeed form a generating system. As a work around, we proceed as

follows:

Repeat

1. Choose uniformly and independently randomly points C1, C2 ∈ E(Fqn).

2. Apply an algorithm satisfying Proposition 2.9.

Until the discrete logarithm has been found.

Note that Step 1 can easily be performed in an expected time which is

polynomial in log(qn).

Like this, we obtain:

Proposition 2.11 Let ǫ > 0. Then there exists a randomized algorithm

such that the following holds: Given a prime power q, a natural number n

with (2 + ǫ) · n2 ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form)

and two points A,B ∈ E(Fqn) with B ∈ 〈A〉, the algorithm outputs the

discrete logarithm of B in an expected time which is polynomially bounded

in q.

This implies:

Proposition 2.12 Let c > 0. Then there exists a randomized algorithm

such that the following holds: Given a prime power q, a natural number n

with n ≤ c ·
√

log(q), an elliptic curve over Fqn (in Weierstraß form) and

two points A,B ∈ E(Fqn) with B ∈ 〈A〉, the algorithm outputs the discrete

logarithm of B in an expected time which is polynomially bounded in q.
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Proof. Let d := ⌊2c2 log(2)⌋ + 1. Then the instances satisfy d
c2 log(2)

n2 ≤

log2(q
d) with d

c2 log(2) > 2. Now given an instance as in the theorem, we

apply an algorithm satisfying the previous proposition to the corresponding

instance in the group E(Fqdn) and the extension degree n. The expected

running time is then polynomially bounded in qd and therefore also polyno-

mially bounded in q. 2

Note now that in Proposition 2.12 in particular the extension degree n

is part of the input whereas in the Theorem this is not the case. To obtain

the Theorem we apply an algorithm for Proposition 2.12 with all possible

extension degrees “in parallel”.

We are now coming to the algorithm for Proposition 2.8. For this we

outline – as already mentioned – an index calculus algorithm, where the

relation generation is based on the “decomposition algorithm” given in the

previous subsection.

The algorithm

Input: A prime power q, a natural number n, an elliptic curve E over Fqn in

Weierstraß form, A,B ∈ E(Fqn) with B ∈ 〈A〉, C1, . . . , Cu ∈ E(Fqn).

Output: The discrete logarithm of B with respect to A.

1. Compute N ←− #E(Fqn).

2. Apply the procedure for generation of a factor base given below.

Let F = {F1, P2, . . . , Fk} ⊆ E(Fqn) be the chosen enumerated factor

base.

3. Construct matrices R ∈ (Z/NZ)(k+u+1)×k and S ∈

(Z/NZ)(k+u+1)×u as well as vectors α, β ∈ (Z/NZ)k+u+1 as follows:

For i = 1, . . . , k + u + 1 do

Repeat

Choose uniformly and independently randomly α, β, s1, . . . , su ∈

Z/NZ and apply the decomposition algorithm to
∑

j sjCj + αA + βB.

Until this leads to a relation.

Let
∑

j

ri,jFj =
∑

j

si,jCj + αiA + βiB

be the relation generated.

4. Compute a lower row echelon form H of (R|S) (over Z/NZ); apply the

row transformations also to α, β; let α′, β′ be the resulting vectors.
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5. If β′
1 ∈ (Z/NZ)∗, let ξ := −

α′
1

β′
1

, otherwise go back to Step 3.

6. Compute the factorization of N .

7. Compute ord(a), using the factorization of N .

8. Output the unique non-negative number x ∈ {0, . . . , ord(a) − 1} with

[x]ord(a) = [ξ]ord(a) ∈ Z/ ord(a)Z.

For the correctness of the algorithm note that as (R|S) is a (k +u+1)×

(k + u)-matrix, the first row of H is trivial. Therefore we have the relation

α′
1A + β′

1B = 0.

We now give some additional information on subroutines for the various

steps of the algorithm and their complexity.

Step 1 can be performed in polynomial time with Schoof’s algorithm

([Sch85]).

Step 6 can be performed in an expected time of time of

Poly(e(log(N)·log(log(N)))1/2
), for example with the algorithm by Lenstra and

Pomerance ([LP92]).

Step 7 can be performed in polynomial time along the following lines:

As in the algorithm, let N =
∏v

i=1 ℓei
i with ei ∈ N and pairwise distinct

prime numbers ℓi. Now let Li := N
ℓ
ei
i

, and let oi := min{j ∈ 0, . . . , ei | ℓ
j
iLi ·

a = 0} for i = 1, . . . , v. Then
∏v

i=1 ℓoi
i is the order of a.

We now discuss the crucial steps 2,3, 4 and 5.

Step 2 – Construction of the factor base

We have already mentioned that the factor base is a set

{P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)}

for a suitable covering of degree 2 ϕ : E −→ P1
Fqn

with ϕ ◦ [−1] = ϕ.

Let σ be the relative Frobenius automorphism of Fq|Fq. Now the condi-

tion on ϕ we impose is the following condition, already mentioned in Propo-

sition 2.7.

Condition 2.13 There exists a point P ∈ P1(Fq) which is a ramification

point of ϕ such that the points P, σ(P ), . . . , σn−1(P ) are all distinct and ϕ

is not ramified at σ(P ), . . . , σn−1(P ).
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This condition might seem strange for the moment. The reasons for this

condition will be discussed in subsection 5.2. Very briefly, the factor base is

in a certain sense defined by a 1-dimensional Fq-scheme, and the condition

ensures that this scheme is birational to a curve over Fq.

In the next subsection we prove:

Proposition 2.14 Given a prime power q, n ∈ N and an elliptic curve over

Fqn in Weierstraß form such that (q, n) 6= (3, 2) one can compute a covering

ϕ : E −→ P1
Fqn

of degree 2 with ϕ◦ [−1] = ϕ satisfying Condition 2.13 in an

expected time of Poly(n · log(q)).

The factor base clearly has ≤ 2(q +1) elements and can therefore clearly

be constructed in an expected time which is polynomially bounded in n ·

log(q) + q.

Step 3 – Relation generation

As stated, we choose α, β, s1, . . . , su ∈ {0, . . . ,#E(Fqn) − 1} uniformly at

random and compute
∑

j sjCj +αA+βB. Then we apply the decomposition

algorithm as described in the previous subsection to this element and the

covering ϕ. If the procedure does not fail, we have obtained at least one

relation between factor base elements, C1, . . . , Cu and the input elements

A,B; we store such a relation. (It does not matter which one we store as

long as the distribution of the output only depends on the element
∑

j sjCj+

αA+βB (and not on the further internal state of the algorithm).) We repeat

this procedure until we have obtained such a relation.

Let us assume that u is polynomially bounded in log(qn) and C1, . . . , Cu

is a generating system. Then the time to compute
∑

j sjCj + αA + βB is

polynomial in log(qn). By Proposition 2.5, the expected running time of one

iteration in the Repeat-loop is then in Poly(en2
· log(q)). Note that for each

iteration of the Repeat-loop the element
∑

j sjCj + αA + βB is uniformly

randomly distributed (and independent of previous choices). Therefore by

Proposition 2.7 (Proposition 5.24) for instances with (2 + ǫ) · n2 ≤ log2(q)

and n large enough the expected number of iterations in the Repeat-loop is

in O(q1/2).

We conclude that for instances with (2 + ǫ) · n2 ≤ log2(q) and n large

enough and for u polynomially bounded in log(qn) such that C1, . . . , Cu is

a generating system, the expected running time of Step 3 is in Poly(en2
·

log(q)) · O(q1/2) · O(q) ⊆ Poly(q).
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Step 4 – Linear algebra

The computation of a lower row echelon form can be performed with an

easy modification of the usual Gaußian reduction algorithm with gcd com-

putations. Given a matrix of size m × n over Z/NZ, the computation can

be performed in a time which is polynomially bounded in m · n · log(N).

By the definition of the factor base, we have k + u ∈ O(q). We therefore

have a running time which is polynomially bounded in q · log(N).

Step 5 – Invertibility

We need to estimate the probability that β′
1 is invertible. The key result is:

Proposition 2.15 The random element β′
1 is uniformly randomly distributed

in Z/NZ.

For N −→ ∞, we have ϕ(N)
N ∈ Ω( 1

log log(N)) (cf. [RS62, Formula 3.41]).

Therefore, the expected number of iterations of steps 3,4,5 is inO(log log(N)) =

O(log log(q)).

Proof of Proposition 2.15. For each i, βi is stochastically independent of

αiA+βiB. Therefore βi is stochastically independent of the ith row of (R|S).

It follows that β is independent of (R|S). Let U be the transformation

matrix such that H = U(R|S); this is also a random variable. Now U is

stochastically independent of β. Let u be the first row of U and note that

[u]ℓ 6= 0 for all prime divisors ℓ of N . Then β′
1 = uβ. Now the statement

follows with the following well known lemma. 2

Lemma 2.16 Let N be a natural number, and let u ∈ (Z/NZ)m with

[u]ℓ 6= 0 for all prime divisors ℓ of N . Furthermore, let v be a uniformly dis-

tributed random element in (Z/NZ)m. Then
∑

i uivi is uniformly distributed

in Z/NZ.

Proof. Let us first consider the case that N is a prime power. Then at least

one entry of u is invertible. This implies the statement. The general case

follows then easily with the Chinese Remainder Theorem. 2

The overall running time

Altogether we conclude:

We again restrict ourselves to instances with (2 + ǫ) · n2 ≤ log2(q) and

u polynomially bounded in log(qn) such that C1, . . . , Cu is a generating

system. As the factor base has a size of O(q), it is now clear that for
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n large enough the expected running time of the whole algorithm is then

polynomially bounded in q.

We have proven the following statement:

Let ǫ > 0. Then given a prime power q, a large enough natural number n

with (2+ǫ) ·2n ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form) and

two points A,B ∈ E(Fqn) with B ∈ 〈A〉 as well as a generating system of

E(Fqn) whose size is polynomially bounded in log(qn), the algorithm outputs

the discrete logarithm of B with respect to A. Moreover, the expected

running time is then polynomially bounded in q.

Proposition 2.8 can then be obtained by applying this algorithm “in

parallel” with a brute force computation.

2.3 Computing a suitable covering

We discuss how a covering ϕ : E −→ P1
Fqn

as required in the construction of

the factor base can be computed efficiently.

We make some case distinctions. In each case we start off with a specific

Weierstraß model and determine some automorphism α of P1
Fqn

. Then we

set ϕ := α ◦ x|E.

2.3.1 Even characteristic

Let first j(E) = 0. Then E by an easy coordinate change the “affine part”

of E is defined by a polynomial

y2 + a3y + x3 + a4x + a6 .

(see [Sil86, Appendix A]) (with a3 6= 0). Now x|E is ramified exactly over

∞. We set α := ax−1
x for some a ∈ Fqn which is not contained in any proper

subfield of Fqn |Fq.
3 Then α maps ∞ to a, and thus ϕ is ramified exactly at

a. Clearly the condition is satisfied.

Let now j(E) 6= 0. Then wlog. E the “affine part” of E is defined by the

polynomial

y2 + xy + x3 + a2x
2 + a6 .

Then x|E is ramified exactly over 0 and ∞. We set α := x + a with a as

above. Then ϕ is ramified at a and ∞, and again the condition is satisfied.

3By a “proper subfield” we mean here a subfield of a field extension K|k which is not
equal to K.
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2.3.2 Odd characteristic

Now wlog. E is defined by

y2 − f(x) ,

where f(x) ∈ Fq[x] is monic of degree 3. The conditions which have to be

satisfied are now more subtle but the algorithm is very simple:

We choose λ ∈ Fqn uniformly at random and with α := x − λ we check

if the condition is satisfied. We repeat this until the condition is satisfied.

Note here that if f(x) = (x− λ1)(x− λ2)(x− λ3) (with λi ∈ Fq6n), then

the ramification points of ϕ = α ◦ x|E in P1(Fq) are λi− λ for i = 1, 2, 3. So

it is easy to check the condition.

Proposition 2.14 now follows from the following lemma. (Note that we

only apply the lemma in the case that q is odd.)

Lemma 2.17 There exists a constant C ∈ (0, 1) such that the following

holds:

Let q be a prime power and n a natural number such that (q, n) 6=

{(2, 2), (3, 2), (2, 3), (2, 4)}. Now let λ1, λ2, λ3 ∈ Fq, and let λ be a uniformly

distributed element in Fqn. Then with a probability ≥ C we have

(λ1 − λ)q
i

/∈ {λ1 − λ, λ2 − λ, λ3 − λ}

for i = 1, . . . , n− 1.

Proof. Let ℓ = 1, 2, 3. We have (λ1 − λ)q
i
= λℓ − λ if and only if λqi

− λ =

λqi

1 − λℓ. The map λ 7→ λqi
− λ is an Fq-linear map with kernel Fqgcd(i,n) .

There are thus either no or qgcd(i,n) such λ.

We obtain: In total there are at most 3
∑n−1

i=1 qgcd(i,n) elements λ for

which the condition in the lemma is not satisfied.

Now 3
∑n−1

i=1 qgcd(i,n) ≤ 3(n − 1) · qn/2, and therefore the probability in

question is

≥ 1−
3(n − 1)

qn/2
≥ 1−

3(n − 1)

2n/2
.

For n ≥ 10 this is ≥ 5
32 > 0.

One also easily sees that for n ≤ 9 and (q, n) 6= {(2, 2), (3, 2), (2, 3), (2, 4)}

the probability is positive. 2

3 Some results on multihomogeneous polynomials

In this section we are concerned with results related to multihomogeneous

polynomials and systems of such polynomials. In particular, we give some

information on aspects of intersection theory in the special case of (P1
k)

n
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(k a field), including multigraded resultants, and we discuss computational

aspects.

3.1 Intersection theory in (P1
k)

n

In this subsection we review some standard material on intersection theory

in the special case of (P1
k)

n, where k is a field.

Lemma 3.1 Let X be a closed subscheme of (P1
k)

n of dimension at least 1,

and let F ∈ k[X1, Y1, . . . ,Xn, Yn] be a multihomogeneous polynomial whose

multidegree is componentwise positive. Then V (F ) and X intersect non-

trivially.

Proof. Let d be the multidegree of F . The invertible sheaf O(d) is very am-

ple, and under the corresponding embedding into projective space F corre-

sponds to a non-trivial linear form. The result thus follows from intersection

theory in projective space. 2

Definition 3.2 We define the dimension of the empty scheme as −1.

Lemma 3.3 Let k ≤ n + 1. Let F1, . . . , Fk be multihomogeneous polyno-

mials in k[X1, Y1, . . . ,Xn, Yn] such that all multidegrees are componentwise

positive. Then dim(V (F1, . . . , Fk)) ≥ n − k. Moreover, we have equality if

and only if for ℓ = 2, . . . , k no irreducibility component of V (F1, . . . , Fℓ−1)

is contained in V (Fℓ).

Proof. Let first k ≤ n (such that the first statement is non-trivial). Then

by the previous lemma V (F1, . . . , Fk) is non-empty. The first statement

thus follows with Krull’s Hauptidealsatz. The second statement also follows

easily with the previous lemma and Krull’s Hauptidealsatz. 2

Notation 3.4 Let V be a fixed quasi-projective variety, and let X be a

closed subscheme of V . Then we denote the class of V in the Chow ring

of V by [X]. (We do not fix a notation for the cycle corresponding to a

closed subscheme as we never perform operations with cycles but only with

classes.)

Remark 3.5 Let X be a closed subscheme of (P1
k)

n and let F ∈

k[X1, Y1, . . . ,Xn, Yn] be a multihomogeneous polynomial such that no ir-

reducibility component of X is contained in V (F ). Then

[X ∩ V (F )] = [X] · [V (F )] ,

where X ∩ V (F ) is the scheme-theoretic intersection. Indeed, this is a spe-

cial case of Axiom A7 on intersection theory in [Har77, Appendix A]. In
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particular, if F1, . . . , Fk are multihomogeneous polynomials such that for all

ℓ = 2, . . . , k no irreducibility component of V (F1, . . . , Fℓ−1) is contained in

V (Fℓ), then

[V (F1, . . . , Fk)] = [V (F1)] · · · [V (Fk)] .

Note that by the previous lemma this is in particular the case if the

multidegrees of the polynomials are componentwise positive and

dim(V (F1, . . . , Fk)) = n− k.

We have the following explicit description of the Chow ring of (P1
k)

n:

Proposition 3.6 Let hi be the class of V (Xi) ⊆ (P1
k)

n for i = 1, . . . , n.

Then the Chow ring of (P1
k)

n is generated by h1, . . . , hn, and we have an

isomorphism Z[H1, . . . ,Hn]/(H2
1 , . . . ,H2

n) −→ CH((P1
k)

n) , [Hi] 7→ hi.

This proposition can easily be derived from a general result on the Chow

rings of toric varieties (cf. the proposition on page 106 of [Ful93, Section 5.2]).

We remark here that the book [Ful93] is concerned with toric varieties over

the complex number. However, analytic arguments play a minor role in the

exposition, and the few such arguments can rather easily be replaced with

algebraic arguments. In particular, the proposition just mentioned holds

over arbitrary fields.

Example 3.7 The class of an effective Cartier divisor on (P1
k)

n of multide-

gree (d1, . . . , dn) is d1h1 + · · ·+ dnhn.

Let us consider the pull-back and push-forward homomorphisms associ-

ated with the canonical projections between products of P1
k’s. The following

considerations follow immediately from the axioms of intersection theory in

[Har77, Appendix A].

Let for n1 > n2 p : (P1
k)

n1 −→ (P1
k)

n2 be the projection to the first n2

components. Let us denote by hi for i = 1, . . . , n2 the class of V (Xi) in any

of the two Chow rings.

Then the pull-back p∗ : CH((P1
k)

n2) −→ CH(P1
k)

n1), which is a ring

homomorphism, is given by the homomorphism which corresponds to the

obvious inclusion under the isomorphism in Proposition 3.6. This means

that it is given by p∗(hi) = hi.

The push-forward, which is a group homomorphism, is given as follows:

Lemma 3.8 Let e ∈ {0, 1}n1 . Then p∗(h
e1
1 · · ·h

en1
n1 ) = 1 if en2+1 = · · · =

en1 = 1 and p∗(h
e1
1 · · ·h

en1
n1 ) = 0 otherwise.

Let now F1, . . . , Fn be multihomogeneous polynomials whose multidegree

is componentwise positive. Let the multidegree of Fi be (di,1, . . . , di,n), and
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let D := ((di,j))i,j . If now the scheme V (F1, . . . , Fn) is zero-dimensional we

conclude with Proposition 3.6 and Remark 3.5 that the class of V (F1, . . . , Fn)

in the Chow group has degree Perm(D), the permanent of D. With other

words: If the scheme V (F1, . . . , Fn) is zero-dimensional, it has degree Perm(D).

In particular, if additionally the multidegree of each Fi is (d, . . . , d) for a

common d ∈ N, then the degree of V (F1, . . . , Fn) is n! · dn.

3.2 Multigraded resultants

We will make repeated use of resultants for systems of multihomogeneous

polynomials in k[X1, Y1, . . . ,Xn, Yn]. Let us recall the definition and basic

properties:

Let us fix some n ∈ N. Let for d ∈ N Md be the set of monomials of

multidegree d in k[X1, Y1, . . . ,Xn, Yn].

Let for each i = 1, . . . , n + 1 some d(i) ∈ Nn be given. (Note that

all coefficients are positive). We want to define the generic resultant for

multihomogeneous polynomials of multidegrees d(1), . . . , d(n+1). For this we

consider a “universal coefficient ring”, which is a multivariate polynomial

ring over the integers which for each pair (i,m) with m ∈ Md(i) has one

indeterminate ci,m, that is, it is the ring Z[{ci,m}i=1,...,n+1,m∈M
d(i)

]. We

define the generic system of n + 1 multihomogeneous polynomials with mul-

tidegrees d(1), . . . , d(n+1) as G1, . . . , Gn+1 ∈ Z[{c(i,m)}i,m][X1, Y1, . . . ,Xn, Yn]

with Gi =
∑

m∈M
d(i)

ci,m m.

The generic resultant under consideration is then an element of

Z[{ci,m}i,m], and the resultant of a particular system of multihomogeneous

polynomials is obtained by substituting the coefficients of the polynomials

for the generic coefficients.

Proposition 3.9

a) There is an irreducible polynomial Res ∈ Z[{ci,m}i=1,...,n+1,m∈M
d(i)

] which

for i = 1, . . . , n + 1 is homogeneous in the coefficients of the ith generic

polynomial and which has the following property: For all fields k

and all systems of multihomogeneous polynomials F1, . . . , Fn+1 ∈

k[X1, Y1, . . . ,Xn, Yn], where Fi has multidegree d(i), we have

Res(F1, . . . , Fn+1) = 0 if and only if V (F1, . . . , Fn+1) is non-empty. Here

Res(F1, . . . , Fn+1) is obtained by substituting the coefficients of the poly-

nomials for the generic coefficients.

b) The polynomial Res with the above properties unique up to sign.

c) For every field k, the induced polynomial in k[{ci,m}i,m] is irreducible.
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d) For each i = 1, . . . , n + 1, Res has degree Perm(Di) in the coefficients of

the ith generic polynomial, where Di is obtained from the matrix






d(1)

...

d(n+1)






by deleting the ith row.

Sketch of a proof. A corresponding result over the complex numbers follows

from the general results in [GKZ94]. (The polynomial Res is then unique up

to multiplication by a non-trivial complex number.) Even though there are

various other works on general resultants, we could not find this “universal”

result in the literature. We explain now how it can be derived from the

results on “mixed resultants” in [GKZ94, Section 3.3].

For every commutative ring R, the set Spec(Z[{ci,m}i,m])(R) ≃
∏

i,m R

corresponds in an obvious way to the set of systems F1, . . . , Fn+1 ∈

R[X1, Y1, . . . ,Xn, Yn], where Fi has multidegree d(i). For such a system

of polynomials over a field such that at least one polynomial is non-trivial,

we denote by (F1, . . . , Fn+1) the class of the coefficient vectors in projective

space Proj(Z[{ci,m}i,m])(R).

Let p : (P1)n ×Z Proj(Z[{ci,m}i,m]) −→ Proj(Z[{ci,m}i,m]) be the projec-

tion to the second component. Let V (G1, . . . , Gn+1) be the closed subscheme

of (P1)n×ZProj(Z[{ci,m}i,m]) defined by the generic multihomogeneous poly-

nomials G1, . . . , Gn+1 introduced above.

We consider p(V (G1, . . . , Gn+1)), which is a closed subscheme of

Proj(Z[{ci,m}i,m]), with the induced reduced structure. Note that for a

system F1, . . . , Fn+1 of polynomials as above over a field k, the fiber of

V (G1, . . . , Gn+1) above (F1, . . . , Fn+1) is V (F1, . . . , Fn+1), and thus the fiber

of p(V (G1, . . . , Gn+1)) at (F1, . . . , Fn+1) is set-theoretically equal to

pk(V (F1, . . . , Fn+1)). In particular, (F1, . . . , Fn+1) is contained in

pk(V (G1, . . . , Gn+1)k) if and only if V (F1, . . . , Fn+1) is non-empty.

Now the results in [GKZ94, subsection 3.3 A] immediately generalize to

arbitrary fields, and therefore V (G1, . . . , Gn+1))Q
as well as

V (G1, . . . , Gn+1))Fp
for every prime number p are irreducible of codimen-

sion 1. It follows that V (G1, . . . , Gn+1) is irreducible of codimension 1. As

Proj(Z[{ci,m}i,m]) is regular, this implies that it is a Cartier divisor and

thus given by a section of an invertible sheaf on Proj(Z[{ci,m}]). But every

invertible sheaf on a projective space over Z is isomorphic to O(a) for some

a ∈ N (cf. [Mum65, §0, 5 b)]). Therefore V (G1, . . . , Gn+1) is defined by a

homogeneous polynomial in Z[{ci,m}i,m]; let Res be such a polynomial.

We already know that Res is irreducible. Moreover, for every prime

number p, the residue class [Res]Fp[{ci,m}i,m] is non-trivial, and thus the gcd

of the coefficients of Res is 1. It is immediate that Res is homogeneous in

the coefficients of each generic polynomial.
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We have established a) and b). Result d) follows from [GKZ94, Propo-

sition 3.3] and the remarks at the end of the previous subsection.

It remains to prove c). So let k be a field. Let Resk be the induced poly-

nomial obtained from Res. Then Resk defines (scheme-theoretically) the

fiber p(V (G1, . . . , Gn+1))k. The associated reduced subscheme is

the image pk(V (G1, . . . , Gn+1)k) with the reduced structure, which is ir-

reducible. Therefore Resk is the product of a constant and a power of

an irreducible polynomial. Now first, by d), Resk is a polynomial of degree
∑

i Perm(Di). Also, by applying the reasoning in [GKZ94] for k instead of C,

one obtains that pk(V (G1, . . . , Gn+1)k) with the reduced structure also has

degree
∑

i Perm(Di). As we already know that set-theoretically

pk(V (G1, . . . , Gn+1)k) is defined by Resk, we know now that this is also

true scheme-theoretically. We conclude that Resk is irreducible. 2

We call the polynomial Res a generic mixed multigraded resultant. If the

multidegrees of the generic polynomials are equal, we speak of a multi-

graded resultant. For some commutative ring R and multihomogeneous

F1, . . . , Fn+1 ∈ R[X1, Y1, . . . ,Xn, Yn] we call Res(F1, . . . , Fn+1) (where Res

is the generic mixed multihomogeneous resultant for polynomials of appro-

priate multidegree) the multigraded resultant of F1, . . . , Fn+1.

3.3 Computing resultants and solving systems

In this subsection we address computational problems related to multi-

graded resultants and the solution of zero-dimensional multihomogeneous

polynomial systems. In particular, we give an algorithm to determine all

solutions of a multihomogeneous polynomial system F1, . . . , Fn over a finite

field, where each Fi has multidegree (d, d, . . . , d) for some d ∈ N and the

scheme V (F1, . . . , Fn) is zero-dimensional. Our algorithm heavily relies on

the computation of resultants. We have not explicitly found our approach in

the literature, but the idea to use appropriate resultants to solve systems of

multivariate polynomial equations is of course well known (see for example

[CLO05] for an introduction).

In the following, all structural statements are made for systems over an

arbitrary field k. Computational statements are then for systems over finite

fields, and the cardinality of the ground field is then always q.

Let F1, . . . , Fn+1 ∈ k[X1, Y1, . . . ,Xn, Yn] be non-constant multihomoge-

neous polynomials of equal multidegree (d, d, . . . , d) for some d ∈ N, and let

Res(F1, . . . , Fn+1) be the multigraded resultant of these polynomials. Now

just as the usual Sylvester resultant, this resultant can be expressed as the

determinant of a matrix each of whose entries is 0 or a coefficient of one of

the polynomials Fi.

Let us to state this result fix the following definition.
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Definition 3.10 Let M be a multigraded k[X1, Y1, . . . ,Xn, Yn]-module,

and let d ∈ Zn. Then the k-vector subspace of M consisting of elements

of multidegree d is denoted by Md.

We now consider the linear map

Φ : (k[X1, Y1, . . . ,Xn, Yn](d−1,2d−1,...,nd−1))
n+1 −→

k[X1, Y1, . . . ,Xn, Yn](2d−1,3d−1,...,(n+1)d−1) ,

(A1, . . . , An+1) 7→
∑n+1

i=1 FiAi .

(3)

Note that both the domain as well as the codomain have dimension

(n + 1)! · dn.

Proposition 3.11 Let M be the matrix of Φ with respect to the monomial

bases in the domain and the codomain with any ordering. Then

Res(F1, . . . , Fn+1) = ± det(M) .

Note here that the resultant is only defined up to a sign, and a change of

the ordering of any of the two the bases changes a sign too.

This result is essentially proven in [SZ94]. (Note the important reference

to the proof of [KSZ92, Theorem 4.7] in the proof of [SZ94, Proposition 6].)

Note first that one only has to show the formula for the generic resultant.

Now in [SZ94] (and [KSZ92]) it is proven that the formula holds in charac-

teristic 0 up to a multiplicative rational constant. It therefore also holds for

the generic resultant up to a multiplicative rational constant. Moreover, the

proof in [SZ94] generalizes to fields of arbitrary characteristic, and therefore

the formula holds for the generic resultant in characteristic p > 0 up to a

non-trivial multiplicative constant in Fp. But the multiplicative constant in

characteristic 0 specializes to the constants in positive characteristic. There-

fore the multiplicative constant is 1 or −1.

This description of the resultant immediately gives rise to the following

result:

Proposition 3.12 Given F1, . . . , Fn+1 ∈ Fq of multidegree (d, . . . , d) one

can compute Res(F1, . . . , Fn+1) in a time of Poly((n + 1)! · dn · log(q)).

Proposition 3.11 states in particular that V (F1, . . . , Fn+1) is empty if and

only if Φ is surjective, that is, (F1, . . . , Fn+1)(2d−1,3d−1,...,(n+1)d−1) is equal

to the whole ambient space k[X1, Y1, . . . ,Xn, Yn](2d−1,3d−1,...,(n+1)d−1). This

statement can be generalized:
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Proposition 3.13 Let F1, . . . , Fm be multihomogeneous polynomials in

k[X1, Y1, . . . ,Xn, Yn] of multidegree (d, d, . . . , d). Then V (F1, . . . , Fm) is

empty if and only if (F1, . . . , Fm)(2d−1,3d−1,...,(n+1)d−1) =

k[X1, Y1, . . . ,Xn, Yn](2d−1,3d−1,...,(n+1)d−1).

Proof. It is obvious that the latter statement implies the former. So let

V (F1, . . . , Fm) be empty. To show the equality we can perform a base-

change. So we consider the field extension k((ci,j)i=1,...,n+1,j=1,...,m)|k, where

the ci,j are indeterminates, and let Gi :=
∑m

j=1 ci,jFj for i = 1, . . . , n+1. By

the following lemma, if g1, . . . , gn+1 are obtained by any dehomogenization

from G1, . . . , Gn+1, then V (g1, . . . , gn+1) is empty. Thus V (G1, . . . , Gn+1)

is empty too. Therefore (G1, . . . , Gn+1)(2d−1,3d−1,...,(n+1)d−1) is equal to the

ambient space. This clearly implies that (F1, . . . , Fm)(2d−1,3d−1,...,(n+1)d−1)

is equal to the ambient space too. 2

Lemma 3.14 Let k be a field, and let R be a non-trivial commutative

noetherian k-algebra of dimension n. Let f1, . . . , fm ∈ R with (f1, . . . fm) =

R. Now let gi :=
∑m

j=1 ci,jfj in R ⊗k k((ci,j)i,j) for i = 1, . . . , n + 1. Then

g1, . . . , gn+1 generate the unit ideal of R⊗k k((ci,j)i,j).

Proof. This statement follows from the following statement by induction on

n:

Let R be a non-trivial commutative noetherian k-algebra, and let

f1, . . . , fm ∈ R with (f1, . . . , fm) = R. Then dim((R⊗kk(c1, . . . , cm))/(c1f1+

· · · + cmcm)) < dim(R ⊗k k(c1, . . . , cm)) = dim(R), where we define the di-

mension of the trivial algebra as −1.

We assume that this statement is well known to the experts in commu-

tative algebra. Because we could not find a suitable reference we give here

a proof.

We have to show that c1f1 + · · ·+ cmfm is not contained in any minimal

prime ideal of R⊗k k(c1, . . . , cm).

Now, the minimal prime ideals of R ⊗k k(c1, . . . , cm) are exactly the

ideals of the form (p), where p is a minimal prime ideal of R. (Let first

p be a prime ideal of R. Then R/(p) ⊗k k[c1, . . . , cn] ≃ (R/p)[c1, . . . , cn]

is a domain. Therefore R/p ⊗k k(c1, . . . , cn) ≃ (R ⊗k k(c1, . . . , cn))/(p),

which is a localization of the previous ring, is a domain too. Thus (p)

is prime. Let us assume that p is minimal, and let P ⊆ (p) be a prime

ideal of R ⊗k k(c1, . . . , cm). Then P ∩ R = p by the minimality of p, thus

(P ∩ R) = (p). As (P ∩ R) ⊆ P, we have P = (p). We conclude that

(p) is a minimal prime ideal. Now let P be any minimal prime ideal of

R ⊗k k(c1, . . . , cm). By what we just have shown (P ∩ R) is then a prime

ideal of R⊗k k(c1, . . . , cm). Moreover, this ideal is obviously contained in P
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and thus equal to P. Now P∩R is also minimal because otherwise (P∩P )

was not minimal either.)

So let us fix a minimal prime ideal p of R. By assumption the residue

classes [f1]p, . . . , [fm]p generate R/p. This implies in particular that there

exists some i ∈ {1, . . . ,m} such that [fi]p 6= 0. Therefore c1[f1]p + · · · +

cm[fm]p 6= 0 ∈ R/p ⊗k k(c1, . . . , cm) ≃ (R ⊗k k(c1, . . . , cm))/(p). Thus

c1f1 + · · ·+ cmfm /∈ (p). 2

Proposition 3.13 implies immediately:

Proposition 3.15 Given F1, . . . , Fm ∈ Fq[X1, Y1, . . . ,Xn, Yn] as above, one

can determine if V (F1, . . . , Fm) is empty in a time of Poly(m·n!·dn ·log(q)).

We now prove:

Proposition 3.16 Given multihomogeneous polynomials F1, . . . , Fn ∈

Fq[X1, Y1, . . . ,Xn, Yn] of multidegree (d, d, . . . , d), where q ≥ n! · dn, one

can determine in a time of Poly(n! · dn · log(q)) if V (F1, . . . , Fn) is zero-

dimensional. If this is the case, one can compute in an expected time of

Poly(n! · dn · log(q)) all its Fq-rational points.

Proof. Let k = Fq, and let for i = 1, . . . , n pi : (P1
k)

n −→ P1
k be the projection

to ith component. Then V (F1, . . . , Fn) is not zero-dimensional if and only

if there is some i = 1, . . . , n such that pi(V (F1, . . . , Fn)) is equal to P1
k. (If

pi(V (F1, . . . , Fn)) = P1
k for some i, then clearly V (F1, . . . , Fn) is not zero-

dimensional. Otherwise V (F1, . . . , Fn) is contained in the finite set
⋂n

i=1 p−1
i (pi(V (F1, . . . , Fn))).)

For each i = 1, . . . , n we consider the multigraded resultant of F1, . . . , Fn

with respect to all coordinates except Xi, Yi. Let us denote this resultant by

Res ∨

(Xi,Yi)
(F1, . . . , Fn). By definition Res ∨

(Xi,Yi)
(F1, . . . , Fn) vanishes exactly

on pi(V (F1, . . . , Vn)), and one easily see with Proposition 3.9 c) that this is

a homogeneous polynomial of degree n! · dn.

We thus see that V (F1, . . . , Fn) is not zero-dimensional if and only if

at least one of the resultants Res ∨

(Xi,Yi)
(F1, . . . , Fn) vanishes. We can thus

decide if V (F1, . . . , Fn) is zero-dimensional or not by checking if all these

resultants are non-trivial.

Each of these resultants is a homogeneous polynomial of degree n! · dn,

thus it vanishes if and only if it vanishes on n! · dn + 1 distinct points in

P1(k).

By assumption we have n! · dn distinct elements of k at our disposal.

Including ∞ these give n! · dn + 1 elements of P1(k). We can therefore

check if the resultant Res ∨

(Xi,Yi)
(F1, . . . , Fn) vanishes by computing all the
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resultants obtained by substituting Xi and Yi with the n! · dn + 1 elements

of P1(k) and checking if the results are 0. By Proposition 3.12 each of these

computations can be performed in a time which is polynomially bounded

in n! · dn−1 log(q), and there are n · (n! · dn + 1) resultants to be computed.

The overall running time is thus polynomially bounded in n! ·dn · log(q). We

have shown the first statement of the proposition.

We now come to the computation of the k-rational solutions, provided

that the system is indeed zero-dimensional.

We start off in the same way as above, and from the “evaluated re-

sultants” we compute the resultants Res ∨

(Xi,Yi)
(F1, . . . , Fn) by interpolation.

For this we again compute the “evaluated resultants” as determinants as

in Proposition 3.11. Here for each i all the n! · dn + 1 matrices have to be

computed with respect to the same ordering of monomials in order that the

sign is consistent.

By assumption all these resultants are non-trivial. We factorize them and

determine their roots in k; let Li be a list of the roots of the ith resultant,

that is, of the k-rational points of pi(V (F1, . . . , Fn)).

We now compute the solutions in an iterative manner, by successively

imposing conditions of the coordinates. We start out with the k-rational

points in p1(V (F1, . . . , Fn)), that is, L1. Suppose now that we know the

k-rational points of (p1, . . . , pi)(V (F1, . . . , Fn)), which we have stored in a

list Si. Then for each point of P = (P1, . . . , Pi) in Si and Q in Li+1, we

check if the system obtained by substituting P for X1, Y1, . . . ,Xi, Yi and Q

for (Xi+1, Yi+1) is consistent, that is if it has a solution over k. Then all

tuples (P,Q) are inserted into a new list Si+1 for later inspection. Note here

the important point that the list Si has ≤ n! · dn elements.

Let us give the algorithm in a more formal way:

Algorithm for solving multihomogeneous zero-dimensional sys-

tems

Input: Multihomogeneous polynomials F1, . . . , Fn ∈ Fq[X1, Y1, . . . ,Xn, Yn] of

multidegree (d, d, . . . , d) where q ≥ n! · dn such that V (F1, . . . , Fn) is zero-

dimensional.

Output: All Fq-rational points of V (F1, . . . , Fn).

1. For each i = 1, . . . , n, compute Res ∨

(Xi,Yi)
(F1, . . . , Fn) by interpolation.

(Each of these resultants is non-trivial by assumption.)

2. Factorize these resultants and compute their roots in P1(Fq). Let Li be

a list of roots of the ith resultant.
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3. Let S1 ←− L1.

4. For i = 1, . . . , n− 1 do

Determine a list Si+1 consisting of elements of (P1(Fq))
i+1 as fol-

lows: For each P = (P1, . . . , Pi) ∈ Si and Q ∈ Li+1 check if the

system obtained by substituting P for X1, Y1, . . . ,Xi, Yi and Q for

Xi+1, Yi+1 is consistent. If this is the case, insert (P,Q) into Si+1.

5. Output Sn.

It is obvious that each of the lists Si contains exactly the k-rational points

of (p1, . . . , pi)(V (F1, . . . , Fn)). Thus the output of the algorithm consists of

the k-rational points of V (F1, . . . , Fn).

Let us analyze the complexity: Step 1 can clearly be performed in a

time of Poly(n! · dn log(q)) (cf. Proposition 3.12). Step 2 can be performed

in an expected time of Poly(n! ·dn log(q)) with the algorithm by Cantor and

Zassenhaus ([CZ81]). Each of the checks in Step 4 can be performed with a

time of Poly(n! · dn · log(q)) by Proposition 3.13. Now, as already remarked

each list Si contains at most n! · dn elements. Therefore, there are at most

(n! · dn)2 tuples (P,Q) to be considered for each value of i. Thus Step 4 can

also be performed in a time of Poly(n! · dn log(q)). 2

One might have to pass to a field extension of degree ≤ log2(n! · dn) in

order that enough field elements are available. To construct an appropriate

field extension, one can choose a polynomial of appropriate degree uniformly

at random and test for irreducibility. Like this, one obtains:

Proposition 3.17 Given multihomogeneous polynomials F1, . . . , Fn ∈

Fq[X1, Y1, . . . ,Xn, Yn] of multidegree (d, d, . . . , d), one can determine if

V (F1, . . . , Fn+1) is zero-dimensional and if this is the case compute all its

Fq-rational points in an expected time of Poly(n! · dn · log(q)).

3.4 Interpolation

Similarly to the algorithm above, the computation of the summation poly-

nomials will be based on an interpolation. In contrast to the computation

above, the result is however a multihomogeneous polynomial. Here we con-

sider the corresponding interpolation problem.

Let us first consider the classical 1-dimensional interpolation problem in

the context of homogeneous polynomials: Let d ∈ N and (aj , bj) ∈ k2 − {0}

for j = 1, . . . , d + 1 such that the induced elements in P1(k) are pairwise

distinct. Moreover, let c1, . . . , cd+1 ∈ k. Then there is exactly one homoge-

neous polynomial F (X,Y ) ∈ k[X,Y ] of degree d with F (aj , bj) = cj for all
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j = 1, . . . , d + 1. Moreover, with

Lj :=
∏

ℓ 6=j

bℓX − aℓY

ajbℓ − aℓbj
(4)

we have

F =
∑

j

cjLj . (5)

Proposition 3.18 Let d ∈ Nn, and let S := {1, . . . , d1 + 1} × · · · × {1, . . . ,

dn + 1}. Let k be a field, let (ai,j , b,j) ∈ k2 − {0} for i = 1, . . . , n and

j = 1, . . . , di + 1 such that for each i, the elements (ai,1 : bi,1), . . . , (ai,di+1 :

bi,di+1) ∈ P1(k) are pairwise distinct, and let cj ∈ k for j ∈ S.

Then there is exactly one multihomogeneous polynomial F ∈

k[X1, Y1, . . . ,Xn, Yn] of multidegree d with F (a1,j1, b1,j2 , . . . , an,jn , bn,jn) = bj

for all j ∈ S.

Proof. The case n = 1 is treated above. For the general case we proceed by

induction on n.

Let us first prove the uniqueness. For this, let d, S, k, and (ai,j , b,j) ∈

k2 − {0} for i = 1, . . . , n and j = 1, . . . , di + 1 be as in the proposition,

and let F ∈ k[X1, Y1, . . . ,Xn, Yn] be of multidegree d with

F (a1,j1 , b1,j2, . . . , an,jn , bn,jn) = 0 for all j ∈ S.

Then be induction hypothesis, for each j = 1, . . . , dn + 1,

F (X1, Y1, . . . ,Xn−1, Yn−1, an,j, bn,j) = 0 ∈ k[X1, Y1, . . . ,Xn−1, Yn−1]. We

now regard F (X1, Y1, . . . ,Xn, Yn) as a bivariate homogeneous polynomial

in the ring k(X1, Y1, . . . ,Xn−1, Yn−1)[Xn, Yn]. Then by the uniqueness of

the solution of the 1-dimensional interpolation problem, we conclude that

F = 0.

We come to the existence. So let objects as in the proposition be given.

For each j = 1, . . . , dn + 1 there is by induction assumption exactly one

multihomogeneous polynomial Cj ∈ k[X1, Y1, . . . ,Xn−1, Yn−1] of multide-

gree (d1, . . . , dn−1) with Cj(a1,j1 , b1,j2, . . . , an−1,jn−1, bn−1,jn−1) = cj for all

j ∈ S with jn = j. Let Lj :=
∏

ℓ 6=j
bℓXn−aℓYn

ajbℓ−aℓbj
for j = 1, . . . , dn + 1. Then

the polynomial F :=
∑

j CjLj fulfills the requirements. 2

We call the computation problem to determine the polynomial F , given

the data in the proposition the multihomogeneous interpolation problem.

One can solve this problem with an obvious linear algebra approach. We

therefore obtain:

Proposition 3.19 The multihomogeneous interpolation problem over finite

fields can be solved in a time of Poly((d1 + 1) · · · (dn + 1) · log(q)), where as
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above d is the multidegree of the polynomial to be computed and Fq is the

ground field.

4 The summation polynomials

In this section we prove Propositions 2.1 and 2.3 on the summation polyno-

mials. Let E be an elliptic curve over a field k, let m ∈ N,m ≥ 2, and let

ϕ : E −→ P1
k be a covering of degree 2 which satisfies ϕ ◦ [−1] = ϕ.

Now let Nm (or N) be the kernel of the addition map Em −→ E,

(P1, . . . , Pm) 7→ P1 + · · ·+ Pm. (Here the Pi are Z-valued points for some k-

scheme Z.) Note that N is isomorphic to Em−1 via the projection

(P1, . . . , Pm) 7→ (P1, . . . , Pm−1).

We now consider the projection Em −→ (P1
k)

m induced by ϕ. Note that

[−1] operates on N , and the map N →֒ Em −→ (P1
k)

m factors through the

quotient N/[−1].

Definition 4.1 Let Hϕ,m (or Hm or H) be the image of N in (P1
k)

m (with

the induced subscheme structure).

Lemma 4.2

a) The induced map N/[−1] −→ H is finite and birational.

b) H is a hyperplane in (P1
k)

m of multidegree (2m−2, . . . , 2m−2).

c) The projections H −→ Pm−1
K to any m− 1 of the m components are flat

coverings of degree 2m−2.

Proof. The maps N →֒ Em −→ (P1
k)

m and H →֒ (P1
k)

m are clearly finite. It

follows immediately that the induced map N −→ H is also finite. This in

turn implies that the induced map N/[−1] −→ H is finite too (by definition

of the geometric quotient).

Let us now consider the commutative diagram

N

{{vvvvvvvvv

� � //

��

Em

��uukkkkkkkkkkkkkkkkk

Em−1

��

H
� � //

{{xxxxxxxxx
(P1

k)
m ,

uullllllllllllll

(P1
k)

m−1

where the morphisms Em −→ Em−1 and (P1
k)

m −→ (P1
k)

m−1 are the pro-

jections to the first m− 1 coordinates. Then the induced morphism N −→
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Em−1 is an isomorphism, and the morphism Em−1 −→ (P1
k)

m−1 is a gener-

ically separable flat covering of degree 2m−1.

Below we show that the map N −→ H generically has degree 2, and the

map H −→ (P1
k)

m−1 generically has degree 2m−2. This statement implies

statements a) and b) in the lemma. Indeed, first as N −→ H generically

has degree 2, the induced map N/[−1] −→ H generically has degree 1,

that is, it is birational. Second, the fact that the map H −→ (P1
k)

m−1 is

quasi-finite and generically of degree 2m−2 implies that the last component

of the multidegree of H is 2m−2. “By symmetry” (or by a repetition of the

argument with projections to different components) then all components of

the multidegree are 2m−2.

Note first that we have already established that both maps are generi-

cally separable, and that the product of the two degrees is 2m−1. Therefore,

it suffices to show that the extension of function fields k(N)|k(H) has sep-

arability degree 2.

We are going to apply the isomorphism Em−1 −→ N which is the inverse

of the projection N −→ Em−1 and consider the extension k(Em−1)|k(H).

Let Ω := k(Em−1), let pi : Em−1 −→ E be the projection to the ith

coordinate, and let Pi ∈ E(Ω) be the induced points. (That is, Pi is the

morphism Spec(Ω) −→ Spec(k(Em−1)) −→ Em−1 pi
−→ E, where the first

two morphisms are the canonical ones.) Let pm := −
∑m−1

i=1 pi and Pm :=

−
∑m−1

i=1 Pi.

Then the inverse of the projection N −→ Em−1 to the first m− 1 coor-

dinates is given by (p1, . . . , pm); the corresponding Ω-valued point of N is

given by (P1, . . . , Pm).

The points P1, . . . , Pm−1 are linearly independent, since the maps

p1, . . . , pm−1 are linearly independent, the map Mork(E
m−1, E) −→

E(k(Em−1)) is injective (in fact, it is an isomorphism), and the map

E(k(Em−1)) −→ Spec(Ω) is injective too.

Now let us consider the preimage of x(P1, . . . , Pm) = (x◦P1, . . . , x◦Pm) ∈

H(Ω) in N(Ω). This set consists of all tuples (ǫ1P1, . . . , ǫmPm) ∈ Em(Ω)

with ǫi = ±1 and
∑m

i=1 ǫiPi = O. Clearly, there are exactly two such tuples:

±(P1, . . . , Pm).

We conclude: There are exactly two Ω-valued points of Em−1 which

induce the Ω-valued point (x ◦P1, . . . , x ◦ Pm) ∈ H(Ω) under the projection

N −→ H. This means that there are exactly two extensions of the canonical

inclusion k(Em−1) −→ Ω to k(N). Therefore, the separability degree of the

extension k(Em−1)|k(H) is 2.

We come to c). We still (wlog.) only consider the projection p : H −→

(P1
k)

m−1 to the first m − 1 components. As the map is quasi-finite and

as H has multidegree (2m−2, . . . , 2m−2), each fiber has degree 2m−2. With
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other words: The Hilbert polynomials of the fibers are equal to 2m−2. With

[Har77, Theorem 9.9] we conclude that p is flat.

Note that H is a projective over (P1)m−1, thus in particular proper.

Moreover, p is quasi-finite. These two properties together are equivalent to

being finite by [Gro61, Proposition 4.4.2]. 2

Now clearly, if S is any irreducible polynomial in k[X1, Y1, . . . ,Xm, Ym]

which is multihomogeneous, then S satisfies the conditions of Proposition

2.1 if and only if H = V (S). This establishes Proposition 2.1.

Thus the mth summation polynomial (cf. Definition 2.2) with respect

to ϕ is the (up to a multiplicative constant unique) polynomial S with

V (S) = H.

Remark 4.3 Let α ∈ Aut(P1
k). Then Hα◦ϕ,m = α(Hϕ,m), with other words:

Hα−1◦ϕ,m = α−1(Hϕ,m). This implies that Sα−1◦ϕ,m = α∗(Sϕ,m).

We now discuss how the summation polynomials for elliptic curves in

Weierstraß form can be given in an explicit and constructive way, following

[Sem98].

Lemma 4.4 Let E be an elliptic curve in P2
k in Weierstraß form:

E = V (Y 2Z + a1XY Z + a3Y Z2 − (X3 + a2X
2Z + a4XZ2 + a6Z

3))

with a1, a2, a3, a4, a6 ∈ k and O = [0 : 1 : 0]. Then the 3rd summation

polynomial of E with respect to x|E is

(

(x2
1x

2
2 + x2

2x
2
3 + x2

1x
2
3)− 2(x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3)

−(a2
1 + 4a2)x1x2x3 − (a1a3 + 2a4) · (x1x2 + x2x3 + x1x3)

−(a2
3 + 4a6) · (x1 + x2 + x3)

−a2
1a6 + a1a3a4 − a2a

2
3 − 4a2a6 + a2

4

)

· Y 2
1 Y 2

2 Y 2
3 .

Sketch of the proof. Let S be the polynomial in the lemma. Using the inver-

sion and addition formulae for elliptic curves in Weierstraß form (cf. [Sil86]),

one can check (with a rather lengthy computation) that for all P1, P2 ∈ E(k),

S(x(P1), x(P2), x(P1 + x(P3)) = 0. This implies that S3 divides S. As both

polynomials have multidegree (2, 2, 2), it follows that they are equal. Let

us note here that one only has to check that S(x(P1), x(P2), x(P1 + P3)) for

P1 6= ±P2 and P1, P2 6= O because then S vanishes on an open part of H3

and thus also on all of H3. 2

Let us indicate how the polynomial S was found, following [Sem04]:

Let P1, P2 ∈ E(k) with P1, P2 6= O and P1 6= ±P2. Then clearly both

x(P1 +P2) and x(P1−P2) satisfy the polynomial (x−x(P1 +P2))(x−x(P1 +
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P2)). So we computed this polynomial over the field Q(a1, a2, a3, a4, a6)

and for “generic” P1, P2, using the computer algebra system MAGMA. The

polynomial S is then obtained by multiplication with the denominator and

homogenization.

Lemma 4.5 Let E still be an elliptic curve and ϕ : E −→ P1
k a covering of

degree 2 with ϕ ◦ [−1] = ϕ. Let s, t ∈ N with s, t ≥ 2. Then

Sϕ,s+t(X1, Y1, . . . ,Xs+t, Ys+t) =

Res(X,Y )(Sϕ,s+1(X1, Y1, . . . ,Xs, Ys,X, Y ),

Sϕ,t+1(Xs+1, Ys+1, . . . ,Xs+t, Ys+t,X, Y )) .

Here by Res(X,Y ) we mean the usual Sylvester resultant for homogeneous

polynomials in X and Y of degrees 2s−1 and 2t−1.

Proof. For (P1, . . . , Ps+t) ∈ (E(k))s+t we have P1 + · · · + Ps+t = O if

and only if there exists some P ∈ E(k) with P1 + · · · + Ps + P = O and

Ps+1 + · · · + Ps+t + P = O.

It follows that topologically the hyperplane Hs+t is the image of

V (Sϕ,s+1(X1, Y1, . . . ,Xs, Ys,X, Y ), Sϕ,t+1(Xs+1, Ys+1, . . . ,Xs+t−1, Ys+t,X, Y ))

in (P1
k)

n×Proj(k[X,Y ]) under the projection to (P1
k)

n. As Hs+t is irreducible

it follows that the resultant in the lemma is (up to a multiplicative constant)

a power of Sϕ,s+t.

In order to prove that the resultant is (up to a constant) equal to Sϕ,s+t,

we consider their multidegrees.

The generic Sylvester resultant for polynomials of degrees a and b has

degree b in the coefficients of the first polynomial and degree a in the coeffi-

cients of the second polynomial. We apply this with a = 2s−1 and b = 2t−1.

In our case we obtain a polynomial of degree 2s−1 · 2t−1 = 2s+t−2 in (Xi, Yi)

for all i = 1, . . . , s + t.

As Sϕ,s+t has multidegree (2s+t−2, . . . , 2s+t−2), the result follows. 2

The two preceding lemmata give rise to algorithmic constructions of the

summation polynomials over finite fields.

First, given an elliptic curve in Weierstraß form and a covering of degree

2 ϕ : E −→ P1
Fq

with ϕ ◦ [−1] = ϕ (which means that the automorphism

α ∈ Aut(P1
k) with ϕ = α ◦ x|E is given), one can easily determine Sϕ,3 via

Lemma 4.4 and Remark 4.3.

Further, one can compute Sϕ,m for m ≥ 3 from Sϕ,m−1 and Sϕ,3 by

applying the above lemma with s = m− 2 and t = 2. This computation can

be performed via interpolation provided that q ≥ 2m−2 (which means that

#P1(Fq) ≥ 2m−2 + 1) (cf. Proposition 3.19).
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Proposition 4.6 Given an elliptic curve E over a finite field Fq with q ≥

2m−2 in Weierstraß form and a covering ϕ : E −→ P1
Fq

of degree 2 with

ϕ◦ [−1] = ϕ, a natural number m ≥ 3, one can compute the mth summation

polynomial of E with respect to ϕ in a time of Poly(em2
· log(q)).

By passing to field extensions if necessary, one obtains Proposition 2.3.

5 Geometric background on the algorithm and

analysis

The main purpose of this section is to prove Proposition 2.7. Additionally,

we give some background information on the definition of the factor base

from a geometric point of view.

5.1 Weil restrictions

We make use of Weil restrictions of schemes. Here we briefly recall the defi-

nition and some basic properties of Weil restrictions. For further information

we refer to [BLR80, 7.6] and [Die01, Chapter 1].

Let S′ and S be locally noetherian schemes, and let a flat covering S′ −→

S (a finite and flat morphism) be fixed. (Note here that a flat covering is

locally free (see [Mat89, Theorem 7.10]).) Let X ′ be an S′-scheme such

that the fibers of X ′ over S′ are quasi-projective. Then one can show that

the functor from S-schemes to sets Z 7→ MorS′(ZS′ ,X ′) is representable by

an S-scheme; the (up to unique isomorphism unique) representing object is

called the Weil restriction of X ′ with respect to S′ −→ S. We denote it by

ResS′

S (X ′).4

A reformulation of this definition is: The Weil restriction of X ′ with re-

spect to S′ −→ S is a an S-scheme ResS′

S (X ′) together with an S′-morphism

u : (ResS′

S (X ′))S′ −→ X ′ such that the following holds: Whenever Z is

an S-scheme, and α : Z ×S S′ = ZS′ −→ X ′ is an S′-morphism, there

is a unique S-morphism β : Z −→ ResS′

S (Z) with α = βS′ ◦ u, where

βS′ := β ×S S′ = β ×S idS′ . We denote the morphism β by α⊚.

The assignment X 7→ ResS′

S (X ′) gives rise to a functor (which we call

scalar-restriction functor) from the category of S′-schemes with quasi-pro-

jective fibers to the category of S-schemes. Moreover, if X ′ is an affine

S′-scheme, then ResS′

S (X ′) is an affine S-scheme.

We will use the following two lemmata. The proofs are rather easy and

therefore omitted.

4The similarity between the notations for Weil restrictions and resultants is accidental.
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Lemma 5.1 Let S′ −→ S be as above, and let X ′, Y ′,W ′ be S′-schemes

with S′-morphisms X ′ −→ W ′ and Y ′ −→ W ′. Then we have a Cartesian

diagram

ResS′

S (X ′ ×W ′ Y ′) //

��

ResS′

S (Y ′)

��

ResS′

S (X ′) // ResS′

S (W ′)

with the obvious canonical morphisms.

Lemma 5.2 Let S′ −→ S as above, let T be an S-scheme, and let T ′ :=

T ×S S′. Let X ′ be a T ′-scheme with structural morphism α : X ′ −→ T ′.

Let v : (ResT ′

T (X ′))T ′ −→ X ′ be the universal morphism; v is thus a

T ′-morphism. We have (ResT ′

T (X ′))×T T ′ ≃ (ResT ′

T (X ′))×S S′, and v is in

particular an S′-morphism. Thus by the universal property of ResS′

S (X ′) we

have an induced S-morphism v⊚ : ResT ′

T (X ′) −→ ResS′

S (X ′).

Now we have a Cartesian diagram

ResT ′

T (X ′)

��

// ResS′

S (X ′)

��

T // ResS′

S (T ′) ,

where the morphisms are defined as follows: The left morphism is the struc-

tural morphism, the right morphism is ResS′

S (α), the upper morphism is v⊚,

and the lower morphism is the morphism id⊚ : T −→ ResS′

S (T ′) correspond-

ing to the identity on T ′ under the defining functorial property of ResS′

S (T ′).

Let now K|k be a finite field extension. Then if X ′ is a quasi-projective

(resp. projective) scheme over K, ResK
k (X ′) is a quasi-projective (resp. pro-

jective) scheme of dimension [K : k] · dim(X ′) over k. Note that by the

defining functorial property of the Weil restriction we have in particular a

bijection

X ′(K) = MorK(Spec(K),X ′) −→ ResK
k (X ′)(k) = Mork(Spec(k),ResK

k (X ′)),

P 7→ P⊚ .

If X ′ is a group scheme over K, ResK
k (X ′) is in a natural way again a group

scheme, and in particular if A′ is an abelian variety over K, then ResK
k (A′)

is in a natural way an abelian variety too.

Let K|k now be an extension of finite fields of degree n, and let σ be

the relative Frobenius automorphism of K|k. We denote the induced iso-

morphism Spec(k) −→ Spec(k) again by σ. Let X ′ be a quasi-projective
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K-scheme. Then we have a canonical isomorphism

(ResK
k (X ′))K ≃

n−1
∏

i=0

σi(X ′)

of K-schemes under which the universal morphism u : (ResK
k (X ′))K −→ X ′

corresponds to the projection

u :

n−1
∏

i=0

σi(X ′) −→ X ′ .

Moreover, if Z is any k-scheme and α : ZK −→ X ′ is a morphism, then

(α⊚)K corresponds to

(α, σ(α), . . . , σn−1(α)) : ZK −→

n−1
∏

i=0

σi(X ′)

and if ϕ : X ′ −→ Y ′ is a morphism of quasi-projective K-schemes, then

ResK
k (ϕ) corresponds to

ϕ× σ(ϕ)× · · · × σn−1(ϕ) :
n−1
∏

i=0

σi(X ′) −→
n−1
∏

i=0

σi(Y ′) .

5.2 Background on the factor base

Let still K|k be an extension of finite fields of degree n, and as above let σ

the Frobenius automorphism relative to k. Let E be an elliptic curve over

K, and let us fix a covering ϕ : E −→ P1
K of degree 2 with ϕ ◦ [−1] = ϕ.

Let ι = id⊚ : P1
k −→ ResK

k (P1
K) be the morphism corresponding to the

identity on P1
K . One can easily see (for example via base change to K) that

ι is a closed immersion.

Let V be the preimage of ι(P1
k) under ResK

k (ϕ) : ResK
k (E) −→ ResK

k (P1
k).

This means by definition that we have a Cartesian diagram

V
� � //

��

ResK
k (E)

ResK
k (ϕ)

��
P1

k
� � ι // ResK

k (P1
k) .

(6)

Note that ResK
k (ϕ) : ResK

k (E) −→ ResK
k (P1

k) is a flat covering of degree

2n (as one sees after base change to K), and therefore V −→ P1
k is a flat

covering of degree 2n too.

Let us now explain the connection of these definitions to the definition

of the factor base in the algorithm: Let us consider a particular run of the
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algorithm. Then under the bijection P1(K) ≃ ResK
k (P1

K)(k) the inclusion

P1(k) ⊆ P1(K) corresponds to ι(P1
k(k)) ⊆ ResK

k (P1
K))(k). Therefore the

factor base F = (ϕ−1(P1
k)(k)) ⊆ E(K) corresponds to V (k) under the bi-

jection E(K) ≃ ResK
k (E)(k). One can therefore say that the factor base is

defined in a “geometric way” – something that immediately apparent from

the definition of the factor base in the algorithm.

The addition on the Weil restriction induces a morphism V n −→ ResK
k (E),

and – again under the bijection E(K) ≃ ResK
k (E)(k) – for P ∈ E(K) the

tuples (P1, . . . , Pn) ∈ E(K)n with ϕ(Pi) ∈ P1(k) and
∑

i Pi = P correspond

to the k-valued points of the fiber of V n −→ ResK
k (E) at P⊚, the k-rational

point of ResK
k (E) corresponding to P .

We now study V under Condition 2.13.

Proposition 5.3 Let Condition 2.13 be satisfied. Then V is geometrically

reduced and geometrically irreducible (and thus birational to a curve).

Proof. By (6) and Lemma 5.2 we have V ≃ Res
P1

K

P1
k

(E), with respect to the

covering ϕ : E −→ P1
k. This implies that

VK ≃ E ×P1
K

σ(E) ×P1
K
· · · ×P1

K
σn−1(E) , (7)

where the morphisms are ϕ : E −→ P1
K, . . . , σn−1(ϕ) : σn−1(E) −→ P1

K .

Let us now fix an algebraic closure k(x) of k(x). Let us denote the

Frobenius automorphism of k|k also by σ. Let us then prolong σ first to

k(x) via σ(x) := x, and and let us fix any automorphism of k(x)|k(x) which

restricts to σ; let us denote this automorphism again by σ. Moreover, let us

fix an injection of k(E) into k(x) over k(x).

We now consider the total quotient ring of the scheme Vk, which is

isomorphic to

k(E) ⊗k(x) σ(k(E)) ⊗k(x) · · · ⊗k(x) σn−1(k(E)) .

By Condition 2.13 for i = 1, . . . , n − 1, the extension σi(k(E))|k(x) is

ramified at σi(P ), but for any j = 0, . . . , i−1, the extension σj(k(E))|k(x) is

not ramified at σi(P ), thus the extension k(E)σ(k(E)) · · · σi−1(k(E))|k(x)

in k(x) is also not ramified at σi(P ). Thus σi(k(E)) is not contained in

k(E)σ(k(E)) · · · σi−1(k(E)). It follows therefore by induction that the

extension k(E)σ(k(E) · · · σn−1(k(E))|k(x) in k(x) has degree 2n. Thus

the total quotient ring of Vk is is isomorphic to the composite

k(E)σ(k(E)) · · · σn−1(k(E)) in k(x) and therefore a field. We see that Vk is

reduced and irreducible, thus V is geometrically reduced and geometrically

irreducible. 2
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Proposition 5.4 Let us still assume that Condition 2.13 is satisfied, let C

be the curve which is birational to V , and let π : C −→ V be a birational

morphism. Then

a) The genus of C is ≤ (2n− 1) · (2n − 1).

b) C(k) contains at most n · 2n+2 points which map to singular points under

the birational morphism π : C −→ V .

Proof. By a general result on elementary abelian extensions (see e.g. [KR89])

we have

g(C) =
∑

L

g(L) ,

where L runs over all subextensions of k(C)|k(x) of degree 2. We show below

that the genus of a function field L as in the sum is always ≤ 2n − 1. This

implies that g(C) ≤ (2n − 1) · (2n − 1).

To show the claim on the subfields L we proceed with a case distinction.

Let q be even. By Artin-Schreier theory every subfield L of k(x)|k(x) of

degree 2 corresponds to the a 1-dimensional subspace of the F2-vector space

k(x)/P(k(x)), where P is the Artin-Schreier operator.

If now k(E) corresponds to 〈f〉, where f is the residue class of some

f ∈ k(x), then each field L as in the sum corresponds to 〈a0f + a1σ(f) +

· · ·+ an−1σn−1(f)〉 for a uniquely defined tuple (a0, . . . , an−1) ∈ Fn
2 − {0}.

Let first j(E) = 0. In this case the extension k(E)|k(x) is ramified at one

place, and k(E) corresponds to some space 〈f〉, where f is either a polyno-

mial of degree 3 or of the form g
(x−λ)3

for λ ∈ k and deg(g) = 3.

Using [Sti93, Proposition III.7.8] one sees: If L is any field as in the sum,

then L|k(x) is ramified at at most n places (this is also immediately obvious),

and the corresponding discriminant exponents are all 4. This implies that

the genus of L is ≤ 2n− 1.

Let now j(E) 6= 0. In this case k(E)|k(x) is ramified at 2 places, and k(E)

corresponds to 〈f〉, where f is the sum of two distinct polynomials f1, f2

such that each of these polynomials is either x or 1
x−a for some a ∈ k. Now

each subfield L as in the sum is ramified over at most 2n places and the

different exponents are all 2. Again the genus of L is ≤ 2n − 1.

Let q be odd. In this case k(E)|k(x) is (tamely) ramified at 4 places. If thus

L is as in the sum, L|k(x) is ramified at at most 4n places. Thus the genus

of L is ≤ 2n− 1.

We come to b). Let S be the set of points of P1(k) over which one of

the coverings σi(E) −→ P1
k

is ramified. Using the fact that a morphism

obtained from an étale morphism via base change is étale we obtain: The
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canonical morphism V −→ P1
k is étale outside S. This implies that V is

smooth outside the preimage of S, and the birational morphism π : C −→ V

is an isomorphism outside the preimages of S. With other words: All points

in C(k) which map to singular points of V are contained in the preimage of

S.

As the covering C −→ P1
k has degree 2n, the preimage of the set S has

at most #S · 2n ≤ 4n · 2n elements. 2

Remark 5.5 Let k = Fq. Then under Condition 2.13 by the above propo-

sitions, and the Hasse-Weil bound we have

#{P ∈ E(K) | ϕ(P ) ∈ P1(k)} = #V (k)

≥ q + 1− 2 · (2n− 1) · (2n − 1) · q
1
2 − n · 2n+2 + 1 .

For log2(q) ≥ 3n, that is, 2
3
2
·n ≤ q

1
2 , and n large enough we have

V (k) ≥
1

2
· (q + 1) .

(The bound q ≥ 3 log2(n) is a bit arbitrary but it serves its purposes, and in

order to complete the analysis of the algorithm for the Theorem, we anyway

have to impose a more restricted bound.)

This result shows that if ϕ satisfies Condition 2.13, the set

{P ∈ E(K) | ϕ(P ) ∈ P1(k)} is “reasonably large”. Note that this applies

then of course in particular to the factor base constructed in the algorithm

for the Theorem. We remark however that the main purpose of showing that

V is birational to a curve is not to prove that a suitably large factor base can

be efficiently constructed – this goal can also easily be reached by choosing

the automorphism α used to define ϕ in a randomized fashion. Rather the

key statement is that V n contains an irreducibility component which maps

surjectively to ResK
k (E) under the addition morphism and which contains

“enough” elements.

5.3 The role of the summation polynomials

Let the hyperplane H = Hn+1 of (P1
k)

n+1 be defined as in Section 4.

By applying the scalar-restriction functor, we obtain:

ResK
k (H) −→ ResK

k ((P1
K)n+1) ≃ (ResK

k (P1
K))n+1 .

Via base change to K one sees immediately that we have a closed immersion.

Let X be the scheme-theoretic preimage of ResK
k (H) in (P1

k)
n×ResK

k (P1
K)

under the closed immersion ι × ι × · · · × ι × id : (P1
k)

n × ResK
k (P1

K) −→
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ResK
k ((P1))n+1. This means by definition that we have a Cartesian diagram

X� _

��

� � // ResK
k (H)

� _

��
(P1

k)
n × ResK

k (P1
K)

� � // (ResK
k (P1

K))n+1 .

(8)

Note that – again under the obvious bijections – the elements of X(k) cor-

respond to the tuples (Q1, . . . , Qn, Q) with Qi ∈ P1(k) and Q ∈ P1(K) with

(Q1, . . . , Qn, Q) ∈ H(K). The latter condition means of course that there

are P1, . . . , Pn, P ∈ E(K) with ϕ(Pi) = Qi and
∑

i Pi = P .

Notation 5.6 Let p1 : (P1
k)

n × ResK
k (P1

K) −→ (P1
k)

n and p2 : (P1
k)

n ×

ResK
k (P1

K) −→ ResK
k (P1

K) be the two projections.

Lemma 5.7 (p1)|X : X −→ (P1
k)

n is a flat covering of degree 2(n−1)·n.

Proof. By Lemma 4.2 c) the projection to the first n components H −→

(P1
K)n is a flat covering of degree 2n−1. Therefore the induced map

ResK
k (H) −→ ResK

k ((P1
K)n) ≃ (ResK

k (P1))n is a flat covering of degree

2(n−1)·n. The map (p1)|X : X −→ (P1
k)

n is obtained from this map via

base change with ι× · · · × ι : (P1
k)

n −→ (ResK
k (P1

K))n. 2

Notation 5.8 Let G be the graph of −an : V n −→ ResK
k (E), where an is

the restriction of the addition morphism to V n. (Note the minus sign!)

As in Section 4 let for m ∈ N Nm be the kernel of the addition morphism

Em −→ E. One easily sees that ResK
k (Nm) is (as a subscheme of ResK

k (Em))

the kernel of the addition homomorphism on ResK
k (Em). Let now N :=

Nn+1. By considering Z-valued points for any k-scheme Z, one obtains

immediately:

Lemma 5.9 G is the scheme-theoretic intersection of V n × ResK
k (E) and

ResK
k (N) in ResK

k (En+1) ≃ (ResK
k (E))n+1.

Proposition 5.10 There is a canonical surjective morphism G −→ X.

Moreover, if Condition 2.13 is satisfied, then X is geometrically irreducible.
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Proof. Let us consider the commutative diagram

G
� � //
� _

��

ResK
k (N)

� _

��

((RRRRRRRRRRRRR

X
� � //

� _

��

ResK
k (H)

� _

��

V n × ResK
k (E)

))RRRRRRRRRRRRRR

� � // (ResK
k (E))n+1

((RRRRRRRRRRRRR

(P1
k)

n × ResK
k (P1

K)
� � // (ResK

k (P1
K))n+1

with the obvious canonical morphisms. As by definition of X the right-lower

subdiagram (i.e. diagram (8)) is Cartesian, we have an induced morphism

G −→ X.

It suffices to prove the surjectivity on k-valued points. So let Q ∈ X(k).

As the map N −→ H is surjective, so is ResK
k (N) −→ ResK

k (H). Let

us consider Q as a point in ResK
k (H)(k), and let us fix a preimage P ∈

ResK
k (N)(k).

We claim that P lies in G(k), or with other words that the image of P

in (ResK
k (E))n+1(k) lies in (V n × ResK

k (E))(k). For this we have to check

that the image of P in ResK
k (P1

K))(k) lies in ((P1)n × ResK
k (P1

K))(k). But

this is obvious as the image is nothing but the point Q we started with.

Let now Condition 2.13 be satisfied. By Proposition 5.3 V is then ge-

ometrically reduced and geometrically irreducible, thus so is V n, which is

isomorphic to the graph G. As the map G −→ X is surjective, X is then

also geometrically irreducible. 2

Let us now fix some Q ∈ P1(K). Following our notation, let Q⊚ be the

corresponding k-rational point of ResK
k (P1

K). Let XQ⊚
be the fiber of X at

Q⊚, that is, we have the Cartesian diagram

XQ⊚

� � //
� _

��

X� _

��
(P1

k)
n � � //

��

(P1
k)

n × ResK
k (P1

K)

��
Spec(k) � � Q⊚ // ResK

k (P1
K) .

Then we have the following connection with the decomposition algo-

rithm:
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Proposition 5.11 As a subscheme of (P1
k)

n × ResK
k (P1

K), XQ⊚
is

V (S(1), . . . , S(n)), where the polynomials S(j) ∈ k[X1, Y1, . . . ,Xn, Yn] are de-

fined as in Equation (2).

We show first:

Lemma 5.12 Let HQ ⊂ (P1
K)n be the restriction of H to (P1

K)n via the

closed immersion id× · · ·×id×Q : (P1
K)n ≃ (P1

K)n×KSpec(K) −→ (P1
K)n+1.

Then we have a Cartesian diagram

XQ⊚

� � //
� _

��

ResK
k (HQ)

� _

��
(P1

k)
n � � // (ResK

k (P1
K))n ,

where the lower arrow is given by ι× · · · × ι.

Proof. We have ResK
k (Spec(K)) = Spec(k) and ResK

k (Q) = Q⊚. By Lemma

5.1 the defining Cartesian diagram

HQ
� � //

� _

��

H� _

��
(P1

K)n � � // (P1)n+1

gives rise to the Cartesian diagram

ResK
k (HQ)

� � //
� _

��

ResK
k (H)

� _

��
(ResK

k (P1
K))n

� � // (ResK
k (P1

K))n+1 ,

where the lower arrow is given by id× · · · × id×Q⊚ : (ResK
k (P1

K))n ≃

(ResK
k (P1

K))n ×k Spec(k) −→ (ResK
k (P1

K))n+1.

Now XQ⊚
is the pull-back of ResK

k (H) to (P1
k)

n under the map ι× · · · ×

ι × Q⊚ : (P1
k)

n ≃ (P1
k)

n ×k Spec(k) −→ (ResK
k (P1

K))n+1. This implies that

we have a Cartesian diagram

XQ⊚

� � //
� _

��

ResK
k (HQ)

� � //
� _

��

ResK
k (H)

� _

��
(P1)nk

� � // (ResK
k (P1

K))n
� � // (ResK

k (P1
K))n+1 .

2
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We come to the proof of Proposition 5.11.

By Lemma 5.12 and Lemma 5.2 we have a commutative diagram

XQ⊚ � q

""EE
EE

EE
EE

EE

∼ // Res
(P1

K)n

(P1
k)n (HQ)

xxrrrrrrrrrr

(P1
k)

n ,

where the arrow to the left is the structural morphism, which of course is

then also a closed immersion.

To establish the result we thus have to show that as a closed subscheme

of (P1
k)

n, Res
(P1

K)n

(P1
k)n (HQ) is equal to V (S(1), . . . , S(n)).

Let now Sϕ,n+1 be the same summation polynomial as in subsection 2.1

(recall that the (n + 1)th summation polynomial with respect to ϕ is only

unique up to multiplication by a non-trivial constant). Also, let b1, . . . , bn

be the fixed k-basis of K from subsection 2.1. Note that b1, . . . , bn is then

also a basis of the free k[x1, . . . , xn]-module K[x1, . . . , xn]. Moreover, let

S′ := Sϕ,n+1(X1, Y1, . . . ,Xn, Yn, Q) be the polynomial obtained by inserting

the same coordinates of Q = ϕ(P ) into the summation polynomial as in 2.1

(again these are only unique up to multiplication by a non-trivial constant).

We now prove the result by restriction to affine parts of (P1
k)

n.

Let for the moment Xi,1 := Xi and Xi,2 := Yi. Moreover, let for some

multihomogeneous polynomial F ∈ k[X1, Y1, . . . ,Xn, Yn] UF := (P1
k)

n −

V (F ) be the corresponding open subscheme.

One can now show that for any a ∈ {1, 2}n, the restrictions of both

schemes to UX1,a1
∩UX2,a2

∩ · · · ∩UXn,an
are equal; and this implies that the

schemes are equal. For notational convenience we consider in the following

the case of a = (2, . . . , 2) (“dehomogenization with respect to Y1, . . . , Yn”);

the other cases can be established in exactly the same way.

Let s(x1, . . . , xn) := S′(x1, 1, x2, 1, . . . , xn, 1) ∈ K[x1, . . . , xn]. Then

HQ ∩ An
k ⊆ An

k = Spec(k[x1, . . . , xn]) corresponds to the quotient ring

k[x1, . . . , xn]/(s) of k[x1, . . . , xn].

As the formation of the Weil restriction commutes with base-change

on the base, we have (Res
(P1

K)n

(P1
k)n (HQ)) ∩ An

k = Res
An

K
An

k
(HQ ∩ An

K) as closed

subschemes of An
k . A defining system of polynomials for Res

An
K

An
k

(HQ ∩ An
K)

can be derived via the well-known method to obtain defining equations for

Weil restrictions of affine schemes over rings (see example [Die01, Chapter

1] or the proof of [BLR80, §7.6., Theorem 4]):

Let s(1), . . . , s(n) ∈ k[x1, . . . , xn] be defined by the equation
∑

j

bj s(j) = s .
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Then Res
An

K
An

k
(HQ ∩ An

K) = Spec(k[x1, . . . , xn]/(s(1), . . . , s(n))) =

V (s(1), . . . , s(n)) ⊂ An
k . But the s(j) are exactly the dehomogenizations

of the polynomials S(j), and thus (XQ⊚
) ∩ An

k = (Res
(P1

K)n

(P1
k)n (HQ)) ∩ An

k =

Res
An

K
An

k
(HQ∩An

K) = V (s(1), . . . , s(n)) = V (S(1), . . . , S(n))∩An
k as subschemes

of An
k . 2

5.4 Determination of non-zero-dimensional fibers

We are interested in the number of points Q ∈ P1(K) for which the fiber

XQ⊚
= p−1

2 (Q⊚) is not zero-dimensional. For this we first consider a base

change to K, such that XK is a closed subscheme of (P1
K)n× (P1

K)n, and we

perform explicit computations in the Chow ring of (P1
K)n× (P1

K)n. We iden-

tify for notational reasons (P1)n × (P1)n componentwise with
∏n

i=1 Proj(Z[X1,i, Y1,i]) ×
∏n

i=1 Proj(Z[X2,i, Y2,i]), and let hℓ,i be the class

of Xℓ,i in the Chow ring of (P1
K)n × (P1

K)n.

Lemma 5.13 The class of XK in CH((P1
K)n×(P1

K)n) is 2(n−1)·n
∏n

i=1(h1,1+

· · ·+ h1,n + h2,i).

Proof. XK is defined inside (P1
K)n × (P1

K)n by the polynomials

Fj := Sϕ,n+1(X1,1, Y1,1, . . . ,X1,n, Y1,n,X2,j , Y2,j)

for j = 1, . . . , n. One can easily see with this explicit description that for all

ℓ = 2, . . . , n no irreducibility component of V (F1, . . . , Fℓ−1) is contained in

V (Fℓ).

Indeed, let C be an irreducibility component of V (F1, . . . , Fℓ−1). Then

C = C ′× (P1
K)n−ℓ+1 for some C ′ ⊆ (P1

K)n× (P1
K)ℓ−1. Let (Q1, Q2) ∈ C ′(K),

where Q1 ∈ (P1)n(K) and Q2 ∈ (P1)ℓ−1(K). Now there are at most 2n−1

points in Q3 ∈ P1(K) with Fℓ(Q1, Q3) = 0. Choose some Q3 ∈ P1(K) which

is distinct from these points, and choose Q4 ∈ (P1)n−ℓ(K) arbitrarily. Then

(Q1, Q2, Q3, Q4) is a K-valued point of C which does not lie in V (Fℓ)(K).

We therefore have [XK ] = [V (F1)] · · · [V (Fn)] in the Chow ring of (P1
K)n×

(P1
K)n (cf. Remark 3.5). Moreover, [V (Fi)] = 2n−1(h1,1 + · · · + h1,n + h2,i).

This gives the statement. 2

Lemma 5.14 The map (p2)|X is surjective.

Proof. There are two possible ways to prove this statement:

First, by the previous lemma and Lemma 3.8 we have ((p2)K)⊚([XK ]) =

n! · 2(n−1)·n, thus (p2)K(XK) is equal to the ambient space
∏n

i=1 Proj(K[X2,i, Y2,i]).
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Second, Let Q = (Q1, . . . , Qn) ∈
∏n

i=1 Proj(K[X2,i, Y2,i])(K). Then the

geometric fiber XQ is the subscheme of
∏n

i=1 Proj(K[X1,i, Y1,i]) defined by

Fi(X1,1, Y1,n, . . . ,X1,n, Y1,n, Qi) for i = 1, . . . , n. We see in particular that

the fiber is never empty. More precisely, if it is zero-dimensional then its

degree is n! · 2(n−1)·n. 2

Remark 5.15 From the fact that (p2)|X is surjective one can easily deduce

that the map an : V n −→ ResK
k (E) is also surjective.

Let now qi :
∏n

i=1(Proj(K[X1,i, Y1,i])) −→ Proj(K[X1,i, Y1,i]) be the pro-

jection to the ith component.

For some Q ∈
∏n

i=1(Proj(K[X2,i, Y2,i]))(K) the geometric fiber XQ (which

is contained in
∏n

i=1 Proj(K[X1,i, Y1,i])) is zero-dimensional if and only if for

no i = 1, . . . , n the image of XQ under qi is equal to

Proj(K[X1,i, Y1,i]).

Let Ri ∈ K[X1,i, Y1,i,X2,1, Y2,1, . . . ,X2,n, Y2,n] be the multigraded re-

sultant of F1, . . . , Fn with respect to the variables X1,1, Y1,1, . . . ,X1,i−1,

Y1,i−1,X1,i+1, Y1,i+1, . . . ,X1,n, Y1,n. Then for Q = (Q1, . . . , Qn) ∈
∏n

i=1 Proj(K[X2,i, Y2,i])(K) the geometric fiber XQ is zero-dimensional if

and only if for all i = 1, . . . , n Ri(Xi, Yi, Q1, . . . , Qn) is non-trivial (cf. also

the proof of Proposition 3.16).

Note now that not all fibers are non-zero-dimensional because X has

dimension n (see Lemma 5.7) and (P1
K)n has dimension n too. Thus the

polynomials R1, . . . , Rn are all non-trivial.

Lemma 5.16 Each polynomial Ri has multidegree (n! · 2(n−1)·n, (n − 1)! ·

2(n−1)·n, . . . , (n − 1)! · 2(n−1)·n).

Proof. The polynomials F1, . . . , Fn have multidegree (2n−1, . . . , 2n−1) ∈

Nn−1 with respect to the variables under consideration. Therefore the corre-

sponding generic resultant is homogeneous in the coefficients of each of the

polynomials of degree (n − 1)! · 2(n−1)2 . This implies that the degree with

respect to X2,i, Y2,i for some i is (n− 1)! · 2(n−1)2 · 2n−1 = (n− 1)! · 2(n−1)·n.

Moreover, the degree with respect to X1,i, Y1,i is (n− 1)! · 2(n−1)2 ·n · 2n−1 =

n! · 2(n−1)·n. 2

Let us now for every i = 1, . . . , n fix some non-trivial coefficient Ci of

Ri regarded as a polynomial in K[X2,n, Y2,n, . . . ,X2,n, Y2,n][X1,i, Y1,i]. Then

clearly the points Q ∈
∏n

i=1

∏

Proj(K[X2,i, Y2,i]) for which the fiber XQ is

not zero-dimensional are contained in

n
⋃

i=1

V (Ci) ⊆ (P1
K)n .
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Let us fix some i = 1, . . . , n. Then V (Ci) is an effective Cartier divisor of

multidegree ((n−1)!·2(n−1)·n, . . . , (n−1)!·2(n−1)·n) in
∏n

i=1 Proj(K[X2,i, Y2,i]),

and (p2)
−1
K (V (Ci)) is an effective Cartier divisor of multidegree

(0, . . . , 0, (n − 1)! · 2(n−1)·n, . . . , (n− 1)! · 2(n−1)·n) in (P1
K)n × (P1

K)n.

It follows that

[XK ] · [(p2)
−1
K (V (Ci))] =

(n− 1)! · 22(n−1)·n · (
n

∏

i=1

(h1,1 + · · · + h1,n + h2,i)) · (h2,1 + · · ·+ h2,n)

in CH((P1
K)n × (P1

K)n). With Lemma 3.8 this implies that

((p1)K)⊚([XK ] · [(p2)
−1
K (V (Ci))])

= (n− 1)! · 22(n−1)·n · n · (h1,1 + · · · + h1,n)

= n! · 22(n−1)·n · (h1,1 + · · ·+ h1,n) .

(9)

Assumption 5.17 Let us from now on assume that Condition 2.13 is sat-

isfied.

Notation 5.18 Let k = Fq (such that K = Fqn).

Recall that X is now geometrically irreducible (Proposition 5.10). Clearly

XK is not contained in (p2)
−1
K (V (Ci)) (because otherwise (p2)K(XK) would

be contained in V (Ci), contradicting the surjectivity of p2). Thus we have

[XK ]·[(p2)
−1
K (V (Ci))] = [XK∩(p2)

−1
K (V (Ci))] (cf. Remark 3.5). As the map

(p1)K : XK −→
∏n

i=1 Proj([X1,i, Y1,i]) is finite and flat (cf. Lemma 5.7), the

dimension of (p1)K(XK ∩ Ci) is equal to the dimension of XK ∩ Ci. With

(9) we conclude:

Lemma 5.19 (p1)K(XK ∩Ci) (with the induced reduced scheme structure)

is a reduced effective Cartier divisor of
∏n

i=1 Proj([X1,i, Y1,i]) whose multi-

degree is componentwise ≤ (n! · 22(n−1)·n, . . . , n! · 22(n−1)·n).

The subscheme
n
⋃

i=1

n−1
⋃

j=0

σj((p1)K(XK ∩ Ci))

of
∏n

i=1 Proj([X1,i, Y1,i]) is Gal(K|k)-invariant. It thus descends to a sub-

scheme of (P1
k)

n; let B be this scheme.

Lemma 5.20

a) B is a reduced effective Cartier divisor whose multidegree is component-

wise ≤ (n2 · n! · 22(n−1)·n, . . . , n2 · n! · 22(n−1)·n).
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b) Let Q ∈ (P1(k))n − B(k), and let Q′ be any preimage of Q under p1.

Then the fiber Xp2(Q′) is zero-dimensional.

c) There are at most n3 · n! · 22(n−1)·n · (q + 1)n−1 points in B(k).

Proof. Let Ai be a multihomogeneous polynomial defining (p1)K(XK ∩Ci).

Then B is V (
∏n−1

j=0 σj(A1 · · ·An))red. The polynomial in question has a

multidegree which is componentwise ≤ (n2 ·n!·22(n−1)·n, . . . , n2 ·n!·22(n−1)·n).

Statement b) follows immediately from the definition of B.

Statement c) follows from a) and the following lemma. 2

Lemma 5.21 Let H be an effective Cartier divisor of multidegree d in

(P1
k)

n. Then

#H(k) ≤ (
n

∑

i=1

di) · (q + 1)n−1 .

Proof. It clearly suffices to show the result under the condition that all

indices of the multidegree are positive.

We proceed with induction by n. For n = 1 the claim is that #H(k) ≤

d1, and this is surely correct.

Now let H be defined by the polynomial F (X1, Y1, . . . ,Xn, Yn) ∈

k[X1, Y1, . . . ,Xn, Yn]. Let us consider the projection to the first n−1 compo-

nents (P1
k)

n −→ (P1
k)

n−1 and the induced morphism H −→ (P1
k)

n−1. Now for

every point P = (P1, . . . , Pn−1) ∈ (P1
k)

n−1(k) for which

F (P1, . . . , Pn−1,Xn, Yn) does not vanish, the fiber has degree dn, thus in par-

ticular it contains at most dn k-rational points. Let now C be a non-trivial

coefficient of F regarded as a polynomial in k[X1, Y1, . . . ,Xn−1, Yn−1][Xn, Yn].

Then all points P ∈ (P1
k)

n−1(k) for which F (P1, . . . , Pn−1,Xn, Yn) vanishes

are contained in V (C). Now C has multidegree (d1, . . . , dn−1), and thus

#V (C)(k) ≤ (
∑n−1

i=1 di) · (q + 1)n−2 by induction. We conclude:

#H(k) ≤ dn · (q + 1)n−1 + #V (C)(k) · (q + 1)

≤ dn · (q + 1)n−1 + (
∑n−1

i=1 di) · (q + 1)n−1

= (
∑n

i=1 di) · (q + 1)n−1

2

Given an element P ∈ E(K), the decomposition algorithm succeeds

when applied to P if and only if the fiber Xϕ(P )⊚
is zero-dimensional and

contains a k-rational point (Q1, . . . , Qn) such that there exist P1, . . . , Pn ∈

E(K) with ϕ(Pi) = Qi and
∑

i Pi = P .

We want to derive a lower bound on the number of such elements

P ∈ E(K).

46



In [Die09], among other things we study the complexity of the elliptic

curve discrete logarithm problem restricted to curves over extension fields

with a fixed extension degree n. As a preperation for this, we we now proceed

a bit more generally:

Given any subset M of { (P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i =

1, . . . , n }, we want to derive a lower bound on the number of elements

P ∈ E(K) such that the decomposition algorithm succeeds and there exist

P1, . . . , Pn ∈M with
∑

i Pi = ±P .

Let us for this consider the commutative diagram of sets of k-valued

points

G(k)
ρ // X(k)

(p1)|X
��

V n(k)

γ

OO

τ //
∏n

i=1 Proj(k[X1,i, Y1,i])(k) ,

where the map γ : V (k) −→ G(k) is induced by the graph morphism,

that is, it is explicitly given by (P1, . . . , Pn) 7→ (P1, . . . , Pn,−
∑

i Pi), the

map ρ : G(k) −→ X(k) is induced by the morphism G −→ X defined in

Proposition 5.10, and the map τ : V n(k) −→
∏n

i=1 Proj(k[X1,i, Y1,i])(k) is

induced componentwise by the canonical morphism in diagram (6).

Note that under the scalar restriction functor and in the context of the

index calculus algorithm for the Theorem, V (k) corresponds to the factor

base F = {P ∈ E(K) | ϕ(P ) ∈ P1(k)}, G(k) corresponds to the set of tuples

(P1, . . . , Pn, P ) with ϕ(Pi) ∈ P1(k) and P = −
∑

i Pi, and X(k) corresponds

to the set of tuples (Q1, . . . , Qn, Q) with Qi ∈ P1(k) and Q ∈ P1(K) and

Sn+1(Q1, . . . , Qn, Q) = 0. The map γ corresponds then to the map which is

again given by (P1, . . . , Pn) 7→ (P1, . . . , Pn,−
∑

i Pi), and the maps ρ and τ

correspond to the componentwise application of ϕ.

Let M ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i = 1, . . . , n},

and let M⊚ be the corresponding subset of V (k). Then every element P ∈

E(K) such that ϕ(P )⊚ ∈ ResK
k (P1

K)(k) is the image under p2 of an element

in (ρ ◦ γ)(M⊚) − p−1
1 (B(k)) is an element as desired. (Indeed, if P is such

an element, first the fiber Xϕ(P )⊚
is zero-dimensional by Lemma 5.20 b),

and second there exist P1, . . . , Pn ∈M with ϕ(P1 + · · ·+ Pn) = ϕ(P ), thus

P1 + · · ·+ Pn = ±P .)

We are thus interested in the cardinality of the set

p2

(

(ρ ◦ γ)(M⊚)− p−1
1 (B(k))

)

.

For this we first derive a lower bound on

(ρ ◦ γ)(M⊚)− p−1
1 (B(k)) .
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The image of this set in
∏n

i=1 Proj(k[X1,i, Y1,i])(k) is contained in

τ(M⊚)−B(k) .

As τ corresponds to the componentwise application of ϕ, we have #τ(M⊚) ≥
1
2n #M⊚ = 1

2n #M .

With Lemma 5.20 c) we obtain:

#((ρ ◦ γ)(M)− p−1
1 (B(k)))

≥ #(τ(M⊚)−B(k))

≥ #M
2n − n3 · n! · 22(n−1)·n · (q + 1)n−1 .

(10)

Now if an element Q in the set p2((ρ◦γ)(V n(k))−p−1
1 (B(k))) is given, the

fiber of p2(Q) under p2 is zero-dimensional, and thus its degree is n! ·2(n−1)·n

(see the proof of Lemma 5.14). We therefore have the following proposition.

Proposition 5.22 Let

M ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i = 1, . . . , n} .

Then the number of elements P ∈ E(K) such that the decomposition al-

gorithm succeeds and there exist P1, . . . , Pn ∈ M with P1 + · · ·Pn = ±P

is

≥
#M − n3 · 22n2−n · (q + 1)n−1

n! · 2n2 .

We now apply this proposition with M = V (k). As mentioned in Re-

mark 5.5 for log2(q) ≥ 3n and n large enough we have #V (k) ≥ q+1
2 ,

thus #V n(k) ≥ (q+1)n

2n . With Proposition 5.22 we obtain that the num-

ber of elements P ∈ E(K) such that there exist P1, . . . , Pn ∈ E(K) with

ϕ(Pi) ∈ P1(k) and
∑

Pi = P is

≥
(q + 1)n−1

n! · 2n·(n+1)
· (q + 1− n3 · 22n2

) .

Let now ǫ > 0. Then for n large enough this is

≥
qn−1

n! · 2n·(n+1)
· (q −

1

2
· 2(2+ǫ)·n2

) .

Then for log2(q) ≥ (2 + ǫ) · n2 this is

≥
qn

n! · 2n·(n+1)+1
.

Again for n large enough and log2(q) ≥ (2 + ǫ) · n2 this is

≥ 2 · qn− 1
2 .

We therefore have:
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Proposition 5.23 Let ǫ > 0. Then for n large enough and (2 + ǫ) · n2 ≤

log2(q) there are at least 2 · qn− 1
2 elements in E(K) for which the decompo-

sition algorithm succeeds.

And this implies Proposition 2.7, the main result for the analysis of the

algorithm in subsection 2.2:

Proposition 5.24 Let ǫ > 0. Then for n large enough and (2 + ǫ) · n2 ≤

log2(q) the following holds: Let E/Fqn be an elliptic curve, and let ϕ be

chosen such that Condition 2.13 holds. Then the probability that the decom-

position algorithm succeeds if applied to a uniformly randomly distributed

element in E(Fqn) is ≥ q−
1
2 .
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