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Abstract. We show that under the assumption of Artin’s Primitive Root Conjecture, for
all primes p there exist ordinary elliptic curves over Fp(x) with arbitrarily high rank and
constant j -invariant. For odd primes p, this result follows from a theorem we prove which
states that whenever p is a generator of (Z/�Z)∗/〈−1〉 (� an odd prime) there exists a
hyperelliptic curve over Fp whose Jacobian is isogenous to a power of one ordinary ellip-
tic curve.

1. Introduction

Let E be an elliptic curve over a field L. For various choices of L, it is known that
E(L) is a finitely generated group. This is the case if, for example,

– L is a number field (by the Mordell–Weil Theorem, see [21], [31]), or, more
generally,

– L is finitely generated over its prime field ([23]), or
– L is the function field of an algebraic variety over a field k, and E is not isoge-

nous (over L) to an elliptic curve which can be defined over k ([16]).

One might ask how large the rank of E(L) can get if one fixes L and varies E.
If char(L) = 0 then it is a well known open problem whether this rank is bounded
or not in any of the above cases. But if char(L) is positive, there are some results.
In the following table we list some cases for which it is known that the rank can
get arbitrarily large.
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L j -invariant ord. / ss. authors

F2(x) constant supersingular
well known,

cf. Elkies (1994), [8]

Fp(x)

p odd
constant supersingular

Shafarevich and Tate
(1967), [25]

F2(x) constant ordinary
follows from Gaudry, Hess and
Smart (2002) et al., [10], [18],

(see this paper)

Fp(x)

p odd
constant ordinary

B.D.S., assuming Artin’s
Primitive Root Conjecture

(see this paper)

Fp(x) non-const. ordinary Shioda (1986), [26], (for Fp(x)),
Ulmer (2002), [29]

Let M be the function field of a (smooth, projective, geometrically irreducible)
curve C over some field k with a k-rational divisor of degree 1. Let E be an
elliptic curve over k. It is well known that there is a close relationship between
rank(E(M)/E(k)) and the number of factors of E in the Jacobian JC of C.

Note that the group law on E induces the structure of an abelian group on
Mork(C, E), and with this structure we clearly have E(M) � Mork(C, E). Let us
fix a k-rational divisorD of degree 1. This divisor induces an immersion ι : C ↪→ JC

(given by P �→ L(P )⊗ L(D)−1).
For P ∈ E(k), let cP be the constant map sending C to P . For a ∈ Mork(C, E),

let a∗ : E∨ −→ JC be the pull-back map, and let a∗ := (a∗)∨ ◦ λC where
(a∗)∨ : J∨C −→ E is the dual of the pull-back map and λC : JC −→ J∨C is the
canonical principal polarization of JC .

We have a split exact sequence

0 �� E(k)
P �→cP �� Mork(C, E)

a �→a∗
�� Homk(JC, E)

α �→α◦ι
��

�� 0.

Let r ∈ N0 be such that JC ∼ Er × A for some abelian variety A that does
not have an elliptic curve isogenous to E as a factor. Then the Q-vector space
Hom◦k(JC, E) := Homk(JC, E) ⊗Z Q is isomorphic to Hom◦k(E

r, E) �
Hom◦k(E, E)r . Therefore the rank of E(M)/E(k) is equal to r · rank(Endk(E)).

Let C be a hyperelliptic curve, let L be the quadratic subfield of M of genus 0.
As M|k has by assumption a k-rational divisor of degree 1, so has L|k. Thus L|k
is rational, L = k(x) (cf. [27, Proposition I.6.3.]). Let us now consider the twist
Etwist of Ek(x) with respect to the extension M|k(x). The action of the non-trivial
element in Gal(M|k(x)) on E(M)⊗ZQ induces a decomposition into eigenspaces

E(M)⊗Z Q = E(k(x))⊗ZQ ⊕ Etwist(k(x))⊗ZQ.

Since E(k(x)) = E(k), we have rank(Etwist(k(x))) = rank(E(M)/E(k)) =
r · rank(Endk(E)). To construct high rank elliptic curves over k(x) it suffices
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therefore to construct hyperelliptic curves over k with a high factor Er in the Jaco-
bian up to isogeny and with a k-rational divisor of degree 1. Note that if k is a finite
field, the second condition is always fulfilled (cf. [27, Corollary V.1.11.]).

In [25], over all prime fields of odd characteristic, hyperelliptic curves of
arbitrarily high genus with a supersingular Jacobian which decomposes completely
over the prime field are given. (An abelian variety is called completely decompos-
able if it has no simple factor of dimension≥ 2.) By the above construction (which
first appeared in [25]), these curves give rise to the second line of the table. In [8],
some supersingular hyperelliptic curves over F2 of arbitrary high genus and their
Mordell–Weil groups are studied in great detail; these curves give rise to the first
line of the table.

In [10] a new approach to attack the discrete-logarithm problem in the group
of rational points of an elliptic curve over a non-prime finite field is given (see also
[12], [18]). The interest of the authors of [10] lies within the realm of cryptology
but their construction also gives rise to Theorem 1, which implies the third line of
the table (see Section 2 for a proof).

Theorem 1. For all r ∈ N, there exists a hyperelliptic curve H over F2r such that
the Jacobian variety JH is completely decomposable into ordinary elliptic curves
and JH ∼ Er ×A for some ordinary elliptic curve E and an (ordinary, completely
decomposable) abelian variety A. If r is a Mersenne prime, there exists a hyper-
elliptic curve H over F2r of genus r whose Jacobian variety is isogenous to the
power of one ordinary elliptic curve.

In Section 3 of this paper, we prove the following theorem.

Theorem 2. Let p and � be odd prime numbers such that p generates
(Z/�Z)∗/〈−1〉. Then there exists a hyperelliptic curve H over Fp of genus �−1

2
such that JH is isogenous to the power of one ordinary elliptic curve.

Recall that Artin’s Primitive Root Conjecture states that for a given non-square
integer a �= −1, there exist arbitrarily large prime numbers � with 〈a〉 = (Z/�Z)∗.
This conjecture has not been proven for a single a. But it is known that there are
at most 2 prime values for a for which Artin’s Conjecture fails ([11]). Also, it is
proven that Artin’s Conjecture follows from the Generalized Riemann Hypothesis
([13]).

The fourth line of the table follows from Theorem 2 and Artin’s Conjecture for
prime numbers a.

To the knowledge of the authors, it was not known before whether for arbitrarily
large r ∈ N there exists some hyperelliptic curve over some field of characteristic
�= 2 whose Jacobian variety is completely decomposable into r ordinary elliptic
curves. The above Theorem 2 also gives an affirmative answer to this question. Of
course, the question raised in [7] whether for all r ∈ N there exist curves over C of
genus ≥ r with completely decomposable Jacobian variety remains open.
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2. Proof of Theorem 1

We use the theory of function fields (in one variable) instead of the theory of curves.
Let us fix the following notation: If K is a perfect field and L|K is a regular function
field (that is, K is algebraically closed in L), we denote the Jacobian variety of the
smooth, projective model of L|K by JL.

In the following, by a minimal subextension of a field extension λ|κ we mean
some intermediate field µ of λ|κ such that µ � κ and µ|κ does not contain any
non-trivial intermediate field.

We need the following lemma (see [14] and the proof of [9, Theorem 2.1]).

Lemma 1. Let K be a perfect field, let M|K(x) be a Galois extension, with Galois
group an elementary abelian �-group – � an arbitrary prime number – such that
M|K is regular. Then JM ∼

∏
N JN where N runs over all minimal subextensions

of M|K(x). In particular, the genus g(M) of M|K is equal to
∑

N g(N).

All the following extensions of F2(x) should be regarded as embedded in a
fixed algebraic closure F2(x). We use Artin–Schreier theory in the formulation of
[15, Theorem 8.3].

Fix some algebraic extension K|F2 and some α ∈ K\{0}. Let L|K(x) be the
Artin–Schreier extension given by y2 − y = x−1 + αx, that is, L corresponds by
Artin–Schreier theory to the F2-vector subspace 〈x−1 + αx〉 of K(x)/P(K(x)),
where P : K(x) −→ K(x), ξ �→ ξ2− ξ is the Artin–Schreier operator. Now L|K
is an ordinary elliptic function field — the ordinariness follows for example from
the Deuring–Shafarevich formula ([4, Corollary 1.8.]) and the fact that KL|K(x)

has two ramified places — and JL is an ordinary elliptic curve.
The action of the Galois group Gal(K|F2) � Gal(K(x)|F2(x)) on K(x) gives

rise to an action on K(x)/P(K(x)), and this action induces an action by the group
ring F2[Gal(K|F2)]. Let U be the cyclic module generated by x−1 + αx, and let
M|K(x) be the extension corresponding to U .

We claim that M|K is regular. Note that the extension KM|K(x) is given by
the image U of U in K(x)/P(K(x)), and U is isomorphic to the image of U in
K(x)/〈K∪P(K(x))〉. One sees easily that U −→ U is an isomorphism. It follows
that [M : K(x)] = [KM : K(x)], and M|K is regular.

The minimal subextensions N of M|K(x) are given by F2-vector subspaces of
K(x)/P(K(x)) of the form 〈βx〉 for some β ∈ K\{0}, or 〈x−1〉, or 〈x−1+γ x〉 for
some γ ∈ K\{0}. The first two kinds of fields are rational function fields; the third
kind of fields are ordinary elliptic function fields. By Lemma 1, JM is an abelian
variety which is completely decomposable into ordinary elliptic curves.

For some subextension N of M|K(x) and some σ ∈ Gal(K|F2) �
Gal(K(x)|F2(x)), let σ(N) be the image of N in M under some extension of
σ to M .

Let V be the F2-vector subspace of U which consists of the elements of the
form βx for some β ∈ K . Clearly, [U : V ] = 2. Let R be the extension of K(x)

corresponding to V . Then by Lemma 1, the genus of R is zero. Now, [M : R] =
[U : V ] = 2, thus M is hyperelliptic.

Now let r ∈ N. Let α ∈ F2r , not lying in any proper subfield, let L and M be
defined as above with K = F2r and α. Let σF2r |F2 ∈ Gal(F2r |F2) be the Frobenius
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morphism. Then for i = 0, . . . , r − 1, the powers σ i
F2r |F2

(L) are pairwise distinct
subfields of M . Now, all Jσ i

F2r |F2
(L) are isogenous to JL (via a power of the relative

Frobenius homomorphism), and again by Lemma 1,

JM ∼ J r
L × A (1)

for some (ordinary, completely decomposable) abelian variety A over F2r .
It remains to prove the statement on the Mersenne primes.
Let r ∈ N be an odd prime. Let β be a generator of the F2[Gal(F2r |F2)]-module

F2r (that is, β, σF2r |F2(β), . . . , σ r−1
F2r |F2

(β) form a normal basis of F2r |F2).
Let ϕ2(r) be the (multiplicative) order of 2 modulo r . Recall that we have

canonical isomorphisms

F2[Gal(F2r |F2)] � F2[Z/rZ] � F2[x]/(Xr − 1)

of rings, and we have a decomposition into irreducible factors

Xr − 1 = (X − 1)f1 · · · f r−1
ϕ2(r)
∈ F2[X],

where the fi are pairwise distinct polynomials of degree ϕ2(r). Let

α := (((X − 1)f2 · · · f r−1
ϕ2(r)

)(σF2r |F2))(β).

Then α /∈ F2 and f1(σF2r |F2)(α) = 0. Let U and M be defined as above. Then x−1 =
f1(σF2r |F2)(x

−1 + αx) ∈ U , and consequently for all f ∈ F2[X],
x−1 + f (σF2r |F2)(α) x ∈ U . Now the assignment

f �→ F2r (x)[P−1(x−1 + f (σF2r |F2)(α) x)]

induces a bijection between the non-zero polynomials in F2[X] of degree less than
deg(f1) and the minimal subextensions N of M|F2r (x) with genus 1. There are
2ϕ2(r) − 1 such polynomials, and thus the genus of M is 2ϕ2(r) − 1.

Now let r be a Mersenne prime, that is, r is a prime of the form 2� − 1. Then
ϕ2(r) = � and the genus of M is 2ϕ2(r) − 1 = r . By (1), we have JM ∼ J r

L. ��

3. Proof of Theorem 2

The idea of the proof of Theorem 2 is to consider curves C over a finite field k such
that, after some base extension K|k, JCK

has an endomorphism not defined over
any proper subextension of K|k. If additionally JC is ordinary, this endomorphism
induces a decomposition of JCK

as is made precise below.
In Section 3.3, we apply this general result to hyperelliptic curves in certain

algebraic families. These families have already been studied in characteristic 0 in
[28]. We use techniques similar to those of [2] to show that they are generically
ordinary.
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3.1. Operation on abelian varieties over finite fields

In this section, we deal with the following situation:
Let K|k be an extension of finite fields inside the fixed algebraic closure k of

k. Let σK|k ∈ Gal(K|k) be the Frobenius morphism. Let A be an abelian variety
over k.

Proposition 1. Assume that we are given a τ ∈ End◦K(AK) such that

(a) the action of Gal(K|k) on End◦K(AK) maps the subspace Q[τ ] ⊂ End◦K(AK)

to itself,
(b) τ is not defined over any intermediate field µ of K|k with µ � K ,
(c) Q[τ ] is a field.

Then the characteristic polynomial of the Frobenius endomorphism of A has the
form f (T [K:k]) for some polynomial f (T ) ∈ Z[T ] of degree 2 dim(A)/[K : k].

Let us first draw a consequence of this proposition before we come to the proof.
We make use of the so-called Weil restriction ResK

k (B) of an abelian variety B over
K with respect to K|k. For general facts about this object, see [1, Section 7.6], [20]
and [6].

Lemma 2. Assume that A is ordinary and that the characteristic polynomial of
the Frobenius endomorphism of A has the form f (T [K:k]) for some polynomial
f (T ) ∈ Z[T ] of degree 2 dim(A)/[K : k]. Then A is isogenous to the Weil restric-
tion with respect to K|k of an ordinary abelian variety B over K with dim(B) =
dim(A)/[K : k].

Proof. Let χA be the characteristic polynomial of the Frobenius endomorphism of
A. The assumption that χA = f (T [K:k]) for some polynomial f ∈ Z[T ] of degree
2 dim(A)/[K : k] implies that χAK

= f (T )[K:k].
Writef = f1 · · · fa with monic, irreducible polynomialsfi . Let i ∈ {1, . . . , a}.

It is easy to see that there exists a K-simple abelian subvariety Bi of AK such that
the characteristic polynomial of Bi is a power of fi . In particular, fi is the minimal
polynomial of the Frobenius homomorphism of Bi – let χi be the characteristic
polynomial of Bi , then χi = f e

i with some e ∈ N.1 As AK is ordinary by assump-
tion, so is Bi . The slopes of the Newton polygon of an ordinary abelian variety are
0 and 1. This implies with [30, Theorem 8, 4.] that e = 1, that is, χi = fi .

1 If A is some abelian variety over some field K , � a prime �= char(K), and α is some
endomorphism on A, then the minimal polynomial of α in its operation on V�(A) lies in
Z[T ], in particular, it is equal to the minimal polynomial of α in the Q-algebra Q[α]. We
refer to this polynomial as the minimal polynomial mα of α.
This follows by induction on the degree of the minimal polynomial mα of α in its operation
on V�(A). Indeed, let h be the product of all irreducible divisors of χα , the characteristic
polynomial of α. As χα ∈ Z[T ] ([22, §19, Theorem 4]), h has the same property. Now,
h|mα , and the minimal polynomial of h(α) in its operation on V�(A) is mα

h
which lies in

Z[T ] by induction assumption.
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Let B :=∏i Bi . Then B is an ordinary abelian variety with χB = f . The Weil
restriction of B with respect to K|k has characteristic polynomial χB(T [K:k]) = χA

([20, §1 (a)]). This implies that A ∼ ResK
k (B) ([22, Appendix 1, Theorem 2]). ��

The above proposition and lemma imply the following.

Proposition 2. Under the assumptions of Proposition 1, assume additionally that
A is ordinary. Then A is isogenous to the Weil restriction with respect to K|k of an
ordinary abelian variety B over K with dim(B) = dim(A)/[K : k]. In particular,
AK ∼ Bdim(A)/[K:k].

Proof of Proposition 1. By assumption, the action of the Galois group Gal(K|k)

on Q[τ ] gives an injective homomorphism Gal(K|k) −→ Aut(Q[τ ]). Fix some
polynomial p(T ) ∈ Q[T ] such that σK|k(τ ) = p(τ). For i ∈ N0, define pi

by p0 := T , pi+1 := pi(p(T )). Then σ i
K|k(τ ) = pi(τ ). This implies that the

elements pi(τ ) for i = 0, . . . , [K : k]− 1 are pairwise distinct and p[K:k](τ ) = τ .
Let � �= char(k) be a prime. Let V�(A) := T�(A) ⊗Z�

Q�, and let
V�(A) := V�(A)⊗Q�

Q�.
We show that the characteristic polynomial of the Frobenius endomorphism in

its operation on T�(A) (or – what amounts to the same – on V�(A)) has the form
f (T [K:k]) for some polynomial f (T ) ∈ Q�[T ] of degree 2 dim(A)/[K : k]. As
f (T [K:k]) ∈ Z[T ], the same holds for f (T ).

As by assumption Q[τ ] is a field, the operation of τ on V� is diagonalizable.

For some eigenvalue λ of τ in its operation on V�(A), let V
λ

� be the corresponding
eigenspace.

Let πk be the Frobenius endomorphism of A over k; πk induces an operation
on A(k) which is called the geometric Frobenius operation. Let σk ∈ Gal(k|k) be
the Frobenius morphism. Being an element of Gal(k|k), σk also induces an opera-
tion on A(k), called the arithmetic Frobenius operation. These two operations are
linked by the equation

πk(P ) = σ−1
k (P ) for all P ∈ A(k).

This equation implies απk = πk σK|k(α) for all α ∈ End◦K(AK), thus

τπ i
k = π i

k σ i
K|k(τ ) = πi

k pi(τ ) for i ∈ N0. (2)

Fix some eigenvalue λ and some i ∈ N. Then by (2), πi
k(V

λ

� ) ≤ V
pi(λ)

� . (In partic-
ular, pi(λ) is an eigenvalue of τ .) Since V�(A) is the direct sum of the eigenspaces
for τ and π is bijective, we have

πi
k(V

λ

� ) = V
pi(λ)

� .

The equation p[K:k](τ ) = τ implies that p[K:k](λ) = λ. We claim that the eigen-
values λ = p0(λ), p(λ) = p1(λ), . . . , p[K:k]−1(λ) are pairwise distinct.

To prove this, note that λ is a root of χτ = mτ , thus Q[λ] � Q[T ]/(mτ (T )) �
Q[τ ]. The claim on the eigenvalues follows from the fact that the pi(τ ) are pairwise
distinct for i = 0, . . . , [K : k]− 1.



494 I.I. Bouw et al.

We have a direct sum
⊕[K:k]−1

i=0 (V
pi(λ)

� ) ≤ V�(A) which we denote by V�(λ).

The dimension of this space is [K : k] · dim(V
λ

� ).
The operation of πk on V�(A) restricts to V�(λ), and on this space, πk can be

described by a block matrix of the form







O Mλ

I O

.. .
. . .

I O








,

where each of the blocks O, I , Mλ has size dim(V
λ

� )× dim(V
λ

� ).
One sees that on V�(λ), the characteristic polynomial of the Frobenius endomor-

phism has the desired form. The result follows from the fact thatV�(A) =⊕λ V�(λ),
where λ runs over a certain subset of the set of eigenvalues of τ . ��

3.2. Some families of hyperelliptic curves

In this section, we want to study the p-rank of curves in certain families of hyper-
elliptic curves.

Let p be an odd prime. For a field k of characteristic p, a t ∈ k\{±2} and an
odd � prime to p, let C�

t (or Ct if � is fixed) be the hyperelliptic curve over k given
by the affine equation

y2 = x(x2� + tx� + 1).

The goal of this section is to prove the following proposition.

Proposition 3. There exists an open subscheme U ⊂ A
1
Fp
\{±2} such that

(a) for every � as above, every field k of characteristic p and every t ∈ U(k), the
curve C�

t is ordinary,
(b) if i ∈ N, i > 1, then U(Fpi ) is nonempty.

Fix some �, some perfect field k containing the �th roots of unity and t ∈ k\{±2}.
Choose a primitive 2�th root of unity ζ2� ∈ k and define an automorphism τ2� of
C�

t by (x, y) �→ (ζ 2
2�x, ζ2�y).

Note that the genus of C�
t is �. The holomorphic differentials ωi defined by

ωi = xi−1 dx

y
, i = 1, . . . , �

form a basis of H 0(C�
t , �) ([32]). Moreover, τ2� ωi = ζ 2i−1

2� ωi . Therefore ωi is an
eigenvector of τ2� with eigenvalue ζ 2i−1

2� .
Let F : H 1(C�

t , O) → H 1(C�
t , O) be the absolute Frobenius; this is an

Fp-linear map which satisfies Fαξ = αpFξ , where α ∈ k and ξ ∈ H 1(C�
t , O).

Let < ., . >: H 1(C�
t , O)×H 0(C�

t , �) −→ k be the perfect pairing corresponding
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to the Serre duality. By [24] the Cartier operator C of C�
t may be defined to be the

unique Fp-linear map C : H 0(C�
t , �)→ H 0(C�

t , �) which satisfies

< Fξ, ω >=< ξ, C ω >p, where ξ ∈ H 1(C�
t , O) and ω ∈ H 0(C�

t , �). (3)

It follows that the Cartier operator satisfies

Cαpω = α Cω, where α ∈ k and ω ∈ H 0(C�
t , �). (4)

It is a bijection if and only if C�
t is ordinary ([32, Theorem 3.1.]). We want to

describe the matrix of C with respect to the above basis of H 0(C�
t , �). In order to

do so, we need some more notation.
For i ∈ {1, . . . , �}, define j (i) ∈ {1, . . . , �} and α(i) ∈ {0, . . . , p − 1} by

2j (i)− 1 ≡ 2i − 1

p
(mod 2�), α(i) =

[
p(2j (i)− 1)

2�

]

.

Here [·] denotes the integral part, as usual.
Let f := (x2 + tx + 1)(p−1)/2 ∈ Fp[t, x] and write f = ∑p−1

n=0 cnx
n with

cn ∈ Fp[t]. Note that

cn =
∑

2n1+n2=n

(
(p − 1)/2

n1

)(
(p − 1)/2− n1

n2

)

tn2 .

For later use we remark that if n ≤ p−1
2 , then deg(cn) = n (because

(
(p−1)/2

n

) �= 0).
Now let k := Fp(t) and let C�

t be defined as above.

Lemma 3. For every i ∈ {1, . . . , �}, we have

C ωi = c
1/p

α(i) ωj (i).

Proof. The absolute Frobenius on C�
t commutes with τ2�, so we have τ2� F =

F τ2� : H 1(C�
t , O) −→ H 1(C�

t , O), and thus by (3), we also have τ2� C = C τ2� :
H 0(C�

t , �) −→ H 0(C�
t , �). With (4) this implies that τ2� C ωi = Cτ2� ωi =

C ζ 2i−1
2� ωi = ζ

(2i−1)/p
2� C ωi , that is, C ωi is an eigenvector of τ2� with eigenvalue

ζ
(2i−1)/p
2� . In particular, C ωi = γ

1/p
i ωj (i), for some γi ∈ k. We want to show that

γi = cα(i).
The Cartier operator extends to an Fp-linear operator C on the meromorphic

differentials which satisfies Chpω = h Cω (h ∈ k(C�
t ), ω ∈ �(k(C�

t )). It is well
known that C dx

x
= dx

x
and C xidx = 0 if p � (i − 1) (see for example [32]).

We have

ωi = xi−1 dx

y
= xpj (i)

yp
x(p−1)/2+i−j (i)pf (x�)

dx

x
.

Define g = x(p−1)/2+i−pj (i)f (x�) and write g =∑m gmxm. Then

C ωi = xj (i)−1

y

(
∑

m

g
1/p
pm xm

)

dx.
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We want to find all m such that gpm �= 0. The definition of g implies that gpm = cn,
where

pm = p − 1

2
+ i − pj (i)+ n�.

Recall that the degree of f is p − 1. Therefore, we need to find all n such that
0 ≤ n ≤ p − 1 and

p − 1+ 2i − 2pj (i)+ 2n� ≡ 0 (mod p). (5)

Because of the equality

p(2j (i)− 1) = 2�〈p(2j (i)− 1)

2�
〉 + 2�

[
p(2j (i)− 1)

2�

]

= (2i − 1)+ α(i)2�,

(5) is equivalent to 2n� ≡ 2�α(i) (mod p). The only such n is n = α(i). This
proves the lemma. ��

Proof of Proposition 3. Let �, k = Fp(t) and C�
t be as above. Let A(�) be the matrix

obtained by raising all coefficients of the matrix of the Cartier operator to the pth
power. Lemma 3 shows that A(�) is the product of a permutation matrix and the
diagonal matrix (cα(i)δi,j )i,j , where δi,j is the Kronecker delta. (Note that the α(i)

depend on �.) Define

� :=
(p−1)/2∏

n=0

cn.

Since cn = cp−1−n, the determinant of A(�) divides a sufficiently large power of
�.

Now let k be an arbitrary perfect field of characteristic p, and choose some
t0 ∈ k\{±2}. Analogous to above, let A

(�)
t0

be the matrix obtained by raising all

coefficients of the matrix of the Cartier operator of C�
t0

to the pth power. Then A
(�)
t0

is the specialization of A
(�)
t induced by the homomorphism Fp[t] −→ k, t �→ t0.

This implies that the curve C�
t0

is ordinary if �(t0) �= 0. Now define U :=
A

1
Fp
\({±2} ∪ {t |�(t) = 0}). Obviously U does not depend on �.

We have already seen that deg(cn) = n for n ≤ p−1
2 . Therefore

deg(�) =
(p−1)/2∑

n=0

n = p2 − 1

8
< p2 − 2.

This proves (b). ��
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3.3. Completely decomposable Jacobians

Fix some distinct odd prime numbers p and �. For a field k of characteristic p and
a t ∈ k, let Et be the elliptic curve given by the affine equation

y2 = x(x2 + tx + 1).

We have a cover π : Ct −→ Et, (x, y) �→ (x�, y x(�−1)/2).
Let k := Fq , where q is some power of p, and choose some t ∈ k\{±2}.

Let K := Fq [ζ�].
Let At be the reduced identity component of the kernel of π∗ : JCt −→ JEt –

this is an (�− 1)-dimensional abelian variety. It is equal to the complement under
the canonical principal polarization of JCt of π∗(JEt ).

Let τ� := τ 2
2�. We have π∗(JEt ) = π∗π∗(JCt ) = (1+ τ ∗� + · · · + τ ∗�

�−1)(JCt ),

and At = (1− 1+τ∗�+···+τ∗�
�−1

�
)(JCt ). (Note that 1+ τ ∗� + · · · + τ ∗�

�−1 is invariant
under the Galois action and thus lies in End◦k(JCt ).)

This implies:

Lemma 4. The automorphism τ ∗� restricts to a K-automorphism of (At )K , and
Q[τ�] ≤ End◦K((At )K) is a field (isomorphic to Q[ζ�], where σK|k ∈ Gal(K|k)

operates by ζ� �→ ζ
q
� ).

Now let i ∈ N, i > 1 and assume that pi is a generator of (Z/�Z)∗. By Propo-
sition 3, there exists some t ∈ Fpi\{±2} such that Ct and thus JCt is ordinary.

Again let k := Fpi and K := k[ζ�]. Then τ ∗� |(At )K is not defined over any
subfield µ of K|k with µ � K and [K : k] = �− 1 = dim(At ). We can thus apply
Proposition 2 to At , K|k and τ ∗� .

We conclude that At is the Weil restriction (with respect to K|k) of an ordinary
elliptic curve over K . It follows that JCt ∼ Et ×ResK

k (Ẽt ) for some elliptic curve
Ẽt over K . This implies that J(Ct )K ∼ (Et )K × (Ẽt )

�−1.
We have proven the following proposition.

Proposition 4. Let p and � be odd prime numbers and i ∈ N, i > 1, such that
pi generates (Z/�Z)∗. Then there exists a hyperelliptic curve over Fpi of genus
� whose Jacobian variety becomes isogenous over Fpi(�−1) to the product of one
ordinary elliptic curve and the (�− 1)th power of one ordinary elliptic curve.

This proposition already implies the fourth line of the table in the introduction.
In order to prove Theorem 2, let us study the hyperelliptic curves Ct (k arbitrary,
t ∈ k\{±2}) in more detail.

In addition to the automorphism τ2�, Ct has the automorphism γ : (x, y) �→
( 1
x
,

y

x�+1 ) of order 2. Let Dt be the quotient of Ct by this automorphism, c : Ct −→
Dt the covering morphism. The curve Dt is given by the equation

y2 = D�(x, 1)+ t,

where D�(x, a) := ( x+√x2−4a
2 )� + ( x−√x2−4a

2 )� ∈ k[x] is the �-th Dickson
polynomial for a ∈ k∗ (cf. [17]). With this equation, c : Ct −→ Dt is given
by (x, y) �→ (x + x−1,

y

x(�+1)/2 ). All this follows from the equation



498 I.I. Bouw et al.

D�(x + a

x
, a) = x� +

(a

x

)�

.

We see in particular that Dt has genus �−1
2 . Note also that if Ct is ordinary so is

Dt . Thus in particular, if i > 1 there exists some t ∈ Fpi such that Dt is ordinary.
The covering morphism c : Ct −→ Dt induces canonical homomorphisms

c∗ : JDt −→ JCt and c∗ : JCt −→ JDt . The following argument shows that the
kernel of c∗ : JCt −→ JDt contains π∗(Et ), and the image of c∗ : JDt −→ JCt is
contained in ker(π∗) = At .

We have the identity

γ τ� = τ−1
� γ

in Aut(Ct ). This identity implies

(id+τ ∗ + · · · + τ ∗�
�−1

)γ ∗ = γ ∗(id+τ ∗� + · · · + τ ∗�
�−1

)

on JCt . This in turn implies that both

At = ker(id+τ ∗� + · · · + τ ∗�
�−1

)

and

π∗(Et ) = (id+τ ∗� + · · · + τ ∗�
�−1

)(JCt )

are invariant under γ ∗. As πγ �= π and γ fixes a point in Ct(k), we have γ ∗π∗ �=
π∗, that is, γ ∗ operates non-trivially on π∗(Et ). Because γ ∗ is an involution, it
operates as− id on π∗(Et ). Thus π∗(Et ) lies in the kernel of id+γ ∗, that is, it lies
in the kernel of c∗ : JCt −→ JDt . This implies that c∗(JDt ) lies in ker(π∗) = At ,
the complement of π∗(Et ) with respect to the canonical principal polarization.

Let τ := c∗τ ∗� c∗ ∈ End◦k[ζ�]((JDt )k[ζ�]). We are interested in the minimal poly-
nomial of τ and the Galois action on Q[τ ].

The homomorphism c∗ induces an isogeny between JDt and c∗(JDt ) = (id+
γ ∗)(JCt ). In fact, c∗c∗ = 2 id and c∗c∗|c∗(JDt )

= 2 id. This implies that we have an
isomorphism of rings (with unity) and Galois modules

End◦k[ζ�]((JDt )k[ζ�]) −→ End◦k[ζ�](c
∗(JDt )k[ζ�]), α �→ 1

2
c∗αc∗|(JDt )k[ζ�] .

Under this isomorphism, τ corresponds to

1
2c∗τc∗|c∗(JDt )

= 1
2c∗c∗τ ∗� c∗c∗|c∗(JDt )

= 1
2 (id+γ ∗) τ ∗� (id+γ ∗)|c∗(JDt )

=
(τ ∗� + τ ∗�

−1) 1
2 (id+γ ∗)|c∗(JDt )

= (τ ∗� + τ ∗�
−1)|c∗(JDt )

.

(In particular, τ ∗� +τ ∗�
−1 restricts to an endomorphism of c∗(JDt ). This also follows

from the fact that τ ∗� + τ ∗�
−1 and id+γ ∗ commute. The calculations in [28, 3.1] are

not necessary to prove this.)
Now, Q[τ ∗� ] ≤ End◦k[ζ�]((At )k[ζ�]) is isomorphic to Q[ζ�] with τ ←→ ζ�.

This implies that the minimal polynomial of (τ ∗� + τ ∗�
−1)|At is equal to the min-

imal polynomial of ζ� + ζ−1
� . It follows that the minimal polynomial of τ , that
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is, the minimal polynomial of (τ ∗� + τ ∗�
−1)|c∗(JDt )

, is also equal to the minimal

polynomial of τ�+ τ−1
� . We conclude that Q[τ ] is isomorphic to Q[ζ�+ ζ−1

� ] with
τ ←→ ζ� + ζ−1

� .
Let k = Fq for some power q of p. Then under the above isomorphism Q[τ ] �

Q[ζ� + ζ−1
� ], the operation of the Frobenius on τ corresponds to ζ� + ζ−1

� �→
ζ

q
� + ζ

−q
� . Thus τ is defined over K := Fq [ζ� + ζ−1

� ] and over no subfield µ of
K|k with µ � K . Note that Gal(Fq [ζ� + ζ−1

� ]|Fq) � 〈q〉 ≤ (Z/�Z)∗/〈−1〉.
Let i > 1 such that pi is a generator of (Z/�Z)∗/〈−1〉. As stated above, there

exists some t ∈ Fpi\{±2} such that Dt is ordinary. We can apply Proposition 2 to
JDt , k = Fpi , K = Fpi(�−1)/2 and τ .

We obtain that JDt is isogenous to the Weil restriction (with respect to K|k)
of one ordinary elliptic curve over K . We have proven the following proposition
which is slightly stronger than Theorem 2.

Proposition 5. Let p and � be odd prime numbers, let i ∈ N, i > 1, such that pi is
a generator of (Z/�Z)∗/〈−1〉. Then there exists a hyperelliptic curve over Fpi of

genus �−1
2 whose Jacobian variety becomes over Fpi(�−1)/2 isogenous to the power

of one elliptic curve. In fact, there exists such a curve over Fpi whose Jacobian
is isogenous the the Weil restriction with respect to Fpi(�−1)/2 |Fpi of one ordinary
elliptic curve.

Remark 1. In [28], the curves Dt are studied in characteristic 0. There it is shown
that for � �= 5 the Jacobian of the generic curve D�

t over Q(t) is absolutely simple
([28, Corollary 6]). We think that the same is true for the generic curve D�

t over Fp(t)

for any p. One could check this in some explicit cases, by specializing t , and com-
puting the L-polynomial by counting points. We checked the case p = 3, � = 7.
We indeed found a t ∈ F27 such that JD�

t
was absolutely simple. Note however that

by our above results, if p is a generator of (Z/�Z)∗/〈−1〉 then, for infinitely many
t ∈ Fp, the Jacobian JD�

t
is completely decomposable.

Remark 2. As above, let pi be a generator of (Z/�Z)∗/〈−1〉, and let t ∈ Fpi\{±2}.
We have used the endomorphism τ on (JDt )Fq [ζ�+ζ−1

� ] to derive that χJDt
=

f (T (�−1)/2) for some polynomial f ∈ Z[T ] of degree 2. But this can also be
proven in an alternative way. Note that pi being a generator of (Z/�Z)∗/〈−1〉 is
equivalent to p2i generating (Z/�Z)∗2. It is well known that the Dickson polyno-
mial D�(x, a) is a permutation polynomial for Fq if gcd(q2−1, �) = 1 (cf. [17]). So
D�(x, a) is a permutation polynomial for all Fpij with �−1

2 � j , and consequently,
#Dt(Fpij ) = pij + 1 for those j. It follows that the L-polynomial

L(Dt , T ) = exp




∞∑

j=1

(#Dt(Fpij )− pij − 1)
T j

j





is a polynomial in T (�−1)/2. Since χJDt
is the reciprocal polynomial of L(Dt , T ),

the same holds for χJDt
.



500 I.I. Bouw et al.

Remark 3. Instead of the curves Ct and Dt , it is possible to use other ordinary
hyperelliptic curves whose Jacobians have suitable endomorphisms. For example,
in [19], some 2-parameter algebraic families of hyperelliptic curves with real mul-
tiplication are given. In [3], we will show that these families of curves are also
generically ordinary and give rise to new examples of hyperelliptic curves whose
Jacobians are isogenous to a power of some ordinary elliptic curve. In this upcom-
ing work, we will be able to use the extra parameter in a way that allows us to avoid
the usage of Artin’s Conjecture.

Remark 4. We already mentioned that the results in characteristic 2 of [10] were
motivated by a cryptographic application. They were used to construct certain
elliptic curves on which there is a relatively efficient method to compute discrete
logarithms. It might be possible to do something similar for elliptic curves in char-
acteristic > 2, by using the results of this paper.

We have constructed hyperelliptic curves Dt over finite fields Fq whose Jaco-
bian is isogenous to the Weil restriction with respect to Fqr |Fq of some elliptic
curve (where r = �−1

2 for some prime �). Let us assume that r ≥ 5. If one were
able to explicitely write down a map (Dt )Fqr → E for some elliptic curve E over
Fqr , or if one could just evaluate the induced map E(Fqr )→ JDt (Fqr ), then one
would have an algorithm to evaluate discrete logarithms on E(Fqr ) that is faster
than generic algorithms; cf. the appendix of [5]. We have so far not succeeded in
finding such maps explicitely.
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