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Introduction

In this work computational problems related to divisors and divisor classes

on curves are studied from a complexity theoretic point of view. Particular

emphasis lies on the complexity of the discrete logarithm problem in degree 0

divisor class groups of curves over finite fields. Here we study the following

general question: What interesting results on expected running times can

one obtain if one imposes conditions on the genera and the ground fields but

no further conditions on the curves and one bounds the expected running

times in terms of either qg, where q is the cardinality of the ground field and

g the genus of the curve, or in terms of the cardinality of the degree 0 class

group?

Note here that if E is an elliptic curve over a field K, the group of

rational points E(K) of E is canonically isomorphic to Cl0(E), the degree

0 class group of E over K. We consider therefore in particular the discrete

logarithm problem in the groups of rational points of elliptic curves over

finite fields.

Additionally, the work contains a contribution on the foundations of

algorithmic mathematics.

The main results

The main results are the following five new theorems on the discrete loga-

rithm problem in degree 0 class groups of curves. The underlying complexity

model is always a randomized random access machine model with logarith-

mic cost function. Of course, Theorem 4 also holds for a randomized Turing

machine model.

Theorem 1 Let some natural number g ≥ 2 be fixed. Then the discrete

logarithm problem in the degree 0 class groups of curves of genus g over

finite fields can be solved in an expected time of

Õ(q
2− 2

g ) ,

v



vi Introduction

where Fq is the ground field of the curve.

Theorem 2 Let some natural number g0 ≥ 2 be fixed. Then the discrete

logarithm problem in the degree 0 class groups of curves of genus ≥ g0 over

finite fields can be solved in an expected time of

Õ((qg)
2

g0
(1− 1

g0
)
) ,

where Fq is the ground field and g the genus of the curve.

Theorem 3 Let some natural number g0 ≥ 2 be fixed. Then the discrete

logarithm problem in the degree 0 class groups of curves C/Fq of genus ≥ g0
over finite fields can be solved in an expected time of

Õ((# Cl0(C))
2

g0
(1− 1

g0
)
) .

In the following two theorems, q is always a prime power and n a natural

number.

Theorem 4 Let ǫ > 0. Then the discrete logarithm problem in the groups

of rational points of elliptic curves over finite fields Fqn with (2 + ǫ) · n2 ≤
log2(q) can be solved in an expected time which is polynomially bounded in q.

Theorem 5 Let some natural number n ≥ 2 be fixed. Then the discrete

logarithm problem in the groups of rational points of elliptic curves over

finite fields Fqn can be solved in an expected time of

Õ(q2−
2
n ) .

All these theorems can be found in Chapter 3 with the same numbering.

More precisely, the locations of the theorems are respectively: Theorem 1:

Section 3.3, Theorem 2 and Theorem 3: Section 3.4, Theorem 4 and Theo-

rem 5: Section 3.5.

As a corollary to Theorem 4 one obtains easily:

Let again ǫ > 0, and let a > 2 + ǫ. Then the discrete logarithm problem

in the groups of rational points of elliptic curves over finite fields Fqn with

(2 + ǫ) · n2 ≤ log2(q) ≤ a · n2, where q is a prime power and n a natural

number, can be solved in an expected time of

eO(1)·(log(qn))2/3
.
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Indeed, we obtain an expected running time which is polynomially bounded

in

q = 2log2(q) = 2(log2(q))(1+1/2)·2/3 ≤ 2(
√

a·n log2(q))2/3
.

This result establishes for the first time that there exists a sequence of

finite fields of increasing size such that the elliptic curve discrete logarithm

over these fields can be solved in an an expected time which is subexponential

in the input length.

As a special case of Theorem 3 we obtain:

One can solve the discrete logarithm problem in the degree 0 class groups

of curves C/Fq of genus at least 3 in an expected time of

Õ((# Cl0(C)) 4
9 ) .

In contrast, for any sequence of curves over finite fields such that the group

order is divisible by a prime of size Θ(# Cl0(C)), “generic methods” have an

expected running time of Ω(# Cl0(C) 1
2 ).

Theorem 2 is a variant of Theorem 3, and clearly both Theorem 2 and

Theorem 3 imply Theorem 1. Theorem 5 can be seen as an analog of The-

orem 1 by substituting the genus g by the extension degree n. From a

theoretical point of view, the analogy goes deeper: In both cases, the group

under consideration is in a natural way isomorphic to the group of rational

points in an abelian variety over Fq. In the former case it is the Jacobian

variety of the curve, and in the latter case it is the Weil restriction of the

elliptic curve with respect to the extension Fqn |Fq. The dimensions of these

abelian varieties are g and n respectively. Even though Theorem 1 and The-

orem 5 are analogous, we are not able to prove an analog of Theorems 2 or

3 for elliptic curves over extension fields.

Related results

Concering the general question on the discrete logarithm problem in degree

0 class groups of curves over finite fields posed at the beginning, besides the

new results mentioned above, we are aware of the following results:

With the baby-step-giant-step algorithm and the results on arithmetic

in class groups presented in Section 2.6, the discrete logarithm problem can

be solved in a time of Õ(# Cl0(C) 1
2 ). By the bound # Cl0(C) ≤ (

√
q + 1)2g

one can also obtain results in terms of qg instead of # Cl0(C).
Besides these results, there is only one additional (proven) result we are

aware of: It is the result on “high genus curves” by F. Heß which can be

found in [Heß05]. Let us in order to formulate the result introduce the

standard complexity function

LN [α, c] := ec·log(N)α·(log log(N))1−α
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for parameters α ∈ (0, 1) and c > 0. Then the result is:

Let us consider a class of curves over finite fields such that log(q) ∈
o(g log(g)), where as usual q is the cardinality of the ground field and g is

the genus. Then the discrete logarithm problem in the degree 0 class groups

of such curves can be solved in an expected time of

Lqg [
1

2
, 32

1
2 + ǫ]

for any ǫ > 0.

Similarly to the previous result, one can also obtain corresponding results

in terms of # Cl0(C) via the bound (
√
q − 1)2g ≤ # Cl0(C).

By reading the work [Heß05] in conjunction with the present work, the

reader obtains an up-to-date account on the complexity of the discrete log-

arithm problem for classes of curves defined by imposing conditions on the

genera and the ground fields.

We note that by considering certain “transfers” to “easier” groups one

can obtain further classes of curves for which interesting statements on the

complexity of the discrete logarithm problem hold. We mention here the

supersingular elliptic curves; the discrete logarithm problem for these curves

can be solved in an expected time of Lq[
1
2 , 12

1
2 + o(1)] via a transfer to the

multiplicative group of an extension of degree at most 6 of the ground field.

In this work we do not consider any kind of “transfer”. Neither do we

apply advanced changes of the representation of the curves under consider-

ation, contrary to the suggestion put forward in [Die06]. We note that one

might argue that for Theorems 4 and 5 we pass from the Fqn-rational points

of an elliptic curve E over Fqn to the Fq-rational points of the Weil restric-

tion of E with respect to Fqn |Fq. The important aspect is here nonetheless

that no computation is performed in doing so. Indeed, the algorithm can be

formulated without even mentioning the Weil restriction, and we do so.

Computational models and representations

In order to make a computation problem – like, for example, the discrete

logarithm problem in degree 0 class groups of curves over finite fields – well

defined, one has to state how the mathematical objects under consideration

are represented for the computations. In Chapter 2 we discuss various possi-

bilities to represent the objects under consideration: (non-singular, proper)

curves, as well as divisors and divisor classes on curves. Our starting point

is here the representation of a curve via a plane model, whereby we mean

a possibly singular plane curve which is birational to the curve under con-

sideration. We discuss various ways to represent divisors, with an emphasis

on the ideal theoretic method inspired by the analogous task for number
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fields. We do not consider methods which use expansions at singular points

because these methods lead – in particular in small positive characteristic –

to various complications which can easily be avoided with the ideal theoretic

approach.

We discuss basic manipulations of divisors and divisor classes, and in

particular the computation of the so-called “Riemann-Roch space” L(D) of

a divisor D. Also, we discuss how one can efficiently change between the

various representations we describe. The results are based on a particular

“field oriented” model of computation which we define in Chapter 1.

The main purpose of this chapter is to show that there are natural ways

to represent curves, divisors and divisor classes such that basic computa-

tions can be performed in an number (or expected number) of field and

bit operations which is polynomially bounded in certain input parameters.

The results also translate to corresponding results over finite fields and in

a bit-oriented model. The most important result for the discrete logarithm

algorithms is that with a particular representation one can perform the com-

putation in degree 0 class groups of curves over finite fields in the so-called

free representation (where divisors are represented by formal sums of closed

points) in an expected time which is polynomially bounded in the genus

of the curve and the logarithm of the cardinality of the ground field (see

Proposition 2.117).

Chapter 1 is more abstract: We discuss various problems which might

be described as lying in the foundations of computational mathematics.

In complexity theoretic statements one often represents mathematical

objects by other objects, often bit-strings. We are of the opinion that it

is convenient to talk about representations not only in terms of represen-

tations by bit-strings but also by other kind of mathematical objects. Let

us illustrate this with an example: Say we want to represent divisors on

curves. We would like to express that we represent divisors by formal sums

of closed points, but we do not want at that particular point in time consider

the task to represent the closed points. A natural statement would then be

the following sentence: “We represent divisors on curves by closed points.”

But now the question arises if one can give a precise mathematical meaning

to this sentence. With other words: Can one define mathematical objects

which capture the intuition of this sentence? We propose to capture a sen-

tence like the one under consideration with an essentially surjective partial

functor between two large groupoids.

In computational mathematics (especially in computational number the-

ory), one often reads about “bit-operations”, but very often at the same time

no computational model is given. We propose a particular model which we

call the bit-RAM model to capture the intuitive meaning of bit complexity.
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Further, we introduce what we call the “generic field RAM” model. This is

an abstract computational model which is designed to capture the idea of

an algorithm which can be applied to instances of a computational problem

over various fields. It captures the idea of “uniformity” in a stronger sense

than any “algebraic” model in the literature we are aware of.

Related works

We mention now how this work relates to previous work by both other au-

thors and the author, and we give some more information about the methods

used to establish the results.

As already mentioned, all theorems mentioned above are new.

The algorithms for all the theorems rely on the so-called index calculus

method which roughly consists of finding relations between prime divisors in

a set of “medium size” and input elements and solving the discrete logarithm

problem via linear algebra.

The theorems are as follows related to previous work by other authors:

The idea to apply the index calculus method to curves of a fixed genus

goes back to P. Gaudry ([Gau00]). After a first improvement was suggested

by R. Harley, it was realized by N. Thériault ([Thé03]) that by applying a

large prime variation one can decrease the expected running time by a factor

which is superpolynomial in the input length. The idea to use a double large

prime variation goes back to K. Nagao and independently to P. Gaudry and

E. Thomé. In both cases, the authors argued that on a heuristic basis it

should be possible to obtain an expected running time of Õ(q2−
2
g ) for hyper-

elliptic curves of fixed genus g in imaginary quadratic representation. Later

a complete proof for hyperelliptic curves in imaginary quadratic represen-

tation and with cyclic degree 0 class group was given by Gaudry, Thomé

and Thériault. A substantially easier proof for the same class of curves was

then given by the author, and the work has meanwhile been published (see

[GTTD07]). To obtain Theorem 1, we modify the construction of the graph

of large prime relations, and we give an efficient procedure to compute a

small system of group elements which with high probability is a generating

system.

The proofs of Theorems 2 and 3 are then not so difficult. They rely on a

quite weak statement on the probability that a uniformly distributed divisor

splits into prime divisors whose degree satisfies a particular upper bound.

The statement we need can be obtained from a certain much more refined

statement in the work by F. Heß on the computation of discrete logarithms

in degree 0 class groups of “high genus” which was already mentioned above

([Heß05]).

The algorithms for Theorem 4 and Theorem 5 rely on what we call a
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“decomposition procedure” which in turn is based on solving systems of

multivariate equations. The systems in turn are obtained with appropriate

homogenizations of the so-called summation polynomials introduced by I.

Semaev in [Sem98].

Shortly after Semaev made his preprint available, it was realized by

Gaudry that one can use these summation polynomials to obtain interesting

complexities for fixed extension degree. In the meantime Gaudry’s work has

been accepted for publication, and the present publicly available version of

his work ([Gau04b]) also contains a “Theorem” in which the statement of

Theorem 5 is claimed. We would however like to point out that Gaudry’s

work in various substantial ways falls short of establishing this result. More

details on the shortcomings of Gaudry’s work can be found in subsection

3.5.1.

Already at a presentation at the Elliptic Curve Cryptography Workshop

(ECC) in Bochum in 2004, the author has argued that on a heuristic basis

a statement similar to the corollary to Theorem 4 should hold. But it is

only this work which contains a proof that there really does exist a sequence

of increasing finite fields over which the elliptic curve discrete logarithm

problem is solvable in subexponential time.

We consider most results in Chapter 2 to be “more or less known” to

the experts. However, the fragmented literature on the questions studied in

Chapter 2 made it hard for the author to judge if really all basic computa-

tions related of divisors which are necessary for the index calculus algorithms

can be performed in a satisfying complexity for all curves. A related prob-

lem is that one should be careful in interpreting statements in the literature

that certain computations can be performed in a particular time. Some-

times there are hidden restrictive assumptions, and in any case one should

be careful to check if the representation used can efficiently be transformed

into a representation one needs for other purposes.

As already remarked, we focus on the ideal theoretic approach to divi-

sors. A key algorithm for this approach, namely an ideal-based algorithm for

computation of Riemann-Roch spaces, has been published in [Heß01]. Fur-

ther information on ideal arithmetic for number fields can be found in the

book [Coh96], and often statements from [Coh96] can easily be transferred

to function fields.

We would however like to stress that even though the basic techniques in

this chapter where surely known before, some key statements in this chapter

have not appeared in the literature before. Here we mention as examples

the efficient transformation between the different representations we discuss

and the factorization free computation of the maximal order.

It is our hope that this chapter will serve as a useful reference.
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Chapter 1 consists mostly of definitions some of which are completely

new while others are variants of definitions in the literature.

On the nature of this work

As already indicated in the beginning, we view this work as lying within

the realm of complexity theory. Because of the objects under consideration

and the methods employed, the work also falls within arithmetic algebraic

geometry.

The discrete logarithm problems in the groups of rational points of el-

liptic curves over finite fields and more generally in degree 0 class groups

of curves over finite fields have been suggested as primitives for public key

cryptographic systems. The reader might therefore ask himself: What is

the relationship between this work and cryptology? Is there any cryptologic

application of the results obtained in this work?

Our answer is that this depends on the meaning of the word “cryptol-

ogy” one has in mind. Surely the area of cryptology should include the

design and analysis of cryptographic systems – whereby we mean practical

cryptographic systems. Some researchers also consider the part of complex-

ity theory dealing with theoretical problems which are motived by questions

related to secrecy as being part of cryptology.

To us it seems however to be more appealing to reserve the work “cryp-

tology” for the study of questions which are indeed related to potential

practical applications. With this meaning of the word in mind, we clearly

want to state:

This work does not fall into the realm of cryptology.

Moreover, the work is related to cryptologic questions only tangentially,

if at all. It would clearly be a misuse of this work to evaluate the security of

(practical) cryptographic systems on the basis of the asymptotic complexity

theoretic statements in this work or the absence thereof.

We would like to take the opportunity and reflect a bit on the nature of

works in complexity theory. Given the language of complexity theory – in

which sentences like “Given X one can compute Y in time T” are made – one

might have the feeling that complexity theory is part of applied mathematics.

We would however like to point out that this would be a misconception.

Indeed, in complexity theory a statement like the one above does not at all

mean that something can really be computed in the sense that a physical

machine outputs a result. Rather, the statement is an abbreviation for

a longer statement in which the existence of certain mathematical objects

with certain well-defined properties is asserted (for example the existence of

a Turing machine with certain properties).
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In short, we view this work as lying within complexity theory and for a

large part also within arithmetic algebraic geometry, which both lie within

pure mathematics.

We mention that this work contains no computer experiments. This is

deliberate. Indeed, computer experiments would not bring us any closer to

the goal we have set ourself: To study the discrete logarithm problem in

class groups of curves from a complexity theoretic point of view.
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Chapter 1

Computational problems,

computational models, and

complexity

1.1 Introduction

In order to make a computational problem, like for example the discrete

logarithm problem in degree 0 class groups of curves, well defined, one has

to answer the following questions.

• On what computational model is the problem based?

• What complexity measure / cost function is used?

• How are the mathematical objects under consideration represented?

It suggests itself to ask for a computational model and a complexity mea-

sure which captures the intuitive notion of bit-complexity and at the same

time allows for efficient indirect addressing. Surely, if indirect addressing is

desired, RAM models are an appropriate answer. A problem is however that

RAM models are always based on a particular set of commands, and the

selection of these commands is associated with a certain arbitrariness. In

order to overcome this arbitrariness we define a particular Random Access

Machine (RAM) model which we call bit-oriented Random Access Machine

(bit-RAM). Information on this can be found in Section 1.4.

The bit-oriented approach is however not always the most appropriate

one to model computational problems. For example, given a field k, one

might enquire about the complexity to multiply two matrices with entries

in k, measured in field operations in k. In this case, it does not seem to

1
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be appropriate to demand that the field elements be represented by bit-

strings (which is only possible when the field is countable anyway). Rather,

one wishes to take what is called a “macroscopic standpoint starting from

an idealized computer” in [BCS91]. One then enters the field of algebraic

complexity. Models based on this approach are discussed in Section 1.6.

Moreover, often computational problems can be formulated for arbitrary

fields (for example the multiplication of two matrices). In this case, it is

appropriate to ask for a uniform algorithm for all inputs over over all fields.

We propose such a uniform computational model which we call a generic

field RAM. Most of the results of Chapter 2 on basic computations related

to curves and their divisors rely on variants of this model.

Additionally to presenting the bit-RAM and the generic field RAM model

and randomized variants of these and deriving some basic properties of these

models, we propose in this chapter a body of definitions related to compu-

tational problems.

1.2 Computational problems

We now propose some definitions which make it possible to talk about com-

putational problems from the point of view of “mathematical content”, that

is, without having to put too much emphasis on the question of how the ob-

jects under consideration are represented for computational purposes, while

on the other hand not being too imprecise. In particular, we propose a def-

inition of the phrase “computational problem” which up to now has only

been used in an intuitive way.

1.2.1 Representations

To motivate the following definitions, let us fix a (non-separably closed) field

k and consider the problem to represent finite separable field extensions in

terms of field elements in k and natural numbers. Every such extension is

primitive, thus it is isomorphic to an extension of the form (k[t]/(f(t)))|k
with f(t) ∈ k[t] separable and irreducible. Because of this, it is reasonable

to say that “every finite separable extension of k can be represented by a

polynomial in k[t]”. In this statement, one might (but need not) add the

information that the polynomials in question are separable and irreducible.

This situation can also be described from a functorial point of view:

Example 1.1 We consider the set S of all separable irreducible polynomials

in k[t] and let S be the category whose objects are the elements from S

and which does not have any morphisms except the identities. Now the

assignment f(t) 7→ k[t]/(f(t)) is a functor from S to the category of finite
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separable extensions of k. The fact that every extension is isomorphic to

an extension of the form k[t]/(f(t)) can be expressed by saying that this

functor is essentially surjective.

Definition 1.2 Let C and D be categories. Then a partial functor from C

to D is a pair (S,F), where S is a subcategory of C and F : S −→ D is

a functor. We denote the pair (S,F) by F . The category S is then called

the domain of F .

Recall that a large groupoid is a category whose only morphisms are

isomorphisms. Note that the class of objects of such a category might or

might not be a set. Recall also that a full subcategory S of a category C is

a subcategory of C such that for all a, b ∈ S, MorS(a, b) = MorC(a, b).

Definition 1.3 Let C and X be a large groupoids. Then a partial repre-

sentation of C by X is a partial functor from X to C whose domain is a full

subcategory of C. A representation of C by X is a partial representation

which is essentially surjective.

Remark 1.4 All categories we consider in this chapter are large groupoids.

The general philosophy is that representations and computational problems

(see subsection 1.2.2) should in a certain sense be “well behaved” with re-

spect to isomorphisms but not necessarily with respect to other morphisms.

In applications of the terminology developed here the starting point are of-

ten general categories, and one applies the terminology to the associated

large groupoids obtained by discarding all morphisms which are not isomor-

phisms. Another special case one often encounters is that one is given a set

and one considers the associated groupoid whose objects are the elements

of the set and which only has the identities as morphisms (see e.g. Example

1.1).

We also remark that one could just as well apply this above definition

in a situation where only X but not C is a large groupoid. However, in

subsection 1.2.2 we will need that C is a large groupoid, and according to

our general philosophy it does not cause any harm to impose this condition

already now.

Definition 1.5 Let us fix a (partial) representation F of C by X .

We say that C is via F (partially) represented by X , and we then call

X the category of representing objects of C. We omit F if it is obvious from

the context.

Now let furthermore a be an object of C and x an object of X . If then

a ≈ F(x) we call x a representing object or a representative of a.
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If the large groupoid X is obtained from a set X by defining only the

identities to be morphisms, we say that C is (partially) represented by X.

The same applies if the large groupoid C is obtained from a set by defining

only the identities to be morphisms.

Remark 1.6 Note that we can only “recover” an object of C up to isomor-

phism from a representing object.

Terminology 1.7 Following the usual (intuitive) terminology in compu-

tational mathematics, if a is a representing object of x, we also say that

“a represents x”. We use similar expressions also to indicate that a large

groupoid C is represented by a large groupoid X .

For example, let k be a fixed field. Then instead of saying that we

represent the large groupoid of finite separable field extensions of k by the

large groupoid of separable irreducible polynomials, we might say that we

represent finite separable field extensions of k by separable irreducible poly-

nomials.

Let us now consider finite extensions of Fp(t) for some prime p. Not all

extensions are separable, and in fact not all extensions are primitive. This

means that the large groupoid of finite field extensions of Fp(t) is partially

represented by the set of univariate polynomials over Fp(t).

Remark 1.8 Let both X and C be obtained from sets X and C by defining

only the identities to be morphisms. In this case, a partial representation of

C by X is nothing but a partial map from X to C. A representation of C by

X is a surjective partial map fromX to C. (Note that partial representations

correspond to partial maps but representations do not correspond to maps

X −→ C but as stated to surjective partial maps.)

Remark 1.9 Let C,D and X be large groupoids. Let (T ,G) be a repre-

sentation of D by C, and let (S,F) be a partial representation of C by X .

Then G ◦ F : S −→ D is a partial representation of D by X . Moreover, if

F is a representation, so is (S,G ◦ F).

Let us again consider finite separable field extensions over a fixed field

k. If we fix such an extension λ|k and a primitive element a ∈ λ, we can

represent each element of λ by its coordinate vector with respect to the

“polynomial basis” 1, a, . . . , a[λ:k]−1 defined by a. Now, as above, we want

to vary the extension as well, and we want to use an irreducible separable

polynomial f(t) ∈ k[t] with λ ≈ k[t]/(f(t)) to represent λ. All in all the

task is now to “extend” the representation of separable extension fields by

also representing an element in such a field.

This motives the following definition.
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Definition 1.10 Let C −→ D and X −→ Y be two functors between large

groupoids. Then a relative partial representation of C −→ D by X −→ Y

consists of a partial representation (S,F) of C by X and a partial represen-

tation (T ,G) of D by Y such that the image of S in Y is contained in T

and such that the diagram

C // D

S //
� _

��

F
OO

T � _

��

G
OO

X // Y

is commutative. A relative representation of C −→ D by X −→ Y is

a relative partial representation such that both F and G are essentially

surjective.

Example 1.11 We return to the example of finite separable field extensions

over a fixed field k. Let now D be the large groupoid of such extensions, and

let C be the large groupoid whose objects are tuples (λ|k, a), where λ|k is

a finite separable field extension and a ∈ λ, and whose (iso-)morphisms are

defined as follows: A morphism from (λ|k, a) to (λ′|k, a′) is an isomorphism

of field extensions λ −→ λ′ which maps a to a′. Now the large groupoid

C is represented by the set of all polynomials in k[t]. The large groupoid

D is represented by the set of tuples (f(t), a), where f(t) ∈ k[t] and a ∈
k[λ:k]. (Here a represents the element in k[t]/(f(t)) given by

∑t
i=1 ait

i−1.)

Obviously we obtain a relative representation of C −→ D.

Definition 1.12 Let C and X be a large groupoids and (S ,F) a partial

representation of C by X . Then the category of represented objects of C by

X is is defined as follows: The objects are tuples (a, x), where a is an object

of C and x is an object of S such that a ≈ F(x). We define the morphisms

by Mor((a, x), (b, y)) := Mor(x, y).

Note that by definition we have a fully faithful functor from the domain

of F to the category of represented objects of C by X . Moreover, if F is a

representation, we have an equivalence of categories between the domain of

F and C. Because of this, one might question the relevance of this definition.

However, it is of great help for the intuition to think about objects of C with

some “extra data for the representation” rather than merely the barren

objects used for the representation themselves.
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1.2.2 A formalism for computational problems

The following two definitions relate our abstract definitions on representabil-

ity to the classical theory of computability. Here, by “classical theory” we

mean the theory which is based on Turing machines or equivalent models

(from the point of computability). In Section 1.6 analogous definitions in

an “algebraic setting” are given.

Definition 1.13 Let C still be a large groupoid. A bit-representation of C

is a representation of C by N0.
1

Remark 1.14 We often use the injection N0 −→ {0, 1}∗ given by the 2-adic

expansion. (That is, n =
∑k−1

i=0 ni2
i with ni ∈ {0, 1} for all i = 1, . . . , k − 2

and nk−1 = 1 is mapped to the string n0n1 · · ·nk−1.) This also explains the

name “bit-representation”.

Definition 1.15 Let S ⊆ N0, and let c : S −→ N0. Then we say that c

is computable if there exists a Turing machine (or a machine based on an

equivalent model from the point of view of computability) M which for every

x ∈ S computes c(x). We then also say that M computes c.

Remark 1.16 Note that we do not impose any condition for s ∈ N0 − S,

and in particular we do not require that the machine halts for s ∈ N0 − S.

For the following definition note that for every category C we have the

large category of full subcategories of C. The objects of this category are the

full subcategories of C and the morphisms between two such subcategories

S and S ′ are the functors from S to S′. With the natural transformations

this category is in fact a 2-category.

Definition 1.17 Let C and C′ be large groupoids, and let F be a bit-

representation of C with domain S ⊆ N0 and F ′ be a bit-representation of

C′.

Then a computational problem from C to C′ (with respect to the fixed

representations) consists of:

• a functor P from C to the category of full subcategories of C′ (for

α : a −→ a′ we write Pα for the associated functor from P(a) to

P(a′))

• for every morphism α : a −→ a′ of C and every b ∈ P(a) a morphism

mα,b : b −→ Pα(b)

such that
1We set N0 := Z≥0.
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• for all a ∈ C, P(a) is non-empty

• all diagrams of the form

b
β //

mα,b

��

b′

mα,b′

��
Pα(b)

Pα(β) // Pα(b′)

with α : a −→ a′, b, b′ ∈ P (a) and β : b −→ b′ commute.

We denote a computational problem as above by P. Let now such a

computational problem be given. Then we call the objects from C the in-

stances of the problem and the elements from S legitimate inputs. We say

that the computational problem (problem for short) is computable if there

exists a computable function c : S −→ N0 such that for all x ∈ S, F ′(c(x))
is isomorphic to an object in P(F(x)). Moreover, if we have a (Turing or

other) machine M which computes c, we also say that M computes P. (Note

that we only require termination for legitimate inputs by Definition 1.15.)

Remark 1.18 Note again that C and C′ are large groupoids. This implies

that all morphisms in P(a) and all morphisms mα,b are isomorphisms.

It follows immediately that the morphisms

(Pα′ ◦ Pα)(b)
(mα′,Pα(b))

−1

// Pα(b)
(mα,b)

−1

// b
mα′α,b // Pα′α(b)

define an isomorphism of functors between Pα′ ◦ Pα and Pα′◦α.

Note also that the definition of mα,· : P(a) −→ P(a′) is analogous to the

definition of an isomorphism of functors (it is an isomorphism of functors

from idP(α) to Pα if and only if P(a) = P(a′)).

We have the following three classes of examples:

Example 1.19 Let C′ be obtained from a set C ′ by defining only the iden-

tities to be morphisms, a computational problem from C to C′ is nothing

but an assignment P from the objects of C to P(C ′) with P (a) = P (a′) for

a ≈ a′. (Here for a set X P(X) is the power set of X.) In particular, if C is

also obtained from a set C by defining only the identities to be morphisms,

a computational problem from C to C′ is the same as a map C −→ P(C).

Example 1.20 Let C and C′ be large groupoids with fixed representations.

Then every functor P : C −→ C′ induces a computational problem from C

to C′ as follows:
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The assignment on the objects is given by assigning to every object

a ∈ C the class consisting of P (a). For every morphism α : a −→ a′ of

C the functor Pα is given by Pα(P (a)) := P (a′) on the objects and by

Pα(β) := P (α) ◦ β ◦P (α)−1 for every isomorphism β of P (a). Furthermore,

we set mα,P (a) := P (α).

Example 1.21 Let again C and C′ be large groupoids with fixed represen-

tations, and let p : C′ −→ C be a functor such that for every (iso-)morphism

α : a −→ a′ and every b in the fiber over a, there exists an object b′ in the

fiber over a′ and an (iso-)morphism β : b −→ b′ with α ◦ p = p ◦ β. (Note

that C with p is a special case of a category fibered in groupoids.)

Then we obtain as follows a computational problem P from C to C′:
On objects the functor P is defined by assigning to a ∈ C its fiber in C′.
Now let α : a −→ a′ be a morphism in C. Then for each object b of

C′ over a we choose some object Pα(b) over a′ in C′ together with some

isomorphism mα,b : b −→ Pα(b) over α.2 Here, if a′ = a and α = ida, we

choose Pα(b) = b and mα,b = idb. Finally, for β : b −→ b′ in P(a), we set

Pα(β) := mα,b′ ◦β ◦m−1
α,b. This choice of b′ and β defines the functor Pα and

the assignments mα,·.

Arguably the most important example of a computational problem re-

lated to this work is the general discrete logarithm problem for class groups

of curves, which can be defined as follows:

Example 1.22 We consider the large groupoid of all triples (C/Fq, a, b)

where C is a curve over Fq, a, b ∈ Cl0(C) with b ∈ 〈a〉, where the (iso-

)morphisms (C, a, b) −→ (C′, a′, b′) are isomorphisms ϕ : C −→ C′ with

ϕ∗(a′) = a, ϕ∗(b′) = b. The methods of the next chapter give various bit-

representations of this large groupoid; let us choose one. We now consider

the set of non-negative integers N0 which we turn into a category by defining

only the identities to be morphisms, and we represented it by itself via the

identity. The computational problem is now the assignment (C/Fq, a, b) 7→ x,

where x is the smallest non-negative integer with x · a = b.

Example 1.23 As an example of a computational problem which is not

induced by a functor as in Example 1.20 consider the following problem: We

represent Q by Z × N via (n, d) 7→ n
d , and we represent Z × N (essentially)

by concatenation of the bit-strings of the two numbers. Let us fix a dense

representation of vectors in Qn for arbitrary n ∈ N ((essentially) given by

concatenation of the representations of the elements), and let us represent

univariate polynomials over Q by the corresponding coefficient vectors. Now

2Here we apply the axiom of choice. In order not to run into logical problems, one
should first choose a universe and restrict oneself to sets in this universe.
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consider the problem to determine if a given univariate polynomial over Q

has a root in Q and if this is the case to compute one.

Formally, this computational problem is defined as follows: C is the large

groupoid obtained from the set Q[t] and C′ is the large groupoid obtained

from the set Q ∪̇ {“No”}. The computational problem is given by the map

Q[t] −→ P(Q ∪̇ {“No”}) mapping a polynomial to {”No”} if has no roots in

Q and to the set of roots otherwise.

Definition 1.24 Let a functor C −→ D be given. Then a (partial) relative

bit-representation of C −→ D is a (partial) relative representation of C −→
D by the projection to the first coordinate p1 : N2

0 −→ N0.

In the following, we represent (n1, n2) ∈ N2
0 essentially by concatena-

tion of the two bit-strings of n1 and n2. More precisely, let n1,0 · · ·n1,k−1

be the bit-string for n1 and n2,0 · · ·n2,ℓ−1 the bit-string for n2. Then we

represent (n1, n2) by the string n1,00n1,10 · · · 0n1,k−11n2,00 · · · 0n2,ℓ−1. (We

always write a bit followed by a 0 until we reach the end of n1. Here we

write a 1, then we alternatingly write a bit of n2 and 0.)

In the context of Definition 1.24 this means that an object x of C is

represented by a bit-representation of its image in D concatenated with a

further bit-string.

Definition 1.25 Let C,C′ and D be a large groupoids, and let p : C −→ D

and p′ : C′ −→ D be functors. Let relative bit-representations of C −→ D

and C′ −→ D be given which induce the same bit-representation on D. Let

(S,F) be the representation of C by N2
0, (S′,F ′) the representation of C′ by

N2
0 and (T,G) the representation of D by N0. Then a relative computational

problem from C to C′ over D (with respect to F , F ′ and G) is a computational

problem P from C to C′ which satisfies that p′(P(x)) = {p(x)} for all x ∈ C.

We say that such a problem P is computable if there exists a computable

function c : S −→ N with F ′(x, c(x)) ∈ P(F(x)) for all x ∈ S. A (Turing

or other) machine which computes c is again said to compute the relative

computational problem.

Remark 1.26 Let C,C′,D, p and p′ be as above. Then similarly as for

computational problems, every functor P : C −→ C′ with p ◦P = p′ induces

a relative computational problem.

Remark 1.27 The computational problem defined in Example 1.21 defines

a relative computational problem of C −→ C′ over C.

Example 1.28 We continue with Example 1.11. As in this example, let

D be the large groupoid of finite separable field extensions of a fixed field
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k. Similarly to but slightly different from Example 1.11, let C be the large

groupoid of tuples (λ|k, (a, b)), where λ|k is a finite separable field exten-

sion and (a, b) ∈ λ2 and λ|k. Moreover, let C′ be the large groupoid of

tuples (λ|k, c) where c ∈ λ and λ|k is a finite separable field extension (both

categories with the obvious (iso-)morphisms).

Now let k be a countable field, and let us fix a bit-representation of k such

that the arithmetic operations in k are computable. This bit-representation

induces a bit-representation of the polynomials over k and vectors in kn for

n ∈ N. Following Example 1.11, we obtain relative bit-representations of

C −→ D and C′ −→ D.

Now we can describe the multiplication in finite separable field extensions

of k via the functor (λ|k, a, b) 7→ (λ, a · b). Clearly, this functor defines a

relative computational problem which is computable.

1.3 The O-notation

The O-notation is of course classical; we present it here with an approach

which is closely related to the definitions of the previous section.

Let C be a large groupoid. In the following, we denote large groupoids

associated to sets by defining only the identities to be morphism by boldface

letters.

Let f : C −→ R≥0 be a functor. Then we define the class O(f) by

O(f) :=
{
g : C −→ R a functor | ∃c > 0 : |g(A)| ≤ c · f(A)

for all objects A of C} .

We define

Õ(f) := (log2(max{f, 2}))O(1) · O(f) .

Here – and also in the following – we use the obvious generalizations of the

usual definitions for sets of functions from some set C to R to classes of

functors from C to R.

Similar definitions and considerations also apply to the Ω-notation (de-

noting lower bounds) and the Θ-notation (denoting both upper and lower

bounds). We note that we will not use the usual “Landau-style” notation

“f = O(g)” for g ∈ O(f).

For a functor f : C −→ R≥0 we define

Poly(f) :=
{
g : C −→ R a functor | ∃p(X) ∈ R[X]

with non-negative coefficients:

|g(A)| ≤ p(f(A)) for all objects A of C} ,
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and if g ∈ Poly(f), we say that g is polynomially bounded in f . More

generally, for functors f1, . . . , fk : C −→ R≥0 we define

Poly(f1, . . . , fk) :=
{
g : C −→ R a functor | ∃p(X) ∈ R[X1, . . . ,Xn]

with non-negative coefficients:

|g(A)| ≤ p(f1(A), . . . , fn(A))

for all objects A of C} ,

and if g ∈ Poly(f1, . . . , fk), we say that g is polynomially bounded in f1, . . . , fk.

Moreover, we fix the following generalization of the previous O-notation

(which we do however not use in the sequel).

Let m1, . . . ,mk : C −→ R be functors. Now let (S, f) be partial func-

tor from C to R≥0, where S is a full subcategory of C such that there

exist C1, . . . , Ck > 0 with A ∈ S for all objects A of C with m1(A) ≥
C1, . . . ,mk(A) ≥ Ck.

Then we define

Om1,...,mk
(f) :=

{
g : T −→ R a functor | T a large subcategory of S

such that there exist c > 0, C1, . . . , Ck > 0

with A ∈ T and |g(A)| ≤ c · f(A)

for all objects A of C with

m1(A) ≥ C1, . . . ,mk(A) ≥ Ck

}
.

For a partial functor g from C to R we express g ∈ Om1,...,mk
(f) by saying

“g ∈ O(f) for m1, . . . ,mk −→∞”. Similarly to above we set

Õm1,...,mk
(f) := (log2(max{f, 2}))Om1 ,...,mk

(1) · Om1,...,mk
(f) .

Remark 1.29 With these definitions one has particular the following in-

tuitive compatability: Let C be a large groupoid, and let f : C −→ R≥0

and g : C −→ R be functors. Now let X be another large groupoid, and

let (S,F) be a representation of C by X . Then g ∈ O(f) if and only if

g ◦ F ∈ O(f ◦ F). A similar statement holds if m1, . . . ,mk are considered

too, and a similar statement holds for Poly(f1, . . . , fk).

In applications, one does not distinguish between the functors f , g and

values of these functors. (E.g., one considers the genus of curves, which one

denotes by g or the degree of plane models which one denotes by d and so

on.) Because of the compatibility this does not cause any problems, even

if one completely suppresses the domain of the functors. (Note that this is

similar to the situation one encounters with probability spaces and random

variables, where the probability spaces are often completely suppressed.)

Remark 1.30 In [vzGG03] the O-notation is defined as follows: A partial

function f from N to R is called eventually positive if there exists some
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N > 0 such that for n ≥ N , f(n) is defined and (strictly) positive. Then

for such a function f the set O(f) is the set of all partial functions from N

to R which are eventually positive and such that there exist N, c ∈ N with

g(n) ≤ c · f(n) for all n ≥ N .

We would like to comment on this definition and the relationship with

our definition above.

First, it seems to be convenient to us to change this definition as follows:

Given some f which is eventually positive, one defines O(f) as the set of

all partial functions from N to R which are defined almost everywhere such

that there exists N, c ∈ N with |g(n)| ≤ c · f(n) for all n ≥ N .

Now a generalization of this definition from N to large groupoids would

be: Let C be a large groupoid and let f be a functor which is defined on a

full subcategory S of C such that there are up to isomorphism only finitely

many objects of C which are not contained in S, and let f be a functor from

S to R>0. Then one might define

O(f) := {g : T −→ R | T a full subcategory of S

such that there are up to isomorphism

only finitely many objects of C

which are not contained in T

and such that ∃c > 0 : |g(A)| ≤ f(A)

for all objects A of T } .

However, this definition is problematic for the following reason: As men-

tioned in the previous remark, in applications of the O-notation one often

does not fully define which category one considers. Therefore in particu-

lar it is not clear how the isomorphism classes are defined, and it is then

not clear what is meant by the condition that f and g in the definition are

not defined on finitely many isomorphism classes. Note that in particular,

with this definition one does not have the compatibility we mentioned in the

previous remark.

We would like to comment on a particular use of the O-notation in the

literature which we consider to be a misuse. Often the O-notation is used

as follows: Let C be a large groupoid and let f1 and f2 be two functions

C −→ R≥0.3 Then by “g = O(f1f2)” authors often mean that there exists

some c > 0 such that g(n) ≤ c·f1(n)·f2(n) for f1(n) and f2(n) large enough.

This is however not well-defined since the product f1f2 is also merely a

functor on C. In fact, this use of the O-notation means in particular that

the statement “g = O(f1f2)” has a different meaning than the statement

“for f := f1f2 we have g = O(f)”, which is an unfortunate situation.

3Of course, the large groupoid is not defined, but this is not what we would like to
focus on here.
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For example, often in works on the manipulation of square matrices with

polynomial entries one finds statements that certain computations can be

performed with O(nα ·dβ) field operations, where n is the size of the matrix

and d the maximum of the degrees of the entries and α, β are constants.

However, for d = 0 there are then often infinitely many matrices for which

the bound does not hold, and therefore the statement is incorrect, even if

one uses the definition of the O-notation which is inspired by the definition

in [vzGG03].

1.4 Bit-complexity

So far we have not addressed the first two questions posed at the beginning

of this chapter: We still have to fix a particular computational model and

complexity measure / cost function. In this section, we propose a particular

computational model to capture the intuitive meaning of “bit-complexity”.

On the basis of this model, we can then in particular talk about the

complexity of a computational problem as defined in Section 1.2.

1.4.1 Some comments on bit-complexity

In the works on computational number theory, often no or very limited in-

formation is given on the underlying computational model and an intuitive

approach is taken with respect to computational complexity: In a certain

sense bit-operations needed for arithmetic operations are counted, but usu-

ally operations on the storage of the machine are assumed to be for free or

essentially for free. It arises the question which of the various computational

models in the literature capture this intuitive notion of “bit-complexity” ap-

propriately.

At the first sight, one might think of multiple string Turing machines

because this model is truly bit-oriented. However, on the other hand, one

wants to be able to have quick access to the storage, and in particular

indirect addressing should be possible, a feature which is not present in

Turing machines.

These important features are present in the various Random Access Ma-

chine (RAM) models, and if nothing else is stated explicitly in a certain

work on algorithms, it seems to be fair to interpret the claims with respect

to an appropriate RAM. Let us recall the general idea of a Random Access

Machine on an intuitive level:

The machine has registers ri (i ∈ N0), each of which can store inte-

gers or non-negative integers of arbitrary length (depending on the model).

Furthermore, the machine has a program which is described with a rather
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limited programming language. The register r0 serves as an accumulator

and contains the results of various instructions. An important feature of

the programming language is that it allows indirect addressing: Let r(i) be

the content of register i at a particular time during the execution of the

program. Then for every i ∈ N0, one can load r(r(i)), the content of register

rr(i), into the accumulator.

It arises however a problem because there is a certain level of arbitrari-

ness with respect to the possible instructions and the cost measure of the

RAM.

In order to cope with this problem of arbitrariness we propose as a com-

putational model a Random Access Machines whose arithmetic commands

are obtained from Turing machines. This means that from a “macroscopic

perspective” such a machine operates as the RAMs in the literature but

the arithmetic operations are performed by Turing machines. An informal

description of such machines, which we call bit-oriented Random Access Ma-

chines (bit-RAMs), is as follows: The machine has registers ri (i ∈ N0) and

a program. The instructions in the program are of two types. The first type

of instructions is based on the commands LOAD, STORE, GOTO, IF . . .

GOTO and END which have the same meaning as usual in the literature.

Now additionally, for every multiple string Turing machine T with multi-

ple input strings and one output string, we introduce a command cT . The

execution of this command is modeled by the Turing machine T . The run-

ning time in bit operations of the bit-RAM upon a certain input is then the

sum of the running times for the executions of the Turing machine-related

commands plus some cost for storage management.

1.4.2 Bit oriented Random Access Machines

We first fix a definition of the Turing machines which give rise to the arith-

metic commands of the bit oriented RAM model. This definition is closely

related to the definition of a multiple string Turing machine with with input

and output string in [Pap94].

We fix a 4-element set Σ with elements 0, 1,⊔,⊲, called the alphabet (the

elements of Σ are called symbols). The element ⊔ is called blank symbol, and

the element ⊲ is called first symbol. Furthermore, we fix a 3-element set with

elements ←,−,→, called the set of directions.

Definition 1.31 A bit-oriented multiple string Turing machine with multi-

ple input strings and one output string consists of

• two natural numbers k, ℓ with ℓ < k, the number of strings and the

number of input strings
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• a finite set Q, the state space

• an element q0 ∈ Q, the initial state and an element h ∈ Q, the halting

state

• a map δ : Q×Σk −→ Q× (Σ× {←,−,→})k , the transition function

such that the following holds: Let q ∈ Q and (σ1, . . . , σk) ∈ Σk, and let

δ(q, σ1, . . . , σk) = (q′, σ′1,D1, . . . , σ
′
k,Dk) with q′ ∈ Q,σ′i ∈ Σ and Di ∈ {←

,−,→}. Then:

• For all i = 1, . . . , k: σi = ⊲ iff σ′i = ⊲, and if this is the case then

Di =→.

• If q = h, then q′ = h, σ′i = σi and Di = − for all i.

• σk ∈ {0, 1} and Dk 6=←.

• For all i = 1, . . . , ℓ, σ′i = σi.

The four requirements can be interpreted as follows (see also the definitions

of configuration and starting configuration below).

• Every string starts with a ⊲ (which does not occur anywhere else in

the string), and if the head hits this symbol, it recognizes that it is at

the beginning of the string and moves right again.

• If the machine has reached the halting state, no more operations are

performed.

• The kth tape is write-only, and the kth string has no blanks.

• Tapes 1, . . . , ℓ are read only.

A configuration is a tuple (q, w1, u1, . . . , wk, uk) where q is a state and

wi, ui ∈ Σ∗ such that for all i, the first symbol of wi is ⊲, and this symbol

occurs nowhere else in wi and ui. The set of configurations is called configu-

ration space. The intuition of a configuration is that it indicates the current

state q of the machine as well as the current string left to the reading head

(including the symbol under the head) and the current string right to the

reading head (without the symbol under the head).

The transition function in an obvious way leads to an operation on the

configurations space. (If a reading head “falls off” the right side of a string,

a ⊔ is written, in particular strings cannot become shorter during the com-

putation; cf. [Pap94] for details.)

Let for α ∈ N0 S(α) be the corresponding bit-string (see also Re-

mark 1.14).
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Now let T be a bit-oriented multiple string Turing machine with ℓ input

tapes, and let α ∈ Nℓ
0. Then we define the starting configuration associated

to α as follows: The machine is in state q0, for all i = 1, . . . , ℓ, string i is

⊲S(αi), and strings ℓ+ 1, . . . , k are equal to ⊲. Moreover, the heads are at

the beginning of the strings.

If the machine halts, we associate to the kth string the corresponding

natural number (note that this string is of the form ⊲w, where w ∈ {0, 1}∗).
This association defines a partial function fT : Nℓ

0 −→ N0, the function

computed by T . As usual, we define the running time τT (α) of T applied to

α to be ∞ if the machine does not halt (that is, fT (α) is not defined), and

otherwise to be the number of operations until it halts. If T applied on α

halts, we define the space requirements or the space complexity SpaceT (α)

as the sum of the lengths of springs ℓ+1, . . . , k at the time of halting. (Note

that the strings never get shorter during the computation.)

We now give a formal definition of bit-oriented Random Access Machines.

Let Cbasic be a set with 5 elements which we denote by LOAD, STORE,

GOTO, IFGOTO, END; this set is called the set of basic commands.

Furthermore, let A be a set with 2 elements, which we denote by “=”

and “↑”.

Definition 1.32 A basic instruction is an element from the set Cbit ∪̇
Cbit × N0 ∪̇ Cbit ×A× N0 which corresponds to a ∗ in the following table.

Here and in the following we use the following notation: We write X n (resp.

X mn) for (X,n) (resp. (X,m,m)), and we call n (resp. (m,n) the operand.

We denote the set of basic instructions by Ibasic.

command no operand operand
=n n ↑n

LOAD — ∗ ∗ ∗
STORE — — ∗ ∗
GOTO — — ∗ —
IFGOTO — — ∗ —
END ∗ — — —

Example 1.33 LOAD 10 (that is, (LOAD, 10)) and STORE ↑ 5 (that is,

(STORE, ↑, 5)), are instructions.

Let T be the set of all bit-oriented multiple string Turing machines with

one output string. We fix a set Carith which is in bijection to T via a map

c : T −→ Carith , T 7→ cT . We call Carith the set of arithmetic commands,

and for T ∈ T , we call cT the (arithmetic) command for machine T .4

4We can of course set Carith := T and c := id, but it helps for the intuition to
distinguish between a Turing machine and the related command.
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Definition 1.34 The instruction space is Ibit := Ibasic ∪̇ Carith. The ele-

ments of this space are called instructions, and the arithmetic commands

are also called arithmetic instructions.

Definition 1.35 A bit-oriented Random Access Machine (bit-RAM) is a

tuple Π = (π1, . . . , πr) of instructions.

We now define the semantics of the instructions, that is, we define how

a bit-RAM operates.

We first define the configuration space as S := N
(N0)
0 × (N0 ∪̇ {∞})

(where N
(N0)
0 := {r ∈ NN0

0 | for nearly all i, r(i) = 0}); the elements of this

set are called configurations. If (r, k) is a configuration, r is called the register

configuration and k is called the counter. Note that the configuration space

does not depend on a particular bit-RAM.

Now we define the configuration transition function ∆ : Ibit × S −→ S

as follows. Let (r, k) be a configuration, and let ∆(x, r, k) = (r′, k′).

Let x first be a basic instruction. Then r′(i) = r(i) and k′ = k+1 except

for the cases indicated in the table.

command no operand operand
= n n ↑n

LOAD — r′(0) = n r′(0) = r(n) r′(0) = r(r(n))
STORE — — r′(n) = r(0) r′(r(n)) = r(0)
GOTO — — k′ = n —

IFGOTO — —
k′ = n if r(0) = 0 and
k′ = k + 1 if r(0) > 0

—

END k′ = 0 — — —

Now let x = cT for some bit-oriented k-string Turing machine T with ℓ

input strings and one output string. Then r′(i) = r(i) for all i ≥ 1. If T

does not halt on (r(1), . . . , r(ℓ)), then r′(0) = r(0) and k′ = ∞. If it halts

then r′(0) = fT (r(1), . . . , r(ℓ)) and k′ = k + 1.

We define the operation of Π on an input α ∈ N0 as the following se-

quence (rt, kt)t∈N0 ∈ SN0 :

We define r0 by r0(0) := α and r0(i) := 0 otherwise, and we set k0 := 1.

Then we define (rt, kt) for t ≥ 1 by (rt, kt) := ∆(rt−1, πkt−1) if kt−1 ∈
{1, . . . , r} and by (rt, kt) := (rt−1, kt−1) otherwise.

If there exists some t with kt = 0 or kt > r and kt 6=∞, we say that the

machine terminates, and in this case, we define the output as rt(0) for such

a t. (This definition is independent of t.) Note in particular that if there

exists some t with kt =∞, then the machine does not terminate.

We define the running time in RAM operations or the uniform running

time τu as ∞ if the machine does not terminate and otherwise as min{t ∈
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N | kt /∈ {1, . . . , r}}. Note here that this measure does not say anything

about the complexity of the operation because arbitrary complexity can be

hidden in the application of one command cT .

Finally, we define the logarithmic running time or the running time in

bit-operations as follows: First we define a function L := Ibit×N
(N0)
0 −→ N,

the logarithmic cost measure. Intuitively, this measure captures the com-

plexities of the storage accesses and the operations of the Turing machines.

More precisely, the definition is as follows. For some non-negative inte-

ger n, let ℓ(n), the bit-length of n, be defined as follows: ℓ(0) := 0 and

ℓ(n) := ⌊log2(n)⌋+ 1 if n ≥ 1. Then:

• – L(LOAD =n, r) := ℓ(n),

– L(LOAD n, r) := ℓ(n) + ℓ(r(n)),

– L(LOAD ↑n) := ℓ(n) + ℓ(r(n)) + ℓ(r(r(n))).

– L(STORE n, r) := ℓ(r(0)) + ℓ(n),

– L(STORE ↑n, r) := ℓ(r(0)) + ℓ(r(n))

• L(GOTO n, r) := 1, L(IFGOTO n) := 1, L(END ) := 1

• L(cT , r) := τT (r(1), . . . , r(ℓ)), the running time of T applied to

(r(1), . . . , r(ℓ)) if the Turing machine T has ℓ input strings.

Now, we are coming back to the operation of the RAM Π on the input α.

We define the logarithmic running time or the running time in bit-operations

of Π applied to α as ∞ if the machine does not terminate and otherwise as

τ = τΠ(α) :=

τu−1∑

t=0

L(rt, πkt) ,

with the notations from above. In the following, whenever we speak about

the running time or simply the time of the operation of a bit-RAM we mean

the running time in bit-operations.

Moreover, if Π we define the space requirements or the space complexity

SpaceΠ(α) of Π applied to α as follows: Let (t1, . . . , tr) with t1 < t2 < · · · <
tr be such that πti is an instruction based on a Turing machine, and πt is a

basic instruction if t 6= ti for all i. Let πti = cTi for some Turing machine Ti

with ji input strings. Then

SpaceΠ(α) :=
∑

i∈N

sup
t∈N0

ℓ(rt(i)) +

r∑

i=1

SpaceTi
(r(1), . . . , r(ji)) .

5

5Note that with this definition, the space complexity is at least as large as the input
length. This means that this definition is not appropriate to study questions related to
sub-linear space complexity classes.
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1.4.3 Randomization

We persistently use the method of randomization. Informally this means

that we introduce a new command RAND into the Random Access Machine

which if executed returns a “random bit” which is stored in the accumulator

r0. Here the drawing is stochastically independent of all previous drawings.

We call the resulting machine a randomized bit-oriented Random Access

Machine (randomized bit-RAM ).

We sketch the new ingredients for a possible rigorous approach to ran-

domized bit-RAMs, starting with the bit-RAM model defined above.

First we enlarge the set of commands by a new element which we call

RAND. We also enlarge the instruction space by RAND (that is, RAND has

no operand).

Let Ω be a probability space with stochastically independent equidis-

tributed probability variables Xt : Ω −→ {0, 1} for t ∈ N.

Let an input be fixed. Then similarly to the series (rt, kt)t∈N defined

above we now define a stochastic process (Rt,Kt)t∈N0) with values in the

configuration space S.

The process is determined by the randomized bit-RAM and the input

similarly to above.

More precisely, let α ∈ N be the input. Then we set R0(0) := α,R0(i) :=

0 and K0 := 1 and define (Rt,Kt) for t ≥ 1 as follows: If Kt−1 /∈ {1, . . . , r}
then (Rt,Kt) := (Rt−1,Kt−1). So let Kt−1 ∈ {1, . . . , r}. If now πKt−1 6=
RAND then (Rt,Kt) := ∆(Rt−1, πKt−1), just as above.

Now let πKt−1 = RAND. Then we setKt := Kt−1+1 andRt(i) := Rt−1(i)

for all i ≥ 1, and we define Rt(0) := Xt.

We define the logarithmic cost for the command RAND as

L(RAND, r, s) := 1. The definitions of output, uniform running time and

running time in bit operations are as above; these quantities are now also

random variables on Ω. Note that the uniform running time and logarithmic

running time are stopping times of the stochastic process (Rt)t∈N.

This completes the description of operation of a randomized bit-RAM.

We fix the following two obvious remarks.

Remark 1.36 (Rt,Kt)t∈N0 is a time-homogeneous Markov chain.

Remark 1.37 Let n be a natural number, let r1, . . . , rℓ(n) be indepen-

dently uniformly distributed random variables with values in {0, 1}, and

let N :=
∑ℓ(n)

i=1 ri2
i−1. Then the probability that N ≤ n is ≥ 1

2 . Moreover,

conditionally to N ≤ n, N is uniformly randomly distributed in {1, . . . , n}.
With these remarks one can easily obtain a randomized bit-RAM which

upon input of some α outputs a uniformly randomly distributed random



20 Chapter 1. Computational problems

variable with values in {1, . . . , α} and which terminates in an expected time

of O(log(α)).

The following definition relates randomized bit-RAMs with computa-

tional problems as defined in Section 1.2.

Definition 1.38 Let C be a large groupoid with bit-representation (S,F),

let C′ be a large groupoid with bit-representation (S′,F ′), and let P be a

computational problem from C to C′. Now let Π be a randomized bit-RAM.

Then we say that Π computes P if for every x ∈ S,

• Π applied to x terminates in finite expected time (that is, E(τΠ(x)) <

∞)

• if with a probability > 0 Π applied to x terminates with some y ∈ S′,
then we have F ′(y) ∈ P(F(x)).

An analogous definition holds for relative computational problems.

1.5 The use of the word “algorithm”

In Theorems 1 to 5 in the introduction to this work, we asserted the exis-

tence of “randomized algorithms” with certain properties. We should thus

give a formal definition of “algorithm”. As we stated above the theorems,

“the underlying complexity model is always a randomized random access

machine model with logarithmic cost function”. This suggests that we de-

fine a randomized algorithm as nothing but a randomized bit-RAM and a

deterministic algorithm as a bit-RAM.

Such a definition would however be at odds with the intuitive meaning of

the world algorithm. Consider for example an “algorithm” in the intuitive

meaning of the word which contains an instruction like “c ←− ab”, where

a and b are natural numbers. Then we would not obtain an “algorithm”

in the rigorous sense because it is unclear how the two numbers should be

multiplied.

It seems to us to be impossible to find a compromise between the usual

informal use of the word algorithm and a formal definition. One possibility

to resolve this problem would be to reserve the word “algorithm” only for in-

formal descriptions and otherwise use words with formally defined meanings

like “randomized bit-RAM”.

We think however that it causes no harm if after these remarks we accept

that there are two uses of the word algorithm: An informal use and a formal

use. Whenever we make a claim that there exists an algorithm with certain

properties, we have a formal use in mind. The specific computational model
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is then clearly stated, and moreover, if we use randomization, we speak

about a randomized algorithm.

If we use the word informally, we also have a specific computational

model in mind, which might be randomized.6 However, we always leave

out certain details on the execution (as remarked above, even an innocently

looking instruction like “c ←− ab” leaves out important information). We

do however require that the various steps of the algorithm can be performed

on the basis of the fixed computational model. We then often argue earlier

or later that some steps in the algorithm can be performed in a certain

time (resp. expected time) and maybe with certain space requirements, and

this is all which is of interest to us. A priori, we also not demand that the

algorithm terminates in a finite expected time.

In Chapter 3 we also talk about procedures. A procedure is similar to

an algorithm, and in Chapter 3 the formal definition for procedure is also

that of a randomized bit-RAM. However, there is a change of perspective:

An algorithm takes an input and produces an output. A procedure on the

other hand operates on the data structure. This is particularly important

for the “relation generation procedure” for Theorem 1 in Section 3.3; in

fact a “relation generation algorithm” would be extremely inefficient simply

because then the tree of large prime relations would have to be read and

stored again every time the “algorithm” is executed.

1.6 Algebraic complexity

In this section, we first briefly review some approaches to exact computations

in rings in the literature, and then we describe a particular computational

model which is based on bit-oriented Random Access Machines but allows

exact computation over a fixed ring. We show how this model can also be ap-

plied for variable rings too, obtaining what we call generic ring RAMs. This

model then allows a uniform formal description of algorithms over variable

rings (in particular fields), and it will serve as a basis for the considerations

in the next chapter.

1.6.1 Terminology

By a ring we always mean a ring with 1. Likewise, a homomorphism of rings

is a homomorphism of rings with 1. Note that we do not demand that rings

are always commutative.

6In contrast, in the literature, the word “algorithm” is often used without reference to
a particular computational model.
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Let now R be a commutative ring. By an algebra over R we mean a

tuple (A,ϕ), where A is a ring and ϕ : R −→ A is a homomorphism of rings

whose image lies in the center of A. (As usual we omit ϕ if possible.) If

(A,ϕ) and (B,ψ) are two R-algebras, then a homomorphism of R-algebras

from A to B is a homomorphism of rings χ : A −→ B with χ ◦ ϕ = ψ.

1.6.2 Computation trees

One can use computation trees to study algorithmic problems in a fixed field

(or in extension fields of a fixed field). This approach is for example taken in

Bürgisser, Clausen, Shokrollahi: Algebraic Complexity Theory ([BCS91]).

The model has however at least one shortcoming: It is not uniform for

inputs of varying length. In fact, for different input lengths in principle

completely different computations might be used. Another shortcoming is

that the ground field is fixed (and in particular the characteristic is fixed).

However if one wants to describe an algorithm which applies to varying

fields, it is reasonable to demand that the formal description is also uniform

over the fields.

We note that the phrase “algebraic complexity” is often used to denote

the part of complexity theory which is based on straight-line programs and

computation trees. We would however like to suggest to use this phrase

for the part of complexity theory which is based on models which take

a “macroscopic point of view” to computations in (possibly uncountable)

rings. Straight-line programs and computation trees would then fall in the

area of non-uniform algebraic complexity.

1.6.3 R-RAMs

A well-known model which features uniformity over a fixed ring R is de-

scribed by Blum, Shub and Smale in [BSS89] (see also [BCSS98]). Roughly

speaking this model can be seen as a Turing machine model over R.

This model is surely appropriate to study questions related to complexity

classes such as if a particular problem can be computed in polynomial time.

We are however seeking for a model which features (exact) arithmetic over

a ring and otherwise is close to the RAM model; in particular we want to

be able to (efficiently) use indirect addressing.

A model similar to the RAM model but for computations with real num-

bers is briefly described in [PS85]; it is called the real RAM model. This

is a similar model than usual RAM model with the additional feature that

(exact) storage and operation of real numbers is possible. This approach

can easily be generalized to arbitrary rings R. We now give such a gener-

alization; we call the resulting machines R-RAMs (R refers to the specific
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ring).

From an intuitive point of view the starting point is a device similar to a

bit-RAM, but now there are two kinds of registers (both indexed by natural

numbers): The first kind of cells can store integers and the second kind can

store elements of the ring R. Let us call the former registers ri (as above)

and the latter registers si (i ∈ N0). Now additionally to r0 the register s0
serves as a second accumulator, and we have a second set of commands to

operate on the registers si.

A formal description is as follows:

Let R be a ring. We take the definition of the Random Access Ma-

chine in subsection 1.4.2 as a starting point and only discuss the necessary

modifications.

Additionally to the set Cbit we fix a second set of commands CRing with

7 elements which we denote by RINGLOAD, RINGSTORE, RINGADD, RING-

SUB, RINGMULT, RINGDIV and RINGIFGOTO. We call these commands ring

oriented commands.

A ring oriented instruction is an element from the set CRing ∪̇ CRing ×
R ∪̇ CRing × {=} × N0 ∪̇ CRing × {↑} × N0 which corresponds to a ∗ in

the following table (where a ∈ R and n ∈ N0). We denote the set of ring

oriented instructions by IR,Ring.

command no operand operand
=a n ↑n

RINGLOAD — ∗ ∗ ∗
RINGSTORE — — ∗ ∗
RINGADD ∗ — — —
RINGSUB ∗ — — —
RINGMULT ∗ — — —
RINGDIV ∗ — — —
RINGIFGOTO — — ∗ —

We define the instruction space as IR := Ibit ∪̇ IR,Ring, where Ibit is

defined as for bit-RAMs.

Definition 1.39 An R-RAM is a tuple Π = (π1, . . . , πr) of instructions,

that is, of elements from IR.

We now define the configuration space as SR := N
(N0)
0 × R(N0) × (N0 ∪̇

{∞}). If (r, s, k) is a configuration, that is, an element from SR, we call

r the bit-register configuration, s the ring-register configuration and k the

counter.

We define the configuration transition function ∆ : IR × SR −→ S as

follows: Let x be an instruction, let (x, r, s, k) be a configuration, and let
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T (x, r, s, k) = (r′, s′, k′). Then if x ∈ Ibit, s
′ = s, and r′ and k′ are defined

as in subsection 1.4.2. If x is a ring oriented instruction, then r′(i) = r(i)

for all i ∈ N0, k
′ = k, s′(i) = s(i) for all i ∈ N and s′(0) is defined as follows

(with a ∈ R,n ∈ N0):

• – If x = RINGLOAD a : s′(0) = a

– If x = RINGLOAD n : s′(0) = s(n)

– If x = RINGLOAD ↑n : s′(0) = s(r(n))

• – If x = RINGSTORE n : s′(n) = s(0)

– If x = RINGSTORE ↑n : s′(r(n)) = s(0)

• If x = RINGIFGOTO n: k′ = n if s(0) = 0 and k′ = k + 1 otherwise

• If x = RINGADD : s′(0) = s(1) + s(2)

• If x = RINGSUB : s′(0) = s(1)− s(2)

• If x = RINGMULT : s′(0) = s(1) · s(2)

• If x = RINGDIV : s′(0) = s(1) · s(2)−1 if s′(2) ∈ R∗ and s′(0) = 0

otherwise.

We define the set of inputs of R-RAMs as N0×
⋃̇

ℓ∈N0
Rℓ.

Now the operation of the RAM Π = (π1, . . . , πk) on the input (α, a) =

(α; a1, . . . , aℓ) is the following sequence (rt, st, k) ∈ SN0 :

We define r0 by r0(0) := α and r0(i) := 0 otherwise. We define s0 by

s0(i) := ai for i = 1, . . . , ℓ and s0(i) := 0 for i ≥ ℓ + 1. We define k0 := 1.

Then for t ≥ 1 we define (rt, st, kt) for t ≥ 1 analogously to the definition

in subsection 1.4.2: (rt, st, kt) := ∆(rt−1, st−1, kt−1) if kt−1 ∈ {1, . . . , r} and

by (rt, st, kt) := (rk−1, st−1, kt−1) otherwise.

The definitions of termination, output and running time in RAM oper-

ation are now just as in subsection 1.4.2.

Given an input such that Π terminates with a running time in RAM

operations of τu, we define the running time in ring operations with overhead

as τR := #{t ∈ {0, . . . , τu− 1 | the command in πkt is in CRing}. Moreover,

we define the running time in ring operations without overhead as

#{t ∈ {0, . . . , τu − 1 | the command in πkt is in
{RINGADD,RINGSUB,RINGMULT,RINGDIV}} .

We call the running time in ring operations with overhead also the run-

ning time in ring operations. Note however, usually in the literature the

running time in ring operations without overhead is called running time in
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ring operations. (This corresponds for example to the definitions for compu-

tation trees.) Sometimes, when we want to emphasize the underlying ring,

we also speak about the running time in ring operations in R. If R is a field,

we also speak about the running time in field operations.

Furthermore, we define the logarithmic cost measure L : IR × N
(N0)
0 ×

k(N0) −→ N similarly to the logarithmic cost measure in subsection 1.4.2:

For instructions in Ibit the definitions are as in subsection 1.4.2, and for the

instructions based on commands in CRing, the definition is as follows: If X

is a command, n ∈ N and a ∈ k, then

• L(X = a, r, s) := 1

• L(X n, r, s) := ℓ(n)

• L(X ↑n, r, s) := ℓ(n) + ℓ(r(n))

• L(X, r, s) := 1

We define the logarithmic running time or the running time in bit oper-

ations as τbit :=
∑τu−1

t=0 L(πkt , rt, st). We call the sum τR + τbit the running

time in ring and bit operations or the running time is ring operations in R

and bit operations.

Finally we define the space requirements in ring elements or the space

complexity in ring elements as the number of registers which contain element

6= 0 at least once during the computation, that is, #{i ∈ N0 | ∃t ∈ N0 :

rt(i) 6= 0}.

Remark 1.40 If R is a field with a total ordering ≤ (e.g., R = R), one

might introduce a further command which returns 1 or 0 according to the

field element in s1 being ≥ 0 or < 0.

Also, if R is a field of characteristic p > 0, one might introduce a com-

mand to compute pth-th roots of unity. Indeed, we will introduce such a

command below.

1.6.4 Generic field RAMs

Let now ϕ : R −→ S be a ring homomorphism. Note that we have an

obvious canonical map IR −→ IS . Via this map, we associate to every

R-RAM Π an S-RAM ϕ(Π).

Let now R be a commutative ring. If now A is an R-algebra with canon-

ical morphism ϕ : R −→ A, we denote ϕ(Π) also by A(Π).

We call a tuple (A,α, a), where A is an R-algebra, α ∈ N0, a ∈ Rn for

some n ≥ 0, an input over A. We define the operation of the R-RAM Π on

such a tuple (A,α, a) as the operation of A(Π) on (α, a).
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With this definition, we can also define the uniform running time, the

running time in ring operations (in A) (with or without overhead) and the

running time in bit operation of Π applied to such a tuple (A,α, a).

Note the following informal description of the operation of Π on (A,α, a):

At the beginning of the computation, the “algebraic registers” si are in-

stantiated to contain elements from A and the ring-oriented commands are

likewise instantiated to perform operations with such elements, and then the

input is stored and the computation is performed.

If we want to stress that we allow inputs over arbitrary R-algebras rather

then merely over R itself, we call an R-RAM also an R-algebra RAM. Note

however that by definition an R-RAM just as an R-algebra RAM is merely

a tuple of elements from IR; it is the operation which is extended to R-

algebras.

We call a Z-algebra RAM a ring RAM. Note that this RAM operates on

inputs over arbitrary rings. To emphasize this, we also speak of a generic

ring RAM. If we now restrict the possible inputs to triples (k, a, a), where

k is a field, we obtain what we call a (generic) field RAM.

For Chapter 2 the following variant of the generic field RAM model is

particularly relevant: We enrich the generic field RAM model with a com-

mand to compute pth roots in characteristic p > 0. The additional command,

called FIELDCHARROOT, takes no operand and operates as follows: If the

characteristic of the field k is 0, then 0 is written in register s0. If the char-

acteristic of the field k is p > 0, then if s(1)
1
p ∈ k, this is written in s0.

Otherwise, again 0 is written. We charge one field and one bit operation

for each application of the command. The resulting machines will serve as

a formal basis for deterministic algorithms in the “algebraic setting”.

We remark that it would be reasonable to enrich generic field RAMs also

with a command which returns the characteristic of the field. The existence

of such a command would however not change the complexities obtained in

the next chapter.7

Analogously to randomized bit-RAMs we also define randomized generic

field RAMs. For this we enrich the generic field RAM model with two

further commands: RAND and FIELDFACTOR. (We could also include the

command FIELDCHARROOT but this would not change our results.) The

formal definition of the operation of the command RAND is analogous to

the one in subsection 1.4.3.

The command FIELDFACTOR (which does not take an operand) factors a

7Sometimes – for example in the algorithm we give for Proposition 1.50 – we have
to check if the characteristic is positive and below a certain bound, and if so, we have
to determine it. However, such bounds are always so small that this computation can
efficiently be performed by brute force.
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univariate polynomial, and in doing so it mimics the behavior of randomized

(Las Vegas) algorithms: With a probability of 1
2 it fails and with a prob-

ability of 1
2 it returns the list of normalized irreducible factors (including

multiplicities).

It follows a more detailed but still informal description of the operation

of this command. A formal description can be given analogously to the

description of the command RAND given in subsection 1.4.3.

We first fix how univariate polynomials are stored. The idea is to use

the dense representation. The concrete representation is of course somewhat

arbitrary, but let us for concreteness say that a polynomial
∑d

i=0 ait
i with

ad 6= 0 is stored as an array (a0, 0, a1, . . . , ad−1, 0, ad, 1) which starts at at a

certain register si and ends in register si+2d−1.

Now the command operates as follows: It tries to interpret the contents

of the registers starting at s0 as a polynomial. If this is not the case, the

command terminates with writing 0 in r0. If it recognizes a polynomial, it

operates as follows: With a probability of 1
2 the command terminates with

writing 0 in register r0. (The idea is that the factorization fails.) With a

probability of 1
2 it terminates with the normalized irreducible factors (with-

out multiplicities), starting with the first coefficient of the first element in

s0. Also, starting in r0, the corresponding list of multiplicities is written.

The ordering of the factors is chosen uniformly at random from all pos-

sible orderings. Moreover, the execution of the command is stochastically

independent of all previous and later uses of randomization in the algorithm.

We are now coming to the complexity of the two commands RAND and

FIELDFACTOR. To define the bit-complexity, we again extend the logarith-

mic cost measure L to include the two commands. Analogously to above, we

define L(RAND, r, s) := 1, and we define L(FIELDFACTOR, r, s) := 1. Then

we define the running time in bit-operations analogously to above.

Concerning the running running time in field operations (with or without

overhead), we proceed as follows: We do not take into account an occurrence

of the command RAND. Moreover, whenever the command FIELDFACTOR

is applied we charge 1 field operation if the content of the registers starting

with s0 cannot be interpreted as a univariate polynomial, and otherwise, if

the polynomial has degree d, we charge d2 field operations. Note that this

means that with the command FIELDFACTOR a polynomial of degree d can

be factored with an expected number of O(d2) field operations. We note

that we choose to charge d2 field operations because a polynomial of degree

d over a fixed finite field can be factored with an expected number of o(d2)

field operations with the Kaltofen-Shoup algorithm; see [KS98]. See also

subsection 1.6.6 for further discussion.



28 Chapter 1. Computational problems

1.6.5 Algebraic computational problems

We come to the changes in our definitions for computational problems which

have to be performed for the change from the bit-oriented to the “algebraic”

computational model.

If one fixes a ground field, the modifications are indeed quite minor, but

we would like to vary the field as well.

Let Fields be the large groupoid obtained from the category of fields by

discarding all morphisms which are not isomorphisms. We now only consider

large groupoids over Fields, that is, we consider tuples (C,C −→ Fields),

where C is a large groupoid and C −→ Fields is a functor. Also the functors

we consider are over Fields, that is, they are compatible with the functors

to fields.

Apart from this “relative approach” we use the terminology on (partial)

representations and relative (partial) representations from subsection 1.2.

Remark 1.41 A situation one encounters often is as follows: The fibers of

X over Fields are sets, and moreover: For x ∈ X lying over a field k and

an isomorphism k −→ k′ there exists exactly one x′ ∈ X such that there

exists some isomorphism x −→ x′ over the isomorphism k −→ k′.

Example 1.42 A large groupoid which is often used to represent other large

groupoids is the large groupoid of vectors of arbitrary lengths over arbitrary

fields, defined as follows: The objects are tuples (k, a), where k is a field and

a ∈ kn for some n ∈ N0. The morphisms are defined as follows: Let k and

k′ be fields, and let a ∈ kn, a′ ∈ (k′)m. If m 6= n, there are no morphisms. If

n = m, we define Mor((k, a), (k′, a′)) := {ϕ : Iso(k, k′) |ϕ(ai) = a′i for all i =

1, . . . , n}.

Now we have to substitute the bit representations by representations

which are appropriate for a generic field RAM.

For this we define a large groupoid RAMinputs: The objects are the

inputs over arbitrary fields already considered in the definition of generic

field RAMs, that is, they are triples (k, α, a), where α ∈ N0 and a ∈ kn

for some n ∈ N0. The morphisms are defined as follows: Let (k, α, a),

(k′, α, a) be two objects with a ∈ kn and a′ ∈ km. Then if α 6= α′,
there are no morphisms from (k, α, a) to (k′, α, a′)). For α = α′, we de-

fine Mor((k, α, a), (k′, α′, a)) := Mor((k, a), (k′, a′)).

Definition 1.43 A generic field RAM representation of a large groupoid

C is a representation of C by RAMinputs. Similarly, a relative generic

field RAM representation of a functor C −→ C′ between large groupoids is

a representation of C −→ C′ by RAMinputs −→RAMinputs.
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Note again that we consider throughout large groupoids and functors over

Fields; this applies in particular the definition just made.

A field oriented computational problem is defined as a computational

problem in the bit-oriented models (see Definition 1.17) with the differences

that we substitute N0 by RAMinputs (and all categories and functors are

over Fields). Analogously relative field oriented computational problems

are defined as in Definition 1.25 with these modifications.

Let a computational problem or a relative computational problem be

given, and let Π be a generic field RAM enriched with the command

FIELDCHARROOT or a randomized generic field RAM. Then we use the

phrase “Π computes the problem” analogously to Definitions 1.17, 1.25 and

1.38.

1.6.6 Algebraic complexity and bit-complexity over finite

fields

If one considers computational problems over finite fields, any complexity

theoretic statement on the basis of a generic field RAM immediately leads

to a corresponding statement on the basis of a bit-RAM, as described now:

Let Fieldsfin be the large groupoid of finite fields. We fix a bit-re-

presentation of Fieldsfin along the following lines: We first represent each

finite field by an irreducible polynomial over the prime field, and we represent

the irreducible polynomial by its coefficient vector. Then we represent the

coefficient vector by a natural number. (There is of course some ambiguity

in this description but clearly, there are “reasonable” possibilities to fill in

the gaps.)

Now we fix a relative representation of the large groupoid of tuples (k, a)

where k is a finite field and a ∈ k over Fieldsfin by representing the

element a ∈ k by its coefficient vector with respect to a polynomial basis;

cf. the discussion above Definition 1.10. We extend this representation in an

obvious way to represent the large groupoid of tuples (k, a), where a ∈ kn

for some n ∈ N and then also to RAMinputs.

It is obvious that with this representation the field operations of a generic

field RAM restricted to instances over finite fields Fq can be performed with

O(log2(q)) bit-operations. In fact, this running time can be lowered to

O(log(q) · (log log(q))2 · log log log(q)) by using FFT for multiplication and

additionally a fast Euclidian algorithm for division; see [vzGG03, Corollary

11.10].

With this result, one can associate to any generic field RAM a bit-RAM

which performs the same computations over finite fields. Roughly, the bit-

RAM is defined by using the even numbered registers for the previous bit-

registers ri and the odd-numbered registers for the previous “algebraic”
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registers. Along these lines one obtains the following proposition.

Proposition 1.44 Let Π be a generic field RAM. Then there exists a bit-

RAM Πbit such that the following holds: Let (Fq, α, a) be an input over

a finite field, and let y represent this input. Then Π applied to (Fq, α, a)

terminates if and only Πbit applied to y terminates.

Let us assume that Π terminates, and let τf be the running time in

field operations with overhead and τbit the running time in bit operations.

Then Πbit terminates in O(τf · log(q) · (log log(q))2 · log log log(q) + τbit) bit

operations.

Remark 1.45 Let q = pn for a prime p. Then in the finite field Fpn , we

have a−p = apn−1
. Therefore the computation of pth roots in Fpn can be

performed with O(log(q)) field multiplications in Fpn. On a bit-RAM this

is possible with O(log(q)2 · log log(q) · log log log(q)) bit operations.

Therefore, for every generic field RAM enriched with the command

FIELDCHARROOT Π, there exists a bit-RAM Πbit as in the proposition ex-

cept that if Πbit terminates, then it terminates in O(τf · log(q)2 · log log(q) ·
log log log(q) + τbit) bit operations.

With the Kaltofen-Shoup algorithm ([KS98]) and FFT-based multipli-

cation one needs O((d log(q))2) bit-operations to factorize a polynomial of

degree d over a finite field Fq. (The given bound is not best-possible.) As

we have defined the running time in field operations of one application of

the command FIELDFACTOR to a polynomial of degree d to be d2 field

operations, this gives rise to the following proposition.

Proposition 1.46 Let Π be a generic field RAM with randomization. Then

there exists a bit-RAM Πbit such that the following holds:

Let (Fq, α, a) be an input over a finite field, and let y represent this

input. Then Π applied to (Fq, α, a) terminates in a finite expected number

of bit operations if and only Πbit applied to y terminates in a finite expected

number of bit operations.

Let us assume that Π terminates in a finite expected number of bit op-

erations, and let E(τf ) be the expected running time in field operations with

overhead and E(τbit) the expected number of bit operations. Then Πbit ter-

minates in an expected number of O(E(τf ) · log2(q)+E(τbit)) bit operations.

1.7 Algebraic complexity and finite algebras

This section focuses on basic computational problems related to finite com-

mutative algebras over fields. As an application we consider basic questions
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related to field oriented computational problems and finite field extensions.

The model of computation is always given by generic field RAMs enriched

with the command FIELDCHARROOT or by randomized generic field RAMs

(which means in particular that the command FIELDFACTOR is available).

It is a basic observation that given any finite algebra A, represented

by a multiplication table over k, one can perform (deterministically) the

arithmetic operations in A with O(dimk(A)) field operations (in k). We

start off by formalizing this result with the terminology of the previous

sections.

We then recall results from the literature which say that if k is perfect,

one can determine the primary decomposition as well as the prime ideals

of a commutative k-algebra A with an expected number of field operations

which is polynomially bounded in dimk(A). As an application we show that

given a finite field extension λ|k, again represented by a multiplication table,

and a polynomial f(t) ∈ λ[t], one can factorize this polynomial over λ with

an expected number of field operations which is polynomially bounded in

[λ : k] and deg(f).

As an application of these results we study the following problem: Let a

field oriented computational problem P : C −→ C′ be given. Then one can

consider the problem which is intuitively described as follows: Given a finite

field extension λ|k, represented by a multiplication table, and some object x

of C lying over λ, compute P(x) with a generic field RAM instantiated with

k (and not λ)! It is easy to turn every deterministic algorithm to compute

P into an algorithm to compute this “extended problem”. With the result

on factorization of polynomials the same holds for randomized algorithms if

one restricts oneself to computational problems over perfect fields.

1.7.1 Computing in finite algebras

In this subsection, we discuss the easy statement that given any finite k-

algebra A, represented by a multiplication table, one can perform the arith-

metic operations in A with O(dimk(A)) field operations in k. In doing so

we make the effort to in detail describe how one should define the large

groupoids, functors etc. for an application of the notions of the previous

sections. Just as in subsection 1.6.6, all large groupoids and functors are

over the large groupoid Fields of fields.

We start off with the large groupoid ALG whose objects and (iso-)mor-

phisms are defined as follows: The objects are finite algebras over fields.

The (iso- )morphisms are pairs of isomorphisms which fit into the following
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diagram.

A // A′

k //

OO

k′

OO

Note that ALG is a large groupoid over the large groupoid Fields of fields.

For some field k and n ∈ N we define kn×n×n := k{1,...,n}3
, and we call

the elements of this set multiplication tables.

If M = (mi,j,k)i,j,k ∈ kn×n×n is such a multiplication table, we define

an associated operation ·M on kn as follows: The operation is the unique

k-bilinear operation with ei ·M ej = (mi,j,1, . . . ,mi,j,n), where ei is the i-th

standard vector.

Note that if B(k, n) is the set of k-bilinear operations on kn, we have a

bijection kn×n×n −→ B(k, n) ,M 7→ ·M .

Now let M be the large groupoid of multiplication tables over arbitrary

fields. The definition is completely analogous to the definition in Example

1.42: The objects are tuples (k,M), where k is a field and M a multiplication

table with entries in k. Let (k,M) and (k′,M ′) be two objects. Then if the

multiplication tables have different size, there are no morphisms between the

objects. If on the other hand both have size n, the set of (iso-)morphisms

from (k,M) and (k′,M ′) is {ϕ ∈ Iso(k, k′) |m′
i,j,k = ϕ(mi,j,k) for all i, j, k =

1, . . . , n}.
We now want to define an M-representation of ALG over k which makes

the statement “we represent finite k-algebras by multiplication tables” pre-

cise.

For this, we first define the full subcategory S of M which consists of all

multiplication tables which define algebras. Then the representation is given

by the functor F : S −→ ALG which is given as follows: If M ∈ kn×n×n,

then F((k,M)) = (kn, ·M ). If ϕ : (k,M) −→ (k′,M ′) is a morphism with

M ∈ kn×n×n and M ′ ∈ (k′)n×n×n, then in particular ϕ : k −→ k′. This

induces a map kn −→ (k′)n. Now by definition of the morphisms in M this

map is a morphism of fields and we have the commutative diagram

(kn, ·M ) // ((k′)n, ·M ′)

k
ϕ //

OO

k′ .

OO

We define F(ϕ) to be the morphism in the upper row. Obviously we have

defined an essentially surjective functor, that is, a representation of ALG

by M.

This representation induces a relative representation of the large groupoid

of tuples (A, a) with a ∈ A (and the obvious isomorphisms) over ALG.
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We now fix a representation of M by RAMinputs. (As often, there

is some ambiguity here but we assume that the representation is in an ob-

vious sense “reasonable”.) We obtain also a relative representation of the

large groupoid of tuples (A, a) by RAMinputs. (With the obvious iso-

morphisms.) (Again there is some ambiguity here.) Analogously, we obtain

a relative representation of the large groupoid of tuples ((k,A), (a, b)) with

k a field, A a finite separable k-algebra and (a, b) ∈ A2 by RAMinputs.

We now have the following obvious proposition.

Proposition 1.47 There exists a generic field RAM Π which computes P
such that the following holds: If r represents ((k,A), (a, b)), then the number

of field operations performed by Π if applied to r is in O(dimk(A)3), and the

number of bit operations is polynomially bounded in dimk(A).

Remark 1.48 More intuitively, the previous proposition can be stated as

follows:

Given a field k and a finite k-algebra A, represented by a multiplication

table, as well as a, b ∈ A, one can compute a · b ∈ A in a number of field

operations in k which is in O(dimk(A)3) and a number of bit operations

which is polynomially bounded in dimk(A).

In the following we mostly use an intuitive formulation along the lines

of this formulation.

1.7.2 Factoring finite commutative algebras and polynomials

We consider the problem to determine the decomposition into local rings

as well as the prime ideals of a finite commutative algebra over a field.

Throughout we assume that the algebra is given by a multiplication table

with respect to a k-basis. A nice overview over algorithms for this problem

is given in [KM04a, Section 7].

We do not anymore make the effort to formalize the description with the

notions of the previous sections.

The following result is proven in [KM04a, Section 7].

Proposition 1.49 Given a finite commutative k-algebra A, one can with a

randomized algorithm determine the canonical decomposition A = A1⊕· · ·⊕
Aℓ of A into local rings in an expected number of field and bit operations

which is polynomially bounded in dimk(A). (Here the Ai are represented via

coordinate vectors of k-bases with respect to the chosen basis of A.)

Note again that we assume that the algebra A is given by a multiplication

table with respect to a k-basis. Note also that the Ai are not subalgebras



34 Chapter 1. Computational problems

of A in our terminology as the unity of Ai does not coincide with the unity

of A.

The statement in the following proposition is proven in [KM04a] under

the additional assumption that the algebra A is local. Because of this, we

state it here with a proof.

Proposition 1.50 Given a finite commutative k-algebra A over a perfect

field k, one can with a deterministic algorithm compute the nilradical of A

in a number of field operations which is polynomially bounded in dimk(A).

(Again the nilradical is represented via coordinate vectors of a k-basis.)

Let d := dimk(A) and p := char(k). Let N be the nilradical. Our proof of

this proposition is based on the following two lemmata.

Lemma 1.51 Let either the characteristic of k be 0 or larger than d. Then

some a ∈ A is nilpotent if and only if Tr(ab) = 0 for all b ∈ A. With other

words, N is the kernel of the k-linear map

A −→ Homk(A, k) , a 7→ (b 7→ Tr(ab)) .

Proof. Let a ∈ N . Then ai = 0 for some i ∈ N. Now let b ∈ A. Then

(ab)i = 0 too. Therefore the minimal polynomial of ab is ti ∈ k[t] for some

i ≤ d. In particular the characteristic polynomial of a is td. Therefore, the

trace of ab is 0.

For the converse let us first assume that A is a local algebra. Now let

a /∈ N . Then a is a unit and there exists some b ∈ A with ab = 1. Therefore

Tr(ab) = d 6= 0.

Let now A be arbitrary, and let A = A1⊕ · · · ⊕At be the decomposition

into local algebras, and let mi be the maximal ideal of Ai. Then N =⋂ℓ
i=1 mi. Let a /∈ N , a = (a1, . . . , aℓ). Then there exists some j = 1, . . . , t

such that aj /∈ mj . Therefore there exists a b ∈ A with ab = (δi,j)i,j . Now

TrA/k(ab) = TrAj/k(1) 6= 0. 2

The beginning of the proof also implies:

Lemma 1.52 N = {a ∈ A | ad = 0}

The algorithm for Proposition 1.50 is now as follows:

First we check by “brute force” if either (p = 0 or p > d) or (p > 0 and

p ≤ d). In the first case, we compute the nilradical following Lemma 1.51.

So let us now assume that p ≥ 0 and p ≤ d. Let j ∈ N be such that

pj ≥ d. Let b1, . . . , bd be the fixed basis of A. For a ∈ A, let a ∈ kd be the

associated coordinate vector. Let M ∈ kd×d be the matrix which defines the

k-linear map given by bi 7→ bpi .
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Let σ : kd −→ kd, (a1, . . . , ad) 7→ (ap
1, . . . , a

p
d). Let ΛM : kd −→ kd , a 7→

Ma. Note that for a ∈ A, Mσa = (ΛM ◦ σ)(a) is the coordinate vector of

ap. More generally, for i ∈ N (ΛM ◦ σ)i(a) is the coordinate vector of api
.

By the previous lemma, an element a ∈ A is in N if and only if apj
= 0,

and this is the case if and only if (ΛM ◦ σ)j(a) = 0.

Let for N ∈ kd×d σ(N) be the matrix obtained by raising all entries of

N to the pth power. Then σ ◦ ΛM = Λσ(M) ◦ σ, and therefore, (ΛM ◦ σ)j =

Λσj−1(M)σj−2(M)···σ(M)M ◦ σj.

Now let g
1
, . . . , g

t
be a basis of ker(Λσj−1(M)σj−2(M)···σ(M)M ). Then as k

is perfect, σ−j(g
1
), . . . , σ−j(g

t
) are the coordinate vectors of a basis of N .

The computation is now obvious. 2

Remark 1.53 Note that by the previous proposition, one can determine

the maximal ideal of a local finite commutative k-algebra A in a number of

field operations which is polynomially bounded in dimk(A). This applies of

course in particular to the components Ai in Proposition 1.49.

Remark 1.54 Let m be the maximal ideal of A, let λ := A/m, and let

a1, . . . , adimk(m) be a k-basis of m. Let a1, . . . , adimk(A) be an extension to a

k-basis of A. Then adimk(m)+1, . . . , adimk(A) induces a k-basis of λ.

From the previous proposition it follows that one can compute a k-basis

of λ and the corresponding multiplication matrix of λ in a number of field

operations which is polynomially bounded in dimk(A).

The previous results imply:

Proposition 1.55 Given a finite field extension λ|k over a perfect field k,

represented by a multiplication table over k, as well as a polynomial f(t) ∈
λ[t] of the form f(t) = g(t)e for a monic irreducible polynomial g(t) ∈ λ[t]

and e ∈ N, one can with a deterministic algorithm compute g(t) and e in

a number of field operations which is polynomially bounded in [λ : k] and

deg(f).

In particular, if char(k) = p > 0, then one can compute pth roots in finite

extension fields λ|k in a number of field operations which is polynomially

bounded in [λ : k] and deg(f).

Proof. Let A := λ[t]/(f(t)). Then A is a local commutative k-algebra with

maximal ideal m = (g(t)).

As a λ-vector space A has the basis given by the residue classes [1](f), . . . ,

[tdeg(f)−1](f). We fix the ordering [1](f) < · · · < [tdeg(f)−1](f) on the basis

elements. Then [g(t)](f), the residue class of g(t), is the unique element of m

whose coefficient vector with respect to [1](f), . . . , [t
deg(f)−1](f) has the least

initial term and whose leading coefficient is 1.
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So to determine g(t), we proceed as follows: We compute a k-basis of

m (see Proposition 1.50). This basis also gives a generating system of m

over λ. From this generating system we determine g(t) with a Gaussian

elimination. 2

Proposition 1.56 Given a finite field extension λ|k over a perfect field k,

represented by a multiplication table over k, as well as a polynomial f(t) ∈
λ[t], one can with a randomized algorithm determine the factorization of

f(t) (over λ) in an expected number of field and bit operations in k which is

polynomially bounded in [λ : k] and deg(f).

Proof. Let f(t) = c · f e1
1 · · · f eℓ

ℓ with c ∈ λ, distinct monic and irre-

ducible polynomials fi ∈ λ[t] and ei ∈ N. We consider the finite k-algebra

λ[t]/(f(t)). We have the decomposition λ[t]/(f(t)) ≃ λ[t]/((f1)
e1) ⊕ · · · ⊕

λ[t]/((fk)eℓ). Let ϕi be the projection to the ith factor. Then by the decom-

position we have [t](f) = ϕ1([t]) + · · ·+ ϕℓ([t]). Moreover, the characteristic

polynomial of ϕi([t]) is f ei
i .

We first compute the decomposition, say λ[t]/(f(t)) = A1⊕· · ·⊕Aℓ. We

compute the multiplication tables of the Ai (with respect to the computed

bases) and the decomposition of [t](f), say [t](f) = t1 + · · · + tℓ. For the

first task see Proposition 1.49, the second task is an easy linear algebra

computation.

Now we compute the characteristic polynomials of the ti’s in the fac-

tors Ai. This gives the polynomials f ei
i . Now the fi’s and the ei’s can be

computed as claimed by the previous proposition. 2

1.7.3 Computational problems and finite field extensions

Let C be a large groupoid, as usual over the large groupoid of fields, and let

p : C −→ Fields be the structural functor. Now we consider the following

large groupoid Cext:

The objects are tuples (x, λ|k), where λ|k is a finite field extension and

x is an object of C over λ. Let (x, λ|k) and (x′, λ′|k′) be two such objects.

Then Mor((x, λ|k), (x′, λ′|k)) := {ϕ ∈ Mor(x, x′) | p(ϕ) ∈ Iso(k, k′)}.
Let FE be the large groupoid of finite field extensions. Note that this

is a full subcategory of ALG. Just as ALG we represent FE by M, the

large groupoid of multiplication tables. Note that we have already fixed a

representation of M by RAMinputs, thus we have a representation of

FE by RAMinputs as well.

We have the functor Cext −→ FE defined by (a, λ|k) 7→ λ|k (and the

obvious maps for morphisms). By composing this with the functor FE −→
Fields, λ|k 7→ k, Cext becomes a large groupoid over the large groupoid of

fields.
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For the following propositions we consider the special case of C =

RAMinputs. We choose a relative field RAM representation of

RAMinputsext −→ FE, that is, a representation by RAMinputs −→
RAMinputs (as always over Fields), where RAMinputs −→ FE is

the representation already considered. (The field extensions are represented

by multiplication matrices, and the elements of a fixed field extension are

represented by their coordinate vectors in k[λ:k]; we assume that this repre-

sentation is “reasonable”.)

The following proposition is obvious.

Proposition 1.57 Let a generic field RAM Π be given. There exists a

RAM Πext such that the following holds:

For every field extension λ|k, input x over λ and some input y over k

representing (x, λ|k) ∈ RAMinputsext, Π terminates on x if and only if

Πext terminates on y.

For instances for which Π terminates, the running time in field opera-

tions of Πext is in O([λ : k]3 · (the number of field operations used by Π on

x)). An analogous statement holds for the running time in bit operations.

The following two propositions follow from Propositions 1.55 and 1.56

respectively.

Proposition 1.58 Let a generic field RAM enriched with FIELDCHARROOT

Π be given. There exists a RAM Πext such that the following holds:

For every field extension λ|k over a perfect field k, input x over λ and

some input y over k representing (x, λ|k) ∈RAMinputsext, Π terminates

on x if and only if Πext terminates on y.

For instances over perfect fields for which Π terminates, the running time

in field operations of Πext is in Poly([λ : k] · (the number of field operations

used by Π on x)). An analogous statement holds for the running time in bit

operations.

Proposition 1.59 Now let a generic field RAM Π enriched by randomiza-

tion be given. There exists a randomized RAM Πext such that the following

holds:

For every field extension λ|k, input x over λ and some input y over

k representing (x, λ|k) ∈ RAMinputsext, Π terminates on x in a finite

expected number of field operations if and only if Πext terminates on y in a

finite expected number of field operations.

For instances for which Π terminates in a finite expected number of

field operations, the expected running time of Πext in field operations is in

Poly([λ : k] · (the expected number of field operations used by Π on x)). An

analogous statement holds for the running time in bit operations.
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If now C is any large groupoid represented by RAMinputs (over

Fields), then Cext −→ FE is relatively represented by RAMinputsext −→
FE (again over Fields) which in turn is relatively represented by

RAMinputs −→RAMinputs. In this way, any computational problem

P : C −→ C′ leads to a computational problem Pext : Cext −→ C′
ext. Now

the three propositions above can be used to study the complexity of Pext in

relation to the complexity of the complexity of the original problem P.

Similar remarks also hold for relative computational problems.



Chapter 2

Representations and basic

computations

2.1 Introduction

In this chapter, we discuss various methods to represent the basic objects in

the computations: curves as well as points, divisors and divisor classes on

curves. Moreover, we state some results concerning computations with di-

visors, most importantly concerning the arithmetic in the divisor group and

the computation of Riemann-Roch spaces, and applications on the arith-

metic in the divisor class group. We restrict ourselves throughout to curves

over perfect fields.

Throughout this most of this chapter, we use generic field RAMs enriched

with the command FIELDCHARROOT (to determine pth roots in character-

istic p > 0) or randomized generic field RAMs (that is, generic field RAMs

enriched with the commands FIELDFACTOR (to factorize polynomials) and

RAND (for randomization) as computational models for the algorithms; see

Section 1.6. If we use randomized generic field RAMs to derive a certain

computational result, we state that we use a randomized algorithm. (If we

do not use randomization, sometimes we stress this by saying that we have

a deterministic algorithm, but not always.)

All running times (resp. expected running times) in field and bit oper-

ations we derive in this chapter are polynomially bounded in certain data

associated with the input. For computations over finite fields Fq, one can

obtain running times (resp. expected running times) in bit-operations (on a

bit-RAM) by multiplying the given running times (resp. expected running

times) with a polynomial factor in log(q) (see subsection 1.6.6 for details).

Note moreover that if we give a deterministic algorithm (that is, if we have

a (deterministic) generic field RAM), and we restrict ourselves to instances

over finite fields, then we have a deterministic algorithm in the bit-oriented

39
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setting (that is, a (deterministic) bit-RAM) too.

At the end of the chapter we also discuss some computations over finite

fields and in the randomized bit-RAM model.

2.2 Terminology and notation

We start off by fixing some terminology and notation which we use through-

out this work. We also comment on some well known facts from algebraic

geometry.

Generalities

We usually denote fields by k, λ and K. The algebraic closure of a field k is

denoted by k. The characteristic is always denoted by p.

If A is a graded commutative ring and M a graded A-module, we denote

the degree-i part of M by Mi.

If A is a ring, I an ideal in A and a ∈ A, we denote the residue class of

a in A/I by [a]I . If A = Z and I = (n), we also write [a]n.

Closed subschemes

Let A be a commutative ring and I an ideal in A. Then we denote the

closed subscheme defined by I (that is, the closed subscheme defined by the

closed immersion Spec(A/I) −→ Spec(A) induced by A −→ A/I) by V (I).

If I = (f1, . . . , fs), we set V (f1, . . . , fs) := V (I).

Let now A be a graded commutative ring and I a homogeneous ideal

of A. Then similarly to the previous notation we denote the closed sub-

scheme defined by I (the closed subscheme defined by the closed immer-

sion Proj(A/I) −→ Proj(A)) by V (I). If I = (F1, . . . , Fs), we again set

V (F1, . . . , Fs) := V (I).

Base change

Let S be a scheme, let X be an S-scheme and let T −→ S be a morphism.

Then as usual we denote the T -scheme X ×S T by XT . Note that the

definition is in fact relative not only to T but also to the morphism from

T to S, whereas the notation does not reflect this. This ambiguity does

however not cause any problems in this work. Moreover, also as usual, if

T = Spec(A), we set XA := XT .

Let again X be an S-scheme, let k be a field, and a morphism Spec(k) −→
S be given. Let us assume that Xk is integral. Then we set k(X) := κ(Xk),

the function field of Xk.
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Meromorphic sections and divisors

For background on the following definitions and remarks on meromorphic

sections and divisors we refer to [Gro67, §20, §21].
Let X be an integral scheme, and let L be an invertible sheaf on X.

Let MX be the sheaf of meromorphic (that is, rational) functions on X

(for every non-empty open subset U of X, Γ(U,MX) = κ(X)). Further, let

M(L) := L ⊗OX
MX be the sheaf of meromorphic sections of L, and let

M(X,L) := Γ(X,M(L)) be the space of meromorphic sections of L on X.

Now let s ∈ M(X,L) − {0} by a non-trivial meromorphic section of L on

X. Then (L, s) defines a Cartier divisor (the divisor of zeroes of s) which

we denote by divL(s) or by div(s) if L is obvious from the context. For

L = OX , the divisor of zeroes of s is the principal divisor of s which we

denote by (s).

If D is a Cartier divisor on X, we denote the associated invertible sub-

sheaf of the sheaf MX by O(D). Note that by definition for every open

subset U of X, Γ(U,O(D)) is contained in Γ(U,MX) = κ(X), and therefore

M(X,O(D)) is canonically isomorphic to κ(X); we identify them. Note

now that divO(D)(1) = D and more generally for u ∈ κ(X)∗, divO(D)(u) =

(u) +D. In particular,

Γ(C,O(D)) = {u ∈ κ(X)∗ | divO(D)(u) ≥ 0} ∪ {0}
= {u ∈ κ(X)∗ | (u) ≥ −D} ∪ {0} .

Another interesting fact is that every non-trivial meromorphic section s of

an invertible sheaf L, defines an isomorphism L ∼−→ O(divL(s)).

If X is locally noetherian, we identify the effective Cartier divisors on

(P1
k)

n and the locally principal closed subschemes of (P1
k)

n (cf. [Gro67,

(21.2.12)]).

Affine and projective space

We set A1 := Spec(Z[x]) and P1 := Proj(Z[X,Y]). We identify Z[x] with

Z[XY ] ⊂ κ(P1) via x←→ X
Y , and with this identification, we identify A1 with

P1 − V (Y).

We set P2 := Proj(Z[X,Y,Z]) (note the different font for the variables!).

Furthermore we set x := X
Z and y := Y

Z . Note that with this definition

Proj(P2
A,O(i)) is canonically isomorphic to A[X,Y,Z]i. In particular, we

have the “homogeneous coordinate system” X,Y,Z ∈ Γ(Pn
A,O(1)) on Pn

A.

Projective spaces of dimension > 2 are seldomly considered in this work,

and we do not use coordinate systems of these spaces. However in Sec-

tion 3.5 we consider products of P1’s, and then we identify (P1)n com-

ponentwise with
∏n

i=1 Proj(Z[Xi,Yi]). We then set xi := Xi
Yi

and define

An := Spec(Z[x1, . . . , xn]).
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Curves and their plane models

By a curve over a field k we mean a smooth and proper geometrically ir-

reducible 1-dimensional k-scheme. We denote the genus of a curve C by

g = g(C).
Let k be a field, and let C be a curve over k.

We have P1(k) = A1(k) ∪̇ {∞} for a unique point ∞ ∈ P1(k) − A1(k)

which we call the point at infinity. Note that every rational function on C,
that is, every element in k(C), extends uniquely to a morphism from C to P1

k.

Indeed, the set of morphisms from C to P1
k without the constant morphism

to ∞ are in bijection with k(C). Note in particular that x then becomes the

identity on P1
k.

For a (Cartier or Weil) divisor D on C, we set L(D) := Γ(C,O(D)), and

following [Heß01] we call this vector space the Riemann-Roch space of D.

We often make use of plane models of curves. By a plane model of C we

mean a proper 1-dimensional subscheme of P2
k which is over k birational to

the curve. We denote a plane model of a curve C by Cpm, and we usually

fix a birational map π : C −→ Cpm. Moreover, we assume that Cpm 6= V (Z).

We then denote the non-singular part of Cpm by Cns. We denote the degree

of a plane model by d, that is d = deg(Cpm). As every invertible sheaf on

Pn
k is isomorphic to O(d) for some d ∈ Z, every plane model is given by

an irreducible polynomial F (X,Y,Z) ∈ k[X,Y,Z] (unique up to constants)

which satisfies deg(F ) = d (see [Har77, Corollary 6.17]).

So let π : C −→ Cpm ⊆ P2
k be a birational map from a curve to one of its

plane models. We set OC(i) := π∗(O(i)) for i ∈ Z. Let W ∈M(P2
k,O(i)) =

k(X,Y,Z)i be a meromorphic section degree i whose pole divisor does not

contain Cpm. Then π∗(W ) ∈ M(C,OC(i)) is defined, and we set W|C :=

π∗(W ). Let now W ∈ M(P2
k,O(i)) with W 6= 0 such that the support of

V (W ) does not contain Cpm. Then W|C 6= 0, and we have π∗(div(W )) =

div(W|C). Note that these definitions and remarks in particular apply to

rational functions on P2
k (which we denote by small letters).

The divisor class group

Let C still be a curve over k. Let P(C) be the group of principal divisors on

C. Then the (divisor) class group of C is the group Cl(C) := Div(C)/P(C).
We denote the divisor class of a divisor D on C by [D]. The degree of a class

[D] is deg([D]) := deg(D). Moreover, the degree 0 (divisor) class group of

C is Cl0(C) := Div0(C)/P(C).
Note that the definition of the divisor class group relies on the fact that

principal divisors have degree 0.
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Random variables

We frequently use random variables. We adopt the following convention:

A random variable with values in a set X is called a random element of

X. Likewise, for example, we talk about random vectors in a vector space,

random vector subspaces of a fixed vector space, and so on. Note that this

terminology is for example also used in the theory of random graphs; a

“random graph” is in fact by definition a random variable with values in the

set of graphs on a fixed set of vertices.

We would like to stress that every time we use this terminology we do

in fact consider random variables, not specific elements which are chosen

according to a certain distribution.

In fact, we reserve the terminology that a certain element is chosen

with respect to a certain distribution to the description of algorithms (as a

shorthand for applications of the command RAND), whereas otherwise, in

particular in the analyses of algorithms, we use random variables.

Moreover, we denote random elements in a set X, that is random vari-

ables with values in X, just as the elements in X themselves. Indeed, the

usual notation from probability theory, where one denotes random variables

by capital letters and elements from the set by small letters is not applicable

in our context because we consider random variables with values in various

different sets whose elements are denoted in all kind of different ways.

2.3 Representing finite separable field extensions

As a preliminary consideration for computations with curves, we consider

in this section the question how to represent finite separable field extensions

and elements in these extensions.

In this section we furthermore – and for the last time – make the effort to

in detail describe how one should define the categories, functors etc. for an

application of the notions of the previous chapter. In the rest of this work,

we use a less rigorous descriptions, as usual in computational mathematics.

It is a rather straightforward but sometimes tedious task to turn formulate

the statements rigorously using the general terminology on representations

developed in the previous chapter.

Every finite separable extension of fields λ|k is primitive, that is, there

exists some a ∈ λ with λ = k[a]. We address the question how to compute

such a primitive element.

The computation is of course trivial if λ is represented over k as a prim-

itive extension, that is, if it is represented by an irreducible polynomial

f ∈ k[t] with λ ≃ k[t]/(f(t)).
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We now assume that λ is represented over k by a multiplication table.

We first discuss the necessary setup to formulate the computational problem

rigorously using the terminology of the previous chapter. Here we apply the

definitions of Section 1.2 with the modifications of Section 1.6.

We start off with the large groupoid SF E of finite separable field ex-

tensions defined analogously to ALG and FE. We represent this large

groupoid by the large groupoid M of multiplication tables (which we rep-

resent by RAMinputs).

We define the large groupoid C′ whose objects are tuples (λ|k, a) of fi-

nite separable field extensions λ|k and elements a ∈ λ with the obvious

morphisms. We represent such tuples by multiplication tables and coordi-

nate vectors, such that we obtain a relative generic field RAM representation

of C′ −→ FSE.

We now consider the relative field oriented computational problem (over

FSE) given by FSE −→ C′, λ|k 7→ {(λ|k, a) | a is a primitive element of λ|k}
together with: For every isomorphism α : λ −→ λ′ of separable field exten-

sions over k the morphism Pα : (λ|k, a) 7→ (λ′|k, α(a)) and for every such

α and a the induced morphism (λ|k, a) 7→ (λ′|k, α(a)) (called mα,a). (Note

that this problem is a special case of an analog of Example 1.26 for generic

field RAMs.)

We have the following satisfying proposition.

Proposition 2.1 Given a finite field extension λ|k, represented by a mul-

tiplication table, one can with a randomized algorithm compute a primitive

element of λ|k (and its minimal polynomial) in an expected number of field

and bit operations which is polynomially bounded in the extension degree

[λ : k].

This proposition is essentially proven in [KM04a, Section 6]. We note

however that the proof in [KM04a] does not immediately give the desired

result because it is (essentially) based on k-RAMs whereas we want to derive

the result on the basis of a generic field RAM. (As stated in the introduction

to this chapter, we also allow the computation of pth roots of unity in positive

characteristic p, but we do not need this here.) Because of this and for the

sake of completeness, we give the proof of the proposition below.

Remark 2.2 As always, the proposition implies a corresponding statement

over finite fields and on a bit-RAM: Given an extension λ|k of finite fields,

represented by a multiplication table, one can with a randomized algorithm

compute a primitive element of λ|k (and its minimal polynomial) in an

expected time which is polynomially bounded in the extension degree [λ : k]

and log(q).
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Over finite fields and for the bit-RAM model, there is however a much

easier proof than the one we give below: One uniformly randomly chooses an

element of λ|k and computes its minimal polynomial. As shown in [KM04a,

Section 6], the probability that the element is primitive is ≥ 1
2 .

Remark 2.3 One often encounters representations of finite separable field

extensions in the following form: The extension is given by a tower of prim-

itive extensions λ = λr ) λr−1 ) · · · ) λ0 = k, where each λi is given in

the form λi ≃ λi−1[ti]/(fi(ti)) for i = 1, . . . , r and an explicit polynomial

fi ∈ λi−1. Then to represent the elements of λ, one recursively represents

elements of λi by the polynomial basis given by ti over λi−1.

Given such a representation, it is an easy task to compute a multiplica-

tion table of λ|k, and then one can apply Proposition 2.1 to find a primitive

element.

Proof of Proposition 2.1

Before we come to the proof we note again that we want to derive the desired

result on the basis of a generic field RAM. Note that the computational

model requires that we can only access field elements which are algebraic

combinations of the images of the integers and the input elements.

The algorithm is based on the following easy lemma from [BG04] (see

also [KM04a, Lemma 3.8]), which we state here without proof.

Lemma 2.4 Let W be an n-dimensional vector space over k with basis

w1, . . . , wn. Let H1, . . . ,Hm ( W be proper vector subspaces of W , and

let S ⊆ k be a finite set. Now let c1, . . . , cn be independently and uniformly

distributed random elements of S. Then the probability that c1w1+· · · cnwn ∈
H1 ∪ · · · ∪Hm is at most m

#S .

Let n := [λ : k]. Now an element a ∈ λ is not primitive over k if and only

if for some i = 1, . . . , n, σ1(a) = σi(a), where σi : λ →֒ k for i = 1, . . . , n are

the different embeddings of λ|k into an algebraic closure k of k.

The idea is now to apply this lemma withHi := {a ∈ λ |σ1(a) = σi+1(a)}
(i = 1, . . . ,m := n−1) and #S = 2m = 2([λ : k]−1), except if the all input

elements are algebraic over the prime field and the field generated by the

input elements is too small for this.

The following lemma guarantees that we can generate sufficiently fast

sufficiently many field elements from the input elements.

Lemma 2.5 Let a vector v ∈ kr and a natural number s be given. Let k0

be the prime field of k and R := k0[v1, . . . , vr]. Then one can construct a

vector consisting of min{s,#R} different elements from R with O(s) field

and bit operations (independently of n).
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We give an algorithm with the claimed properties below at the end of

this subsection.

Now we show how we can apply the previous two lemmata to obtain a

proof of Proposition 2.1.

Let M = (mi,j,k)i,j,k be the multiplication table. Analogously to the

notation in the previous lemma, let k0 be the prime field of k, and let

R := k0[{mi,j,k}i,j,k]. Let m := n − 1. Let b1, . . . , bn be the fixed basis of

λ|k with respect to which the multiplication table is given.

We are now coming to the algorithm.

We start off with computing a vector a over R ⊆ k consisting of

min{2m,#R} elements of k. According to the previous lemma, this can

be done with O(n) = O([λ : k]) field and bit operations.

Now we make a case distinction according to whether the length of the

vector is 2m or less.

Assume first that the vector has length 2m. We choose i1, . . . , in ∈
{1, . . . , 2m} uniformly at random and test whether the element given by

(ai1 , . . . , ain) defines a primitive element. This can be done in a number

of field and bit operations which is polynomially bounded in n = [λ : k].

By Lemma 2.4 with S = {a1, . . . , a2m}, the probability that the element is

primitive is ≥ 1
2 .

We now consider the case that the vector has smaller length. Then R

is a finite field. We now first give some mathematical background and then

return to the algorithm.

Let q be the power of p such that R = Fq. Let λ0 be the vector space

which is generated by the basis elements b1, . . . , bn over R. By definition of

R, the multiplication of λ restricts to λ0; with the induced multiplication

λ0 is a finite extension field of R of degree n. Now λ is generated by λ0

and k over R, and [λ0 : r] = [λ : k] = n. This equality implies that

λ0 and k are linearly disjoint over R, that is, λ = λ0 ⊗R k. It follows

in particular that the extension λ|k is cyclic of order n. Let σλ0|R be the

Frobenius automorphism of λ0|R. Then the automorphism group of λ|k is

generated by σ := σλ0|R ⊗R idk, and σ is given on coordinate vectors by

(a1, . . . , an) 7→ (aq
1, . . . , a

q
n).

Let now di := [k[bi] : k] = [R[bi] : R]. Then lcm(d1, . . . , dn) = n.

There therefore exist e1, . . . , en ∈ N such that ei|di, the ei are coprime and

e1 · · · en = n. Let now ci := NFq[bi]|Fqei
(bi) = b

qdi−1
qei−1

i . Then R[ci] = Fqei .

Therefore, the extension k[ci]|k has degree ei too. By the properties of the

fi stated above, c := c1 · · · cn is a primitive element of λ0|R and of λ|k.
We now return to the algorithm. We first compute the minimal polyno-

mials of the basis elements bi. Then we in particular know the degrees di of

the extensions k[bi]|k. We determine suitable ei and then the ci. Finally, we
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compute c. All these computations can obviously be performed as claimed.2

Proof of Lemma 2.5

The idea of the algorithm is: One tries to construct a vector containing

s elements from k by first considering all elements in the prime field k0, then

from k0[v1], then from k0[v1, v2] and so on, and furthermore, if the elements

from k0[v1, . . . , vℓ−1] have already been considered, one considers first the

elements of k0[v1, . . . , vℓ] of degree 1 in vℓ, then of degree 2 in vℓ and so on.

Note that if we have constructed a vector consisting of all elements of

k[v1, . . . , vℓ−1] then in particular we know that k[v1, . . . , vℓ−1] is a finite field.

Algorithm for constructing a vector of different elements in a field

Input: A field k, v ∈ kr and s ∈ N.

1. Let i←− 0

Let a1 ←− 0k ∈ k
Repeat

Let i←− i+ 1

Let ai ←− ai−1 + 1k

If i = s, then output a, STOP

Until a = 0k.

Let ch←− i
(This is the characteristic of k.)

2. For ℓ = 1, . . . , r do

2.1. Let v ←− 1k

2.2. Repeat

2.2.1. Let v ←− v · vℓ

2.2.2. For ℓ = 1, . . . , i do

If v = aℓ, then abandon the Repeat-loop

2.2.3. Let t←− i
2.2.4. For j = 1, . . . , ch− 1 do

For u = 1, . . . , t do

Let i←− i+ 1

Let ai ←− v + ai−t

If i = s, then output a, STOP

3. Output a.

We sketch the proof of the correctness of the algorithm.

Note first that i is always the length of the array already constructed.
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In Step 1 an array of distinct elements of the prime field k0 is constructed.

Now either the algorithm stops with an array of s different field elements

from k0 or at the end of Step 1 the array contains all elements from k0.

Let us now consider Step 2.

Now the following statements always hold:

• v is a power of vℓ.

• Before the execution of Step 2.1.: k0[v1, . . . , vℓ−1] is a field and a con-

tains all elements from this field exactly once.

• After Step 2.2.1.: Let v = vd
ℓ . (This also applies to the next items.)

Then a contains all elements of k0[v1, . . . , vℓ] of degree < d in vℓ.

• Concerning Step 2.2.2.: This loop is abandoned if and only if vℓ is

algebraic over k0[v1, . . . , vℓ−1] and its minimal polynomial has degree d.

• After Step 2.2.4.: Then a1, . . . , at contains all elements of k0[v1, . . . , vℓ]

of degree < d in vℓ and furthermore either vℓ is transcendental over

k0[v1, . . . , vℓ−1] or it is algebraic and its minimal polynomial has degree

> d.

The enlargement of the vector in Step 2.2.4. is based on the following fact:

Let a1, . . . , at contain all elements of k0[v1, . . . , vℓ] of degree < d in vℓ exactly

once. Then the elements of k0[v1, . . . , vℓ] of degree ≤ d in vℓ can uniquely

be written as cvd + ax with c ∈ k0 and x ∈ {1, . . . , t}. Moreover, of course,

(c+ 1)vd + ax = vd + (cvd + ax).

It is obvious that the algorithm has the claimed complexity. 2

2.4 Representing curves

We represent curves by plane models which are birational to the curve.

The plane models themselves are represented by a defining homogeneous

polynomial in k[X,Y,Z].

The following proposition is [Heß05, Theorem 56].

Proposition 2.6 Any curve over a finite field has a plane model of degree

O(g) (uniformly over all finite fields).

This proposition is complemented by the following proposition for curves

over infinite fields. Together these two propositions indicate that it is rea-

sonable to represent curves by plane models for computational purposes.

Proposition 2.7 Every curve of genus ≥ 1 with a divisor of degree 1 over

an infinite field has a plane model of degree at most 4g.
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Proof. Every genus 1 curve with such a divisor is isomorphic to a plane

cubic (if D is a divisor of degree 1, the linear system |3D| is very ample of

(projective) dimension 2 and degree 3 and thus defines an embedding into

P2
k).

Let C be a curve of genus g ≥ 2. Let first C be hyperelliptic. Then we

have a covering of degree 2 C −→ D with g(D) = 0. Now as C has a divisor

of degree 1, so has D. Therefore, D ≈ P1
k. Now by Artin-Schreier and by

Kummer theory, k(C) ≃ k(x)[y]/(f(x, y)), for a polynomial f(x, y) ∈ K[x, y]

which has degree 2 in x and degree 2g + 1 or 2g + 2 in y.

So let C be non-hyperelliptic, and let D be a divisor of degree 1 on C.
Note that for n ≥ 2g − 1, nD is non-special, thus dim(L(nD)) = n+ 1− g.

Now depending on the characteristic of k we proceed as follows:

If the characteristic divides 2g, then we choose some u ∈ L((2g+1)D)−
L(2gD). Otherwise we choose some u ∈ L(2gD)−L((2g−1)D). Now in any

case the degree of the covering u : C −→ P1
k, that is, the extension degree

[k(C) : k(u)], is prime to the characteristic. In particular, the extension

k(C)|k(u) is separable.

Let u, v1, . . . , vg+1 be a basis of L((2g + 1)D). Note that u, v1, . . . , vg+1

generate k(C) over k because (2g+1) ·D is very ample; see [Har77, Corollary

3.2]. With other words, we have k(C) = k(u)[v1, . . . , vg+2].

Now by the theorem of the primitive element and its proof in [Lan93]

([Lan93, V, §4, Theorem 4.6]), there exist a, a1, . . . , ag+2 ∈ k such that

k(C) = k(u, v) with v := au+ a1u1 + · · ·+ ag+2ug+2.

This implies that u, v, 1 define a rational map to P2
k (which of al always

extends to a morphism) which is birational onto its image (that is, the image

is a plane model of the curve).

Let F ∈ K[X,Y,Z] be the polynomial defining the plane model. Note

that F is unique up to multiplication by a scalar, and it is a polynomial of

minimal degree with F (u, v, 1) = 0.

By the Riemann-Roch Theorem, for i ≥ 1, L(i·(2g+1)·D) has dimension

i ·(2g+1)+1−g. On the other hand, the space of homogeneous polynomials

in 3 variables of degree i has dimension
(
i+2
2

)
= (i+ 2)(i+ 1)/2. For i ≥ 4g,

we have (i + 2)(i + 1)/2 > i · (2g + 1) + 1 − g, and there exists some non-

zero polynomial G ∈ K[X,Y,Z] with G(u, v, 1) = 0. This implies that

deg(F ) ≤ 4g. 2

We will use Proposition 2.6 later in this work, in Sections 3.3 and 3.4.

Proposition 2.7 will in fact never be used, and for the time being we impose

no restriction on the degree d.
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2.5 Representing points and divisors and related

computational problems

In this section, we present various possibilities of representing closed points

and divisors on curves over perfect fields, starting from a plane model. We

also address related computational aspects like for example the arithmetic

in the divisor group, the computation of principal divisors, and the compu-

tation of Riemann-Roch spaces.

2.5.1 Overview

In this subsection we first give a brief overview over different approaches

to represent closed points and divisors over perfect fields appearing in the

literature. We then briefly mention the different approaches to compute

Riemann-Roch spaces which are described in the literature. We also make

some historical remarks.

The following three different approaches to represent closed points on

curves over perfect fields are classical and appear often in the literature.

The first (and arguably most intuitive) approach to represent closed

points of a curve is based on coordinates (in finite extension fields of the

ground field) of points of a plane model. Divisors can then be represented

by giving the support and the coefficients. We describe this approach briefly

in subsection 2.5.2. For a fixed curve with a fixed birational morphism to

a plane model this description as such leads however often only to a partial

representation of points and divisors on the curve. If the plane model has

singularities with various branches one needs additional “local” information

to represent points lying over these singular points. One possibility to repre-

sent points lying over singular points is to use truncated parameterizations

of local branches. The description is particularly easy for ordinary singular

points (that is, if the tangents of the local branches are all distinct). In

characteristic 0 or in “large” positive characteristic, one can use truncated

Newton-Puiseux expansions for arbitrary singularities. However, in “small”

characteristic one cannot use Newton-Puiseux expansions anymore in gen-

eral. A natural substitute are then the more complex Hamburger-Noether

expansions: These are certain systems of polynomials together with one

power series. As pointed out by A. Campillo and J. Farrán in [CF05], one

might also use symbolic Hamburger-Noether expansions. Here the power

series is substituted by a polynomial in two variables.

The second approach is based on ideal theory of function fields. Here

one realizes the curve as a covering of the projective line and one defines two

orders in the function field, a “finite” and an “infinite” order. Now, there is

a bijection between the divisor group on the curve and the product of the
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two ideal groups of the two orders. One can represent each divisor by the

corresponding pair of ideals. The ideals in turn can then conveniently be

represented by module bases (for example by so-called Hermite normal form

bases). We call this representation joint ideal representation. Alternatively,

one can represent each divisor by as a formal sum of prime divisors, where

each prime divisor is represented as a prime ideal of one of the two orders.

We call this representation the free ideal representation. We describe the

ideal theoretic approach in detail in subsection 2.5.4. Note that the so-called

“Mumford representation” of so-called semi-reduced divisors on hyperelliptic

curves in “imaginary quadratic representation” is a special case of the joint

ideal representation.

Thirdly, one can represent effective divisors by linear subspaces of

Riemann-Roch spaces of sufficiently high degree or more generally of spaces

of global sections of invertible sheaves of sufficiently high degree. We call the

corresponding representation the joint global representation, and again we

have a related free representation. This approach is addressed in subsection

2.5.5.

An important basic computational problem related to divisors is the

computation of the Riemann-Roch space L(D) of a divisor D. This is in

particular so because together with algorithms for the computation of prin-

cipal divisors and addition / subtraction of divisors, every algorithm to

compute Riemann-Roch spaces leads to an algorithm for the computation

in degree 0 class groups of curves.

The three approaches to represent divisors described above are closely

related to three approaches for algorithms for these problems.

A classical approach for the effective determination of Riemann-Roch

spaces relies on the theory of adjoints and the “Residue Theorem” by A.

Brill and M. Noether from 1874 ([BN74]). In fact, the first effective method

for the computation of Riemann-Roch spaces was given by M. Noether in

1884 ([Noe84]). Noether’s approach was in particular suggested by Goppa

([Gop82]) in 1982 to construct algebraic-geometric codes. It was subse-

quently studied by various authors, including (in chronological order) D. Le

Brigand and J. Risler ([LBR88]), M.-D. Huang and D. Ierardi ([HI94]), E.

Volcheck ([Vol94], [Vol95]) and finally A. Campillo and A. Farrán ([CF05]).

The ideal theoretic approach leads to an easy algorithm with a satisfying

complexity due to F. Heß ([Heß01]). This algorithm from about the year

1999 is inspired by the ideal-theoretic proof of the Riemann-Roch Theorem

by K. Hensel and G. Landsberg from about a century earlier ([HL02]). How-

ever, in contrast to the work by Hensel and Landsberg, no expansions are

used. We present this algorithm in subsubsection 2.5.4.7.

The third approach leads to elegant and very fast algorithms based on
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linear algebra due to K. Khuri-Makdisi ([KM04b], [KM04a]). It should

however be noted that if one starts with a curve represented by a plane

model, to set up the representation via the third approach, one needs first

to compute Riemann-Roch space of some divisors of sufficiently high degree.

One of the main goals of this section is to show that one can represent

divisors in such a way that one can perform various computational prob-

lems related to divisors efficiently. In particular, one goal is to show that

– with an appropriate representation – one can compute Riemann-Roch

spaces of divisors in a number of field and bit operations which is polynomi-

ally bounded in d, the degree of the plane model, and the so-called height

of the divisor. Using the theory of adjoints, partial results were established

by M.-D. Huang and D. Ierardi ([HI94]) and E. Volcheck ([Vol94]): M.-

D. Huang and D. Ierardi showed the result for curves given plane models

with ordinary singularities which are defined over the ground field,1 using

a different representation (which can be easily obtained from the coordi-

nate representation): They represent systems of points by their so-called

Chow-form (which gives a “dual description”).

Volcheck then studied curves with ordinary singularities of any kind. He

gave an appropriate algorithm which does however require that the ground

field is “not too small” in relation to the degree of the curve.

Using the ideal-based representation and the ideal theoretic approach to

Riemann-Roch spaces, the desired result was established by Heß. Indeed,

the author is of the opinion that it is much easier to show this result in full

generality with the ideal theoretic method than with the expansion-based

method via adjoints.

Based on these considerations, in the following we only discuss expansion

free representations and corresponding algorithms in detail. In doing so we

put particular emphasis on the ideal theoretic approach.

The reader is referred to [CF05] for an up-to-date account for compu-

tations with divisors using Hamburger-Noether expansions. Note, however,

that no complexity estimates are given in this work.

2.5.2 The coordinate representation

As stated above, we consider curves over perfect fields, represented by plane

models. Let C be such a curve with a fixed plane model Cpm. We rep-

1The introduction as well as the results in [HI94] are formulated as if they did hold for
arbitrary curves provided that the singularities are defined over the ground field. This is
however not the case, and in fact it is implicitly assumed throughout the work that the
singularities are ordinary. The first occurrence is in subsection 1.1., where the authors
claim that a singularity of a plane curve can be resolved by another plane curve of at most
twice the degree of the original curve. Another occurrence is in the proof of Lemma 2.1.
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resent both the curve and the plane model by a homogeneous polynomial

F (X,Y,Z) ∈ k[X,Y,Z] defining the plane model. Let π : C −→ Cpm be

a fixed birational map. Let g = g(C) be the genus of C, d = deg(Cpm) =

deg(F ) the degree of the plane model, and let p be the characteristic of k;

cf. the notations in section 2.2

For any extension λ|k of fields, the points in Cpm(λ) can easily be repre-

sented by their coordinates in λ. This also provides an easy representation

for all points in C(λ) which lie over non-singular points of Cpm.

Now every closed point P of Cpm (resp. every closed point of C) can be

represented by a finite field extension λ|k and one point in C(λ) (resp. in

C(λ)) defining P . (We can for example set λ := κ(P ), such that [λ : k] =

deg(P ).) In order to bound the length of the representation, we choose some

c ≥ 1 and consider only such extensions λ|k for which [λ : k] < deg(P )c (uni-

formly over all curves C and all plane models). Following the definitions in

Section 1.3, abbreviate this by saying that “[λ : k] is polynomially bounded

in deg(P )”.

The field extension λ|k can then for example be represented by a multi-

plication table or by a finite separable polynomial over k. Note here again

that a separable defining polynomial can be computed from a multiplication

table with a randomized algorithm in an expected number of field and bit

operations which is polynomially bounded in [λ : k].

We call the partial representation of closed points of curves by coordi-

nates in finite extension fields in plane models we just described the coordi-

nate representation.

This partial representation immediately leads to a representation of di-

visors whose support is disjoint from the points lying over singular points

of the plane model: Similarly to the sparse representation of vectors one

stores the support and the coefficients. We call this partial representation

of divisors free coordinate representation.

We note here that obviously in a similar manner every (partial) represen-

tation of points leads to a corresponding (partial) representation of divisors,

which we then call a free representation.

Points of C lying over the singular points of Cpm are not so easy to deal

with. As a generalization of the representation via coordinates, it is natural

to consider some expansion based description for these points. This is quite

easy if one is concerned with ordinary singularities (that is, the tangent

lines of all local branches are different), but the general case (in particular

in small positive characteristic) is quite technical. As already mentioned

above, we refer to [CF05] for further information.
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2.5.3 Reduced matrices and Hermite normal forms

In the next subsection we will discuss how one can use ideal theory in func-

tion fields to represent and compute with divisors of curves. In doing so we

will extensively use Hermite normal form bases (HNF-bases) of k[x]- and

k[ 1x ]-submodules of finite field extensions of k(x).

Additionally, in Heß’ algorithm to compute Riemann-Roch spaces ma-

trices over k[x] we call degree-reduced are used.

In this subsection we first give an overview over degree-reduced matrices.

Then we briefly discuss applications of Gröbner base theory to matrices over

k[x]. Finally, we turn to Hermite normal forms and HNF-bases. Here we

restrict ourselves to definitions and statements with respect to k[x] since the

definitions and statements with respect to k[ 1x ] can immediately be obtained

by applying the isomorphism k[x] ≃ k[ 1x ] , x←→ 1
x .

T. Mulders and A. Storjohann have obtained particularly efficient algo-

rithms for various computational tasks we consider in this subsection, like

the computation of determinants and Hermite normal forms of matrices over

k[x] (see [MS03]). For readers who are interested in these issues we recom-

mend to read this work in conjunction with this subsection. Note however

that in [MS03] row-operations on matrices are considered whereas we con-

sider column-operations. When citing [MS03] we implicitly transpose all

definitions and statements.

2.5.3.1 Degree-reduced matrices

Definition 2.8 Let R be a domain, and let A,B ∈ Quot(R)r×s. Then B is

R-right-equivalent or R-column equivalent to A if there exists a unimodular

matrix (that is, an invertible matrix) U ∈ Rs×s with B = AU . Similarly,

B is R-left-equivalent or R-row equivalent to A if there exists a unimodular

matrix T ∈ Rr×r with B = T A.

In this work, we use column vectors for elements in Rr. Consequently,

we consider matrices up to right-equivalence.

Definition 2.9 Let g1, g2 ∈ k[x] with g1, g2 6= 0. Then the valuation-

degree of g1

g2
∈ k(x) is valdeg(g1

g2
) := deg(g1) − deg(g2). Moreover, we set

valdeg(0) := −∞.

Remark 2.10 Note that v∞(g1

g2
) = − valdeg(g1

g2
), where v∞ is the degree

valuation on k(x) (corresponding to the point ∞ on P1
k).

We remark that we use the phrase “valuation-degree” instead of merely

“degree” because for non-constant g1

g2
the degree of g1

g2
interpreted as an

element in k(P1), that is, as a covering P1
k −→ P1

k, is equal to the height of the

divisor (g1

g2
), and if gcd(g1, g2) = 1, this is equal to max{deg(g1),deg(g2)}.



2.5. Representing points and divisors 55

Definition 2.11 Let g1, g2 ∈ k[x] with g1, g2 6= 0, and let d := valdeg(g1

g2
).

Then the leading coefficient of g1

g2
is the unique element a ∈ k with

valdeg(g1

g2
− axd) < d.

Explicitly, let b be the leading coefficient of the polynomial g1, and

let c be the leading coefficient of the polynomial of g2. Then a = b
c .

Indeed, we have deg(g1 − b
c xdeg(g1)−deg(g2)g2) < deg(g1), thus

valdeg(g1

g2
− b

cx
valdeg(

g1
g2

)
) < valdeg(g1

g2
).

Definition 2.12 Let now v ∈ k(x)r for some r. Then the valuation-degree

of v is valdeg(v) := maxr
i=1 valdeg(vi). If v ∈ k[x]r, we speak also of the

degree of v, deg(v). Similarly, the valuation-degree of a matrix over k(x) is

the maximum of the valuation-degrees of its entries.

Definition 2.13 Let v ∈ k(x)r, v 6= 0. Let d = valdeg(v) and v = axd +w,

where valdeg(w) < d. Then a is called the vector of leading coefficients of

v, denoted lc(v). We complement this definition with lc(0) := 0.

Moreover, for A = ( a1 · · · as ) ∈ k[x]r×s, we set lc(A) :=

( lc(a1) · · · lc(as) ) ∈ kr×s.

Let in the following A ∈ k(x)r×s be a matrix with columns a1, . . . , as.

Lemma 2.14 If the columns of A are k(x)-linearly dependent, the columns

of lc(A) are k-linearly dependent.

Proof. The statement is trivial if A has a zero-column. So let us assume

that this is not the case.

Let b ∈ k(x)s, b 6= 0 be such that Ab = 0. Let d := maxs
j=1 valdeg(bjaj),

and let

cj :=

{
bj if valdeg(bjaj) = d

0 if valdeg(bjaj) < d .

Then c 6= 0 and
∑s

j=1 cj lc(aj) = 0. 2

The following lemma is easy.

Lemma 2.15 The following conditions are equivalent:

a) For all b ∈ k[x]s, valdeg(Ab) = maxs
j=1 valdeg(bj aj).

b) The non-zero columns of lc(A) are linearly independent.

c) Let Ã ∈ k(x)r×t be the matrix obtained from A by deleting the zero-

columns. Then Ã has full column rank and the maximum of the degrees

of the determinants of the t× t-minors of Ã is equal to
∑s

j=1 valdeg(aj).
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In [Heß01] and related works a matrix A ∈ k(x)r×s of full column rank is

called reduced if the conditions of the lemma are satisfied. As however the

word “reduced” occurs frequently in the literature with different meanings,

and we also use it differently below, we define:

Definition 2.16 The matrix A is degree-reduced if the conditions of the

lemma are satisfied.

Remark 2.17 Let Ã be the matrix which is obtained from A by deleting

the zero-columns. Then A is degree-reduced if and only if Ã is, and this

means in particular that Ã has full column rank.

Remark 2.18 Let T ∈ k(x)r×r. Then T ∈ (k[ 1x ]( 1
x
))

r×r if and only if

valdeg(T ) ≤ 0 if and only if valdeg(Tv) ≤ valdeg(v) for all v ∈ k(x)r. Let

now T be invertible in (k[ 1x ]( 1
x
))

r×r. Then valdeg(Tv) = valdeg(v) for all

v ∈ k(x)r.2 By item a) of Lemma 2.15 this implies in particular that A is

degree-reduced if and only if TA is degree-reduced.

Proposition 2.19

a) There exists a degree-reduced matrix M ∈ k(x)r×s which is k[x]-right-

equivalent to A.

b) Let M,M ′ ∈ k(x)r×s be degree-reduced matrices which are both k[x]-right-

equivalent to A such that the degrees of the columns are monotonically

increasing from left to right. Then valdeg(mj) = valdeg(m′
j) for all j =

1, . . . , s.

c) Given a matrix A ∈ k[x]r×s, one can compute such a matrix M in a num-

ber of field and bit operations which is polynomially bounded in deg(A),

r and s.

Proof. Let g ∈ k(x), g 6= 0. Then obviously A is degree-reduced if and only if

gA is. For the existence of M we can therefore restrict ourselves to matrices

in k[x]r×s.

Both the existence of M in a) as well as the computational result in c)

follow from an obvious reduction algorithm:

Let us assume that A ∈ k[x]r×s is not degree-reduced. By a column

swap we can obtain that there exists some t ∈ {1, . . . , s} such that columns

1, . . . , t are zero and columns t + 1, . . . , s are non-zero. Let b ∈ ker(lc(A))

with b 6= 0 with b1 = · · · = bt = 0. Now let k ∈ {t + 1, . . . , s} be such that

2 One can show that conversely any matrix T ∈ k(x)r×r with valdeg(Tv) = valdeg(v)
for all v ∈ k(x)r is invertible in (k[ 1

x
]( 1

x
))

r×r. Indeed, this follows easily with Hermite

normal forms with respect to (k[ 1
x
]( 1

x
))

r×r.
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deg(bkak) is maximal. (This means that bk 6= 0 and for all j = 1, . . . s with

j 6= k and bj 6= 0, deg(aj) ≤ deg(ak).) Then a′k :=
∑

j bjx
deg(ak)−deg(aj)aj =

bk ak +
∑

j 6=k bjx
deg(ak)−deg(aj)aj has smaller degree than ak. Note here that

the coefficients are all in k[x].

This means that if we substitute ak by a′k, the sum of the degrees of the

columns decreases. After finitely many such reduction steps, the procedure

has to terminate, and the result is a degree-reduced matrix. More precisely,

the number of reduction steps is bounded by deg(A) · s.
A possible algorithm consists of the following loop: Swap the zero-

columns to the left and let A = (O|Ã) as above. Then compute ker(Ã).

If ker(Ã) = 0, the algorithm terminates, otherwise a reduction step is per-

formed as indicated.

We come to item b). Let M be the k[x]-module generated by the columns

of A. Now let d ∈ N, and let Md be the k[x]-submodule of M generated by

the elements of M of degree ≤ d. As M (resp. M ′) is degree-reduced, the

columns of degree ≤ d of M (resp. M ′) generate Md. This implies that the

columns of degree d form k[x]-bases of Md/Md−1. This implies the claim.2

The following observations are crucial for the ideal-theoretic approach

to Riemann-Roch spaces and thus for Heß’ algorithm (see subsubsection

2.5.4.7).

Lemma 2.20 Let A ∈ k(x)r×r be of full rank. Then the following conditions

are equivalent:

a) A is degree-reduced.

b) valdeg(det(A)) =
∑r

j=1 valdeg(aj).

c) The matrix T := A diag(x− valdeg(a1), . . . , x− valdeg(ar)) ∈ (k[ 1x ]( 1
x
))

r×r is

unimodular.

d) There exists a unimodular matrix T ∈ (k[ 1x ]( 1
x
))

r×r and d1 ≥ · · · ≥ dr ∈ Z

such that A = T diag(x−d1 , . . . , x−dr).

Lemma 2.21 Let A ∈ k(x)r×r be of full rank. Then there exists uniquely

determined integers d1 ≥ · · · ≥ dr and unimodular matrices T ∈ (k[ 1x ]( 1
x
))

r×r,

U ∈ k[x]r×r such that AU = T diag(x−d1 , . . . , x−dr ).

Proof. The existence is obvious. For the uniqueness, let d1 ≥ · · · ≥
dr ∈ Z and d′1 ≥ · · · ≥ d′r ∈ Z, and let T ∈ (k[ 1x ]( 1

x
))

r×r, U ∈ k[x] with

diag(x−d1 , . . . , x−dr )U = T diag(x−d′1 , . . . , x−d′r). By the previous lemma,

the right-hand side and thus also the left-hand side is degree-reduced. Now
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the matrices diag(x−d1 , . . . , x−dr) and T diag(x−d′1 , . . . , x−d′r ) are k[x]-right-

equivalent, and thus by Proposition 2.19 b) di = d′i for all i = 1, . . . , r. 2

Proposition 2.22 Let V be an r-dimensional k(x)-vector space (r < ∞).

Let M0 be a finitely generated k[x]-submodule of V and M∞ a finitely gen-

erated k[ 1x ]( 1
x
)-submodule of V , both of rank r. Then there exist uniquely

determined integers d1 ≥ · · · ≥ dr and a basis v1, . . . , vr of M0 such that

xd1v1, . . . , x
drvr is a k[ 1x ]( 1

x
)-basis of M∞. Then the following holds:

• For all n ∈ Z, the set

r⋃

i=1

{xjvi | 0 ≤ j ≤ di + n}

is a k-basis of M0 ∩ xn ·M∞.

• Let for n ∈ Z ι(n) := max{j ∈ {1, . . . , r} | dj + n ≥ −1}. Then

dim(M0 ∩ xn ·M∞)− dim(M0 ∩ xn−1 ·M∞) = ι(n− 1).

Proof. Let b1, . . . , br be a k[ 1x ]( 1
x
)-basis of M∞ and ṽ1, . . . , ṽr a k[x]-basis of

M0. Let A be the coordinate matrix of ṽ1, . . . , ṽr with respect to b1, . . . , br,

and let AU = M with U ∈ k[x]r×r unimodular and M degree-reduced. Let

M = TD with D = diag(x−d1 , . . . , x−dr) and T ∈ k[ 1x ]( 1
x
) unimodular. Now

let v1, . . . , vr ∈ k(x) be such that the coordinate matrix with respect to

ṽ1, . . . , ṽr is U . Then

• ṽ1, . . . , ṽr from a k[x]-basis of M0.

• The coordinate matrix of ṽ1, . . . , ṽr with respect to b1, . . . , br is M .

• The coordinate matrix of xd1 ṽ1, . . . , x
dr ṽr with respect to b1, . . . , br is

T . In particular, xd1 ṽ1, . . . , x
dr ṽr form a k[ 1x ]( 1

x
)-basis of M∞.

This proves the existence of the integers d1 ≥ · · · ≥ dr and the basis

v1, . . . , vr. The uniqueness of the integers follows from the previous lemma.

We come to the first item in the proposition. Clearly

xdi+nv1, . . . , x
dr+nvr forms a k[ 1x ]( 1

x
)-basis of xn ·M∞.

Now let a1, . . . , ar ∈ k[x]. Then
∑r

i=1 aivi =
∑r

i=1 aix
−di−nxdi+nvi ∈

xn ·M∞ if and only if aix
−di−n ∈ k[ 1x ]( 1

x
), and this is the case if and only if

valdeg(aix
−di−n) ≤ 0, that is, valdeg(ai) ≤ di + n.

Now, we are coming to the second item in the proposition. By the first

item dimk(M0 ∩ xn ·M∞) =
∑ι(n)

j=1(dj + n+ 1) =
∑ι(n−1)

j=1 (dj + n+ 1). This

implies that

dimk(M0 ∩ xn ·M∞)− dimk(M0 ∩ xn−1 ·M∞) = ι(n− 1) .
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Note that this formula also establishes the uniqueness of the integers

d1 ≥ · · · ≥ dr. 2

Remark 2.23 For matrices A of full column rank, all statements in this

subsubsection up to Lemma 2.21 also hold if k(x) is replaced by k((x−1))

and k[ 1x ]( 1
x
) is replaced by k[[x−1]].

The statements of Proposition 2.22 then also hold provided that M0 is

generated as a k[x]-module by a k((x−1))-basis of V .

Let still V be a finite dimensional k((x−1))-vector space. Then a k[x]-

submodule of V which is generated by a k((x−1))-linearly independent set

can be regarded as a non-archimedean lattice with respect to the non-

archimedean absolute value || · || = e−v∞ = edeg. Moreover, by Remark

2.18 (and footnote 2) the isometric transformations of V are exactly the

endomorphisms given by univariate matrices over k[[x−1]] (with respect to

some basis). Section 4 of [Heß01] is written from the point of view of non-

archimedean lattices. (But maybe the role of the role of the absolute value

||·|| is not so clear because Heß works with the degree instead of the absolute

value || · ||.)

2.5.3.2 Monomial orders

In this subsubsection we first discuss some general statements concerning

monomial orders on k[x]r and right-equivalence of matrices in k[x]r×s. Then

we relate these statements with degree-reduced matrices and matrices in

Hermite normal form, which we discuss in the next subsubsection. The

exposition crucially relies on the theory of Gröbner bases.

We follow the terminology in Chapter 15 of [Eis95]. In particlar, a

monomial is an element of k[x]r of the form xαei for α ≥ 0 (where ei is

the i-th standard basis vector), and a term is the product of scalar and a

monomial.

We require that a reduced Gröbner basis has monic leading terms.3

Let us fix a (strict) monomial order > on k[x]r. All the following defini-

tions and statements are with respect to this fixed monomial order.

Let now A ∈ k[x]r×s. Inspired by the usual definitions in the theory of

Gröbner bases we define:

Definition 2.24 The matrix A is top-reduced if the initial terms of the non-

trivial columns of A occur in distinct rows. The matrix A is reduced if the

non-zero columns of A form a reduced Gröbner basis.

3The book [Eis95] is a bit vague on the issue if a reduced Gröbner basis should have
monic initial terms. The condition seems not be be required at the end of Section 15.2,
but it is part of the definition in Exercise 15.14.
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Remark 2.25 The following conditions are equivalent:

• A is top-reduced.

• No non-zero column is top-reducible with respect to the system of the

remaining columns (that is, for no j, ℓ = 1, . . . , s with j 6= ℓ and aℓ 6= 0,

in>(aj) | in>(aℓ)).

• The non-zero columns of A form a minimal Gröbner basis.4

Proposition 2.26 Let A ∈ k[x]r×s. Then there exists a unique matrix

M ∈ k[x]r×s which is right-equivalent to A and has the following properties:

• M is reduced

• the zero-columns are to the left, and the initial terms of the other

columns are increasing from left to right, that is, in>(m1) ≤ in>(m2) ≤
· · · ≤ in>(ms).

Moreover, the matrix M can be computed from A.

Definition 2.27 We call the matrix M in the proposition the normal form

of A with respect to >, and M itself is called in normal form with respect

to >.

Proof of Proposition 2.26. The existence and uniquenes of the matrix M

follows from the general statements that reduced Gröbner bases exist and

are unique. As usual, M can be computed with a Buchberger-style reduction

algorithm. We review this procedure now in our context.

We first show how one can obtain a top-reduced matrix: Let A ∈ k[x]r×s.

Assume that there are j, ℓ ∈ {1, . . . , s} with j 6= ℓ such that aj , aℓ 6= 0

and the initial terms of aj and aℓ occur in the same row, say row i. Let

us further assume that the initial term of aj is larger than or equal to

the one of aℓ. Then one substitutes aj by the S-polynomial S(aj, aℓ) =

ai,ℓ ·aj−ai,j ·xdeg(ai,j)−deg(ai,ℓ) ·aℓ. Upon iterating this procedure one finally

obtains a top-reduced matrix.

Let now A ∈ k[x]r×s be top-reduced. Note again that the columns

of A now form a Gröbner basis. One now performs a column swap such

that a1 ≤ a2 ≤ · · · ≤ as. Then one divides each non-zero column by the

coefficient of its initial term, such that the columns are monic.

One can now obtain a right-equivalent reduced matrix with the desired

additional properties by the following loop:

4Note that it is a special property of k[x]r that top-reduced systems form a Gröbner
basis. The statement is far from true in polynomial rings over k in several variables.
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For j = 2 to r do

substitute aj by the (unique) reduction of aj by a1, . . . , aj−1.

More precicely, let us consider the jth iteration, so that the matrix

(a1 · · · aj−1) is already reduced. Then the reduction of aj with respect to

a1, . . . , aj−1 can be computed as follows:

For ℓ = 1, . . . , j − 1 such that aℓ 6= 0 we consider the leading term

of aℓ. Say for some ℓ this leading term is axαei with a ∈ k − {0} and

α ≤ deg(ai,j). Then we substitute aj by the reduction of aj by aℓ, which

is aj − xdeg(ai,j )−αaℓ. We stop if for no ℓ = 1, . . . , j − 1 the condition is

satisfied. 2

As already stated in the proposition, the normal form of a matrix over

k[x] can be computed. However, the complexity of the reduction algorithm

just described depends crucially on the order.

Let us explicitly consider the following two monomial orders for k[x]r:

xαei >d xβej

if and only if

α > β or α = β and j > i ,

and

xαei >e xβej

if and only if

j > i or j = i and α > β .

Note that >d refines the order by degree, and >e refines the elimination

order en > en−1 > · · · > e1.

We first discuss order >d. The order >e is strongly related to Hermite

normal forms which are discussed in the next subsubsection.

Note first the following characterization of the initial term: Let a ∈ k[x]r,

a 6= 0. Let axαei be the initial term of a (with a ∈ k) with respect to >d.

Then for all j ≤ i, deg(aj) ≤ α and for all j > i, deg(aj) > α. In particular,

α = deg(a).

Note now that a matrix of full column rank with is top-reduced with

respect to >d is in particular degree-reduced (in fact, up to a column swap,

the matrix of leading coefficients is in column echelon form).

Note further that in the reduction algorithm in the proof of Proposi-

tion 2.26 the degrees of the intermediate matrices never exceed the degree

of the original matrix. This implies immediately that with the reduction

algorithm one can compute a right-equivalent top-reduced matrix in a num-

ber of field and bit operations which is polynomially bounded by r, s and

deg(A).
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It is a bit more complicated that with this bound on field and bit opera-

tions one can also compute a normal form. This is however shown in [MS03,

Section 7]. Let us indicate how the final reduction is performed: We want

to compute the reduction of aj by a1, . . . , aj−1 as at the end of the proof of

Proposition 2.26. For this we proceed with reductions by aj by the individual

columns a1, . . . , aj−1 as indicated in the proof of Proposition 2.26, however

with a condition on the index ℓ: Let for ℓ = 1, . . . , j−1 such that aℓ 6= 0 iℓ be

index of the row in which the leading term of aℓ is situated. Then we choose

ℓ ∈ {1, . . . , j − 1} such that deg(aiℓ,j) − deg(aℓ) = deg(aiℓ,j) − deg(ai,ℓ) is

maximal, and we reduce aj by aℓ. With this choice one obtains (cf. [MS03]):

Proposition 2.28 One can compute the normal form of a matrix A ∈
k[x]r×s with respect to >d in a number of field and bit operations which

is polynomially bounded in r, s and deg(A).

We therefore in particular obtain a second efficient reduction algorithm for

the computation of a degree-reduced right-equivalent matrix.

Remark 2.29 Top-reduced matrices with respect to >d are called matrices

in weak Popov form in [MS03]. The reduction algorithm for the computation

of a weak Popov form in [MS03] is the same as the reduction algorithm to

obtain a top-reduced matrix presented above. Additionally, a matrix in

Popov form is exactly a matrix in normal form with respect to >d. Note

here again that we implicitly “transpose” all definitions and statements in

[MS03]. Monomial orders and the relationship with Gröbner bases are not

discussed in [MS03].

In [MS03] it is shown that one can efficiently compute the determinant

by a reduction algorithm with respect to >d (we omit the details):

Proposition 2.30 Given a matrix A ∈ k[x]r×r, one can compute the de-

terminant of A in a number of field and bit operations which is polynomially

bounded in r and deg(A).

Note that in characteristic 0 (or if the ground field is not too small) one

can also obtain this result by computing the determinant of A by interpola-

tion. However, over small finite fields, field extensions might be necessary for

this approach, and by current knowledge, no (deterministic) polynomial time

algorithm is known for this task. (Such an algorithm exists however under

the assumption of the Generalized Riemann Hypothesis ([AL86], [Evd89]).)

We also mention the following consequence of Proposition 2.30.

Proposition 2.31 Let A ∈ k[x]r×r. Then the degree of the adjoint matrix

A# is ≤ deg(A) · (r − 1). Moreover, A# can be computed in a number of

field and bit operations which is polynomially bounded in r and deg(A).
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2.5.3.3 Hermite normal forms

We are now coming to Hermite normal forms and Hermite normal form

bases (HNF-bases) of k[x]-modules. A very compact definition can be given

with the notions of the previous subsubsection:

Definition 2.32 A matrix M ∈ k[x]r×s is in Hermite normal form if it is

in normal form with respect to >e.

Remark 2.33 Explicitly, a matrix M ∈ k[x]r×s is in Hermite normal form

if and only if there exists some t ∈ N0 with t ≤ s and a strictly increasing

map ι : {t+ 1, s} −→ {1, . . . , r} such that

1. the first t columns of M are zero.

2. For t+ 1 ≤ j ≤ s,

• mι(j),j is monic

• for all i > ι(j), mi,j = 0

• for all ℓ > j, deg(mι(j),j) > deg(mι(j),ℓ).

Note that these conditions are analogous to the conditions for the Hermite

normal form of matrices with integer entries as in [Coh96, Theorem 4.7.3].

Let now M be of full row rank. Then M is in Hermite normal form if

and only if it is of the form M = (O|N), where the entries of O are all zero,

N is an r × r-matrix and

• N is upper triangular

• for all i = 1, . . . , r, ni,i is monic

• for all j > i, deg(ni,i) > deg(ni,j).

By Proposition 2.26 we already know that given a matrix A ∈ k[x]r×s,

there exists a unique matrix which is right-equivalent to A and in Hermite

normal form. This matrix is called the Hermite normal form of A.

We are now coming to the efficient computation of Hermite normal forms.

The reduction algorithm in the proof of Proposition 2.26 suffers from

the problem that the degrees of the entries of intermediate matrices become

extraordinarily large for certain inputs.

In [MS03] the following result is proven. The algorithm is similar to the

algorithm for the computation of the determinant and again relies crucially

on a reduction algorithm with respect to >d (!).
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Proposition 2.34 One can compute the Hermite normal form of a matrix

A ∈ k[x]r×s of full row rank in a number of field and bit operations which is

polynomially bounded in s and deg(A).

Let us note that by computing a degree-reduced right-equivalent matrix the

problem to compute the Hermite normal form of a matrix of full row rank

immediately reduces to the problem to compute the Hermite normal form of

a square matrix of full rank, and this is also the first step in the algorithm

by Mulders and Storjohann.

There are various other efficient approaches for the computation of Her-

mite normal forms of square matrices over k[x] of full rank in the litera-

ture. We just mention the algorithm by P. Domich, R. Kanan, L. Trot-

ter. This algorithm relies on computations “modulo the determinant” (see

[DKT87]). Again the required number of field and bit operations is polyno-

mially bounded in the size of the matrix and the degree.

We now apply Hermite normal forms to finitely generated k[x]-sub-

modules of finite dimensional k(x)-vector spaces.

Definition 2.35 Let V be an r-dimensional k(x)-vector space with r <∞,

let M be a submodule of V of rank r, and let N be any finitely generated

submodule of V .

• The denominator of N with respect to M is the unique monic generator

of the ideal {a ∈ k[x] | aN ⊆M} of k[x].

• Let b1, . . . , br be a k[x]-bases of M, and let N be a finitely generated

submodule of V of rank s. Let d be the denominator of N with respect

to M. Then the HNF-basis of N with respect to b1, . . . , br is the

unique k[x]-basis v1, . . . , vs of N such that the coordinate matrix of

dv1, . . . ,dvs with respect to b1, . . . , br is in Hermite normal form.

We have the following obvious lemma.

Lemma 2.36 Let V be an r-dimensional k(x)-vector space, and let U be

a t-dimensional k(x)-vector subspace. Let b1, . . . , br be a basis of V such

that b1, . . . , bt is a basis of U . Moreover, let N be an r-dimensional k[x]-

submodule of V with HNF-basis v1, . . . , vr with respect to b1, . . . , br. Then

v1, . . . , vt is the HNF-basis of N ∩ U with respect to b1, . . . , bt.

Definition 2.37 Let A ∈ k(x)r×s. Then the denominator d of A is the

denominator of the submodule of k(x)r generated by the columns of A. The

numerator matrix associated to A is the matrix dA.
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Remark 2.38 Let g ∈ k[x] be monic and A ∈ k(x)r×s, and let h be the

gcd of g and all entries of A. Then the denominator of 1
gA is lcm(h

g , 1). In

particular, the denominator can be computed in a number of field and bit

operations which is polynomially bounded in r, s, deg(g) and deg(A) with

the Euclidian algorithm. Then the numerator matrix can of course also be

computed with this complexity.

Convention 2.39 If not stated otherwise, the following applies:

• We represent a matrix in k(x)r×s by its denominator and its numerator

matrix.

• Given a finite dimensional k(x)-vector space V with a fixed basis, we

represent finite dimensional k[x]-submodules of V by their HNF-basis,

which in turn we represent by their coordinate matrix.

This convention in particular applies to the following computational

problem.

Proposition 2.40 Let A ∈ k(x)r×s, where the entries are represented in

the form ai,j =
bi,j

ci,j
with bi,j , ci,j ∈ k[x]. Let M be the coordinate matrix (in

HNF-form) of the k[x]-module generated by the columns of A. Then:

a) The degrees of the denominator of M as well as the numerator matrix of

M are polynomially bounded in r, s and the maximum of the degrees of

bi,j and ci,j for i ∈ {1, . . . , r} and j ∈ {1, . . . , s}.

b) One can compute the HNF-basis of the module generated by the columns

of A in a number of field and bit operations which is polynomially bounded

in r, s and the maximum of the degrees of bi,j and ci,j for i ∈ {1, . . . , r}
and j ∈ {1, . . . , s}.

Proof. We first discuss the computational statement: We compute c :=∏
i,j ci,j and Ã := ((bi,j

c
ci,j

))i,j ∈ k[x]. Now we perform Hermite reduction

on A. Let M be the resulting matrix. Finally, we compute the denominator

of 1
cM and the numerator matrix.

Let m be the maximum of the degrees of the bi,j and ci,j . Then deg(c) ≤
rsm, deg(Ã) ≤ deg(c) + deg(((bi,j))i,j) ≤ rsm + m. All computations can

therefore be performed with the claimed complexity by Propositions 2.34

and 2.38.

The statement on the degrees is now also obvious. 2

Finally, by imitating the theory of Z-modules, we define:

Definition 2.41 Let M be a free finitely generated k[x]-module, and let N

be a k[x]-submodule of M of the same rank. Then we define the k[x]-index
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[M : N]k[x] of N in M as the unique monic polynomial which is a k-multiple

of the determinant of the coordinate matrix of a basis of N with respect to

a basis of M.

Remark 2.42 The k[x]-index [M : N]k[x] is equal to the invariant χ(M/N)

defined in [Ser79, I, §5]. This invariant can be defined in a more general

context, and in particular if A is a finitely generated free abelian group and

B is a subgroup of A of the same rank, then χ(A/B) = [A : B].

Remark and Definition 2.43 Let M and N be as above, let b1, . . . , br be

a k[x]-basis of M, and let M be the coordinate matrix of the HNF-basis

of N with respect to b1, . . . , br. Then the system of elements xαbj with

α < deg(mj,j), j = 1, . . . , r is k-linearly independent. Let C be the vector

space spanned by it. Then C is a direct complement of the k-vector space

N in M; we refer to C as the canonical complement of N in M and to the

basis just defined as the canonical complementary system (with respect to

b1, . . . , br). The projection M −→M/N induces an isomorphism of k-vector

spaces C −→M/N. We call the image of the canonical system the canonical

basis of M/N and the inverse of the isomorphism the canonical lift of M/N

to M with respect to b1, . . . , br.

Remark 2.44 Let M = k[x]r and bi = ei. Then the basis elements xαbj =

xαej in Remark and Definition 2.43 are the monomials which do not lie in

in>e(N). The statements are then a special case of a theorem of Macaulay’s

(cf. [Eis95, Theorem 15.3]).

Remark 2.45 The k[x]-index [M : N]k[x] is in particular equal to the de-

terminant (= the product of diagonal entries) of the HNF-basis of N with

respect to some basis of M. Note also that deg([M : N]k[x]) = dimk(M/N).

Let now d1| · · · |dr be the (monic) elementary divisors of N in M. Then

[M : N]k[x] = d1 · · · dr. On the other hand, the denominator of M with

respect to N is equal to dr. In particular, the denominator divides the

k[x]-index.

2.5.3.4 Modules over extension fields

Let us as a generalization now consider the previous definitions and results

over finite extension fields λ|k. All the following computations still take

place on a generic field RAM, instantiated with the field k.

Let λ|k be a finite field extension, and let a1, . . . , a[λ:k] be a basis of λ|k.
We assume that a multiplication table of of λ with respect to this basis is

known. (As a special case, λ|k might be given by an irreducible polynomial,
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and a1, . . . , a[λ:k] might be a polynomial basis.) The elements of λ are then

represented via their coordinate vectors with respect to this basis.

Note that by Proposition 1.58 all earlier computational results from this

subsection can be transferred to the more general setting of this subsubsec-

tion. The only difference is that now the required number of field and bit

operations (in k) and bit operations is additionally polynomially bounded

in [λ : k].

Note that a1, . . . , a[λ:k] is also a basis of λ[x] over k[x] and of λ(x) over

k(x). Given a polynomial g(x) ∈ λ[x], it is computationally trivial to “ex-

pand” g with respect to a1, . . . a[λ:k], that is, to compute g1, . . . , g[λ:k] ∈ k[x]

with

g =

[λ:k]∑

j=1

gj aj . (2.1)

Let now two polynomials g(x), h(x) ∈ λ[x] with h(x) 6= 0 be given. We

now want to compute gj ∈ k(x) with g
h =

∑[λ:k]
j=1 gj aj. If h(x) ∈ k[x] this is

again straightforward. If this is not the case, one easily reduce to this case

by the formula
g

h
=
g ·N(h)/h

N(h)
,

where N(h) is the norm of h with respect to λ(x)|k(x). The required num-

ber of field and bit operations is then polynomially bounded in deg(g) and

deg(h).

Let now V be an r-dimensional λ(x)-vector space with r < ∞, and let

M be a λ[x]-submodule of V with a λ[x]-basis b1, . . . , br. Now the elements

b̂i+(j−1)r := bi aj for i = 1, . . . , r, j = 1, . . . , [λ : k] . (2.2)

form a k[x]-basis of M.

Note that if v ∈ V has coordinate vector c ∈ λ(x)r with respect to

b1, . . . , br and if we write ci =
∑[λ:k]

j=1 ci,j aj with ci,j ∈ k(x), then the vector

d ∈ k(x)r·[λ:k] defined by

di+(j−1)r := ci,j for i = 1, . . . , r, j = 1, . . . , [λ : k]

is the coordinate vector of v with respect to b̂1, . . . , b̂r·[λ:k].

Note that at this point we have two natural representations of λ[x]-

submodules of V of rank r: First we can represent them by HNF-bases with

respect to b1, . . . , br and second, we can represent them by HNF-bases with

respect to b̂1, . . . , b̂r·[λ:k]. Note that in the former case the coefficients lie in

λ[x], and in the latter case the coefficients lie in k[x]. Note in particular

that in the former case the coefficients of the numerator matrix as well as
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the denominator lie in λ[x], and in the latter case the coefficients of the

numerator matrix as well as the denominator lie in k[x].

With the above remarks and the previous statements on the computation

of Hermite normal forms, one obtains:

Proposition 2.46 Let N be a finitely generated λ[x]-submodule of V with

denominator d with respect to M. Then one can change between the repre-

sentation of N by the HNF-basis with respect to b1, . . . , br and the represen-

tation of N by the HNF-basis with respect to b̂1, . . . , b̂r·[λ:k] in a number of

field operations in k and bit operations which is polynomially bounded in r,

[λ : k], deg([M : d ·N]λ[x]) and deg(d).

2.5.4 The ideal representation

2.5.4.1 The idea and some notation

One can use ideal theory in function fields to represent closed points and

divisors. The ideal theoretic approach is crucial because it leads to an easy

and efficient algorithm to compute Riemann-Roch spaces (Heß’ algorithm).

In the ideal theoretic approach which we are going to describe now it is

irrelevant whether the extension k(C)|k is regular or not. Therefore all the

considerations from now on until including subsubsection 2.5.4.4 hold not

only if C is a curve over k but also if C is merely a irreducible (rather than

geometrically irreducible) smooth, proper 1-dimensional k-scheme.

As stated in Section 2.2, we assume that Cpm is not equal to V (Z) ⊂ P2
k.

Also following the general terminology and notation, we set x := X
Z , y :=

Y
Z ∈ k(P2) and let x|C resp. y|C ∈ k(C) be the pull-backs of the rational

functions x resp. y to C. Let f(x, y) := F (X,Y,Z)

Zdeg(F ) = F (x, y, 1) ∈ k[x, y].
Note that one of x|C and y|C is a separating element of the function field

k(C). (Otherwise f(x, y) would be a p-th power.) Let us assume wlog. that

x|C is a separating element.

Let us consider the covering x|C : C −→ P1
k of curves as well as the

corresponding separable field extension k(C)|k(x) given by x 7→ x|C.

Convention 2.47 In the following function field theoretic considerations,

we identify k(x) with its image in k(C). We do however not perform this

identification if we consider the elements of the function fields as functions

on the curves.

Notation 2.48 We set r := [k(C) : k(x)] = deg(x|C : C −→ P1
k), the exten-

sion degree of k(C) over k(x).
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Note that we have a canonical isomorphism k(C) = k(x|C , y|C) ≃
k(x)[y]/(f(x, y)), and r is equal to the degree in y of f(x, y).

We now consider the subrings ((x|C)∗OC)(A1
k) and ((x|C)∗OC)∞ of k(C);

these rings are the integral closures of k[x] resp. k[ 1x ]( 1
x
) in k(C). They are

called finite and infinite order of k(C) (with respect to x|C).

Now the closed points of C correspond to the places of k(C) and these in

turn correspond to maximal ideals of ((x|C)∗OC)(A1
k) as well as ((x|C)∗OC)∞.

The main idea for the ideal representation of points is to compute bases

of these orders and to represent the points of C by “nice” k[x]- respectively

k[ 1x ]( 1
x
)-bases of the corresponding maximal ideals. In order to have a better

control over the size of this representation, we consider however prime ideals

of ((x|C)∗OC)(
1
x (A1

k)) with support “at infinity” instead of prime ideals in

((x|C)∗OC)∞.

Now divisors can be represented in two ways: The first way is to take

the representation of points as a basis for a free representation: The divisors

are represented by their support and the coefficient vector, and the points

are represented by maximal ideals of the two orders.

Another way to represent divisors is to consider the isomorphism

Div(C)−̃→Div(((x|C)∗OC)(A1
k))×Div((x|C)∗OC)∞)

−̃→I(((x|C)∗OC)(A1
k))× I(((x|C)∗OC)∞) ,

(2.3)

where the first isomorphism is induced by pull-back and the second isomor-

phism is induced by the canonical isomorphisms between the divisor and

ideal groups. Via this isomorphism every divisor corresponds to a pair of

fractional ideals, a “finite” and an “infinity” ideal. To represent the “infi-

nite” ideal, one furthermore applies the canonical inclusion I(((x|C)∗OC)∞) →֒
I(((x|C)∗OC)(

1
x (A1

k))). We call this representation of divisors the joint ideal

representation.

Notation 2.49 Let D be a divisor on C. Then the associated “finite” frac-

tional ideal in I(((x|C)∗OC)(A1
k)) is denoted by Ifin(D). The associated “in-

finite” fractional ideal in I(((x|C)∗OC)(
1
x (A1

k))) is denoted by I∞(D), and

the corresponding ideal in I(((x|C)∗OC)∞) (the localization of I∞(D) at ∞)

by (I∞(D))∞.

Note here that I∞(D) by definition only has support “at infinity”, and

(I∞(D))∞ is the ideal generated by I∞(D) inside ((x|C)∗OC)∞.

We now need to describe how we represent the fractional ideals of the

orders ((x|C)∗OC)(A1
k) and ((x|C)∗OC)(

1
x (A1

k)).

One can easily adapt usual methods to represent and manipulate ideals

in number fields to the function field theoretic setting. In fact, the exposition
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in this subsection relies on the Sections 2.4, 4.7, 4.8, 6.1 and 6.2 of the book

[Coh96] by H. Cohen.

2.5.4.2 On the maximal orders

Let us fix the following notation:

Notation 2.50

• Let f(x, y) =
∑r

i=0 ai(x)yi with ai(x) ∈ k[x], let ỹ := ar(x) · y, and let

f̃(x, ỹ) := ar(x)r−1f(x, ỹ
ar(x)) ∈ k[x][ỹ].

• Let c := maxr
i=0⌈deg(ai(x))

r−i ⌉, let ˜̃y := ỹ
x c , and let ˜̃f(x, ˜̃y) := 1

xrc f̃(x, xc ˜̃y) ∈
k[ 1x ][˜̃y]

Now ỹ|C ∈ k(C) is integral over k[x], as it is a root of the monic polynomial

f̃(x, ỹ) ∈ k[x][ỹ] over k[x]. Moreover, ˜̃y is integral over k[ 1x ] as it is the root

of the monic polynomial
˜̃
f(x, ˜̃y) ∈ k[ 1x ][ỹ].

We now first consider the finite order. After this we briefly mention how

the following considerations can be adapted to the infinite order.

Notation 2.51 Let δ(x) ∈ k[x] be the discriminant of ((x|C)∗OC)(A1
k)|k[x].

Similarly, let disc(f̃) be the discriminant of f̃ as a polynomial in ỹ. Let

i := [((x|C)∗OC)(A1
k) : k[x][y]/(f̃ )]k[x].

Notation 2.52 Let w1, . . . , wr be the HNF-basis of ((x|C)∗OC)(A1
k) with

respect to the k(x)-basis 1, ỹ|C , . . . , ỹ
r−1
|C .

Proposition 2.53

a) i) disc(f̃) = δ i2.

ii) deg(disc(f̃)) (and in particular deg(i)) is polynomially bounded in

d.

iii) w1 = 1.

iv) The denominator d of ((x|C)∗OC)(A1
k) with respect to k[x][y]/(f̃ ) di-

vides i.

v) Let W ∈ k[x]r×r be the coordinate matrix of dw1, . . . ,dwr with re-

spect to 1, ỹ|C , . . . , ỹ
r−1
|C . Then deg(W ) = deg(d).

b) One can compute the HNF-basis of ((x|C)∗OC)(A1
k) with respect to

1, ỹ|C , . . . , ỹ
r−1
|C with a deterministic algorithm in a number of field and

bit operations which is polynomially bounded in d.
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Proof of a).

i) Let more generally v1, . . . , vr be any basis of k(C)|k(x). Then we

have disc(v1, . . . , vr) = det(Tr(vivj)i,j). Now let A be the coordinate ma-

trix of v1, . . . , vr with respect to another basis ṽ1, . . . , ṽr. Then clearly

disc(v1, . . . , vr) = det(A)2 disc(ṽ1, . . . , ṽr).

ii) This follows for example from disc(f̃) = (−1)
1
2
n(n−1) ·Res(f̃ , df̃

dỹ ).

iii) Clearly ((x|C)∗OC)(A1
k) ∩ k(x) = k[x]. This implies that w1 = 1 with

Lemma 2.36.

iv) This is a special case of Remark 2.45.

v) We have deg(W ) ≥ d because w1 = 1 and therefore the first column

of W is de1. Moreover, for all i = 1, . . . , r, ỹi−1
|C ∈ ((x|C)∗OC)(A1

k), thus

dei is in the span of the columns of W . As W is a non-singular matrix in

upper diagonal form, this implies that the degrees of the diagonal elements

of W are ≤ deg(d). As W is in Hermite normal form, this implies that

deg(W ) ≤ deg(d).

An algorithm for Part b) is presented in Section 2.7.

Convention 2.54 In the following we assume that the data in the propo-

sition and the corresponding data for the infinite order ((x|C)∗OC)(
1
x (A1

k))

have been computed.

(This means that the following algorithms take as input a curve repre-

sented by a plane model as well as data as in Proposition 2.53 as well as

the corresponding data for the infinite order and some further input which

is described in detail below. All complexity related statements below are

relative to this input.)

We now represent fractional ((x|C)∗OC)(A1
k)-ideals as described in Con-

vention 2.39:

Convention 2.55 We always represent fractional ((x|C)∗OC)(A1
k)-ideals by

their HNF-bases with respect to w1, . . . , wr, and the HNF-bases are repre-

sented by the denominator and the coordinate matrix in k[x]r×r in Hermite

normal form.

The following lemmata complement Proposition 2.53.

Lemma 2.56 The k[x]-index i as well as the discriminant δ can be com-

puted in a number of field and bit operations which is polynomially bounded

in d.

Proof. We have i = det(dW−1) = dr det(W )−1 and det(W ) = w1,1 · · ·wr,r.

Moreover, δ = disc(f̃)

i2
. 2
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Lemma 2.57 The degree of the coordinate vector of ỹ|C with respect to

w1, . . . , wr is ≤ d. The coordinate vector can be computed in a number

of field and bit operations which is polynomially bounded in d.

Proof. By the shape of the matrix W , ỹ|C is a k[x]-linear combination of

w1 = 1 and w2; let ỹ|C = a+ bw2 with a, b ∈ k[x]. Let W = ((wi,j))i,j . Then

(
0
d

)
= a

(
d

0

)
+ b

(
w1,2

w2,2

)
.

The second row implies that deg(b) ≤ deg(d). As deg(w1,2) < deg(d) this

implies together with the first row that deg(a) < deg(d).

The computational result is obvious. 2

This lemma and Proposition 2.53 iv) and v) imply:

Lemma 2.58 The degree of the multiplication table of w1, . . . , wr (which

is an element of k[x]r×r×r) is polynomially bounded in d. The table can be

computed with a number of field and bit operations which is polynomially

bounded in d.

On the infinite order

Let us fix the following definition: Let for some a ∈ k[ 1x ] deg 1
x
(a) be the

degree of a in 1
x . Analogously to the definitions for matrices in k[x], we

define for a matrix M over k[ 1x ] the degree of M in 1
x , deg 1

x
(M), as the

maximum of the degrees in 1
x of the entries of M .

Proposition 2.53 holds mutatis mutandis also for the infinite order: One

first has to substitute x by 1
x , ỹ by ˜̃y, and instead of considering k[x]-bases

one has to consider k[ 1x ]-bases. One also has to substitute the usual degree by

the degree in 1
x . Then one has to substitute f̃ by

˜̃
f , the HNF basis w1, . . . , wr

by the HNF basis of the infinite order with respect to 1, ˜̃y|C , . . . , ˜̃y|C , and one

has to adopt the definitions of the index, the denominator and the matrix

W accordingly. The degree d of F (X,Y,Z) is however left as it is.

Note here that indeed deg 1
x
(disc( ˜̃f)) is polynomially bounded in d as

deg 1
x
(
˜̃
f) is polynomially bounded in d. This implies that the degree of the

coordinate matrix in v) as well as the running time in field and bit operations

in b) are polynomially bounded in d.

2.5.4.3 Ideal arithmetic

An important aspect of the joint ideal representation of divisors is that

one can apply the usual ideal arithmetic. From a computational point of
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view, one can easily adapt the algorithms described in [Coh96, 4.7, 4.8] from

the number field theoretic to the function field theoretic setting. A crucial

ingredient is here the computation of Hermite normal forms.

In the following, we concentrate on fractional ideals of the finite order

((x|C)∗OC)(A1
k) and its fractional ideals. Similar definitions and results hold

for fractional ideals of ((x|C)∗OC)(
1
x (A1

k)).

Note again that in all the following computational statements we assume

that the fractional ideals of the finite order are given by HNF-bases with

respect to w1, . . . , wr.

Terminology 2.59 We refer to a non-trivial ideal of ((x|C)∗OC)(A1
k) as a

proper ideal.5

Terminology 2.60 By the norm N(I) of a fractional ideal I of

((x|C)∗OC)(A1
k) we mean the norm of I with respect to k(x).

Lemma 2.61 Let I be a proper ideal of ((x|C)∗OC)(A1
k), and let M =

(mi,j)i,j ∈ k(x)r×r be a coordinate matrix of I with respect to w1, . . . , wr

(not necessarily in Hermite normal form). Then N(I) = (det(M)). More-

over, if M is in Hermite normal form, I ∩ k[x] = (m1,1).

Proof. Let I = P be a prime ideal, let p := I ∩ k[x], let p = (P ) with

P monic, and let f be the residue degree. Then the residue field k(P) is

an f -dimensional k(p)-vector space. This means that as k[x]-module k(P)

is isomorphic to (k[x]/p)f . Thus if S is the Smith normal form of M , the

non-trivial entries of S are either 1 or P , and there are exactly f entries

equal to P . In particular, the determinant of S is P f . This implies that

(det(M)) = (P f ) = pf = N(I).

For general ideals the statement follows because both the norm and the

determinant are multiplicative.

The last statement follows from w1 = 1. 2

Definition 2.62 The degree of a proper ((x|C)∗OC)(A1
k)-ideal I is deg(I) :=

dimk(((x|C)∗OC)(A1
k)/I).

Let now I be a fractional ((x|C)∗OC)(A1
k)-ideal. Then we define I+ and

I− as the unique proper ideals with I = I+ I
−1
− .

The degree of I is deg(I) := deg(I+) − deg(I−) and the height of I is

max{deg(I+),deg(I−)}.

5Note that this terminology is at odds the usual terminology in commutative algebra
where one calls an ideal not equal to the full ring a proper ideal.
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Remark 2.63 Note that deg(I) = deg(N(I)). In particular, if I is given

by a coordinate matrix M ∈ k(x) with respect to w1, . . . , wr then deg(I) =

deg(det(M)).

The following lemma is obvious:

Lemma 2.64 Let I be a fractional ((x|C)∗OC)(A1
k)-ideal. Then the denom-

inator of I divides N(I−). In particular, the degree of the denominator d of

I is bounded by ht(I). Moreover, the degree of the proper ideal dI is bounded

by (r + 1) · ht(I). In particular, let M ∈ k[x]r×r be the coordinate matrix of

dI in Hermite normal form. Then deg(M) ≤ (r + 1) · ht(I).

In analogy of the sum of ideals we define:

Definition 2.65 Let I a and J be two fractional ideals of ((x|C)∗OC)(A1
k).

Then the sum of I and J the k[x]-submodule of k(C) generated by I and J .

We denote the sum of I and J by I + J = (I, J).

The sum of fractional ideals should not be confused with their product.

Note also the following formula for fractional ideals I and J of ((x|C)∗OC)(A1
k):

I · J = (I ∩ J) · (I + J) (2.4)

Proposition 2.66 Given two fractional ideals I, J of ((x|C)∗OC)(A1
k), one

can compute the product I · J and the sum I + J = (I, J) in a number of

field and bit operations which is polynomially bounded in d, ht(I) and ht(J).

Proof. If I is generated by g1, . . . , gr and J is generated by h1, . . . , hr,

then I · J is generated by {gihj |i, j = 1, . . . , r} and I + J is generated by

g1, . . . , gr, h1, . . . , hr. The result follows from Lemma 2.64 and Proposition

2.40. 2

Recall that the codifferent of k(C) (or ((x|C)∗OC)(A1
k)) with respect to

k[x] is defined as

C := {g ∈ k(C) | Tr(g · ((x|C)∗OC)(A
1
k)) ⊆ k[x] } .

The different D, which is a proper ideal, is then defined as the inverse of

this fractional ideal.

Lemma 2.67 Let I be a fractional ideal of ((x|C)∗OC)(A1
k), and let h ∈

k(C). Then h ∈ I−1C if and only if Tr(hI) ⊆ k[x].

Proof. Note that I−1C = {h ∈ k(C) | hI ⊆ C}.
Let first h ∈ I−1C. Then hI ⊆ C. Therefore Tr(hI) = Tr(hI · 1) ⊆ k[x].
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Now let Tr(hI) ⊆ k[x]. Then Tr(hI · ((x|C)∗OC)(A1
k)) ⊆ k[x], therefore

hI ⊆ C. Thus h ∈ I−1C. 2

The following lemma and its proof are analogous to [Coh96, Proposition

4.8.19].

Lemma 2.68 Let I be a fractional ideal of ((x|C)∗OC)(A1
k)), and let M =

(mi,j)i,j ∈ k(x)r×r be a coordinate matrix of I with respect to w1, . . . , wr.

Let T be the r × r-matrix with entries ti,j = Tr(wiwj). Then T is regular.

Let h1, . . . , hr ∈ k(C) be the elements whose coordinate matrix with respect

to w1, . . . , wr is (M tT )−1. Then h1, . . . , hr form a k[x]-basis of I−1C.

Proof. Let g1, . . . , gr be the k[x]-basis of I whose coordinate matrix with

respect to w1, . . . , wr is M .

The matrix T is regular as the extension k(C)|k(x) is separable by as-

sumption. (It is here that we use this condition for the first time.)

LetN := M tT . Then ni,j =
∑r

ℓ=1mℓ,iTr(wℓwj) = Tr(
∑r

ℓ=1mℓ,iwℓwj) =

Tr(giwj).

Let now h ∈ k(x)r, and let h :=
∑r

j=1 hjwj . By the previous lemma,

h ∈ I−1C if and only if Tr(hI) ⊆ k[x]. This is equivalent to: ∀i = 1, . . . , r :

Tr(gih) ⊆ k[x], that is, ∀i = 1, . . . , r :
∑r

j=1 hjTr(giwj) ⊆ k[x], that is, Nh ∈
k[x]r. This in turn is equivalent to h being in the k[x]-module generated by

the columns of N−1. 2

This lemma immediately implies the following computational result:

Proposition 2.69

a) One can compute the codifferent C and the different D in a number of

field and bit operations which is polynomially bounded in d.

b) One can compute the inverse of a fractional ideal I of ((x|C)∗OC)(A1
k) in

a number of field and bit operations which is polynomially bounded in d

and ht(I).

Proof. By the previous lemma and Proposition 2.34 on the computation

of the Hermite normal form, the following holds: Given a fractional ideal

I, one can compute I−1C in a number of field and bit operations which is

polynomially bounded in d and ht(I). In particular, one can compute C in a

number of field and bit operations which is polynomially bounded in d. By

the formula D = (C2)−1C one can also compute D in a number of field and

bit operations which is polynomially bounded in d. Now point b) follows

from the formula I−1 = I−1C D. 2

This result and Equation (2.4) imply:
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Proposition 2.70 Given two fractional ideals I, J of ((x|C)∗OC)(A1
k), one

can compute the intersection I ∩ J in a number of field and bit operations

which is polynomially bounded in d, ht(I) and ht(J).

We also have:

Lemma 2.71 Given a fractional ideal I, one can compute the proper ideals

I+ and I− with I = I+I
−1
− in a number of field and bit operations which is

polynomially bounded in d and ht(I).

Proof. One can for example use the formulae I+ = I∩(1) and I−1
− = I+(1).2

For the following proposition, recall again that we represent fractional

ideals by HNF-bases with respect to the basis w1, . . . wr of ((x|C)∗OC)(A1
k).

Proposition 2.72 Let s ∈ N, and let ai,j, bi,j ∈ k[x] for i = 1, . . . , r, j =

1, . . . , s. Let gj :=
∑r

i=1
ai,j

bi,j
wi ∈ k(C) for j = 1, . . . , s. Then the height

of the fractional ideal (g1, . . . , gs) is polynomially bounded in r, s and the

maximum of the degrees of the ai,j and bi,j. Moreover, one can compute this

ideal in a number of field and bit operations which is polynomially bounded

in d, s and the maximum of the degrees of the ai,j and bi,j.

Proof. Note that the elements yℓgj for ℓ = 0, . . . , r − 1 and j = 1, . . . , s

generate the ideal as a k[x]-module.

The computational statement now follows from Proposition 2.40.

Let now 1
d
M be the coordinate matrix of the HNF-basis of the ideal,

where d is the denominator. Then again by Proposition 2.40 the degrees

of both d and M are polynomially bounded in the given data. Let J be

the proper ideal given by M . Then (g1, . . . , gs) = 1
d
J , and the degree of J

is equal to the degree of the determinant of M . Therefore, the height of

(g1, . . . , gs) can be bounded as claimed. 2

Remark 2.73 A similar statement holds if g is not represented with respect

to w1, . . . , wr but with respect to 1, ỹ|C , . . . , ỹ
r−1
|C or 1, y|C , . . . , y

r−1
|C .

2.5.4.4 Divisor arithmetic

We now relate the previous ideal-theoretic considerations with divisors, using

the joint ideal representation.

Definition 2.74 For a divisor D on C, we define D+ and D− as the unique

effective divisors with D = D+ −D−.

The height of a divisor D on C is ht(D) := max{deg(D+),deg(D−)}.6
6In [Heß01], the height of a divisor D is defined as deg(D+) + deg(D−).
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Remark 2.75 The height of a fractional ideal of ((x|C)∗OC)(A1
k) is the

height of the corresponding divisor.

Definition 2.76 Let D1 =
∑

P∈C vP (D1)P and D2 =
∑

P∈C vP (D2)P be

two divisors on C. Then the minimum of D1 and D2 is min{D1,D2} :=∑
P∈C min{vP (D1), vP (D2)} · P , and the maximum is max{D1,D2} :=∑
P∈C max{vP (D1), vP (D2)} · P .

Remark 2.77 We have Ifin(D1) ∩ Ifin(D2) = Ifin(max{D1,D2}) and

Ifin(D1) + Ifin(D2) = Ifin(min{D1,D2}), and similarly for the “infinite”

ideals.

Recall that the joint ideal representation of a divisor consists of a pair

of ideals I(((x|C)∗OC)(A1
k))×I(((x|C)∗OC)∞) obtained by isomorphism (2.3).

The “infinite” ideal is represented by the corresponding ideal in

I(((x|C)∗OC)(
1
x (A1

k))) with support “at infinity”. These ideals are repre-

sented by HNF-bases as above.

Propositions 2.66, 2.69 and 2.70 as well as the corresponding result for

the “infinite” ideals immediately imply:

Proposition 2.78 Given two divisors D1,D2 in joint ideal representation,

one can compute D1 +D2, min{D1,D2} and max{D1,D2} with a determin-

istic algorithm in a number of field and bit operations which is polynomially

bounded in d, ht(D1) and ht(D2). Similarly, one can compute the inverse

of a divisor D in joint ideal representation in a number of field and bit

operations which is polynomially bounded in d and ht(D).

Proposition 2.72 implies:

Proposition 2.79 Let g =
∑r

i=1
ai
bi
wi ∈ k(C) with ai, bi ∈ k[x], repre-

sented by the vector (a1, . . . , ar, b1, . . . , br). Then the height of the prin-

cipal divisor (g) is polynomially bounded in d and the degree of the vector

(a1, . . . ar, b1, . . . , br). Moreover, this divisor in joint ideal representation can

be computed in a number of field and bit operations which is polynomially

bounded in the same data.

Proof. By Proposition 2.72 the principal fractional ideals (g) of both

((x|C)∗OC)(A1
k) and ((x|C)∗OC)(

1
x (A1

k)) can be computed with the claimed

complexity, and their heights are polynomially bounded in d and the degree

of the vector in question.

Note that we are not yet finished at this point because we demand that

the “infinite” ideal has support “at infinity”. The result now follows from

the next lemma. 2
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Lemma 2.80 Given a fractional ideal I of ((x|C)∗OC)(
1
x (A1

k)) one can com-

pute the ideal (I) in ((x|C)∗OC)∞, represented by the corresponding ideal in

((x|C)∗OC)(
1
x (A1

k)), in a number of field and bit operations which is polyno-

mially bounded in d and ht(I).

Proof. Let first I be a proper ideal. Note first that the principal fractional

ideal (x−1) of ((x|C)∗OC)(
1
x (A1

k)) is a proper ideal whose support consists ex-

actly of all prime ideals “at infinity”. Now for any i > 0, the fractional ideal

(x−i)+I has support “at infinity”. Moreover, x−deg(I) ∈ (I) ⊆ ((x|C)∗OC)∞.

Thus (x− deg(I)) + I ⊆ ((x|C)∗OC)( 1
x (A1

k)) is the desired ideal.

We come to the computation. We first compute I− and I+. Note that

the degrees of these ideals can immediately be read off from the coordinate

matrices of the HNF-bases. Now we compute the ideals J+ := (x− deg(I+))+

I+ and J− := (x− deg(I−))+ I− and finally J+J
−1
− , which is the desired ideal.

All these computations can be performed with the claimed complexity by

Lemma 2.71, Proposition 2.72 and Proposition 2.69. 2

Recall that the different ideal sheaf of the covering x|C : C −→ P1
k is

defined as Ann(ΩC/P1
k
), the annihilator of the OC-module ΩC/P1

k
. The rami-

fication divisor (or different divisor) R is then the (effective) divisor defined

by this ideal sheaf. Note that by definition,

OR ≃ ΩC/P1
k
. (2.5)

Along the lines of the proof of [Neu91, Satz 2.7], one can prove that

the module of sections of the different ideal sheaf over ((x|C)∗OC)(A1
k) is

isomorphic to the different ideal D defined above. This statement together

with the corresponding statement for ((x|C)∗OC)(
1
x (A1

k)) imply:

Proposition 2.81 One can compute the ramification divisor R of x|C :

C −→ P1
k in joint ideal representation in a number of field and bit oper-

ations which is polynomially bounded in d.

We now have the important formula of divisors on C

div(dx|C) = −2(x|C)− +R . (2.6)

To prove this formula, note first that we have the exact sequence

0 −→ x∗|C(ΩP1
k
) −→ ΩC −→ ΩC/P1

k
−→ 0 (2.7)

(see [Har77, IV, Proposition 2.1]). Together with (2.5) this means that as

subsheaf of ΩC , x∗|C(ΩP1
k
) is isomorphic to ΩC(−R). This implies that for any

s ∈ Γ(C, x∗|C(ΩP1
k
)) with s 6= 0,

divΩC(s) = divx∗
|C(Ω

P1
k
)(s) +R . (2.8)
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Moreover, we have on P1
k

div(dx) = −2(x)− . (2.9)

Note now that x∗|C(dx) = d(x∗|C(x)) = dx|C . Altogether we obtain

−2(x|C)− = −2x∗|C(x)− = x∗|C(div(dx)) =

divx∗
|C(Ω

P1
k
)(x

∗
|C(dx)) = divΩC (x∗|C(dx))−R =

div(dx|C)−R .

2

By Proposition 2.81, (2.6) and Lemma 2.80 we obtain:

Proposition 2.82 One can compute the canonical divisor div(dx|C) in joint

ideal representation in a number of field and bit operations which is polyno-

mially bounded in d.

2.5.4.5 Curves over extension fields

As a generalization we now consider curves over finite extension fields of k.

This subsubsection is in a certain sense a continuation of subsubsection

2.5.3.4. In particular, as in subsubsection 2.5.3.4, all computations take

place over k.

Let λ|k be a finite field extension. Let C be a curve over λ or more

generally a smooth and proper 1-dimensional irreducible λ-scheme. Analo-

gously to the previous considerations, we assume that C is represented by

a plane model Cpm of degree d in P2
λ, not equal to V (Z). As above, let

F (X,Y,Z) ∈ λ[X,Y,Z] be a homogeneous polynomial defining Cpm. We

define x, y and f(x, y) ∈ λ[x, y] as in subsubsection 2.5.4.1, and we also use

the notations of subsubsection 2.5.4.2 (with λ instead of k).

Furthermore, let a1, . . . , a[λ:k] be a basis of λ|k, again with known mul-

tiplication table.

Similarly to above, we first consider the extension λ(C)|λ(x). Let

w1, . . . , wr be the HNF-basis of ((x|C)∗OC)(A1
λ)) with respect to

1, ỹ|C , . . . , ỹ
r−1
|C .

Note that by Propositions 1.58 and 2.53, w1, . . . , wr can be computed

with a deterministic algorithm in a number of field operations (in k) and bit

operations which is polynomially bounded in d and [λ : k]. More generally,

by Proposition 1.58 all results from on ideal arithmetic from subsubsection

2.5.4.2 and subsubsection 2.5.4.3 can be transferred to the more general

setting of this subsubsection. The only difference is that now the required

number of field operations (in k) and bit operations is additionally polyno-

mially bounded in [λ : k].



80 Chapter 2. Representations

If one proceeds similarly with the “infinite” order, the corresponding re-

sults can be transferred too, and consequently the results from subsubsection

2.5.4.4 can then be transferred in the same way.

Now we consider the extension λ(C)|k(x) (of degree [λ : k] · r), and we

regard ((x|C)∗OC)(A1
λ)) as a k[x]-module.

Following (2.2), let

ŵi+(j−1)r := wi aj for i = 1, . . . , r, j = 1, . . . , [λ : k] . (2.10)

We can now represent fractional ideals of ((x|C)∗OC)(A1
λ)) via HNF-bases

with respect to ŵ1, . . . , ŵr·[λ:k].

By Lemma 2.64, the following proposition is a special case of Proposition

2.46.

Proposition 2.83 Let I be a fractional ideal of ((x|C)∗OC)(A1
λ)). Then one

can change between the representation of I by the HNF-basis with respect

to w1, . . . , wr and the representation of I by the HNF-basis with respect to

ŵ1, . . . , ŵr·[λ:k] in a number of field operations in k and bit operations which

is polynomially bounded in d and ht(I).

By this result the computational statements in subsubsections 2.5.4.2

and subsubsection 2.5.4.3 excluding Remark 2.73 can also be transferred to

the representation with respect to ŵ1, . . . , ŵr·[λ:k]. Again, the only difference

is that the number of field operations in k and bit operations required is

now additionally polynomially bounded in [λ : k]. (This can also be checked

directly by going through the proofs of these results.)

An analogous statement to Remark 2.73 also holds: One merely has to

consider the bases consisting of ỹi−1
|C aj or of yi−1

|C aj for i = 1, . . . , r and j =

1, . . . , [λ : k]. (This can for example again be seen with Proposition 2.46.)

We now turn to an important application: The computation of intersec-

tions of fractional ideals “along a constant field extension”.

For this, let C be a curve over k, represented as described above. As

above, we assume that we are given the HNF-basis w1, . . . , wr of

((x|C)∗OC)(A1
k)) with respect to 1, ỹ|C , . . . , ỹ

r−1
|C .

Let λ|k again be a finite field extension, represented by a multiplication

table with respect to a k-basis a1, . . . , a[λ:k] of λ with a1 = 1.

Note that under the isomorphism λ(C) ≃ k(C)⊗k λ,

((x|Cλ
)∗OCλ

)(A1
λ)) ≃ ((x|C)∗OC)(A

1
k))⊗k λ . (2.11)

(The left-hand side is the normalization of the right-hand side, but as k is

perfect, ((x|C)∗OC)(A1
k)) is smooth, and this property is invariant under field

extensions.)

Now we have:
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Lemma 2.84 Let I be a fractional ideal of ((x|Cλ
)∗OCλ

)(A1
λ)) in λ(C), and

let g1, . . . , g[λ:k]·r be the HNF-basis of I with respect to ŵ1, . . . , ŵ[λ:k]·r. Then

g1, . . . , gr is the HNF-basis of I ∩ k(C) with respect to w1, . . . , wr.

Indeed, this is a special case of Lemma 2.36.

Remark 2.85 If the ideal I in Lemma 2.84 is instead given by a gener-

ating set g1, . . . , gs, where each element is represented in the form gj =
∑r·[λ:k]

i=1
ai,j

bi,j
ŵi with ai,j, bi,j ∈ k[x], one can compute the intersection I ∩k(x)

in a number of field and bit operations which is polynomially bounded in

d, [λ : k], s and the maximum of the heights of the ai,j and bi,j. (Briefly,

one first computes an HNF-basis with respect to w1, . . . , wr·[λ:k] and then

applies Lemma 2.84.)

2.5.4.6 Changing representations

We address the question to efficiently change between the (free) coordinate,

the free ideal and the joint ideal representations. We show that one can

change from the free representations to the joint ideal representation (deter-

ministically) in a number of field and bit operations which is polynomially

bounded in d and ht(D), where D is the divisor under consideration.

On the basis of our computational model, every algorithm which com-

putes a free ideal representation from the joint ideal representation of divi-

sors has to be randomized. Indeed, factorization of polynomials is a special

case of factorization of ideals, and for this task the algorithm has to use the

command FIELDFACTOR, which means that it has to be randomized.

We remark here that it is an interesting open problem to derive a deter-

ministic polynomial time algorithm to factor polynomials over finite fields

(on a RAM / Turing machine).

Proposition 2.86 Given a fractional ideal I of ((x|C)∗OC)(A1
k), one can

compute the factorization of I with a randomized algorithm in an expected

number of field and bit operations which is polynomially bounded in d and

ht(I).

Proof. Let us first assume that I is a proper ideal.

Let us first fix some notation and make some non-computational obser-

vations: Let ((x|C)∗OC)(A1
k)/I ≃ A1 ⊕ · · · ⊕ Aℓ with local algebras Ai, and

let mi be the corresponding maximal ideals. Let pi be the preimage of mi

in ((x|C)∗OC)(A1
k), fi := dimk(Ai/mi) and ei := dimk(Ai)

fi
(for i = 1, . . . , ℓ).

Then the factorization of I is I = pe1
1 · · · peℓ

ℓ . Explicitly, if for i = 1, . . . , ℓ

b1, . . . , bs ∈ ((x|C)∗OC)(A1
k) are such that modulo I they form a basis of mi.

Then pi := (b1, . . . , bs) + I.
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Let now – as always – I be given by the coordinate matrix M (with

respect to w1, . . . , wr) in Hermite normal form. We proceed as follows:

We consider the canonical basis of ((x|C)∗OC)(A1
k)/I with respect to

w1, . . . wr (see Definition 2.43). We compute the multiplication table of

this basis. For this we first compute the multiplication table of w1, . . . , wr

(see Lemma 2.58). Then we compute the desired multiplication table with

a reduction algorithm with respect to the columns of M . This is possible in

a number of field and bit operations which is polynomially bounded in d an

d ht(I).

Then we determine the factorization of the algebra ((x|C)∗OC)(A1
k)/I and

determine the maximal ideals mi with respect to this basis (that is, for each

maximal ideal, we obtain coordinate vectors of basis elements). We apply

the canonical lift to the basis elements to obtain elements in ((x|C)∗OC)(A1
k)

(see again Definition 2.43). Note that the lifting is computationally trivial.

These computations can be performed with the claimed expected number

of field and bit operations by Propositions 1.49 and 1.50

For every i = 1, . . . , ℓ, we have then obtained elements b1, . . . bs and

the index ei as above. Finally, we compute the HNF-bases of the ideals

pi = (b1, . . . , bs) + I. What concerns the complexity of these computations

note first that s = dimk(mi) ≤ dimk(Ai) ≤ deg(I) and ℓ ≤ deg(I). Now

these computations can also be performed with the claimed complexity by

Proposition 2.72.

Now let I be an arbitrary fractional ideal. We then compute I+ and I−
(see Lemma 2.71). After this we determine their factorizations. 2

This result as well as the corresponding result for fractional ideals of

((x|C)∗OC)(
1
x (A1

k)) imply the second statement of the following proposition.

The first statement follows immediately from Proposition 2.66.

Proposition 2.87 Let D be a divisor on C. Then one can change from

the free to the joint ideal representation with a deterministic algorithm in

a number of field and bit operations which is polynomially bounded in d

and ht(D). Conversely, one can change from the joint to the free ideal

representation of D with a randomized algorithm in an expected number of

field and bit operations which is polynomially bounded in d and ht(D).

Note for the following proposition that we have fixed a birational map π :

C −→ Cpm.

Proposition 2.88 Given a point P ∈ Cpm(k) ⊆ P2(k), one can compute

the divisor π−1(P ) = π∗(P ) on C in joint ideal representation in a number

of field and bit operations which is polynomially bounded in d.
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Sketch of a proof. Let P = (X(P ) : Y (P ) : Z(P )) ∈ P2(k). We proceed

with several case distinctions.

Let first Z(P ) 6= 0. Then π−1(P ) = min{(x|C − X(P )
Z(P ) )+, (y|C −

Y (P )
Z(P ) )+}.

Let now Z(P ) = 0. If X(P ) 6= 0 then π−1(P ) = min{( 1
x|C

)+, (
y|C
x|C
−

Y (P )
X(P ))+}. If Y (P ) 6= 0 then π−1(P ) = min{( 1

y|C
)+, (

x|C
y|C
− X(P )

Y (P ) )+}.
The computations can be performed in a number of field and bit opera-

tions which is polynomially bounded in d by Proposition 2.78. 2

Proposition 2.89 Given a field extension λ|k (represented by a multiplica-

tion table) and a point P ∈ Cpm(λ), one can compute the set of closed points

of C lying over the closed point defined by P with a randomized algorithm in

an expected number of field and bit operations which is polynomially bounded

in d and deg([λ : k]). Here the closed points of C are represented in joint

ideal representation.

Proof. First one computes the divisor π−1(P ) on Cλ in joint ideal representa-

tion. This is possible as claimed by the previous proposition and Proposition

1.58. Then one computes the intersection of the corresponding ideals with

the coordinate rings over k (see subsubsection 2.5.4.5, and in particular

Lemma 2.84). Finally, one factors the ideals (see Proposition 2.86). 2

If the point P lies in Cns, then π−1(P ) is a prime divisor, and we can

avoid factorization. We therefore obtain:

Proposition 2.90 Let a closed point P ∈ C, not lying over a singular point

of Cpm, be given in coordinate representation as described in subsection 2.5.2.

Then one can compute the ideal representation (that is, the corresponding

prime ideal of either the finite or infinite order) with a deterministic algo-

rithm in a number of field and bit operations which is polynomially bounded

in d and deg(P ).

Proposition 2.91 Given a closed point P ∈ C in ideal representation, one

can compute with a randomized algorithm a field extension λ|k (of degree

polynomially bounded in deg(P ), given by a defining separable polynomial)

such that π(P ) is given by a point in P2(λ), and coordinates of such a point

(that is, coordinates of π(P )) in an expected number of field and bit opera-

tions which is polynomially bounded in d and deg(P ).

Proof. Let first P be represented by an ideal of the infinite order. Then

π(P ) lies in V (Z). Therefore, we can proceed as follows: We factorize the

polynomial F (X,Y, 0) to obtain the points in the intersection Cpm∩V (Z) =

V (F (X,Y,Z), Z). Let F (X,Y, 0) =
∏a

i=1 Fi(X,Y )ei be the factorization.

Then each factor Fi corresponds to a closed point Qi in Cpm ∩ V (Z). Coor-

dinates of these points can be obtained as follows: If Fi = c · Y for c ∈ k∗,
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then the point is given by (0 : 1 : 0). Otherwise, let fi(x) := F (x, 1). Then

with λ := k[x]/(fi) and α the residue class of x in λ, the closed point asso-

ciated to (α : 1 : 0) is Qi. For each point Qi (represented by coordinates as

described), we compute the set of closed points of C lying over Qi, and we

check if P is contained in this set. If this is the case, we have determined

π(P ).

By Proposition 2.89 this computation can be performed in an expected

number of field and bit operations which is polynomially bounded in d and

deg(P ).

Let now P be represented by an ideal p of the finite order. Let m be

the monic generator of the intersection p ∩ k[x]. Note that m is irreducible;

let K := k[x]/(m(x)), and let α be the residue class of x in this field. Then

there exists a point in (Cpm)K∩V (X−αZ) ⊆ P2
K which lies over π(P ) under

the map (Cpm)K −→ Cpm.

The computation is as follows: Recall that p is given by its HNF-basis

with respect to w1, . . . , wr, which in turn is given by the coordinate matrix

M , and m = m1,1 (see Lemma 2.61). We compute the points in (Cpm)K ∩
V (X−αZ) ⊆ P2

K , that is, we factorize F (αZ, Y,Z); let again F (αZ, Y,Z) =∏a
i=1 Fi(Y,Z) be the factorization. Then for each i = 1, . . . , a we compute

primitive elements over k and their minimal polynomials for the resulting

field extensions (see Proposition 2.1). Finally, as before for each point Qi

corresponding to the factor Fi we compute the set of closed points of C lying

over Qi, and again we determine in which set P is contained. 2

2.5.4.7 Computing Riemann-Roch spaces

The joint ideal representation of divisors is particularly important because

it allows for a simple and efficient computation of Riemann-Roch spaces via

Heß’ algorithm ([Heß01]). We present the algorithm here.

Let us first fix the computational problem we consider: Given a divisor

D on C in joint ideal representation, we want to compute a basis of the space

L(D). More precisely, we want to compute the coordinate matrix of such a

basis with respect to 1, y|C , . . . , y
r−1
|C . As usual, we represent the coordinate

matrix by its denominator and the numerator matrix.

The algorithm relies on the following easy fact: Let D be a divisor on C.
Then

L(D) = Ifin(−D) ∩ (I∞(−D))∞ .

Note that for n ∈ Z, (I∞(−(D + n(x)−)))∞ = (I∞(−D + nx))∞ =

xn · I∞(−D). As a special case of Proposition 2.22 we then obtain:
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Proposition 2.92 There exist uniquely determined integers d1 ≥ · · · ≥ dr

and a basis v1, . . . , vr of Ifin(−D) such that xd1v1, . . . , x
drvr is a k[ 1x ]( 1

x
)-basis

of (I∞(−D))∞. With these data the following holds:

• For all n ∈ Z, the set

r⋃

i=1

{xjvi | 0 ≤ j ≤ di + n}

is a k-basis of L(D + n · (x)−).

• Let ι(n) := max{j ∈ {1, . . . , r} | dj + n ≥ −1}. Then dimk(D + n ·
(x)−)− dimk(D − (n− 1) · (x)−) = ι(n − 1).

Remark 2.93 The uniquely determined integers d1 ≥ · · · ≥ dr are called

the k[x]-invariants of D in [Heß01].

Recall that by the proof of Proposition 2.22 we have the following explicit

result:

Lemma 2.94 Let ṽ1, . . . , ṽr be a k[x]-basis of Ifin(−D), and let b1, . . . , br
be a k[ 1x ]( 1

x
) be a basis of I∞(−D)∞. Now let A ∈ k(x)r×r be the coor-

dinate matrix of ṽ1, . . . , ṽr with respect to b1, . . . , br. Let AU = M with

U ∈ k[x]r×r unimodular and M degree-reduced. Let M = T D with D =

diag(x−d1 , . . . , x−dr ) and T ∈ k[ 1x ]( 1
x
) unimodular.

Let now v1, . . . , vr ∈ k(x) be such that their coordinate matrix with respect

to ṽ1, . . . , ṽr is U . Then

a) v1, . . . , vr from a k[x]-basis of Ifin(−D).

b) The coordinate matrix of v1, . . . , vr with respect to b1, . . . , br is M .

c) The coordinate matrix of xd1v1, . . . , x
drvr with respect to b1, . . . , br is T .

In particular, xd1v1, . . . , x
drvr form a k[ 1x ]( 1

x
)-basis of I∞(−D)∞.

This immediately leads to an algorithm to compute a basis v1, . . . , vr as

in Proposition 2.92 and the k[x]-invariants of D:

Algorithm for computation of Riemann-Roch spaces

Input: A curve given by a plane model and the data described in subsubsec-

tion 2.5.4.2, a divisor D on C in joint ideal representation.

1. Determine the HNF-bases ṽ1, . . . , ṽr of Ifin(−D) and b1, . . . , br of I∞(−D)∞.

2. Compute the coordinate matrix of ṽ1, . . . , ṽr with respect to b1, . . . , br
in the form 1

gN , where g ∈ k[x] is the denominator
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and N ∈ k[x]r×s the numerator matrix.

3. Compute a degree-reduced matrix M which is right-equivalent to N , where

the degrees of the columns of M monotonically increase from left to right.

4. Compute v1, . . . , vr via point b) in the lemma.

5. Let d′i be the degree of the ith column of M .

Let di ←− −d′i − deg(g) for i = 1, . . . , r.

6. Output v1, . . . , vr and d1, . . . , dr.

We now show that all steps can be performed in a number of field and

bit operations which is polynomially bounded in d and ht(D).

Step 1 can be performed in polynomial time in ht(D) and d by Proposi-

tion 2.69.

To analyze, Step 2, let us first fix some notation:

• Let A1 be the coordinate matrix of ṽ1, . . . , ṽr with respect to w1, . . . , wr,

• let A2 be the coordinate matrix of w1, . . . , wr with respect to

1, y|C , . . . , y
r−1
|C ,

• let A3 := diag(1, xc, · · · , xc(r−1)),

• let A4 be the coordinate matrix of the HNF-basis of ((x|C)∗OC)(
1
x (A1

k))

with respect to 1,
y|C
xc , . . . ,

y r−1
|C

xc(r−1) ,

• and let A5 be the coordinate matrix of b1, . . . , br with respect to the

HNF-basis of ((x|C)∗OC)(
1
x (A1

k)).

Note that A−1
5 A−1

4 A3A2A1 is the coordinate matrix of v1, . . . , vr with respect

to b1, . . . , br.

Note that the matrices A1, A2, A4, A5 are given with the input of the

algorithm, however they are represented differently: A1 and A2 are repre-

sented in the form 1
di
Ni with di ∈ k[x] and Ni ∈ k[x]r×r, where di is the

denominator. A4 and A5 are represented in the form 1
d̃i
Ñi with d̃i ∈ k[ 1x ]

and Ñi ∈ k[ 1x ]r×r, where again d̃i is the denominator, but with respect to

k[ 1x ].

Note now that deg(N1) and deg(d1) are polynomially bounded in d and

ht(D) by Lemma 2.64, and deg(N2) and deg(d2) are polynomially bounded

in d by Proposition 2.53 v). Similarly, deg 1
x
(Ñ3) and deg 1

x
(d̃3) are polyno-

mially bounded in d by Proposition 2.53 v), and deg 1
x
(Ñ4) and deg 1

x
(d̃4) are

polynomially bounded in d and ht(D) by Lemma 2.64.

Let now for i = 4, 5 Ni := x
deg 1

x
(Ñi)

Ñi ∈ k[x]r×r and di := x
deg 1

x
(di)

d̃i.

Then Ai = x
deg 1

x
(di)−deg 1

x
(Ñi)

di
Ni.
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The degrees of all polynomials di and all matrices Ni are now polynomi-

ally bounded in d and ht(D). Moreover, one can therefore easily compute

di and Ni for i = 4, 5 in a number of field and bit operations which is

polynomially bounded in d and ht(D).

Now for i = 4, 5 the adjoint matrix N#
i can be computed in a number of

field and bit operations which is polynomially bounded in r and deg(Ni) by

Proposition 2.31, and the degree of the resulting matrix is also polynomially

bounded in r and deg(Ni). We conclude that these computations are possible

in a number of field and bit operations which is polynomially bounded in d

and ht(D), and the degrees of the resulting matrices also are polynomially

bounded in these quantities.

Therefore, the matrix N#
5 N

#
4 A3N2N1 can also be computed in a number

of field and bit operations which is polynomially bounded in d and ht(D).

Finally, the matrix

A−1
5 A−1

4 A3A2A1 =
x

deg 1
x
(Ñ4)+deg 1

x
(Ñ5)−deg 1

x
(d̃4)−deg 1

x
(d̃5)

d4d5

d1d2 det(N5) det(N4)
N#

5 N
#
4 A3N2N1

(that is, its denominator and numerator matrix) can also be computed in a

number of field and bit operations which is polynomially bounded in d and

ht(D) (see Remark 2.38).

In Step 4 explicitly we have to compute the coordinate matrix of ṽ1, . . . , ṽr

with respect to 1, y|C , . . . , y
r−1
|C . This matrix is diag(1, ar(x), . . . , ar(x)r−1) ·

A−1
3 A4A5 · 1

gM . Similarly to Step 3, this task can again be performed in a

number of field and bit operations which is polynomially bounded in d and

ht(D).

Step 5 can obviously also be carried out as desired.

We obtain:

Proposition 2.95 Given a divisor D on C in joint ideal representation,

one can compute the k[x]-invariants d1, . . . , dr of D and a basis v1, . . . , vr of

Ifin(D) as in Proposition 2.92 (given by its coordinate matrix with respect to

1, y|C , . . . , y
r−1
|C ) in a number of field and bit operations which is polynomially

bounded in d and ht(D). The degrees of the denominator and the numerator

matrix of the coordinate matrix are then also polynomially bounded in d and

ht(D).

In particular, one can compute the space L(D) in a number of field and

bit operations which is polynomially bounded in d and ht(D), and the degrees

of the denominator and the numerator matrix are then again polynomially

bounded in d and ht(D).

By Equation (2.6) the height of div(dx|C) is polynomially bounded in d.

With Proposition 2.82 and the previous proposition we obtain:
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Proposition 2.96 One can compute the genus of C in a number of field

and bit operations which is polynomially bounded in d.

We have the following application of the computation of Riemann-Roch

spaces:

Proposition 2.97 Given a divisor D on C in joint ideal representation,

one can with a deterministic algorithm determine in a number of field and

bit operations which is polynomially bounded in d and ht(D) if there exists

an effective divisor which is linearly equivalent to D and if this is the case

compute such a divisor.

Proof. Such a divisor exists if and only if L(D) is non-empty. Moreover, if

this is the case and g ∈ L(D), then D + (g) is an effective divisor which is

linearly equivalent to D.

We therefore compute L(D). If L(D) is non-empty, we choose some

element g ∈ L(D) (this can be done in a deterministic way). Then we

compute the ideal D + (g).

These operations can be performed with the claimed complexity by

Proposition 2.95 and Proposition 2.72 together with Remark 2.73. 2

Remark 2.98 Let us consider curves over finite fields: Let C be a curve

over Fq, and let again D be a divisor on C. Then the following holds:

a) One can with a deterministic algorithm determine in a time (in bit op-

erations) which is polynomially bounded in log(q), d and ht(D) if there

exists an effective divisor which is linearly equivalent to D.

b) If this is the case one can with a randomized algorithm compute a random

divisor which is uniformly distributed in the linear system |D| in an

expected time which is polynomially bounded in log(q), d and ht(D).

Indeed, the first statement immediately follows from the proposition. For the

second statement, one merely has to choose the function g ∈ L(D) uniformly

at random. Note that this is easily possible by choosing its coordinate vector

with respect to the computed basis of L(D) uniformly at random.

2.5.4.8 Heß’ algorithm and non-archimedean lattices

All computations in Heß’ algorithm take place on matrices with entries in

k[x]. There is however a connection between the ideal theoretic approach to

Riemann-Roch spaces and “non-archimedean lattices” which is interesting

for two reasons: First one can see certain analogies to Minkowski’s lattice

theory for ideals in number fields. And second, several important works on
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the ideal theoretic approach, in particular the book by Hensel and Lands-

berg ([HL02]), can be interpreted via this “lattice theory”. We now briefly

describe these connections.

Minkowski theory Let first K be a number field of degree r, and let

σ1, . . . , σr : K −→ C be the r embeddings of K in to C. (We do not

distinguish between real and complex embeddings.) There is an obvious op-

eration of Gal(C|R) on {σ1, . . . , σr}, and this operation induces an operation

of Gal(C|R) on Cr. Now the “Minkowski space” for K is the fixed set of Cr

under this operation. If I is a fractional ideal of K, the associated lattice is

the image of I in the Minkowski space.

There is another more intrinsic approach to the Minkowski space which

we describe now. Note that we have an isomorphism

K⊗QC
∼ // Cr (2.12)

induced by the embeddings σ1, . . . , σr. Now on the left-hand side we have

the canonical operation of Gal(C|R), and on the right-hand side we have

the operation just defined. Now the isomorphism in (2.12) is Gal(C|R)-

invariant. It follows that we have an induced R-vector space isomorphism

between K ⊗Q R and the Minkowski space. Under this isomorphism, the

lattice associated to a fractional ideal I of K is the image of I under the

canonical embedding of K into K ⊗Q R.

An analog for function fields In analogy to these considerations for

number fields, it is natural to consider the following construction for the

separable extension k(C)|k(x) of function fields:

We follow the notations from above, and we let I be a proper ideal in

((x|Cλ
)∗OC)(A1

k). We now consider the r-dimensional k((x−1))-vector space

k(C) ⊗k(x) k((x
−1)), and we identify I with its image under the canonical

inclusion. Now as already remarked in Remark 2.23, one can consider I as

a “non-archimedean lattice”.

Let now σ1, . . . , σr : k(C) −→ k((x−1))sep be the embeddings of k(C)|k(x)

into k((x−1))sep. Again these embeddings induce an isomorphism

k(C) ⊗k(x) k((x
−1))sep ∼ // (k((x−1))sep)

r
. (2.13)

Now again we have an obvious operation by Γk((x−1)) :=

Gal(k((x−1))sep|k((x−1))) on the left-hand side and on {σ1, . . . , σr}, and

thus on the right-hand side. Isomorphism (2.13) is now Γk((x−1))-invariant,

and in particular the image of k(C)⊗k(x) k((x
−1)) under isomorphism (2.13)

is equal to the fixed set of (k((x−1))sep)r under the operation of Γk((x−1)).
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Let p∞ be the place of k(x)|k “at infinity”, and let p1, . . . , ph be the

places of k(C)|k over p∞. Then we have a k((x−1))-isomorphism

k(C)⊗k(x) k((x
−1))

∼ // ∏h
i=1 k(C)pi . (2.14)

Let ri := [k(C)pi : k((x−1))]. Then we have ri embeddings σi,j : k(C)pi −→
k((x−1))sep over k((x−1)), and these embeddings induce isomorphisms

k(C)pi ⊗k((x−1)) k((x
−1))sep ∼ // (k((x−1))sep)ri . (2.15)

Let ιi : k(C) −→ k(C)pi be the canonical embedding. Then the r embeddings

of k(C) into k((x−1))sep are σi,j ◦ ιi for i = 1, . . . , h, j = 1, . . . , ri.

We are now coming back to the determination of the space L(D) for a

divisor D on C. Let I := Ifin(−D). As already stated, we now regard I as a

“lattice” in k(C) ⊗k(x) k((x
−1)). We want to express L(D) via the “lattice”

I and some condition “at infinity”. Let for this | · |i be the non-archimedean

absolute value on k(C)pi given by |a|i = e−vpi (a). Let I∞(−D)∞ =
∏

i p
ci
i ,

and let M∞ be the k[[x−1]]-submodule of k(C)⊗k(x) k((x
−1)) corresponding

to

{a = (ai)i ∈
h∏

i=1

k(C)pi | |ai|i ≤ eci}

under isomorphism (2.14).

Now we clearly have L(D) = I ∩ M∞. Note here that M∞ can be

interpreted as a (higher dimensional) “non-archimedean cuboid”, and thus

L(D) is the intersection of a “lattice” with a “cuboid”. This idea can now be

converted back to the number theoretic situation, and in fact the analogously

defined set H0(a) for a “complete ideal” a of a number field defined for

example in [Neu91, III, §3] is the intersection of a lattice with a higher-

dimensional cuboid.7

Note also that Proposition 2.92 and Lemma 2.94 on the determination

of L(D+ n · (x)−) still hold if k[ 1x ]( 1
x
) is replaced by k[[x−1]] and I∞(−D)∞

is replaced by M∞. (See also Remark 2.23.)

We now claim that we have

I∞(−D)∞ ⊗k[ 1
x
]
( 1
x )
k[[x−1]] = M∞ . (2.16)

Note first that the result holds for the trivial divisor, that is, isomorphism

(2.14) restricts to a k[[x−1]]-isomorphism

((x|C)∗OC)∞ ⊗k[ 1
x
]
( 1
x )
k[[x−1]] ∼ //

∏h
i=1Ôp , (2.17)

7Note the minus signs in the definition of o(D) in [Neu91].
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where Ôpi is the completion of the local ring at the place pi. Indeed, this is

a special case of [Eis95, Corollary 7.6.].

Note now that the semi-local ring ((x|C)∗OC)∞ is a principal ideal do-

main. Let u be a generator of I∞(−D)∞. Then the right-hand side is

u·((x|C)∗OC)∞⊗( 1
x
)k((x

−1)), which corresponds to
∏

i ιi(u)Ôpi =
∏

i p−ci
i Ôpi

under isomorphism (2.14), which in turn corresponds to M∞ again under

isomorphism (2.14).

Note that by (2.16) every basis k[ 1x ]( 1
x
)-basis of I∞(−D)∞ is also a

k[[x−1]]-basis of M∞. The statements in Proposition 2.92 and Lemma 2.94

are thus special cases of the corresponding statements if one replaces k(x)( 1
x
)

by k((x−1)) and I∞(−D)∞ by M∞.

Instead of a basis of I∞(−D)∞ one might now in particular use a k[[x−1]]-

basis of M∞ of the following form: For i = 1, . . . , h, let bi,1, . . . , bi,ri be

a basis of piÔpi . Then the basis of k(C) ⊗k(x) k((x
−1)) corresponding to

(δi,ℓbℓ,j)ℓ for i = 1, . . . , h and j = 1, . . . , ri under isomorphism (2.14) is a

basis of M∞.

The approach by Hensel and Landsberg We are now coming to the

explicit determination of L(D) following Hensel and Landsberg ([HL02]) and

its connection with Heß’ algorithm and the discussion so far. Hensel and

Landsberg only consider function fields over the complex numbers but this

can easily be generalized to an arbitrary algebraically closed ground field.

They first perform a coordinate change on P1
k such that D does have no

support “at infinity” and such that the covering C −→ P1
k is unramified “at

infinity”.

We assume that all these conditions are satisfied. In this case h = r

and k(C)pi = k((x−1)) for all i = 1, . . . , r. Now given a k[x]-basis ṽ1, . . . , ṽr

of I, Hensel and Landsberg consider the matrix ((ιi(ṽj)))i,j ∈ k((x−1)).

(This is the coordinate matrix of ṽ1, . . . , ṽr with respect to the basis of

k(C)⊗k(x) k((x
−1)) which corresponds to the standard basis of the k((x−1))-

vector space
∏h

i=1 k(C)pi = k((x−1))r under isomorphism (2.14).) Let us call

this matrix the expansion matrix at ∞ of ṽ1, . . . , ṽr. (The matrix depends

on the ordering of the places of k(C) “at infinity”.)

With a “reduction algorithm” they show that there always exists a k[x]-

basis v1, . . . , vr of I whose expansion matrix at ∞ is degree-reduced. Let

M be this matrix, and let di := − deg(mi). Then again the xjvi with

0 ≤ j ≤ di form a basis of L(D). This result is of course a special case of the

considerations above, but it can also be easily seen directly: For all b ∈ k[x]r,

maxr
i=1 valdeg(ιi(

∑
j bjvj)) = valdeg(Mb) = maxr

j=1 valdeg(bjmj), and this

is ≤ 0 if and only if deg(bi) ≤ di for all i = 1, . . . , r.

Note that by (2.16) the matrices considered by Hensel and Landsberg and
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by Heß are related via the multiplication by a k[[x−1]]-unimodular matrix

from the left. Note here the interesting fact that as stated in Remark 2.23,

the linear transformation given by such a matrix can be seen as a “non-

archimedean isometry”.

Let us still assume that there is no ramification “at infinity”. Then a

k(x)-basis of k(C) such that the expansion matrix at ∞ is degree-reduced is

called normal at ∞ by Hensel and Landsberg. Note that by the discussion

above (in particular the isomorphism in (2.17)) and the fact that “degree-

reducedness” is invariant under multiplication by a k[[x−1]]-univariate ma-

trix from the left, a system is normal at ∞ if and only if the coordinate

matrix with respect to any k[[x−1]]-basis of (x|COC)∞⊗k(x)k[[x
−1]] is degree-

reduced.

The work by Hensel and Landsberg contains a generalization of the no-

tion of normal basis at a point of P1
k to ramified points (for k = C). This

generalization is not used in their proof of the Riemann-Roch Theorem but

it can also be used for the description of Riemann-Roch spaces.

We describe this approach now for the point ∞. For this it is crucial to

assume that ∞ is only tamely ramified.

Let ei = ri be the ramification index of pi over p∞, and let e be the

least common multiple of the ei. Then Hensel and Landsberg consider a

matrix whose entries are Laurent series in x−
1
e , defined as follows (in slightly

updated terminology):

For every i = 1, . . . , h, we have ei embeddings σi,j : k(C)pi −→ k((x−
1
e ))

over k((x−1)). Let us choose an eth root of unity in k((x−
1
e )). Then

the embeddings σi,j can be numbered such that the following holds: Let

σi,1(u) =
∑∞

ℓ=a ui,ℓx
− ℓ

e . Then σi,j(u) =
∑∞

ℓ=a ζ
(j−1)ℓ
ℓ ui,ℓx

− ℓ
e .

Let ṽ1, . . . , ṽr be a k(x)-basis of k(C), and let us fix an ordering on the

embeddings of k(C) into k((x−
1
e )). Then Hensel and Landsberg consider the

matrix A in k((x−
1
e )) whose jth column is given by the images of ṽj under

all embeddings into k((x−
1
e )) (with the fixed ordering). Again we call this

matrix the expansion matrix at ∞ of ṽ1, . . . , ṽr.

We now need to generalize some notions from subsubsection 2.5.3.1 on

degree-reduced matrices: We define the valuation-degree of a Laurent series

in x−
1
e with leading coefficient x

a
e to be a

e . With this definition we generalize

the definitions of subsubsection 2.5.3.1 to Laurent series in x−
1
e .

Now Hensel and Landsberg call the system ṽ1, . . . , ṽr normal at ∞ if

the matrix A defined above satisfies valdeg(det(A)) =
∑r

j=1 valdeg(aj). An

equivalent condition is the matrix lc(A) of leading coefficients of A is non-

singular.8 Moreover, it is easy to see that this condition implies that for all

8More generally, they define a notion of a normal k(x)-basis with respect to any point



2.5. Representing points and divisors 93

b ∈ k[x]r, valdeg(Ab) = maxr
j=1 valdeg(bjaj).

Hensel and Landsberg show:

Every k[x]-submodule of k(C) of rank r has a k[x]-basis which is normal

at ∞.

This has the following application for Riemann-Roch spaces: Let still

D be a divisor on C which has no support “at infinity”, and let still I :=

Ifin(−D). Let v1, . . . , vr be normal at ∞. Let M ∈ k((x−
1
e )) be the ex-

pansion matrix at ∞ and let b ∈ k[x]r. Then
∑

j bjvj lies in L(D) if and

only if valdeg(Mb) ≤ 0. Now this is the case if and only if valdeg(bi) ≤
− valdeg(mi) for all i = 1, . . . , r. With di := −⌈valdeg(mi)⌉, this implies

that a basis for L(D) is given by xjvi for 0 ≤ j ≤ di.

We now give a proof that every k[x]-submodule M of k(C) of full rank

has a basis which is normal at ∞.

Let ti (i = 1, . . . , h) be the uniformizing element of k(C)pi which is

mapped to x
− 1

ei under σi,1. Then 1, ti, . . . , t
ei−1
i form a k[[x−1]]-basis of

Ôpi . Let now B be the ordered basis of k(C)⊗k(x) k((x
−1)) whose elements

correspond to (δk,ℓt
j−1
ℓ )ℓ for k = 1, . . . , h, j = 1, . . . , ei under isomorphism

(2.14) (ordered lexicographically where the first index is dominating).

Let now v1, . . . , vr be a k[x]-basis of M such that the following holds:

Let N be the coordinate matrix of v1, . . . , vr with respect to the basis B.

Then lc(N) is an upper triangular matrix of the form





1 ∗ ∗ · · · ∗
1 ∗ · · · ∗

1 · · · ∗
. . . ∗

1




.

Such a basis always exists. This follows for example from an obvious gener-

alization of the reduction algorithm for >d in the proof of Proposition 2.26

to Laurent series and a final permutation.

We claim that v1, . . . , vr is then also normal at ∞.

The embeddings σi,j induce an isomorphism of k((x−
1
e ))-vector spaces

k(P)pi ⊗k((x−1)) k((x
− 1

e ))
∼ // k((x−

1
e ))r . (2.18)

Let C be the coordinate matrix of the basis B with respect to the basis of

k(C) ⊗k(x) k((x
− 1

e )) which corresponds to the standard basis of k((x−
1
e ))r.

of P1
k.
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Then C has the form




C1

C2

. . .

Ch



 ,

where the matrix Ci is an ei×ei-matrix whose (a, j)-entry is ζ
(a−1)·(j−1)
ei x

(j−1)
ei .

Let A be the expansion matrix at ∞ of v1, . . . , vr. Then A = CN .

Let now N =




N1
...
Nh



, where Ni has ei rows. Then A has the form





C1N1 ∗ ∗ ∗
C2N2 ∗ ∗

. . . ∗
ChNh




.

As all elements of column j of Ci have degree j−1
ei

and lc(Ni) is upper trian-

gular with unity on the diagonal, lc(CiNi) = lc(Ci) = ((ζ
(a−1)·(j−1)
ei ))a,j . In

particular, lc(CiNi) is non-singular. Now by the shape of A, det(lc(A)) =

det(lc(C1N1)) · · · det(lc(CiNi)), thus lc(A) is also non-singular. This estab-

lishes the claim.

A warning We would like to issue a warning at this point: It is not true in

general that every non-singular matrix in k((x−
1
e ))r×r can with k[x]-column

operations be transformed into a matrix whose matrix of leading coefficients

is non-singular.

An obvious generalization of degree-reducedness is as follows: A ma-

trix in k((x−
1
e )) is degree-reduced with respect to x if for all b ∈ k[x]r,

valdeg(Ab) = maxr
j=1 valdeg(bjaj). As already stated the matrix of a normal

system is degree reduced. It is however not true in general that the matrix of

leading coefficients of a non-singular degree-reduced matrix is non-singular.

Consider for example the matrix

(
x + 1 x

1
2

x
1
2 1

)

,

which is degree-reduced with respect to x.

With an obvious “reduction algorithm” one can however prove that for

any matrix A ∈ k((x− 1
e ))r×s there exists a degree-reduced matrix which is

related to A by k[x]-column operations.
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What concerns the determination of the Riemann-Roch space L(D),

clearly instead of a basis of I which is normal at∞ in the sense of Hensel and

Landsberg one might just consider an ideal basis whose matrix is degree-

reduced. This approach is for example pursued by W. Schmidt in [Sch91].

More information on matrices in k((x−
1
e )) which are degree-reduced with

respect to x can also be found in [Heß01].

2.5.5 The global representation

One can represent effective divisors by linear subspaces of the spaces of

global sections of invertible sheaves. The theoretical background of this

representation is given by the following lemma.

Lemma 2.99 Let L be an invertible sheaf of degree ≥ 2g + 1 on C. Then

the space Γ(C,L) has dimension deg(L) − g + 1. For an effective divi-

sor D on C of degree ≤ deg(L) − 2g, L(−D) is base point free, the space

Γ(C,L(−D)) has codimension deg(D) in Γ(C,L), and D is the base divisor of

(L,Γ(C,L(−D))). In particular, D is uniquely determined by Γ(C,L(−D))

inside Γ(C,L).

Proof. We have deg(L(−D)) = deg(L) − deg(D) ≥ 2g. This implies that

L(−D) is base point free; see [Har77, IV, Corollary 3.2]. In particular

both L and L(−D) are non-special. Now the dimension statements fol-

low from the Riemann-Roch Theorem. Let D′ ≥ D be the base divisor

of (L,Γ(C,L(−D))). We then have Γ(C,L(−D′)) ≃ Γ(C,L(−D)). Now if

D′ 6= D, then L(−D) would not be base point free. 2

One can therefore represent an effective divisor D by the pair

(L,Γ(C,L(−D))), where L is an invertible sheaf of degree ≥ 2g+deg(D). We

call this representation of effective divisors the joint global representation.

The free global representation is the free representation of divisors obtained

by restricting this representation to prime divisors and then applying the

usual construction for a free representation.

For computational purposes one can for example choose a divisor E and

set L := Γ(C,O(E)). Then one can represent Γ(C,O(E)) = L(E) by a k-

basis consisting of elements in the function field k(C), and one can represent

a basis of Γ(C,O(E − D)) = L(E − D) by their coordinate matrix with

respect to the basis of Γ(C,O(E)).

The following lemma is helpful if one wants to change between the ideal

and the global representation.

Lemma 2.100 Let B be a base point free divisor on C. Then L(B) gen-

erates the fractional ideal Ifin(−B) as ((x|C)∗OC)(A1
k)–module. Similarly,



96 Chapter 2. Representations

it generates the fractional ideal corresponding to the restriction of −B to

(x|C)
−1( 1

x(A1
k)) as ((x|C)∗OC)(

1
x (A1

k))-module.9

Proof. Clearly L(B) is contained in both ideals (it is in fact the intersection

of the two ideals). Now let P ∈ C. Then as B is base point free by assump-

tion, L(B) generates the fractional ideal m
vP (B)
P as an OC,P -module. This

implies the statements. 2

Remark 2.101 In the context of Lemma 2.99, let L = O(E) for a divisor

E on C. Then the divisor E − D is base point free, and Lemma 2.100 in

particular applies to this divisor.

We now discuss the change from the joint ideal to the joint global repre-

sentation with respect to sheaves of the form O(n · (x|C)−) and conversely.

For this we restrict ourselves to curves with plane models such that x|C is a

separating element. We assume that the finite and infinite orders as well as

the k[x]-invariants and a basis v1, . . . , vr as in Proposition 2.95 of the trivial

divisor have already been computed. Note that these computations can be

performed in a number of field and bit operations which is polynomially

bounded in d by Propositions 2.72 and 2.95.

Proposition 2.102 Under the above assumptions the following holds:

Given an effective divisor D in joint ideal representation and n ∈ N

such that n · r ≥ 2g + deg(D) and such that n is polynomially bounded in

d and deg(D), one can compute the coordinate representation of a basis

of L(n · (x|C)− − D) with respect to the basis of L(n · (x|C)−) described in

Proposition 2.92 in a number of field and bit operations which is polynomially

bounded in d and deg(D).

Conversely, given an effective divisor D represented by the corresponding

subspace L(n · (x|C)− − D) of L(n · (x|C)−), where n is as above, one can

compute the joint ideal representation of D in a number of field and bit

operations which is polynomially bounded in d and deg(D).

Proof. For the first claim, we proceed as follows: First the divisor −D
is computed (see Proposition 2.78). Then a basis of L(n · (x|C)− −D) as in

Proposition 2.95 is computed. Now, the elements of this basis are expressed

in terms of the basis of L(n · (x|C)−) via a linear algebra computation. Note

that the sizes of the matrices to be considered are polynomially bounded in

d and deg(D) because the degrees of the denominators and the numerator

matrices of the bases of the two spaces are polynomially bounded in d and

deg(D) (see again Proposition 2.95).

9If B has support outside the preimages of the points ∞ and 0 on P1
k, this ideal is not

equal to I∞(−B).
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We come to the second claim. We first compute (x|C)−−D in joint ideal

representation: The “finite” ideal of the ideal representation of (x|C)− −D
can be computed as claimed by Lemma 2.100 / Remark 2.101 and Proposi-

tion 2.72 (on the computation of ideals from generators). In the same way,

one can compute the ideal I (that is, a HNF-basis thereof) of ((x|C)∗OC)(
1
x (A1

k))

which corresponds to the restriction of n · (x|C)−−D to (x|C)
−1( 1

x (A1
k)). At

this point we do not have yet a joint ideal representation of (x|C)− −D as

we require that the “infinite ideal” only has support “at infinity”. We can

however compute the desired infinite ideal by Proposition 2.80 as claimed.

Now D can be computed as claimed by Proposition 2.78. 2

Given that we represent the curve C by a plane model Cpm, another

natural choice for L is OC(n) = π∗(OP2
k
(n)).

Note that OC(n) ≃ O(n · div(Z|C)) (via division by Z n
C ). In particular,

if div(X|C) and div(Z|C) have disjoint support then OC(n) ≃ O(n · (x|C)−).

It is however more natural to not perform this division by Z n
|C and rather

consider the following approach. We consider the inclusion into the asso-

ciated sheaf of meromorphic sections OC(n) →֒ M(OC(n))
Def
= OC(n) ⊗OC

MC . This inclusion induces an inclusion Γ(C,OC(n)) →֒ Γ(C,M(OC(n))) ≃
Quot(k[X,Y,Z]/(F ))n (the degree n part of Quot(k[X,Y,Z]/(F ))).

Explicitly, the space Γ(C,OC(n)) as a subspace of Quot(k[X,Y,Z]/(F ))n
is Zn · L(n · div(Z|C), and this allows an efficient computation of a basis

of Γ(C,M(OC(n))) inside Quot(k[X,Y,Z]/(F ))n via Heß’ algorithm. (Of

course, Z can be substituted by any other linear form.)

Proposition 2.103

a) Given C (represented by Cpm) and n ∈ N there exists a homogeneous

element H ∈ k[X,Y,Z]/(F ) whose total degree is polynomially bounded

in d such that H · Γ(C,OC(n)) ⊆ k[X,Y,Z]/(F ).

b) One can compute such an element H and a basis of H ·Γ(C,OC(n)) inside

(k[X,Y,Z]/(F ))n+deg(H) in a number of field and bit operations which is

polynomially bounded in d and n.

c) Let us assume that x|C is a separating element and that the finite and

infinite order have been computed. Let us furthermore assume that an

element H and a basis B1, . . . , Bℓ of H · Γ(C,OC(n)) as in b) have been

computed. We represent linear subspaces of Γ(C,OC(n)) via bases which

we represent by their coordinate vectors with respect to B1
H , . . . , Bℓ

H . Then

for divisors of degree ≤ n · r − 2g, one can change between the joint

ideal representation of divisors and the representation via subspaces of

Γ(C,OC(n)) in a number of field and bit operations which is polynomially

bounded in d, deg(D) and n.
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Proof. The first statement follows immediately from Proposition 2.95 ap-

plied to D = div(Z|C).

For b) one can use this algorithm:

1. Set up the ideal representation with respect to x|C or y|C
(depending on whether x|C is a separating element).

2. Compute div(Z|C) in ideal representation.

3. Apply Heß’ algorithm to compute a basis v1, . . . , vdim(L(n·Z|C)) of L(n · Z|C)

4. Write the basis in the form vi = Gi
H with homogeneous elements

H,Gi ∈ k[X,Y,Z]/(F ).

5. Output H and Gi · Zn for all i.

By Proposition 2.53, Step 1 can be performed with a number of field and

bit operations which is polynomially bounded in d. For Step 2, note that

as V (X,Y,Z) = ∅ div(Z|C) = max{(x|C)−, (y|C)−}. Furthermore (x|C)− =

max{−(x|C), 0} and (y|C)− = max{−(y|C), 0}. Therefore one can compute

div(Z|C) (deterministically) in a number of field and bit operations which is

polynomially bounded in d by Proposition 2.66. Step 3 can be performed

as claimed by Proposition 2.95, and the forth step can also be performed as

claimed.

For the last statement, see the proof of Proposition 2.102. 2

Remark 2.104 Let L be any invertible sheaf on C, let D1 and D2 be ef-

fective divisors on C, and let s be a non-trivial global section of L such that

div(s) = D1 + D′
1 for some effective divisor D′

1. Then multiplication by s

gives an isomorphism

O(D1 −D2) −→ L(−D′
1 −D2) ,

which induces an isomorphism

L(D1 −D2) −→ Γ(C,L(−D′
1 −D2)) .

Now in [KM04b] K. Khuri-Makdisi gives an efficient algorithm based on

easy linear algebra computations for the following computational problem;

see [KM04b, Theorem / Algorithm 5.5]:

Let L be some invertible sheaf, and let us fix bases of Γ(C,L), Γ(C,L⊗2)

and Γ(C,L⊗3). For the computation the only information on L we require

is the matrix of the multiplication maps

Γ(C,L)⊗ Γ(C,L) // Γ(C,L⊗2)

and

Γ(C,L)⊗ Γ(C,L⊗2) // Γ(C,L⊗3)
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with respect to the fixed bases. Now let D1,D2 be two effective divisors with

deg(Di) ≥ 2g + 1 and deg(Di) ≤ deg(L)− 2g − 1, each represented in joint

global representation with respect to L, thus via the subspaces Γ(C,L(−Di))

of Γ(C,L).

The problem is now to compute a global section s of L as above and the

subspace Γ(C,L(−D′
1 −D2)) of Γ(C,L), where D′

1 is as above. Moreover, if

|D1 −D2| is non-empty, an effective divisor linearly equivalent to D1 −D2

in global representation with respect to L shall be computed.

Note that if L = O(E), where E is some divisor on C, one can regard

the section s as a function on C, and one then obtains L(D1 − D2) = 1
s ·

Γ(C,L(−D′
1−D2)). Thus if the fixed basis of Γ(C,L) = L(E) in k(C) is also

given, one obtains a basis of the space L(D1 −D2).

Another result by Khuri-Makdisi concerns the computation of a free

representation. We already know that one can in an efficient way pass from

a joint to a free ideal representation; see Proposition 2.86. So one can also

pass from a joint to a free global representation via the ideal representation.

In [KM04a, Sections 6 and 7] it is shown how one can pass directly from a

joint to a free global representation.

2.6 Representing divisor classes and computations

in the class group

Let still C be a curve over a field k, represented by a plane model Cpm. Let

g be the genus of C.
We are now considering the task to represent divisor classes and compute

with them.

We have already discussed several ways to represent divisors, and we

have discussed algorithmic aspects related to divisors as well. The most

straightforward representation of divisor classes would thus arguably be to

simply use the canonical homomorphism Div(C) −→ Cl(C) as a representa-

tion of the divisor class group by the divisor group.

The problem with this approach is however that even for divisors of

degree 0 on a fixed curve C, the length of the input (the divisor used for the

representation) would be arbitrarily large.

This problem can however be avoided as by the Riemann-Roch Theorem

every divisor of degree ≥ g is linearly equivalent to an effective divisor.

Let us fix a divisor D0 of degree ≥ 1.

The following definition is [Heß01, Definition 8.1].
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Definition 2.105 Let D̃ be an effective divisor on C. Then D̃ is (maxi-

mally) reduced along D0 if the linear system |D̃ −D0| is empty.

Remark 2.106 Let D̃ be an effective divisor which is reduced along D0.

Then

• dim(L(D̃)) ≤ deg(D0), that is, dimk(|D̃|) < deg(D0).

• deg(D̃) < g + deg(D0).

Both statements follow immediately from the conditions and the Riemann-

Roch Theorem.

Definition 2.107 Let now D be any divisor on C, and let D̃ be an effective

divisor reduced along D0 such that D ∼ D̃ + rD0 for some r ∈ Z. Then D̃

is called a reduction of D along D0.

Lemma 2.108 Let D be a divisor on C. Then there exists a reduction of

D along D0. The set of reductions of D along D0 forms a complete linear

system. Moreover, it depends only on the divisor class of D (and on D0).

Proof. Note first that the divisor D + (⌈ g
deg(D0)⌉ − deg(D))D0 has degree

≥ g, thus in particular it is linear equivalent to an effective divisor. If now

r is minimal such that |D + rD0| is non-empty, then D + rD0 is linearly

equivalent to a reduced divisor.

Obviously, if D̃ is a reduction, then so is every divisor linear equivalent

to D̃. For the converse let D̃ and D̃′ be two reductions with D̃ − rD0 ∼
D ∼ D̃′ − r′D0. Let wlog. r ≥ r′. Then D̃ − (r − r′)D0 ∼ D̃′. Therefore

r = r′ as otherwise D̃ would not be reduced.

The last statement is obvious. 2

The first point of Remark 2.106 and this lemma imply:

Lemma 2.109 Let deg(D0) = 1. Then the reduction of a divisor D on C
along D0 is unique.

Proposition 2.110 Given a divisor in joint ideal representation, one can

compute with a deterministic algorithm a reduction of a divisor D on C along

D0 in a number of field and bit operations which is polynomially bounded in

d, deg(D0) and ht(D).

Proof. This follows from the proof of Lemma 2.108 and Propositions 2.78

and 2.97. 2
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Remark 2.111 Let us consider the corresponding computational problem

over finite fields. Then given a curve C over Fq and two divisors D and D0 as

above one can with a randomized algorithm compute a uniformly randomly

distributed reduction ofD along D0 in a time which is polynomially bounded

in log(q), d, deg(D0) and ht(D).

This follows from Remark 2.98.

Every divisor class a ∈ Cl(C) can be represented by a tuple consisting of a

reduction D̃ of any divisor defining a and the number r with [D̃]−r[D0] = a.

For classes in Cl0(C), one can omit the number r.

Proposition 2.112 Let us represent divisor classes as described, where the

divisors are given in joint ideal representation. Then given two divisor

classes a, b ∈ Cl(C), one can compute the sum a+b ∈ Cl(C) and the difference

a− b ∈ Cl(C) in a number of field operations which is polynomially bounded

in d and ht(D0) and in a number of bit operations which is polynomially

bounded in d,deg(D0), log(deg(a)) and log(deg(b)).

Proof. This follows from Proposition 2.78 on divisor arithmetic and Propo-

sition 2.110. 2

Remark 2.113 Note that the height of the canonical divisor div(dx|C) on

C considered in subsubsection 2.5.4.4 is max{2r,deg(R)} with the notations

of that subsubsection. Therefore, this divisor has a height which is poly-

nomially bounded in d. By applying the proposition to this divisor, one

obtains that the arithmetic in Cl0(C) can be performed in a number of field

and bit operations which is polynomially bounded in d.

By Lemma 2.109 we obtain a particularly nice representation of the

divisor class group if we have a divisor of degree 1 and height polynomially

bounded in d.

For arbitrary curves such a divisor does not always exist. For example,

by the Riemann-Roch theorem, a curve of genus 1 has a divisor of degree 1

if and only if it has a rational point. However, not every genus 1 curve has

a rational point.

On the other hand, every curve over a finite field does have a divisor of

degree 1.

Proposition 2.114 Given a curve over a finite field Fq, one can compute

with a randomized algorithm a divisor of degree 1 and height in O(log(d)) in

joint or free ideal representation in an expected time which is polynomially

bounded in d and log(q).
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Proof. Assume we have some r0 ∈ N and points Q+ ∈ C(Fqr0+1) and Q− ∈
C(Fqr0 ). Let P+ and P− be the corresponding closed points of C. Let f+

be the residue field degree of P+ and f− the residue degree of P−. Then

f+|r0 + 1 and f−|r0. Let e+ := r0+1
f+

and e− := r0
f−

. Then e+P+− e−P− is a

divisor of degree 1. The height of the divisor is ≤ r0 + 1.

We now have to prove that

- one can always find such points Q+ and Q− in an expected time which is

polynomially bounded in d and log(q),

- one can at the same time choose r0 to be in O(log(d))

- given Q+ and Q−, one can compute the divisor of degree 1 in the claimed

time.

Recall that by the Hasse-Weil bound, for r ∈ N, we have

#C(Fqr) ≥ qr + 1− 2g qr/2 .

Therefore,

#Cns(Fqr) ≥ qr + 1− 2gqr/2 − (
(d− 1)(d − 2)

2
− 1) ,

where Cns is the non-singular part of Cpm.

Let r0 := ⌈4 log2(2d)⌉, and let r ≥ r0. Then qr/2 ≥ 2r0/2 ≥ (2d)2 = 4d2,

and therefore 1
4q

r ≥ d2qr/2 > 2gqr/2 and 1
4q

r ≥ d2qr/2 > (d−1)(d−2)
2 . Thus

#Cns(Fqr) ≥ qr

2 .

By the following lemma, if one intersects (Cpm)Fqr with a uniformly dis-

tributed random line in P2
Fqr

, the probability that the line contains a point

from C(Fqr) is ≥ 1
2d .

We thus proceed as follows: For r = r0 and r0 + 1 we intersect CFqr

with uniformly randomly chosen lines in P2
Fqr

. We compute all Fqr -rational

points in the intersection, and for each such point we check if it lies in Cns.

We repeat this until we have found the desired points Q+ and Q−. After we

have found the two points Q+ and Q−, we compute P+ and P− and finally

e+P+ − e−P−.

Let us check that these steps can indeed by carried out with the claimed

complexity. First, r0 can easily be computed. It is also easy to choose a line

in P2
Fqr

uniformly at random. The computation of the intersection can be

performed as claimed by Lemma 2.116 below. The check if the points lie in

Cpm can be performed by evaluating the partial derivatives of F (X,Y,Z).

We already know that the expected number of lines we have to consider for

r = r0 and r = r0 + 1 is ≤ 2d. The computation of P+ and P+ and finally

e+P+ − e−P− is possible with the claimed complexity by Propositions 2.90

and 2.78. 2
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Lemma 2.115 Let #Cns(Fq) ≥ q
2 . Now let L be a uniformly distributed

random line in P2
Fq

. Then the probability that L intersects Cpm in at least

one point in Cns(Fq) is larger than 1
2d .

Proof. Each point in P2(Fq) (in particular each element from Cns(Fq)) lies

on q + 1 lines. Moreover, on each line lie at most d elements from Cns(Fq).

This means that ≥ 1
d (q + 1) · q

2 lines contain an element from Cns(Fq).

In total there are q2 + q + 1 lines. Therefore, the probability that a

uniformly randomly distrubted line contains an element from Cns(Fq) is >
1
2d . 2

Lemma 2.116 Given a non-trivial homogeneous polynomial F (X,Y,Z) ∈
Fq[X,Y,Z] and a non-trivial linear homogeneous polynomial G(X,Y,Z) ∈
Fq[X,Y,Z], one can compute the set of Fq-rational points in V (F,G) in an

expected number of field and bit operations which is polynomially bounded in

deg(F ) and log(q).

Proof. Let G = aXX + aY Y + aZZ. Let us wlog. assume that aY =

1. Then the point (0 : 1 : 0) does not lie in V (F,G), and the scheme-

theoretic image of V (F,G) under the projection to the (X,Z)-coordinates

is given by F (X,−aXX − aZZ,Z) ∈ Fq[X,Z]. One can therefore perform

the computation as follows: One factors this polynomial, and for each linear

factor one computes the corresponding Y -coordinate via G. 2

The computations of discrete logarithms with the index calculus method

the following proposition is crucial.

Proposition 2.117 Let us consider curves over finite fields. As always

we represent curves by plane models, and let d be the degree of the plane

model. We represent divisor classes by divisors which are reduced along a

divisor D0 of degree 1 and of a height which is polynomially bounded in

d. Moreover, we represent divisors in free ideal representation. Then the

arithmetic (addition and subtraction) in the degree 0 class groups can we a

randomized algorithm be performed in an expected time which is polynomially

bounded in d and log(q), where q is the cardinality of the ground field. If

the curves are represented by plane models of degree O(g), one can with a

randomized algorithm perform the arithmetic in the degree 0 class groups

in an expected time which is polynomially bounded in g and log(q); one can

then with a randomized algorithm perform the arithmetic in an expected time

which is polynomially bounded in log(# Cl0(C)).

Proof. The first statement follows from Proposition 2.112 and Proposi-

tion 2.87, the second statement is an immediate consequence, and the third



104 Chapter 2. Representations

statement follows from the second statement and the inequality # Cl0(C) ≥
(
√
q − 1)2g. 2

Recall here that by Proposition 2.6 ([Heß05, Theorem 56]), any curve

over a finite field has a plane model of degree O(g). Thus one can represent

curves over finite fields in such a way that the second and the third statement

hold for all curves.

Remark 2.118 If instead of the free ideal representation one uses the joint

ideal representation, statements analogous to the ones in the proposition

hold with a deterministic algorithm.

2.7 Appendix: Computing the maximal order

We address in this section the problem to compute the order ((x|C)∗OC)(A1
k)

of k(C), given the homogeneous polynomial F (X,Y,Z) defining the plane

model, or given f(x, y) ∈ k[x, y] or the associated monic polynomial f̃(x, ỹ) ∈
k[x][ỹ].

Recall that we usually assume that C is geometrically irreducible. All

the following considerations however also apply if C is only a smooth and

proper irreducible k-scheme. Equivalently, for the following considerations

we not assume that k(C)|k is a regular field extension.

Moreover, in subsection 2.5.4, we assumed that x is a separating element.

We drop this assumption as well.

For separable extensions k(C)|k(x) it was shown by Chistov that the

complexity of the related problem for finite fields k = Fq are polynomially

bounded in the input length (in a bit-oriented model such as on a bit-RAM

or on a Turing machine).

If p ≤ d, his algorithm relies however on factorization of univariate poly-

nomials over k (he uses Berlekamp’s algorithm). Therefore his algorithm

does not lead to a deterministic algorithm in our computational models but

only to a randomized algorithm. Another aspect of Chistov’s approach is

the use of expansions whereas we strive for expansion free methods.

We present here a completely different algorithm which relies heavily on

HNF-bases and which does not use factorization of polynomials. As a side

effect, we can remove the prerequisite that the field extension be separable.

The algorithm can be seen as a variant of several algorithms already

present in the literature. However, to our knowledge, it has not been pre-

viously shown that one can compute the order ((x|C)∗OC)(A1
k) with a num-

ber of field and bit operations which is polynomially bounded in d without

polynomial factorization (but with the ability to compute pth roots). This
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also applies to algorithms which can be obtained by obvious variations of

algorithms for the computation of maximal orders in number fields. In par-

ticular, contrary to the statement in Section 3 of [Heß01], an obvious variant

for function fields of the algorithm by Buchmann and Lenstra ([BL94]) does

require factorization of polynomials in the same way as the algorithm by

Chistov does.

At the end of this section, some further historical remarks on the algo-

rithm can be found.

We now first describe some theoretical background of the algorithm in

a more abstract setting. The following two lemmata and Proposition 2.121

are essentially the content of [GR71, Anhang §3, 3, Sätze 6,7]. We follow

closely [GLS01] which in turn is based on [dJ98].

Let A be a commutative reduced noetherian ring and let I be an ideal of

A, containing a non-zero-divisor u. Let Quot(A) be the total quotient ring

of A, and let Ã be the normalization of A.

Lemma 2.119 The homomorphism of A-modules

{g ∈ Quot(A) | gI ⊆ A} −→ HomA(I,A) , g 7→ (h 7→ hg)

is an isomorphism. Likewise is the restriction

{g ∈ Quot(A) | gI ⊆ I} −→ HomA(I, I) .

Proof. The homomorphism HomA(I,A) −→ {g ∈ Quot(A) | gI ⊆ A} ϕ 7→
ϕ(u)

u is clearly an inverse to the first homomorphism. The second statement

is then obvious. 2

We set

A′ := {g ∈ Quot(A) | gI ⊆ I} .

Lemma 2.120 A′ is a commutative ring and

A ⊆ A′ ⊆ {g ∈ Quot(A) ∩ Ã | gI ⊆ A} ⊆ {g ∈ Quot(A) | gI ⊆
√
I} .

In particular, if I =
√
I, then

A′ = {g ∈ Quot(A) ∩ Ã | gI ⊆ A} .

Proof. It is obvious that A′ is a commutative ring and that A ⊆ A′.

For the second inclusion, we have to show that A′ ⊆ Ã. By the Cayley-

Hamilton Theorem for finitely generated modules ([Eis95, Theorem 4.3]),

the endomorphism I −→ I , h 7→ hg satisfies a monic polynomial with coef-

ficients in A. As the homomorphism A′ −→ EndA(I) is injective, so does g.
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For the last inclusion, let g ∈ Quot(A) ∩ Ã with gI ⊆ A. Let tn +

an−1t
n−1 + · · · + a0 be a monic polynomial in A[t] which is satisfied by g.

Now let h ∈ I. Then (gh)n = −an−1(gh)
n−1 · h − · · · − a0 · hn ∈ I. Hence

gh ∈
√
I. 2

Let

NN(A) := {p ∈ Spec(A) | Ap is not normal} .

be the non-normal locus of A. Note that NN(A) is the closed subset of

Spec(A) defined by the conductor ideal c := AnnA(Ã/A).

We now have the following criterion for normality.

Proposition 2.121 Let A be a reduced noetherian commutative ring, and

let I ⊆ A be an ideal satisfying

a) I is a radical ideal

b) NN(A) is contained in the closed subset of Spec(A) defined by I.

Then A = Ã if and only if A = A′, where A′ is defined as above.

Proof. If A = Ã then A = A′ by the lemma above.

So let the three conditions be satisfied, and let A = A′. Then by b)

I ⊆ √c. As A is noetherian, there exists a minimal j ∈ N0 with Ij ⊆ c, that

is, IjÃ ⊆ A. If j = 0, the result follows.

So let us assume that j > 0. Let h ∈ Ã and g ∈ Ij−1 such that hg /∈ A.

Then hg ∈ Ã and hgI ⊆ hIj ⊆ A, thus by the previous lemma gh ∈ A′ = A.

This is a contradiction. We conclude that j = 0, thus A = Ã. 2

The following formula gives a convenient description of A′ for algorithmic

purposes.

A′ =
1

u
· (I :A uI) (2.19)

For a proof note first that

A′ ⊆ 1

u
I ⊆ 1

u
A (2.20)

Indeed, as u ∈ I, we have u ·A′ ⊆ I by definition of A′.

The inclusion 1
u(I :A uI) ⊆ A′ is obvious. So let g ∈ A′. Then ug ∈ A

and ugI ⊆ uI. Therefore ug ∈ (I :A uI). 2

We now return to our application, the computation of the finite order

((x|C)∗OC)(A1
k). Let us first fix the following definition.
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Definition 2.122 An order of k(C) with respect to x or with respect to k[x]

is an a subring of k(C) which contains k[x] and is finitely generated over

k[x].

Remark 2.123 A subring A of k(C) is an order with respect to k[x] if and

only if A contains x and A is contained in ((x|C)∗OC)(A1
k).

Proposition 2.121 and Lemma 2.120 and Equation (2.19) imply:

Proposition 2.124 Let O be an order of k(C) with respect to k[x]. Let

u ∈ k[x]− {0}, and let I be an ideal of O containing u. Let

O′ := {g ∈ k(C) | gI ⊆ I} .

Then

a) O′ is an order with O ⊆ O′ ⊆ 1
uO.

b) Let U be the kernel of

O −→ Endk(I/(u)) , g 7→ (h 7→ gh) .

Then O′ = 1
uU .

c) Let now u ∈ k[x] be such that every prime divisor of [((x|C)∗OC)(A1
k) :

O]k[x] also divides u. (For example, u might be a multiple of the discrim-

inant of O.) Let I :=
√
u · O be the radical of the ideal u · O in O. Then

O = O′ if and only if O = ((x|C)∗OC)(A1
k).

Remark 2.125 In the classical terminology of number fields, O′ would be

called “the order associated to the module I”.

Proof of the proposition. Part a) follows immediately from (2.20). Part b)

is a reformulation of (2.19).

For part c) note that the prime divisors of c ∩ k[x] (where c is the con-

ductor of O) are equal to the prime divisors of [((x|C)∗OC)(A1
k) : O]k[x].

Therefore the element u in the proposition is contained in
√

c. The result

now follows from Proposition 2.121. 2

We are now coming to the algorithm. Recall that the task is to compute

the order ((x|C)∗OC)(A1
k), given the homogeneous polynomial F (X,Y,Z)

defining the plane model or the polynomial f(x, y) ∈ k[x, y] or the associated

monic polynomial f(x, ỹ) ∈ k[x][ỹ].

Convention 2.126 In the following we represent all k[x]-submodules of

k(x) of rank r by the corresponding HNF-bases with respect to 1, y|C , . . . , y
r−1
|C .

As usual, here the HNF-basis is represented by the denominator and the co-

ordinate matrix in k[x]r×r.
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The algorithm is based on successive enlargements of orders until one

reaches the maximal order ((x|C)∗OC)(A1
k) and is very easy to describe:

We start with O = k[x][ỹ]/(f̃). Then we successively substitute O by

O′, where O′ is as in Proposition 2.124 with u = disc(f̃). We terminate if

O = O′.

By Proposition 2.124 it is clear that we obtain an algorithm which com-

putes the finite order, provided that we can compute O′ from O.

What concerns the complexity, note that we always have

deg([(x|C)∗OC)(A1
k) : O′]k[x]) < deg([(x|C)∗OC)(A1

k) : O]k[x]). As

deg([(x|C)∗OC)(A1
k) : k[x][ỹ]/(f̃ )]k[x]) ≤ deg(disc(f̃))

2 , we need at most

⌊deg(disc(f̃))
2 ⌋ substitutions, thus the number of substitutions is polynomi-

ally bounded in d.

By the next lemma, we obtain the desired result:

Proposition 2.127 One can compute the finite order ((x|C)∗OC)(A1
k) of

k(C) in a number of field and bit operations which is polynomially bounded

in d.

Lemma 2.128 Given a polynomial u(x) which divides disc(f̃) and an or-

der O of k(C) with respect to k[x], one can with a deterministic algorithm

compute O′ in a number of field and bit operations which is polynomially

bounded in d.

Proof. Let v1, . . . , vr be the HNF-basis of O with respect to 1, ỹ|C , . . . , y
r−1
|C .

We use the formula O′ = 1
uU in part b) of Proposition 2.124.

As above, let I be the radical of (u) inO. Note that I/(u) is the nilradical

of the local finite k-algebra O/(u).
We can therefore proceed as follows: First we compute the multiplication

table of O/(u) with respect to the canonical basis of O/(u) (cf. Definition

2.43) (with respect to v1, . . . , vr). Secondly we compute a basis h1, . . . , hk

of the nilradical (that is, we compute coordinate vectors of the elements hi

with respect to the canonical basis). Then we compute the multiplication

table of O/(u)×I/(u) −→ I/(u) with respect to the canonical basis of O/(u)
and the basis of I/(u) just computed.

Let for i, j = 1, . . . , k, ϕi,j : I/(u) −→ I/(u) be the endomorphism given

by hi −→ δi,jhj. Note that the multiplication table immediately gives the

matrix of the homomorphism O/(u) −→ Endk(I/(u)) , g 7→ (h 7→ gh) with

respect to the canonical basis of O/(u) and the basis (ϕi,j)i,j.

Finally, we compute a basis b1, . . . , bℓ of this matrix. Then U is generated

as a k[x]-module by the canonical lifts of b1, . . . , bℓ to O and uv1, . . . , uvr (see

again Definition 2.43 and note that the lifting is computationally trivial).
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We obtain the final result by a Hermite normal form computation.

As for the complexity, note first that deg(u) is polynomially bounded in

d (because disc(f̃) is polynomially bounded in d). The canonical comple-

mentary system of (u) in O has deg(u) · r elements (which is polynomially

bounded in d) each of which has degree < deg(u). It is then clear that the

multiplication table can be computed in a number of field and bit operations

which is polynomially bounded in d. By Proposition 1.50 the computation

of the nilradical can then be performed (with a deterministic algorithm) in

a number of field and bit operations which is polynomially bounded in d.

The computation of b1, . . . , bℓ involves linear algebra over k with matrices

whose size is polynomially bounded in d. Finally, the Hermite normal form

computation takes place on a matrix of size polynomially bounded in d and

degree polynomially bounded in d. All these computations can be performed

in a number of field and bit operations which is polynomially bounded in

d. 2

Some historical remarks

The computational problem to determine maximal orders in function fields

is closely related to two well-studied computational problems: The compu-

tation of maximal orders in number fields and the computation of normal-

izations of arbitrary finitely generated commutative k-algebras.

For both these problems, various algorithms have been proposed, and

the algorithm above can be seen as a variant of algorithms for both these

problems. We try to give here an account of the historical development as

far as it is relevant for the present algorithm.

We start with the problem to compute maximal orders of number fields.

Key ideas of the algorithm presented above were already present in an al-

gorithm developed in the 1960ies by H. Zassenhaus. It seems that the al-

gorithm was not formally published by him for a long time. The algorithm

does however appear in a proceeding of an workshop of the “Mathematis-

ches Forschungsinstitut Oberwolfach” from 1967 (see [Zas67]). In this work

Zassenhaus in fact considers the following more general problem: He defines

an order as a (not necessarily commutative) ring O which is as Z-module

free of finite rank. The computational problem is now: Given such an or-

der (represented by its multiplication table), compute an order which is

contained in O ×Z Q, contains O, and is maximal!

As a special case of the results for arbitrary rings, the following criterion

is stated for orders of number fields (see pp. 102-103 of [Zas67]): Let p be

a prime, and let O be an order in a number field. Then the p-radical of O

is defined as
√
p ·O. Now the index of O in the maximal order is divisible

by p (one says “O is p-maximal”) if and only if the order associated to the
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p-radical of O is equal to O.

This leads to the following algorithm to compute maximal orders in num-

ber fields, starting with any order O: First the discriminant of O is factored.

Then one successively enlarges the order along the following procedure: One

iterates over all prime factors which divide the discriminant at least twice,

and for each such factor p one proceeds as follows: Let us assume that we

have already constructed the order O. Then one successively substitutes O
with O′, where O′ is the order associated to the p-radical in O. One moves

on the next prime if O = O′.

The algorithm in [Zas67] is a bit more complex but this is only because

Zassenhaus considers non-commutative orders.

We make several remarks here: First Zassenhaus’ criterion on “p-maxi-

mality” of orders can be viewed as a “local version” of Proposition 2.124.

In fact, the criterion can be viewed as a special case of Proposition 2.121

(namely, one sets A := Op). We note also that the Zassenhaus’ criterion is

incorrectly attributed to both M. Pohst and H. Zassenhaus by H. Cohen in

his book [Coh96].

Zassenhaus’ algorithm immediately leads an algorithm for the computa-

tion of maximal orders in function fields, provided one assumes that factor-

ization of univariate polynomials is possible. The algorithm we presented

above can then be viewed as a variant of this algorithm which avoids fac-

torization of polynomials.

In the meantime several variants of Zassenhaus’ algorithm have been

given. We mention in particular the Round 2 algorithm and the algorithm

by Buchmann and Lenstra.

The Round 2 algorithm is based on Zassenhaus’ algorithm but addition-

ally the so-called Dedekind criterion is used: Let f(t) ∈ Z[t] be irreducible,

and let the order O of Q[t]/(f(t)) be such that [O : Z[t]/(f(t))] is prime

to p. Then the Dedekind criterion is a simple criterion with which one can

decide if p does not divide the index of O in the maximal order. Moreover,

if this is not the case, one can easily compute the enlarged order O′. The

Round 2 algorithm can for example be found in [Coh96].

Before we come to the algorithm by Buchmann and Lenstra we remark

that in 1989 Chistov published a work on the relationship between the com-

putation of commutative maximal orders ([Chi89]) and factorization. He

claims that the computation of maximal orders in number fields is poly-

nomially equivalent to determine the largest square-free divisor of an inte-

ger. Building on the fact that the corresponding computational problem for

polynomials over finite fields is algorithmically easy, he also claims that the

maximal order of a global function field L|Fq respect to a separable field

extension L|Fq(x) and the ring Fq[x] can be computed in a time which is
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polynomially bounded in the input length. This algorithm is based on a pre-

vious algorithm of his for computations of approximations of factorizations

of polynomials over local fields ([Chi87]). As the method used by Chistov is

completely different than Zassenhaus’ method, and there is no relationship

to the algorithm presented above, we do not describe his algorithm here.

We just remark how in Chistov’s algorithm for global function fields fac-

torization of polynomials is used, respectively avoided: For global function

fields whose characteristic is less-or-equal to the extension degree, he uses

Berlekamp’s algorithm to factor the discriminant. In the other case, Chistov

uses what might be called “passive factorization” of the discriminant: He

considers divisors of the discriminant, and he computes modulo these divi-

sors as if he was computing in a field. If now one hits during the execution

of the algorithm some element which is not invertible, one has obtained a

further factorization of the discriminant, and one proceeds recursively. This

approach means that in our computational models, the algorithm by Chistov

would require randomization in the “small characteristic” case.

We also mention that Chistov’s work is very brief, and some steps of

the algorithm are not described at all. From the wording in the article by

Chistov, the author of this work has the impression that these missing steps

might be given in previous works. But unfortunately, such works are not

cited by Chistov.

Now inspired by the result by Chistov, J. Buchmann and H.W. Lenstra

revisited Zassenhaus’ ideas in an article from 1994 (see [BL94]). Just like

Chistov, they employed the idea of “passive factorization”. They are only

concerned with the number field case, but their algorithm can easily be

adapted to global function fields. We remark again that just as Chistov’s

work, an obvious generalization of the algorithm to arbitrary ground fields

would require polynomial factorization for the “small characteristic case”

(see Step 1 of Algorithm 6.6 in [BL94]).

We are now coming to the second computational problem, the compu-

tation of normalizations of arbitrary commutative k-algebras. After various

previous works by several authors, T. de Jong gave in 1998 an algorithm for

the computation of normalizations of arbitrary finitely generated commu-

tative algebras over fields. (See the citations in [dJ98] and [GLS01] for an

overview over previous algorithms.) In fact, de Jong realized that one can

easily build an algorithm on the previous (purely theoretical) criterion for

normality by Grauert and Remmert ([GR71]) from the year 1971 which can

essentially be found above.

De Jong has a representation by generators and relations in mind. The

algorithm we have presented above can be seen as a variant of the algorithm

by de Jong for the special case of orders in function fields and with HNF-
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bases.

It is interesting to note that despite their similarity the work by Zassen-

haus and subsequent works based on it on the one hand and the work by

Grauert, Remmert and finally de Jong on the other hand seem to be com-

pletely independent:

As already stated, Zassenhaus’ criterion on “p-maximality” can be viewed

as a special case of results by Grauert and Remmert. We found however no

indication that Zassenhaus or Grauert and Remmert were aware of this.

Also, it seems that various authors who later worked on variants of Zassen-

haus’ algorithm were not aware of the results by Grauert and Remmert.

As stated, de Jong’s work builds on the work by Grauert and Remmert.

However, it seems that he was also ignorant of the fact that a variant of

his algorithm was already given by Zassenhaus before Grauert and Rem-

mert published their work. The same applies to Greuel, Lossen and Schulze

([GLS01]) who in the introduction to their overview article from the year

2001 write on the computation of normalizations: “The problem [...] is to

know when to stop, that is, to have an effective criterion for a ring to be

normal. It had escaped the computer algebra community that such a crite-

rion has been known for more than thirty years, having been discovered by

Grauert and Remmert. It was rediscovered by de Jong.”



Chapter 3

Computing discrete

logarithms

3.1 Introduction

We now come to the heart of this work: The computation of discrete log-

arithms in degree 0 class groups of curves, including the groups of rational

points of elliptic curves, over finite fields.

All results on the computation of discrete logarithms we present follow

the so-called index calculus method. Very briefly, the index calculus method

consists of the following: One fixes a set of prime divisors F , called the

factor base, and one searches for relations between the factor base elements

and the input elements. If one has enough relations, one tries to derive the

discrete logarithm by linear algebra.

An outline over this chapter is as follows: In the next section we present

the index calculus method. In particular, we give a “general algorithm”

which relies on five subroutines, namely a subroutine for the computation

of the group order, a subroutine for integer factorization, a subroutine for

construction of a factor base and for precomputation, a subroutine for rela-

tion generation, and a subroutine for sparse linear algebra. Let us note here

that the “precomputation” we mentioned might in particular include the

construction of a so-called tree of large prime relations. Later in this chap-

ter we then give subroutines for the discrete logarithm problem for specific

classes of curves.

In the following section we discuss an index calculus algorithm with

double large prime variation for curves of a fixed genus. In Section 3.4 we

focus on the following computation problem: Let a natural number g0 be

fixed. Now the task is to compute discrete logarithms of elements of degree

0 class groups of arbitrary curves of genus ≥ g0 over finite fields. Then

main result Sections 3.3 and 3.4 is arguably that one can compute discrete

113
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logarithms in (suitably represented) degree 0 class groups of curves C/Fq of

genus at least 3 over finite fields in an expected time of Õ(# Cl0(C)) 4
9 ).

Finally, in the last section, we present and analyze index calculus al-

gorithms for elliptic curves over extension fields. These algorithms rely on

what we call a decomposition algorithm which in turn is based in solving

systems of multigraded polynomials. We then in particular show that there

exists an infinite family of increasing finite fields such that the elliptic curve

discrete logarithm problem over these fields can be solved in subexponential

time in the input length.

If not stated otherwise, the computational model for deterministic (resp.

randomized) algorithms is the bit-RAM model (resp. randomized bit-RAM

model).

3.2 The index calculus method

In this section we give a general outline to the index calculus method.

3.2.1 The setting

Let us first fix the following general definition:

Definition 3.1 Let G be a finite group (written multiplicatively), and let

a ∈ G and b ∈ 〈a〉. Then the discrete logarithm of b with respect to a is the

smallest non-negative integer x with ax = b. Here a is called the base of the

logarithm. One writes x = loga(b).

Remark 3.2 In the “Disquisitiones Arithmeticae”, C.F. Gauß introduced

the name index for what is now called the discrete logarithm of some element

F∗
p (p any prime number) with respect to a multiplicative generator of Fp.

This classical terminology was for example still used by J. Pollard in [Pol78],

but nowadays it seems to be not so common anymore.

Convention 3.3 As we are concerned with the computation of discrete log-

arithms in degree 0 class groups of curves over finite fields, we use additive

notation in the following. This means: Given a finite abelian group G, writ-

ten additively, a ∈ G and b ∈ 〈a〉, the discrete logarithm of b with respect to

a is the smallest non-negative integer x with x · a = b.

We are interested in the discrete logarithm problem in degree 0 class

groups of curves over finite fields. This means that given a curve C over

a finite field Fq and two elements a, b ∈ Cl0(C) with b ∈ 〈a〉, we want to

compute the discrete logarithm of b to the base a. Here we assume that the
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curve and the divisor classes are represented as in Chapter 2: The curve is

given by a plane model, which in turn is given by a homogeneous polynomial

F (X,Y,Z); a divisor D0 of degree 1 is fixed, and the divisor classes are given

by divisors which are reduced along D0; all these divisors are given by any

of the representations described in the previous chapter.

We now give an overview over one variant of the so-called index calculus

method, assuming – for this introductory description – that the degree 0

class group is cyclic and generated by a.

Let x ∈ {0, . . . , ord(a) − 1} with x · a = b be the unknown discrete

logarithm we want to compute.

One first chooses a so-called factor base F consisting of prime divisors

of C,1 and one enumerates the elements of F , say F = {F1, F2, . . . , Fk} with

pairwise distinct Fj . Furthermore, one chooses a divisor D1 of degree 1.

(One might set D1 := D0 but this is not necessary.)

Then one generates relations between the input elements a, b, the ele-

ments of the factor base and D1:
∑

j

ri,j[Fj ]− (
∑

j

ri,j deg(Fj)) · [D1] = αia+ βib (3.1)

with ri,j, αi, βi ∈ Z.2

If one has generated more than k relations, one can – under certain

additional assumptions – determine the unknown discrete logarithm x. The

basic idea is here to eliminate the factor base elements via linear algebra

such that one obtains a relation between the input elements a and b.

In the cases we consider we can always compute the group order and its

factorization in a way which is (asymptotically) not time-critical. Then all

computations can be performed “modulo the group order and its factors”.

We describe this now in greater detail.

Let N := # Cl0(C). One then proceeds as outlined above: One fixes

a factor base and one generates relations. However, now the coefficients

ri,j, αi, βi lie in Z/NZ.

Let us now for simplicity for the moment assume that N is prime. Let

now k+ 1 relations be generated; let R = ((ri,j))i,j ∈ (Z/NZ)(k+1)×k be the

relation matrix, that is, the matrix whose rows are the coefficients occurring

in the relations.

Now the left-kernel of the matrix R is non-trivial. One computes some

non-trivial row vector γ ∈ (Z/NZ)1×(k+1) with γR = 0. Note that this

1In this section, we always speak of prime divisors instead of closed points, in order to
highlight the factorization of divisors into prime divisors.

2Let D1, . . . , Dn be divisors and c1, . . . , cm be divisor classes on C. Then a rela-

tion between D1, . . . , Dn and c1, . . . , cm is a tuple (r1, . . . , rn, s1, . . . , sm) ∈ Zm+n with
P

j rj [Dj ] =
P

j sjcj . We always describe relations by giving the corresponding equation.
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means that ∑

i

γiri,j = 0 (3.2)

for all j = 1, . . . , k. We now have

∑
i γiαia+

∑
i γiβib =

∑
i γi(αia+ βib) =

∑
i

∑
j γiri,j[Fj ] =

∑
j(
∑

i γiri,j)[Fj ] = 0 .
(3.3)

If now
∑

i γiβi 6= 0, then with ξ := (
∑

i γiαi) (
∑

i γiβi)
−1 ∈ Z/NZ, we have

ξ · a = b ∈ Cl0(C) .

This means that the unique representative x ∈ {0, . . . , N − 1} of ξ is the

discrete logarithm of b with respect to a we are looking for.

Of course, in order to put this general idea to work, one needs algorithms

to obtain a factor base, to compute relations as well as an algorithm to

perform the linear algebra.

In subsection 3.2.3 below we give a framework for the computation of

discrete logarithms in degree 0 class groups of curves over finite fields. We

give a general algorithm which relies subroutines for

a) computation of the order of the degree 0 class group

b) integer factorization

c) construction of a factor base and for precomputation

d) relation generation.

e) sparse linear algebra.

Specifications of the inputs and outputs of these subroutines are given in

subsection subsection 3.2.3. Then later in this chapter, specific subroutines

are discussed for specific classes of curves. In fact, one obtains very different

algorithms depending on which subroutines one chooses. The algorithms for

integer factorization as well we for linear algebra are however the same in

all the following algorithms, and can be discussed already now.

For integer factorization we use the algorithm by H.W. Lenstra and C.

Pomerance ([LP92]), which gives rise to the following result.

Proposition 3.4 An integer N can with a randomized algorithm be factored

in an expected time of LN [12 , 1 + o(1)].
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3.2.2 Sparse linear algebra

After the relation collection, we will have obtained a matrix M in sparse

representation over Z/NN, where N := Cl0(C), and we want to compute

some row vector γ over Z/NZ with γM = 0 and [γ]ℓ 6= 0 for all prime

divisors ℓ of N .

Let N =
∏v

i=1 ℓ
ei
i be the factorization of N , where ℓi are pairwise distinct

prime numbers and ei natural numbers. If we then have found row vectors

γ(i) over Z/ℓeiZ with γ [M ]ℓei
i

= 0 and γ(i) 6= 0, we can use the Chinese

Remainder Theorem to obtain a solution γ as desired.

It remains to determine such vectors γ(i). This computation will be

based on a computation over the finite field Fℓi
(discussed below) and an

obvious “lifting algorithm” which is described in the following lemma.

In the rest of this subsubsection, as usual, we describe all linear algebra

computations on column vectors.

As outlined above, in the index calculus algorithms, we will however use

operations on row vectors.

Lemma 3.5 Let ℓ be a prime number, and let A ∈ (Z/ℓeZ)m×n for some

e,m, n ∈ Z. Let now v ∈ (Z/ℓeZ)n with [Av]ℓe−1 = 0; let b ∈ (Z/ℓZ)m

with Av = ℓe−1b. If now there exists a u ∈ (Z/ℓZ)n with Au = b, then we

have A(v − ℓe−1u) = 0. Moreover, every w ∈ (Z/ℓZ)n with Aw = 0 can be

obtained in this way.

Note that the lifting algorithm is guaranteed to succeed — starting from

any row vector over Fℓ — if [A]ℓ has full row rank ; otherwise it might fail.

Because of this, our goal in the relation generation — where we use the

corresponding result for row vectors — is to produce a matrix which has full

column rank modulo all prime divisors of the group order.

It remains to give an efficient algorithm for solving sparse linear systems

over finite fields and for computing non-trivial solutions of homogeneous

systems, provided that the matrix has full row rank. For this, one can use

various variants of Wiedemann’s and Lanczos’ algorithms. An algorithm as

we require it can in fact already be found in the original work by Wiedemann.

Indeed, from [Wie86] one obtains (with fast multiplication and division in

finite fields):

Proposition 3.6 There is a randomized algorithm such that the following

holds: Upon input of a matrix A ∈ Fm×n
q in sparse representation and a

vector b ∈ Fm
q , the algorithm outputs either “failure” or a vector v ∈ Fn

q

with Av = b. Moreover, if the matrix A has full row rank, the algorithm

outputs a solution v with a probability of at least 1
2 . The running time of
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the algorithm is in Õ(n · (n+ω) · log(q)), where ω is the number of non-zero

entries of A.

Alternatively, one might also use the variant of Wiedemann’s algorithm

described in [KS91] or the variant of Lanczos’ algorithm from [EK97] to-

gether with the remarks on necessary field extensions in [EG02, Section 4].

One can then substitute the condition that A has full column rank by the

condition that b lies in the column space of A.

It is well-known that one can obtain an algorithm as in the proposition

with the additional property that if the algorithm does not fail, the output

is uniformly distributed over the kernel of A.

For this, one first chooses w ∈ Fn
q uniformly randomly, and then one

applies the algorithm to A and b − Aw (for b). If v is the random vector

computed by the algorithm, then we have A(v + w) = b−Aw +Aw = b.

Let us recall why the result v+w is uniformly distributed over the kernel

of A:

Let y := Aw. Let us fix any value y(0) ∈ Fm
q of y (occurring with non-

trivial probability). Then conditionally to y = y(0), the following holds: w

is uniformly distributed in the preimage of y(0) upon multiplication by A.

Moreover, all random choices in the algorithm are stochastically indepen-

dent of w. Therefore, the output v is stochastically independent of w. Thus

conditionally to any value v(0) of v (which occurs with non-trivial proba-

bility) (and still conditionally to y = y(0)), w is still uniformly distributed

in the preimage of y(0), and then v(0) + w is uniformly distributed in the

preimage of b.

But if the result holds conditionally to any fixed value of y and v, it also

holds unconditionally.

Note that if we apply the algorithm just described to a matrix A of full

column rank with non-trivial kernel and the vector 0, then with a probability

of ≥ 1
2 · (1 − 1

q ) ≥ 1
4 it outputs a non-trivial vector in the kernel of A. By

applying the algorithm up to three times we obtain:

Proposition 3.7 There is a randomized algorithm such that the following

holds: Upon input of a matrix A ∈ Fm×n
q in sparse representation with non-

trivial kernel, the algorithm outputs either “failure” or a non-trivial vector

v ∈ Fm
q with Av = 0. Moreover, if the matrix A has full row rank, the

algorithm outputs a vector v with a probability of at least 1
2 . The running

time of the algorithm is in Õ(n · (n+ ω) · log(q)), where ω is the number of

non-zero entries of A.

Altogether we have:
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Proposition 3.8 There is a randomized algorithm such that the following

holds: Upon input of a matrix A ∈ (Z/NZ)m×n in sparse representation

and the factorization of N , the algorithm determines some v ∈ (ZNZ)m

with Av = 0 and [v]ℓ 6= 0 for every prime divisor ℓ of N or it reports

“failure”. Moreover, if for all prime divisors ℓ of N the matrix [A]ℓ has full

row rank, the probability that it reports “failure” is ≤ 1
2 . The running time

of the algorithm is in Õ(n · (n + ω) · log(N)2), where ω is the number of

non-trivial entries in the matrix.

Proof. As above, let N =
∏v

i=1 ℓ
ei
i be the factorization of N . Note that∑

i ei log2(ℓi) = log2(N), and therefore
∑

i ei ≤ log2(N).

As outlined above, we proceed for each prime power individually and

then use the Chinese Remainder Theorem to obtain a solution over Z/NZ.

For each prime, we start off with an algorithm satisfying Proposition 3.7

and then we apply the lifting algorithm above with an algorithm satisfying

Proposition 3.6. In each of these cases, we repeat the computation up to

⌈log2 log2(N)+1⌉ times if the any algorithm reports “failure”. Like this, we

obtain: If the matrix has full column rank, then the total success probability

is ≥ (1− (1
2 )⌈log2 log2(N)+1⌉)log2(N) ≥ (1− 1

2 log2(N))
log2(N) ≥ 1− 1

2 = 1
2 . 2

3.2.3 The general algorithm

As already noted, in this subsection we give a framework for computations

of discrete logarithms in degree 0 class groups of curves over finite fields.

We outline a general algorithm relying on various subroutines. This general

algorithm is closely related to the framework for computations of discrete

logarithms in groups with known group order given in [EG02] (see subsection

3.2.5 for further remarks on the relationship).

The setting is as follows: We fix a particular full subcategory of the large

groupoid of instances (C/Fq, a, b) of the discrete logarithm problem in degree

0 class groups of curves over finite fields (cf. Example 1.22). The inputs to

the algorithm will consist of these instances together the group order and

divisor classes c1, . . . , cu of Cl0(C).3 Here the curve and the divisor classes

are represented as described above, but additionally we allow that certain

restrictions on the allowed representations imposed. For example, in the

applications of the general framework we will always assume that the degree

of the plane model is in O(g), where g is the genus of the curve.

Roughly, in the algorithm, we first compute the group order and factor

it. Then we set up the ideal representation with respect to the covering

3For the moment we put no restriction on the elements c1, . . . , cu. However, in applica-
tions of the “general algorithm” we will only be able to derive upper bounds on expected
running times if we assume that c1, . . . , cu is a generating system.
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xC : C −→ P1
Fq

or the covering y|C : C −→ P1
Fq

, depending on whether the

former covering is separable; all further computations take place in ideal

representation with respect to this covering. Then we apply a procedure

for construction of the factor base and precomputation which outputs an

enumerated factor base and a divisor D1 of degree 1. After this we generate

relations between the factor base elements, D1, the input elements a, b and

the further degree 0 divisor classes c1, . . . cu using a procedure for relation

generation applied to divisor classes of the form αa+βb. Finally, we perform

a linear algebra computation to generate a relation between a and b.

For this, we assume that we have fixed the following five procedures (all

of which can be randomized).

If the covering x|C : C −→ P1
Fq

is separable, the following divisors are

represented in ideal representation with respect this covering, otherwise they

are represented in ideal representation with respect to the covering y|C :

C −→ P1
Fq

.

a) An algorithm for computing orders of degree 0 class groups of curves

C/Fq as above.

b) An algorithm for integer factorization.

c) A procedure for generation of the factor base and for precomputation. We

require the following: If the procedure terminates, a well-defined part of

its final state (given by pointers) contains:

• a divisor D1 on C of degree 1

• a description of an enumerated factor base F = {F1, . . . , Fk} (by

this we mean that given such a result as well as a prime divisor P

of C, one can compute whether P is contained in F , and if this is

the case the number i with P = Fi)

• representations of the divisor classes a, b, c1, . . . , cu by along D1 re-

duced divisors

• possibly some additional information for later use.

We call all this the “result” of the computation.

d) A procedure for relation generation. Let us assume that we have a result

of the previous procedure, as indicated above. Now let c ∈ Cl0(C) be

some degree 0 divisor class, represented by an along D1 reduced divisor.

Then, if the relation generation procedure terminates, it outputs vectors

(rj)j=1,...,k ∈ (Z/NZ)k and (sj)j=1,...,u ∈ (Z/NZ)u defining a relation

∑

j

rj [Fj ]− (
∑

j

rj deg(Fj)) · [D1] =
∑

j

sjcj + c . (3.4)



3.2. The index calculus method 121

Here D1 is the divisor of degree 1 which is computed in the previous

procedure. (Usually, in the applications of the “general algorithm” D1 is

equal to D0, which is part of the input, but in the algorithm in Section

3.3 we allow for another divisor D1.) An important condition is that the

distribution of the output is (for a fixed result of the previous procedure)

independent of the representation of the input c. (Note that one element

c ∈ Cl0(C) might be represented by different bit-strings.)

e) An algorithm for sparse linear algebra satisfying Proposition 3.8.

The algorithm is as follows.

General index calculus algorithm

Input: An instance (C/Fq, a, b) of the discrete logarithm problem in degree

0 class groups of curves over finite fields and some elements c1, c2, . . . , cu of

Cl0(C), satisfying certain conditions and appropriately represented. Maybe some

additional information.

1. Apply the algorithm to compute the group order and then the algorithm

for integer factorization.

(Let N = # Cl0(C) and N =
∏v

i=1 ℓ
ei
i with ei ∈ N and pairwise distinct

prime elements ℓi.)

2. If the covering x|C : C −→ P1
Fq

is separable: Set up the ideal-theoretic

description of divisors with respect to this covering (see subsubsection

2.5.4.2). Compute free or joint ideal representations of the input divisors.

If the covering is not separable, proceed analogously with y instead of x.

(If the input is already given in this form, this step can be omitted.)

3. Apply the procedure for generation of a factor base and for precomputa-

tion.

(Let F = {F1, P2, . . . , Fk} ⊆ C be the chosen enumerated factor base,

and let D1 be the computed divisor of degree 1.)

4. 4.1. Let t←− ⌈log2(k + u) + log2(2 log2(N))⌉ + 1

4.2. Construct matrices R ∈ (Z/NZ)(2(k+u)·t)×k and S ∈
(Z/NZ)(2(k+u)·t)×u in sparse representation as well as vectors α, β ∈
(Z/NZ)2(k+u)·t as follows:

4.2.1. For i = 1, . . . , (k + u) · t do

Choose uniformly and independently randomly

αi, βi ∈ Z/NZ and apply the algorithm to generate rela-

tions over the factor base to αia+ βib.
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Let

∑

j

ri,j[Fj ]− ri · [D1] =
∑

j

si,jcj + αia+ βib

with ri :=
∑

j ri,j · deg(Fj) be the relation generated.

4.2.2. For i1 = 1, . . . , k

For i2 = 1, . . . , t

Let i←− (i1 − 1) · t+ i2 + (k + u) · t.
Choose uniformly and independently randomly

αi, βi ∈ Z/NZ and apply the relation generation al-

gorithm to [Pi1 ]− [D1] + αia+ βib.

Let

∑

j

ri,j [Fj ]− ri[D1] =
∑

j

sjcj + αia+ βib

be the relation generated.

4.2.3. For i1 = 1, . . . , u

For i2 = 1, . . . , t

Let i←− (i1 − 1) · t+ i2 + (2k + u) · t.
Choose uniformly and independently randomly

αi, βi ∈ Z/NZ and apply the relation generation al-

gorithm to ci + αia+ βib.

Let

∑

j

ri,j [Fj ]− ri[D1] =
∑

j

sjcj + αia+ βib

be the relation generated.

5. Try to compute a row vector γ ∈ (Z/NZ)1×(2(k+u)·t) with γ(R|S) = 0

and [γ]ℓ 6= 0 for all prime divisors ℓ of # Cl0(C) with the algorithm for

linear algebra. If this fails, go back to Step 4.

6. If
∑

i γiβi ∈ (Z/NZ)∗, let ξ := −
∑

i γiαi∑
i γiβi

, otherwise go back to Step 4.

7. Compute ord(a), using the factorization of N .

Output the unique non-negative number x ∈ {0, . . . , ord(a) − 1} with

[x]ord(a) = [ξ]ord(a).

Note here that the computation of ord(a) can be performed efficiently

(in polynomial time in log(N)) along the following lines:
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As in the algorithm, let N =
∏v

i=1 ℓ
ei
i with ei ∈ N and pairwise distinct

prime numbers ℓi. Now let Li := N
ℓ
ei
i

, and let oi := min{j ∈ 0, . . . , ei | ℓjiLi ·
a = 0} for i = 1, . . . , v. Then

∏v
i=1 ℓ

oi
i is the order of a.

It is again obvious that the algorithm is correct, that is, if the algorithm

terminates, x is the discrete logarithm of a with respect to b.

3.2.4 Analysis of general algorithm

We now analyze the algorithm for a fixed input and a fixed output of the

factor base generation and precomputation algorithm (Step 3 in the “general

algorithm”).

As remarked in subsection 1.4.3, the execution of a randomized algorithm

on a particular input is given by a time-uniform Markov chain. In the present

analysis, we not only fix a particular input but also a particular result of

Step 3. We then again obtain a time-uniform Markov chain.

We now analyze the (values of the) variables at the time Step 6 is reached.

In this way we obtain random variables which we denote in the same way

as the corresponding variables in the algorithm.

We have:

Proposition 3.9 Conditionally to any result of Step 3, at the time Step 6

is reached, the random element
∑

i γiβi is uniformly randomly distributed in

Z/NZ. In particular, the probability that
∑

i γiβi ∈ (Z/NZ)∗ is ϕ(N)
N .

The proof relies on the following lemma.

Lemma 3.10 Let N be a natural number, and let γ ∈ (Z/NZ)m with [γ]ℓ 6=
0 for all prime divisors ℓ of N . Furthermore, let w be a uniformly distributed

random element in (Z/NZ)m. Then
∑

i γiwi is uniformly distributed in

Z/NZ.

Proof. Let us first consider the case that N is a prime power. Then at least

one entry of γ is invertible. This implies the statement. The general case

follows then easily with the Chinese Remainder Theorem. 2

Sketch of a proof of Proposition 3.9.

All random elements αia + βib and βi are stochastically independent.

Moreover, for each i βi is uniformly distributed in (Z/NZ)k+1.

The first statement implies that all random vectors (ri,j)j and all ele-

ments βi are stochastically independent, and this implies in particular that

the random matrix R and the random vector β are stochastically indepen-

dent. This in turn implies that γ and β are stochastically independent.
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Now conditionally to γ = γ(0) for any fixed γ(0) ∈ (Z/NZ)k+1 with

[γ]ℓ 6= 0 for all prime divisors ℓ of N , β is still uniformly distributed. With

the lemma this implies that – again conditionally to γ = γ(0) –,
∑

i γiβi is

uniformly randomly distributed in Z/NZ. But then the random element∑
i γiβi is uniformly distributed too. 2

Proposition 3.11 Conditionally to any result of Step 3, the probability that

the linear algebra computation fails is ≤ 1
2 .

This proposition relies on the following lemma. For a uniform distri-

bution this lemma appears in [Pom87]. We note however that the proof

contains quite a gap. It is also stated that the lemma below holds, but no

argument is given. A generalization of the result in [Pom87] was proven by

F. Heß in [Heß05]. The lemma below follows from part (i) of the proof of

[Heß05, Lemma 64].

Lemma 3.12 Let V be a vector space over any field with n := dim(V ) <

∞, and let b1, . . . , bn be a basis of V . Let t ∈ N, and let v1, . . . , vnt and

v′1, . . . , v
′
nt be identically distributed independent random vectors with values

in a finite subset of V . Let for i = 1, . . . , n and j = 1, . . . , t vnt+(i−1)·t+j :=

bi + v′nt+(i−1)·t+j .

Let V ′ be the random subspace of V defined by V ′ := 〈v1, . . . , v2kn〉. Then

with a probability of at least 1− n
2t−1 we have V ′ = V .

Proof of Proposition 3.11

With n := k + u and t as in the algorithm, the lemma applies to the

rows of the matrix [(R|S)]ℓ for each prime divisor ℓ of N .

Let us fix a prime ℓ which divides N . By the lemma, the probability

that the matrix [(R|S)]ℓ does not have full column rank is ≤ k+u
2t−1 . By the

definition of t, this is ≤ 1
2 log2(N) .

The number of primes dividing N is bounded by log2(N). This implies

that the probability that the linear algebra computation fails is ≤ 1
2 . 2

A brief discussion of the running time

We conclude this analysis with a very brief discussion of the running time.

Of course, the actual running time of an application of the general algorithm

depends crucially on the running times of the subroutines for generation of

the factor base and precomputation and for relation generation.

We cannot say anything about the running time of Steps 1 and 3 at

the present time. We merely want to caution the reader here that Step

3 might not in any way be of “negligible” complexity in applications. For

example, Step 3 might consist of the choice of a factor base and a subsequent
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construction of a so-called tree of large prime relations (cf. subsubsection

3.2.6.2 below).

Step 2 can be performed in a time which is polynomially bounded in d,

the degree of the plane model, and log(q) by the results of subsubsections

2.5.4.2 and 2.5.4.6 as well as subsection 2.5.5. If one allows only plane models

of degree O(g), this is of course polynomially bounded in g and log(q).

In Step 4, clearly, we need 2(k + u) calls to the relation generation

procedure. Again nothing can be said about the actual running time.

Step 5 can be performed with Õ((k+u)·(k+u+ω)·log(N)) bit operations

according to Proposition 3.8 and the definition of t, where ω is the number of

non-zero elements of the matrix. We note again that the success probability

is ≥ 1
2 conditionally to any outcome of Step 3 by Proposition 3.11.

The success probability of Step 6 is ϕ(N)
N by Proposition 3.9. Note that

ϕ(N)
N ∈ Ω( 1

log log(N)) (cf. [RS62, Formula 3.41]).

This means that conditionally to any outcome of Step 3, with a probabil-

ity of Ω( 1
log log(N)), the algorithm terminates without going back to Step 4.

Or with other words: Conditionally to any outcome of Step 3, the expected

number of iterations is in O(log log(N)).

3.2.5 Some historical remarks

We make some historical remarks on the index calculus method and the

origin of the phrase “index calculus”, and we put the general algorithm

given above into historical perspective.

As mentioned above, a classical term for “discrete logarithm” in F∗
p

with respect to a generating element is “index”. Various authors have

produced tables of indices (analogous to usual logarithm tables). For ex-

ample, C.G. Jacobi gave such a table for all prime powers less than 1000

in his “Canon Aritheticus” ([Jac39]). In his book “Théorie des nombres”

([Kra22]) from 1922 M. Kraitchik showed how one can compute indices of

residue classes of small primes via relation generation and linear algebra

without having to compute the indices of all elements of F∗
p. He stated that

with this method he has computed all indices of primes up to 100 in all

prime fields F∗
p with p ≤ 10000. A book of tables was also produced by A.

Western and J. Miller in 1968 ([WM68]) with a relation-based method. In

[Mil75] J. Miller attributed the method to A. Western, but as we have just

remarked it was in fact already used by Kraitchik. To our knowledge, the

first time that a relation generation and linear algebra based approach to

index computation was called “index calculus” was in A. Odlyzko’s work

“Discrete logarithms in finite fields and their cryptographic significance”

([Odl84]) from 1984.
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Around 1978-79 the method was independently studied L. Adleman

([Adl79]); it was also mentioned by J. Pollard [Pol78]).

An outline for an analysis of an index calculus algorithm leading to an ex-

pected subexponential running time in the case of the multiplicative groups

finite prime fields was given by Adleman in [Adl79]. A rigorous result for

computations in finite fields of characteristic 2 was given by M. Hellman

and J. Reyneri in [HR83]. After that a rigorous result for both finite fields

in characteristic 2 and finite prime fields was given by C. Pomerance in

[Pom87]. Pomerance obtained an expected running time of Lq[
1
2 ,
√

2+o(1)],

where q is the size of the finite field and L[α, c] is the subexponentiality

function with parameters α and c which was already defined in the intro-

duction:

LN [α, c] := ec·(log(N))α·(log log(N))1−α

This is still the best proven running time for discrete logarithms in prime

fields or finite fields of a fixed characteristic.

A. Enge and P. Gaudry gave in [EG02] a general framework for subexpo-

nential discrete logarithm algorithms under the assumption that the group

order is known. Their setting is as follows: They consider groups G such

that there exists a free abelian monoid M and a computable surjective mor-

phism p : M −→ G with a computable section or “lifting” s : G −→M and

a degree-function on M . To define the factor base, they fix a “smoothness

bound” S and define the factor base as the set of basis elements of M whose

degree is ≤ S.

As examples of this general setting they discussed the discrete logarithm

problems in finite prime fields, in finite fields of a fixed characteristic, in

class groups of number fields and in degree 0 class groups of hyperelliptic

curves in imaginary quadratic representation. They showed in particular

that in this framework discrete logarithms in degree 0 class groups of hy-

perelliptic curves in imaginary quadratic representation can be computed in

an expected running time of Lqg [12 ,
√

2 + o(1)], provided that one restricts

oneself to instances with g
log(q) −→ ∞ and the group is cyclic or a basis

of the group is known. Here g is the genus and Fq the ground field of a

curve, and by a basis of the group a set of elements is meant such that every

element has a unique coordinate vector with respect to the set.4

Even though the work by Enge and Gaudry is related to the work by

Pomerance, there is a noticeable difference: Pomerance’s work is based on

the traditional way to compute indices, going back to Kraitchik as well as

Western and Miller: Let g ∈ F∗
p be a generating element, and let F be a

4In fact, the analysis in [EG02] shows that one only needs that g ≥ ϑ · log(q) for
some constant ϑ > 0. Explicitly, in Example 3, the condition k ≥ ϑ log p implies that

p ≤ e( log N
ϑ

)1/2 ∈ LN (o(1)), and then one obtains a total running time of LN (
√

2 + o(1)).
An analogous observation holds for Example 5.
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factor base. Let us now assume that gi splits over the factor base. Then

one obtains a relation between i on the one hand and the (unknown) indices

on the other hand. Using Lemma 3.12 Pomerance shows that one can with

high probability obtain a linear system with a unique solution; the entries

of the solution are then the indices. In a second step one then relates the

input of the discrete logarithm problem to the factor base.

In contrast, Enge and Gaudry use a direct approach to eliminate the

factor base elements. Our general index calculus algorithm presented above

is closely related to the general algorithm in [EG02]; we only depart from

the algorithm in [EG02] in the following four points.

• We make use of an arbitrary generating system whereas for non-cyclic

groups in [EG02] a basis of the group is required. In order to deal with

the arbitrary generating system, our algorithm is slightly different from

the one in [EG02].

• We do not use a free abelian monoid M in the way Enge and Gaudry

do. Of course, we have the canonical surjective map Div(C) −→ Cl(C),
but only if the divisor D1 is a prime P of degree 1, we have the map

Div(C − {P}) −→ Cl0(C),D 7→ [D] − deg(D) · [P ] which naturally

generalizes the setting for hyperelliptic curves in imaginary quadratic

representation in [EG02]. In particular we do not fix a lifting from

divisor classes to divisors in the way it is done in [EG02].

• We drop the condition of the factor base being defined by a smoothness

bound.

• We not only choose a factor base but also allow of a “precomputation”

afterwards. This will become important when we describe the double

large prime variation algorithms for curves of small genus. The fact

that the analysis in [EG02] still holds true after a precomputation was

already pointed out in [GTTD07] (concerning the computation of a

graph of large prime relations).

3.2.6 Large prime variation and double large prime variation

“Large prime variation” and “double large prime variation” are add-ons to

the index calculus method which can be used to improve the running time.

We describe the ideas of these approaches and then show how slightly mod-

ified approaches can be integrated into the general algorithm given above.
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3.2.6.1 Large prime variation

We give a general description of “large prime variation” in the case of groups

with arbitrary (not necessarily cyclic) group structure.

As above, let c1, . . . , cu be a generating set of Cl0(C). Now additionally

to the factor base F one fixes a so-called set of large primes L consisting of

prime divisors of C which are not contained in F .

Now one not only tries to find relations of the form
∑

j

rj [Fj ]− r[D1] = s1c1 + · · ·+ sucu + αa+ βb (3.5)

but in fact relations which involve up to one element from L, that is, relations

as (3.5) and also relations of the form

∑

j

rj [Fj ] + rP [P ]− r[D1] = s1c1 + · · · + sucu + αa+ βb (3.6)

with P ∈ L and rP 6= 0. (How these relations are generated depends on

the application and is not discussed here.) The original idea of large prime

variation is now to proceed as follows: Whenever one encounters two such

relations with the same large prime, one produces a relation between factor

base elements, generating elements and a, b by eliminating the large prime.

A different method which fits well into our general algorithm above is as

follows: One proceeds as above, but if one encounters a relation without a

large prime, one discards it. Now each relation generated links a particular

large prime to the factor base elements and the generating set. If one has

linked enough large primes to the factor base and the generating set, one

stops the process; let L′ ⊆ L be the set of large primes linked to the factor

base in this way. Then one generates relations as in Step 4 of the general

algorithm, but with F ∪ L′ in place of F . Whenever one has obtained a

relation between factor base elements, large primes, the generating system

and the input elements a, b one can eliminate the large primes in these

relations, thus obtaining a relation between factor base elements and the

generating elements. In this way one proceeds as in the general algorithm

above.

Note here that this approach can be described as follows: The first part

of the method can be seen as a “precomputation”. After this, we again have

a procedure to obtain relations over the factor base, just a different one than

the previous one. Therefore, the approach still fits our general algorithm,

and in particular Propositions 3.9 and 3.11 remain valid.

Finally, we would like to caution the reader not to take the terminology

“large primes” too literally: The idea of large prime variation was first used

in the context of integer factorization, and there the large primes are really
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larger than the factor base elements. However, in our applications below,

both the factor base elements and the large primes have degree 1.

3.2.6.2 Double large prime variation

“Double large prime variation” can be seen as a further development of large

prime variation.

We fix a set of “large primes” L as above. Now one uses relations with

up to two large primes, that is relations of the form (3.5), (3.6) as well as

∑

j

rj [Fj ] + rP [P ] + rQ[Q]− r[D1] = s1c1 + · · · sucu + αa+ βb (3.7)

with P,Q ∈ L, P 6= Q and rP , rQ 6= 0. Let us fix the following terminology,

following for example [GTTD07].

Terminology 3.13 A relation of the form (3.5) is called a Full relation, a

relation of the form (3.6) is called an FP relation, and a relation of the form

(3.7) is called a PP relation.

The general idea to use all these relations is now as follows: One con-

structs a so called graph of large prime relations, which is a labeled graph

on the set L ∪̇ {∗}: A PP relation involving large primes P and Q leads to

an edge from P to Q, labeled with the relation. A FP relation involving a

large prime P leads to an edge from P to ∗. Now cycles in the graph allow

that large primes are canceled. A cycle involving ∗ always leads to a Full

relation, and other cycles lead to a Full or an FP relation.

There are several variants of this idea. Below we discuss the variants

which are relevant in the context of the present work (see also Remark 3.15

below). In all these variants, we represent the graph of large prime relations

by adjacency lists.

Construction of an acyclic graph In this variant, first of all, Full rela-

tions are saved in the relation matrix. If one has an FP or a PP relation, one

proceeds with a case distinction. One inserts a corresponding edge provided

that it does not lead to a cycle. If however one would obtain a cycle in doing

so, one does not insert the corresponding edge – the graph thus stays acyclic.

Additionally, via the cycle one then tries to cancel large primes so that one

obtains a Full relation or an FP relation. With these “combined” relations

one proceeds as already indicated. Note here that one always obtains a Full

relation if the cycle contains ∗ but otherwise one might obtain a Full or an

FP relation. One terminates if one has obtained enough Full relations.

This variant is referred to as “full algorithm” in [GTTD07].
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Note however that this approach does not fit into our general algorithm

given above. Indeed, for an asymptotic analysis, generally speaking, it seems

to be preferable to first construct a suitable tree with root ∗ and then to use

this tree to obtain Full relations as follows:

Let us assume that a tree T has been constructed. Now one again gen-

erates relations. If one has a relation which only involves elements of the

factor base or vertices from T , one can eliminate the vertices from T with

the help of the tree to obtain a relation over the factor base.

Note that this approach fits into our general algorithm. It remains how-

ever the question how to construct such a tree, which we call a tree of large

prime relations. We are aware of the following three possibilities.

Direct computation of a tree Here during the construction of the graph

of large prime relations, one discards all relations which would lead to a

component which is not connected to ∗, and one discards all relations which

would lead to cycles. This means that at all times during the construction,

the graph of large prime relations is already a tree.

An algorithm based on such a direct computation of a tree is given

in [GTTD07]. It is called simplified algorithm, and it is used to obtain a

proven result on the complexity of the computation of discrete logarithms

in cyclic degree 0 class groups of hyperelliptic curves in imaginary quadratic

representation.

Stage-wise computation of a tree In our applications, we want to con-

trol the depth of the tree, because we want to keep the relation matrix sparse.

One possibility to do so is the following variant of the direct computation:

One proceeds in “stages around ∗”. In the first stage, one considers only

relations involving elements of the factor base and one large prime, that is,

FP relations. This leads to a tree of depth one. After having found suitably

many FP relations, one moves to the second stage. Here one considers only

relations which contain one elements of the factor base, vertices of the first

stage and one large prime. This leads to a tree of depth ≤ 2. Again, if the

tree has enough vertices, one moves to the next stage. One continues in this

manner, such that after the kth step the depth of the tree is ≤ k and the

tree has a predefined number of vertices.

Section 3.3, where we extend the results of [GTTD07] to arbitrary curves

of a fixed genus, is based on this approach.

Computation of a tree from a graph Here one first constructs a suit-

ably large graph. Then inside this graph one constructs a so-called shortest

path tree inside this graph. This approach is for example taken in the work
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[Die06] by the author.

Remark 3.14 Above we suggested to construct a tree labeled with rela-

tions. Note that given an edge of the tree one can easily obtain a relation

between the edge, factor base elements and the generating system. However,

if one always immediately generates these relations, one does not need the

tree at all; rather one just needs a list of relations involving one large prime

each. A variant of the stage-wise computation following this approach was

pursued by K. Nagao in [Nag04] (see also [AT06, subsubsection 3.2 c)] where

a slightly different method is called “concentric circles method”).

Remark 3.15 Double large prime variation was originally suggested by

A.K. Lenstra and M.S. Manasse as a practical improvement for factoriza-

tion algorithms in [LM91] and [LM94]. (As noted in [LM94] the idea might

however have been older.) Since then various works on practical aspects of

double large prime variation, including for computations of discrete loga-

rithms, appeared. In practical computations one faces severe storage prob-

lems if one tries to store all generated FP and PP relations in the RAM

of a computer. Because of this, one usually proceeds as follows: First one

stores a list of FP and PP relations and stores them on a hard drive. Then

in several “filtering steps” (and using Hash-tables) one constructs a graph.

For example, in [LM94] it was suggested to construct directly a breadth-first

tree in the graph of large prime relations by reading the list of FP and PP

relations over and over.

It was then realized by N. Thériault that for the solution of the discrete

logarithm problem in hyperelliptic curves in imaginary quadratic representa-

tion of a fixed genus, one can obtain a decrease in the running time which is

superpolynomial in the cardinality of the ground field (see [Thé03]). (Note

however that the main results in [Thé03] are not proven but only argued

heuristically.) Later, it was proven by P. Gaudry, E. Thomé, N. Thériault

and the author that one can obtain a further superpolynomial decrease in

the running time by using a double large prime variation, provided that the

degree 0 class group of the curve is cyclic.

It is the superpolynomial decrease in the running time for discrete log-

arithm computation in degree 0 class groups of a fixed genus which is our

motivation for investigation into this method. As we study in this work

algorithms from an asymptotic point of view in formalized models, practical

considerations as mentioned above are not relevant for the present work.
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3.3 Index calculus with double large prime varia-

tion for curves of fixed genus

3.3.1 Introduction and results

In this section we present an index calculus algorithm with double large

prime variation for curves of a fixed genus g. The input of the algorithm

consists of a tuple (C/Fq, a, b), where C is a curve of genus g over Fq, a, b ∈
Cl0(C) and b ∈ 〈a〉. The representation of the input follows Chapter 2: The

curve is represented by a plane model, a divisor D0 of degree 1 is fixed and

a, b are represented by along D0 reduced divisors which in turn is given by

any of the possibilities described in Chapter 2.

Additionally, we fix some number dmax and demand that the curve C is

represented by a plane model of degree ≤ dmax. Note that by Proposition

2.6 such a number dmax exists. We also fix an upper bound on the height of

the divisor D0.

On the basis of our algorithm, we obtain the following result.

Theorem 1 Let some natural number g ≥ 2 be fixed. Then the discrete

logarithm problem in the degree 0 class groups of curves of genus g over

finite fields can with a randomized algorithm be solved in an expected time

of

Õ(q2−
2
g ) ,

where Fq is the ground field of the curve.

We remark that the algorithm has storage requirements of Õ(q
1− 1

g
+ 1

g2 ).

More concretely, although the algorithm is randomized, there exists a func-

tion in Õ(q
1− 1

g
+ 1

g2 ) such that the storage requirements are bounded by this

function for every run.

For hyperelliptic curves in imaginary quadratic representation such that

the degree 0 class group is cyclic or a basis of the group is known, the result

was already obtained in [GTTD07]. As already mentioned in subsubsection

3.2.6.2 the result in [GTTD07] is proven with an algorithm which follows

the strategy of “direct computation of a tree”. With minor modifications,

this algorithm also applies to arbitrary curves, and on a heuristic basis, the

“simplified algorithm” leads to the result in Theorem 1.

On the proof of Theorem 1

We now give an outline of the proof of Theorem 1.

First we give an index calculus algorithm with double large prime vari-

ation which gives rise to the following proposition.
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Proposition 3.16 Let us fix some g ≥ 2. Then there exists a randomized

algorithm such that the following holds: Upon input of a curve C/Fq, ele-

ments a, b ∈ Cl0(C) with b ∈ 〈a〉 and a generating system c1, . . . , cu whose

size is polynomially bounded in log(q), the algorithm outputs the discrete

logarithm of b to with respect to a. The expected running time of the algo-

rithm is in Õ(q
2− 2

g ). Moreover, the algorithm has storage requirements of

Õ(q
1− 1

g
+ 1

g2 ). More precisely, the algorithm uses only the first Õ(q
1− 1

g
+ 1

g2 )

registers for LOAD and STORE operations, and each register always contains

elements whose bit-length is polynomially bounded in log(q).

The algorithm is given in the next subsection and the analysis in subsection

3.3.3.

Then we show the that there is an efficient algorithm which outputs a

small system of divisor classes of degree 0 which generates the degree 0 class

group with high probability (see subsection 3.3.5):

Proposition 3.17 Let us fix some g ≥ 1. Then there exists a random-

ized algorithm such that the following holds: Upon input of a curve C/Fq

(as always represented by a plane model of degree ≤ dmax) and a divisor

D0 of degree 1 and height polynomially bounded in log(q), the algorithm

computes a system of random elements c1, . . . , cu of Cl0(C), represented by

along D0 reduced divisors, where u := eℓ with e := ⌈log2(# Cl0(C))⌉ and

ℓ := ⌈log2(e)+1⌉. Moreover, expected running time is polynomially bounded

in d and log(q), and with a probability ≥ 1
2 , the system c1, . . . , cu is a gen-

erating system of Cl0(C).

A problem is however that we do not know how one can in a sufficiently

efficient way certify that the output is indeed a generating system. As a

work-around, we proceed as follows: We assume that we have a generating

system and apply the index calculus algorithm. We stop the computation if

it has not terminated within a predefined time.

An obvious consequence of Proposition 3.16 is:

Proposition 3.18 Let us fix some g ≥ 2. Then there exists a randomized

algorithm such that the following holds: Upon input of a curve C/Fq, el-

ements a, b ∈ Cl0(C) with b ∈ 〈a〉 and a system c1, . . . , cu of elements in

Cl0(C) with u polynomially bounded in log(q), the algorithm either fails or

outputs the discrete logarithm of b with respect to a. The running time of

the algorithm is in Õ(q
2− 2

g ), and if c1, . . . , cu is a generating system, the

probability of failure is ≤ 1
2 . The algorithm has storage requirements of

Õ(q
1− 1

g
+ 1

g2 ).
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Indeed, let us fix a bit-RAM Π satisfying the claim in Proposition 3.16,

and let δ > 0 such that the bit-RAM terminates in an expected time of

q2−
2
g · log(q)δ if applied to an instance as in Proposition 3.16. We apply this

bit-RAM with the input of Proposition 3.18 and terminate the execution if

a time of ⌈2 · q2−
2
g · log(q)δ⌉ is exceeded – provided the algorithm has not

terminated at this point in time. (For this we “mix” the Turing machines

for the commands with “control units” which measure the running times

and terminate if necessary, and we mix Π with similar “control units”.)

By Markov’s bound we have: If c1, . . . , cu is a generating system, with a

probability of ≥ 1
2 , the algorithm outputs the discrete logarithm of b with

respect to a.

Note here that just from the statement on the running time we cannot

conclude that we indeed the running time is in Õ(q2−
2
g ). It has to be ruled

out that very expensive LOAD and STORE operations are performed, com-

mands whose running time is not in Õ(q2−
2
g ). However, as stated in 3.16

every LOAD and STORE command is executed in a time which is polyno-

mially bounded in log(q). 2

The proof of Theorem 1 is now easy:

So let g ≥ 2 be fixed. Now given an instance (C, a, b) with g(C) = g

as described above, we proceed as follows: First we apply an algorithm for

which Proposition 3.17 holds; let the result be c1, . . . , cu. Then we apply

an algorithm for which Proposition 3.18 holds to C, a, b and the system

c1, . . . , cu. The expected running time is then in O(q
2− 2

g ), and moreover,

the probability of failure is ≤ 3
4 . This implies Theorem 1. 2

3.3.2 The index calculus algorithm

Let g ≥ 2 be fixed. We now describe the index calculus algorithm which

leads to Proposition 3.16. As already stated, the algorithm uses double large

prime variation. We do so by computing a tree of large prime relations. The

main challenge resides in controlling the growth of the tree of large prime

relations as well as its depth, that is, the maximal distance of any vertex

to the root. This task is more difficult than for hyperelliptic curves in

imaginary quadratic representation, where one has a concrete description of

the effective divisors which are reduced along the point at infinity, and one

knows that the growth process is very regular.

In the algorithm below we employ the strategy of “stage-wise compu-

tation of a tree” in subsubsection 3.2.6.2. The reason why we adopt this

strategy is that it is then immediate that the depth of the tree (not only the

expected value of the depth) lies in O(log(q)).

The algorithm is a realization of the “general algorithm” of the previous
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section. It therefore relies on subroutines for a) computation of the group

order, b) factorization, c) generation of a factor base and precomputation as

well as d) relation generation, e) linear algebra. Algorithms for factorization

and for linear algebra where already discussed above.

We now outline procedures for a), c) and d) which lead to Proposition

3.16.

a) Computation of the group order

The L-polynomial of a curve over Fq given by a plane model of bounded

degree can be computed (with a deterministic algorithm) in a time which

is polynomially bounded in log(q). (This follows from [Pil91, Theorem H]

which in turn relies on Pila’s extension of the point counting algorithm by

Schoof ([Sch85]) to abelian varieties ([Pil90]).) This means in particular that

the order of the degree 0 class group can be computed in polynomial time

in log(q).

In the following description as well in the analysis of subroutine c) and

d) in the next subsection, we implicitly assume that certain lower bounds

on q are satisfied. In the analysis in the next subsection, we then state

further lower bounds which have to be satisfied in order that the analysis

holds. If these bounds are not satisfied, the algorithm might fail (it might

stop without a result or not terminate in finite expected time). Note that

the number of isomorphism classes of curves for which the algorithm fails

is finite. As usual, one obtains an algorithm which always terminates in a

finite expected time by running the algorithm “in parallel” with a brute-force

computation.

c) Construction of the factor base and the graph of large prime
relations

Let an instance as described in Proposition 3.16 be given: Let C be a curve

of genus g over Fq, let a, b ∈ Cl0(C), and let c1, . . . , cu be a generating

system of Cl0(C). Moreover, let N := # Cl0(C). As usual, let C be given

by a plane model which in turn is given by a homogeneous polynomial

F (X,Y,Z) ∈ Fq[X,Y,Z].

In the procedure, a point P0 ∈ C(Fq) is fixed and divisor classes are

represented by along P0 reduced divisors. The procedure uses a factor base

F = {F1, F2, . . .} ⊆ C(Fq)− {P0} of size ⌈q1−
1
g ⌉, and the set of large primes

is L := C(Fq)− (F ∪ {P0}).

Construction of the factor base We first enumerate the points in C(Fq).

Then we fix a point P0 (if such a point exists) and an enumerated factor
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base F ⊆ C(Fq)− {P0} of size ⌈q1−
1
g ⌉ (if this is possible).

The tree of large prime relations We construct a tree of large prime

relations whose vertex set is contained in L ∪̇ {∗}.
In the following, we always represent divisor classes by along P0 reduced

divisors in free ideal representation. We therefore change the representa-

tion of the divisor classes a, b, c1, . . . , cu from along D0 to along P0 reduced

divisors.

Then we proceed as follows: We repeatedly choose uniformly randomly

s1, . . . , su ∈ Z/NZ and compute the along P0 reduced effective divisor D in

free representation with

[D]− deg(D) · [P0] =
u∑

j=1

sj cj , (3.8)

where P0 ∈ C(Fq) is the point computed above. (As stated, P0 takes the

role of D1 in the “general algorithm”.)5 ,6 Note that by Proposition 2.117

and the representation of the curve by a plane model of bounded degree,

the computation of D is possible in an expected time which is polynomially

bounded in log(q).

As already mentioned, we construct the tree in stages, and during each

stage we only attach edges to the tree which are connected to vertices con-

structed in the previous stage. In Stage 1, we attach ⌈q1−1/g⌉ edges coming

from FP relations to the root ∗. Thereafter, we terminate Stage s and start

Stage s+ 1 whenever the tree has 2s−1 · ⌈q1−1/g⌉ edges.

The construction of the tree is abandoned if a predefined number of

edges Nmax is reached. We could for example set Nmax := ⌈q/4⌉. We will

however argue in the analysis of the algorithm in the next subsection that

Nmax := ⌈q1−1/g+1/g2⌉ suffices. This smaller value of Nmax only lowers the

time for the construction of the tree by a constant factor but decreases

the storage requirements substantially. This is analogous to the situation

in [GTTD07].

Let us fix this notation.

Notation 3.19 The set of vertices of a tree T is also denoted by T .

Altogether, we have the following procedure for construction of a suitable

tree of large prime relations. In the procedure we construct a labeled tree

5Note here that by the fixed representation of divisor classes, to compute the divisor
D is the same as computing the sum

Pu
j=1 sj cj in the degree 0 class group.

6As usual, we apply the command RAND to choose the si. (Such that these elements
are chosen independently of each other.)
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called T . The edges of the tree are labeled with the corresponding relations;

the vertices are labeled too, namely with the stage at which they inserted

into the tree. We denote the subtree of T which has been constructed until

(including) stage s by Ts. With other words: A vertex of T occurs in Ts if

and only if its label is ≤ s.

Procedure: Construction of the tree of large prime relations

Construct a tree T with vertex set contained in L ∪̇ {∗} as follows:

Let T consist only of the root ∗.
Let Nmax ←− ⌈q1−1/g+1/g2⌉
Let s←− 1.

Repeat

Repeat

Choose s1, . . . , su ∈ Z/NZ uniformly and independently at random.

Compute the along P0 reduced divisor D in free representation with

[D]− deg(D) · [P0] =
∑

j sjcj .

If D splits as D =
∑

j rjFj + cPP + cQQ where cP > 0, cQ > 0

and P ∈ F ∪ Ts−1 and Q ∈ L − (F ∪ T ),

if P ∈ F (i.e. if we have an FP relation),

insert Q and an edge from ∗ to Q into T

if P ∈ Ts−1 (i.e. if we have a PP relation),

insert Q and an edge from P to Q into T .

In both cases label Q with s and the edge with (rj)j (in sparse

representation).

Until T contains min{2s−1 · ⌈q1−1/g⌉, Nmax} edges.

If the number of edges equals Nmax, STOP.

Let s←− s+ 1.

This construction of the tree guarantees that the depth of the tree is

always in O(log(q)) (see also inequality (3.15) in the next subsection). The

main difficulty of the analysis of the procedure resides in proving that a tree

of sufficient size can be constructed in an expected time of Õ(q2−2/g). This

is verified in the next subsection.

d) Relation generation

We come to the relation generation procedure. Recall that we have the

following specification of the relation generation procedure: If applied to a

result of the procedure for generation of the factor base and precomputation

as well as an element g ∈ Cl0(C), it should output vectors (rj)j and (sj)j
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over Z/NZ defining a relation
∑

j

rj [Fj ]− (
∑

j

rj deg(Fj)) · [P0] =
∑

j

sjcj + c . (3.9)

So let us assume that the factor base has been chosen and a tree of large

prime relations T as above has been constructed, and let g ∈ Cl0(C). Then

we repeatedly choose s1, . . . , su uniformly at random and compute the along

P0 reduced divisor D in free representation such that

[D]− deg(D) · [P0] =

u∑

j=1

si cj + c , (3.10)

until D splits over F ∪ T . If this is the case, we use the tree to substitute

the large primes involved. Like this we obtain a Full relation. We output

this relation.

3.3.3 Analysis of the index calculus algorithm

We now show that with the subroutines described above, one can with the

“general algorithm” given in subsection 3.2.3 compute a solution to the

discrete logarithm problem in an expected time of Õ(q2−2/g) (as always for

fixed genus g ≥ 2, and moreover if the size of the generating system is

polynomially bounded in log(q)).

Steps 1 and 2 – computation of the group order and factorization,
setting up of the ideal representation

We have already argued that one can perform these steps in an expected

time of Lq[
1
2 , 1 + o(1)]. Therefore, these steps are not time critical.

Step 3 – construction of the factor base and the tree of large prime
relations

Construction of the factor base One can iterate over all points of C(Fq)

in an expected time of Õ(q) as follows: Let us assume wlog. that the covering

x : C −→ P1
Fq

is separable. (Thus in Step 2 of the “general algorithm”, this

covering is considered.) Then using the ideal representation, we proceed

as follows: We iterate over all points of P1(Fq), and for each such point

P we consider its preimage x−1(P ) in C (a trivial operation in joint ideal

representation). We compute the free representation of x−1(P ), which is

possible in an expected time which is polynomially bounded in log(q) by

Proposition 2.86.

In particular, we can find a point P0 (if such a point exists) and an

appropriate factor base in an expected time of Õ(q).
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Construction of the tree of large prime relations We come to the

analysis of the growth of the tree of large prime relations. The analysis relies

crucially on the following proposition.

Proposition 3.20 For curves of fixed genus g over finite fields Fq, the num-

ber of special effective divisors of degree g is in O(qg−1).

Recall that an effective divisor D is called special if the linear system |K−D|
is non-empty, where K is a canonical divisor. Note that by the Riemann-

Roch theorem, an effective divisor of degree g is non-special if and only if it

is the only if the linear system |D| merely contains D itself.

Note that map D 7→ [D] gives an injection from the set of non-special

divisors of degree g into the set of divisor classes of degree g, and therefore,

the map D 7→ [D−P0] gives an injection from the set of non-special divisors

of degree g into the degree 0 divisor class group. Then we can apply the

bijection between the degree 0 class group and the set of along P0 reduced

divisors.

Explicitly, let D be a non-special effective divisor of degree g, and let

D′ be the unique effective divisor of minimal degree with D′ + (deg(D) −
deg(D′)) · P0 = D. Then D′ is reduced along P0, and it is the along P0

reduced divisor which represents the class [D].

We assume that Proposition 3.20 is well known to many experts in curves

and function fields. For the lack of a suitable reference we give a proof in the

next subsection. Note that a straightforward application of the Hasse-Weil

bound merely gives that the number in question is in O(qq−1/2).

This proposition makes it possible to discard all special divisors in the

analysis of the construction of the tree of large prime relations.

Let C > 0 be such that for all curves of genus g over any finite fields Fq

the number of special divisors of degree g is ≤ C · qg−1.

As in the previous subsection, let Nmax := ⌈q1−1/g+1/g2⌉ be the number

of edges (that is, the number of vertices different from ∗) at which the

construction of the tree is stopped.

The conditions

Nmax + #F ≤ q/4 #(C(Fq)− {P0}) ∈ [max{q1−
1
g , q/2}, 2q]

# Cl0(C) ≤ 2qg q ≥ (4 · g! · C)g

hold for q ≫ 0, that is, for q large enough; we assume that they are satisfied.

Note that by our assumption that c1, . . . , cu generate Cl0(C), if s1, . . . , su

are uniformly distributed random elements from Z/NZ,
∑

i sici is uniformly

distributed in Cl0(C). This means that the divisor D in (3.8) is uniformly

distributed in the set of all effective divisors which are reduced along P0.
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By our assumptions on q, we always have

#(C(Fq)− (T ∪ F ∪ {P0}) ≥ q/2− q/4 = q/4 . (3.11)

Let Divg(C) be the set of effective divisors of degree g on C, and let

Divg,ns(C) (resp. Divg,s(C)) be the subset of non-special (resp. special) effec-

tive divisors of degree g.

Let us first assume that we are still in Stage 1, that is, only relations

with one large prime (not yet in the tree) are considered.

Let us thus assume we are given the tree T with < ⌈q1−1/g⌉ edges. We

want to bound the expected number of relations (3.8) needed until a new

edge is inserted into the tree.

Let

D :=
{
P1 + · · ·+ Pg ∈ Divg(C) | ∀i = 1, . . . , g − 1 : Pi ∈ F ,

Pg ∈ C(Fq)− (T ∪ F ∪ {P0})
}
,

Dns := D ∩Divg,ns(C) .

Note that any divisor D ∈ Dns is reduced along P0 (because P0 is not

contained in the support of D and the linear system |D| consists merely of

D). If a divisorD = P1+· · ·+Pg as in the set Dns appears in a relation (3.8),

a new edge is inserted into the tree. (Other divisors might also lead to new

edges: We ignore FP relations which involve a larger multiple of the large

prime, we ignore non-special divisors, and we ignore divisors of degree < g.)

We have

#D =
(#F+g−2

g−1

)
·#
(
C(Fq)− (T ∪ F ∪ {P0})

)
≥ #Fg−1

(g−1)! · q/4 by (3.11)

≥ 1
4(g−1)! · q

(g−1)2

g · q = 1
4(g−1)! · q

g2−g+1
g = 1

4(g−1)! · q
g−1+ 1

g .

(3.12)

By our assumption that q ≥ (4 · g! · C)g, we have

# Divg,s(C) ≤ Cqg−1 ≤ 1

4g!
· qg−1+ 1

g ≤ 1

8(g − 1)!
· qg−1+ 1

g . (3.13)

Inequalities (3.12) and (3.13) imply

#Dns ≥ 1

8(g − 1)!
· qg−1+ 1

g .

Together with our assumption that # Cl0(C) ≤ 2qg, this implies that the

probability that a relation (3.8) enlarges the tree is

≥ #Dns

# Cl0(C) ≥
1

16(g − 1)!
· q−(1− 1

g
)
.
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The expected number of relations (3.8) which have to be considered until

the tree is enlarged is thus

≤ 16(g − 1)! · q1−
1
g .

This implies that the expected number of tries until the tree has ⌈q1−
1
g ⌉

edges is

≤ 16(g − 1)! · q1−
1
g · ⌈q1−

1
g ⌉ ≤ 16(g − 1)! · (q + 1)

2− 2
g .

We now assume that s ≥ 2 and a tree T with < 2s−1 · ⌈q1−1/g⌉ edges

containing a subtree Ts−1 with 2s−2 · ⌈q1−1/g⌉ edges, has already been con-

structed. The task is again to derive a bound on the expected number of

relations (3.8) needed until the tree is enlarged.

Similarly to above, let

D :=
{
P1 + · · · + Pg ∈ Divg(C)| ∀i = 1, . . . , g − 2 : Pi ∈ F ,

Pg−1 ∈ F ∪ Ts−1, Pg ∈ C(Fq)− (T ∪ F ∪ {P0})
}
,

Dns := D ∩Divg,ns(C) .

We now have

#D =
((

#F+g−2
g−1

)
+
(
#F+g−3

g−2

)
·#(Ts−1 − {∗})

)
·#
(
C(Fq)− (T ∪ F ∪ {P0})

)

≥ (#Fg−1

(g−1)! + #Fg−2

(g−2)! · 2s−2 · q1−1/g) · q/4

≥ ( 1
(g−1)! · q

(g−1)2

g + 1
(g−2)! · 2s−2 · q

(g−1)2

g ) · q/4

= ( 1
4(g−1)! + 1

4(g−2)! · 2s−2) · qg−1+ 1
g .

(3.14)

Together with (3.13), this implies

#Dns ≥ 1

4(g − 2)!
· 2s−2 · qg−1+ 1

g .

This implies that the probability that a relation (3.8) enlarges the tree is

≥ 1

8(g − 2)!
· 2s−2 · q−(1− 1

g
)
.

The expected number of relations (3.8) which have to be considered until

the tree is enlarged is thus

≤ 8(g − 2)! · 1

2s−2
· q1−

1
g .
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This implies that given any tree Ts−1 with 2s−2 · ⌈q1−
1
g ⌉ edges, the expected

number of tries until a tree T with min{2s−1 · ⌈q1−
1
g ⌉, Nmax} edges is con-

structed is

≤ 16(g − 2)! · (q + 1)
2− 2

g .

We have s ∈ O(log(q)) as can be easily be seen: During the execution of

the procedure we always have for s ≥ 2

2q ≥ #(T − {∗}) ≥ #(Ts−1 − {∗}) = 2s−2 · ⌈q1−
1
g ⌉ ,

i.e.

s ≤ log2(q
1
g ) + 3 =

1

log(2) · g · log(q) + 3 ∈ O(log(q)) . (3.15)

It follows that in total an expected number of O(log(q) · q2−
2
g ) relations

(3.8) have to be considered until the tree has Nmax edges. As each of these

relations can be obtained in an expected time which is polynomially bounded

in log(q), we conclude that a tree with Nmax edges can be constructed in an

expected time of

Õ(q
2− 2

g ) .

Note that the depth of the tree is always bounded by s. In particular,

as s ∈ O(log(q)), the depth of the tree is also in O(log(q)).

Step 4 – relation generation

We now assume we have constructed a tree T with Nmax = ⌈q1−
1
g
+ 1

g2 ⌉ edges.

Similarly to above let

D :=
{
P1 + · · ·+ Pg ∈ Divg(C)| ∀i = 1, . . . , g : Pi ∈ F ∪ (T − {∗})

}
,

Dns := D ∩Dg,ns .

Then D contains ≥ 1
g! · (#F + #(T −{∗}))g ≥ 1

g! · q
g−1+ 1

g elements. By the

first two inequalities of (3.13), Dns contains at least 3
4g! · q

g−1+ 1
g elements.

This means that the probability that the divisor D in relation (3.8) splits

into elements of the factor base or vertices of the tree is

≥ 3

8g!
· q−(1− 1

g
)
.

The expected number of relations (3.10) which have to be considered in

each call to the relation generation procedure is therefore in O(q
1− 1

g ). As

each relation (3.10) can be obtained in an expected time which is polynomi-

ally bounded in log(qg), this means that the expected running time of the

relation generation procedure is in Õ(q
1− 1

g ).
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In the relation generation part of the algorithm (Step 4 of the general

algorithm), we have to generate Õ(#F) = Õ(q1−
1
g ) “combined” Full rela-

tions. This means that the total running time of this step of the algorithm

is in Õ(q2−
2
g ).

Step 5 – linear algebra

The linear algebra takes place on a sparse matrix with Õ(q1−1/g) rows and

O(q1−1/g) columns.

As the tree has depth O(log(q)) and the size of the generating system

is by assumption polynomially bounded in log(q), every row of the matrix

(R|S) contains only Poly(log(q)) non-zero entries. By Proposition 3.8, the

computation can then be performed in an expected time of Õ(q2−2/g).

Final result

We have seen that Steps 1 – 5 of the algorithm all have an expected running

time of Õ(q
2− 2

g ). Moreover, we have argued in subsection 3.2.4 that after an

expected number of O(log log(N)) ⊆ O(log(q)) restarts of the computation

of the matrix (R|S), the linear algebra computation leads the solution to

the discrete logarithm problem. This means that the total running time is

in

Õ(q
2− 2

g ) ,

in accordance with the statement in Proposition 3.16.

Storage requirements

Clearly there exists a function in Õ(q
1− 1

g
+ 1

g2 ) such that the storage re-

quirements for the tree are bounded by this function for every run of the

algorithm.

The storage requirements for the matrix are (for every run of the al-

gorithm) bounded by a function in Õ(q1−
1
g ). Note again that this is the

case because we restart the construction of the matrix every time the linear

algebra computation fails instead of inserting a new row.

3.3.4 On the number of special divisors

The purpose of this subsection is to prove Proposition 3.20.

We consider curves of a fixed genus g over finite fields.

Let C be such a curve over Fq. Let Divg(C) be the set of effective divisors

of degree g on C, and let D0 be an divisor of degree g on C. We have the

surjective map Divg(C) −→ Cl0(C),D 7→ [D] − [D0]. Note that the set of
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special divisors of degree g is exactly the subset of Divg(C) where the map

to Cl0(C) is not injective.

The number of special divisors is therefore bounded from above by

2 (# Divg(C)−# Cl0(C)), and it suffices to prove that # Divg(C)−# Cl0(C) ∈
O(qg−1).

We follow the exposition to the zeta-function in [Sti93]. Note however

that we use different symbols for the indices.

Let L =
∏2g

i=1(1 − αit) ∈ C(t) be the L-polynomial of C, let An be the

number of effective divisors of degree n, let Bn be the number of prime

divisors of degree n on C, and let7

Sn :=

2g∑

i=1

αn
i .

As the αi can be arranged such that αiαg+i = q for all i = 1, . . . , g, we have

# Cl0(C) = L(1) ∈ qg − S1 · qg−1 +O(qg−1) .

We thus have to show that

Ag ∈ qg − S1 · qg−1 +O(qg−1) .

We will in fact show the more general statement

An ∈ qn − S1 · qn−1 +O(qn−1) (3.16)

for any fixed n ∈ N.

Let us fix the following definition.

Definition 3.21 Let D be an effective divisor of degree n on C such that

D =
∑n

ℓ=1Dℓ, where Dℓ is a sum of eℓ prime divisors of degree ℓ. Then the

vector e = (eℓ)ℓ ∈ N n
0 (with

∑
ℓ ℓeℓ = n) is called the decomposition type of

D.

By sorting effective divisors of degree n by decomposition types, we obtain

An =
∑

e

∏

ℓ

(
Bℓ + eℓ − 1

eℓ

)
, (3.17)

where the sum runs over all e ∈ N n
0 with

∑
ℓ eℓℓ = n and the products run

over ℓ ∈ {1, . . . n}. We have

A1 = B1 = q + 1− S1 ,

7The definition of Sn follows Equation (2.25) in [Sti93]. In [Sti93, Corollary V.1.17] an
analogous definition is made with opposite sign.
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which establishes the claim for n = 1. So let n ≥ 2. By [Sti93, Proposition

V.2.9], we have

Bℓ =
1

ℓ
·
∑

m|ℓ
µ
( ℓ
m

)
(qm − Sm) ∈ 1

ℓ
· qℓ +O(qℓ/2)

⊆ 1

ℓ
· qℓ +O(qℓ−1)

(3.18)

for ℓ ≥ 2.

This implies that

An ∈
∑

e

1

e1!
(q − S1)

e1 ·
∏

ℓ≥2

1

eℓ!
· 1

ℓeℓ
· qℓ·eℓ +O(qn−1)

⊆
∑

e

(
∏

ℓ

1

eℓ!
· 1

ℓeℓ
) · (qn − e1 · S1 · qn−1) +O(qn−1) .

In order to derive (3.16) it remains to be shown that

∑

e

∏

ℓ

1

eℓ!
· 1

ℓeℓ
= 1 (3.19)

and ∑

e

e1 ·
∏

ℓ

1

eℓ!
· 1

ℓeℓ
= 1 . (3.20)

Equation (3.19) is equivalent to

∑

e

∏

ℓ

n!

eℓ!
· 1

ℓeℓ
= n! . (3.21)

This is true because for any e ∈ N n
0 with

∑
ℓ eℓℓ = n, the set of permutations

on n elements having exactly eℓ ℓ-cycles (for ℓ = 1, . . . , n) has
∏

ℓ
n!
eℓ!
· 1

ℓeℓ

elements.

We come to Equation (3.20). Note that we have a bijection

{e ∈ N n
0 |
∑

ℓ eℓℓ = n, e1 6= 0} −→ {e′ ∈ N n−1
0 | ∑ℓ e

′
ℓℓ = n− 1} ,

e 7→ e′

with e′1 = e1 − 1 and e′i = ei for all i = 1, . . . , n− 1.

Equation (3.20) is then equivalent to

∑

e′

∏

ℓ

1

e′ℓ!
· 1

ℓe
′
ℓ

= 1 , (3.22)

where the sum runs over all e′ ∈ N n−1
0 with

∑
ℓ e

′
ℓℓ = n−1 and the products

run over ℓ ∈ {1, . . . , n− 1}. We already know that this equation is true.
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3.3.5 Finding a generating system

The main purpose of this subsection is to show Proposition 3.17. Note that

in Proposition 3.17 we only consider curves of a fixed genus, represented by

plane models of bounded degree. In this subsection, we consider arbitrary

curves over finite fields. We show below how one can efficiently compute

a small system of degree 0 divisor classes which with a probability ≥ 1
2

generates the degree 0 class group, provided the L-polynomial is known (see

Proposition 3.29). Proposition 3.17 follows from this statement and the fact

– already mentioned in subsection 3.3.2 –, that one can then compute the

L-polynomial in a time which is polynomially bounded in log(q) ([Pil90],

[Pil91]). On our way to prove Proposition 3.29, we also show how one

can efficiently compute uniformly randomly generated divisors of a specific

degree, provided one knows the L-polynomial, a result which might be of

independent interest (see Proposition 3.28).

As usual, curves are represented by plane models, and divisors are given

in ideal representation.

Proposition 3.22 Given a curve C over a finite field Fq, represented by a

plane model of degree d, and a natural number n one can with a randomized

algorithm

• decide if C has an Fq-rational point

• if this is the case compute such a point which is uniformly randomly

distributed in C(Fq)

in an expected time which is polynomially bounded in d and log(q).

Proof. As in subsection 2.5.4, we assume that the covering x|C : C −→ P1
Fq

is separable. As usual we set r := deg(x|C).

By the Hasse-Weil bound, we have #C(Fq) ≥ q+1−2gq1/2. This means

that for q ≥ 4g2, C(Fq) is non-empty. The algorithm depends on a case

distinction:

If q < d4 we compute a list of the elements in C(Fq) by iterating over

all elements P of P1(Fq) and computing for each such P the divisor x−1
|C (P )

in free representation. If it turns out that C(Fq) is empty, we output that

this is the case, otherwise we choose one of the points in C(Fq) uniformly at

random. We have already argued in subsection 3.3.3 that this computation

can be performed in an expected time which is polynomially bounded in d

and q, that is, in an expected time which is polynomially bounded in d as q

is also polynomially bounded in d by assumption.

If q ≥ d4 (such that q > 4g2 and therefore C(F) 6= ∅), we proceed with

the following algorithm.
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Algorithm for computation of a uniformly randomly distributed
rational point on a curve over a finite field

Input: A curve C, represented by a plane model.

1. Choose a point P ∈ P1(Fq) uniformly at random.

2. Compute x−1(P ) in free representation.

3. Let P1, . . . , Pa be the distinct Fq-rational points occurring in x−1(P ).

(The other prime divisors in the support of x−1(P ) are ignored, and a = 0

is possible.)

4. Choose a number i in {1, . . . , r} uniformly at random.

5. If i ≤ a, output Pi, otherwise go back to Step 1.

Without any assumption on q and g, this algorithm computes a uniformly

randomly distributed point in C(Fq) provided that this set is non-empty, as

we show now.

The computation of Steps 1 – 5 can be performed in an expected time

which is polynomially bounded in d and log(q) (see in particular Proposition

2.86).

Let us analyze the algorithm: After Step 4 the following always holds:

The random variable (P, i) is uniformly distributed on the set P1(Fq) ×
{1, . . . , r}, which has (q+1) · r elements. This means that in every iteration

of the algorithm, the probability that the algorithm terminates in Step 5 is

always
#C(Fq)
(q+1)·r , and if this is the case, every point in C(Fq) is chosen with the

same probability of 1
#C(Fq) .

It follows that the output of the algorithm is a uniformly randomly

distributed element in C(Fq). Moreover, the expected number of iterations

is (q+1)·r
#C(Fq) . In order to prove the proposition, we therefore have to show that

the quantity q+1
#C(Fq) is polynomially bounded in d and log(q); we show that

it is polynomially bounded in g (which in turn is polynomially bounded in

d).

We have #C(Fq) ≥ q+1−2gq1/2 by the Hasse-Weil bound. For q ≥ 16g2

we have #C(Fq) ≥ q
2 + 1, and therefore q+1

#C(Fq) ≤ 2. On the other hand, for

q < 16g2 the quantity q+1
#C(Fq) is clearly polynomially bounded in g. 2

Proposition 3.23 Given a curve C over a finite field Fq, represented by a

plane model of degree d and a natural number n, one can with a randomized

algorithm

• decide if C has a prime divisor of degree n
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• if this is the case compute such a prime divisor which is uniformly

randomly distributed in the set of all prime divisors of C of degree n

in an expected time which is polynomially bounded in d, log(q) and n.

Proof. As in subsection 3.3.4, let Bn be the number of prime divisors of C
of degree n. Then we have (cf. [Sti93, Corollary V.2.10.]):

Bn ≥
qn

n
− (2 + 7g) · q

n/2

n

For q > (2 + 7g)2/n we therefore have Bn ≥ 1.

Similarly to the algorithm for the previous proposition, we have a case

distinction according to q > (2 + 7d2)2.

In both cases we consider Fqn-rational points of CFqn , which we represent

as described in the beginning of subsubsection 2.5.4.5. Note that given

such a point, one can compute the associated prime divisor (=closed point)

by computing the intersection of the corresponding prime ideal with the

function field Fq(C) as described in subsubsection 2.5.4.5 in a time which is

polynomially bounded in d, n and log(q).

If q ≤ (2 + 7d2)2, we iterate over all Fqn-rational points of CFqn (as

described at the beginning of the proof of Proposition 3.22). For each such

point we compute the associated prime divisor (=closed point) of C, and

check if this is a prime divisor of degree n. Like this we check if a prime

divisor of degree n on C exists, and if this is the case, we uniformly randomly

choose one.

So let now q > (2 + 7d2)2. Then in particular q > (2 + 7d2)2/n, and

therefore there is a prime divisor of degree n on C. Then the algorithm

is also easy: We first choose an Fqn-rational point of CFqn uniformly at

random compute the associated prime divisor (=closed point) of C. If the

prime divisor has degree n, we output it, otherwise we repeat this process.

Here we compute the Fqn-rational point using an algorithm for Propo-

sition 3.22 with the modifications described in subsubsection 2.5.4.5. The

expected time of one iteration is polynomially bounded in d, log(q) and n.

We therefore have to show that the number of iterations is polynomially

bounded in d, log(q) and n.

The number of points in C(Fqn) such that the associated prime divisor

has degree n is n · Bn. Therefore the probability that a uniformly dis-

tributed point in C(Fqn) does not give rise to a prime divisor of degree n is
#C(Fqn )−nBn

#C(Fqn) which is ≤ (2+9g)·qn/2

qn−2gqn/2 . For q ≥ (4 + 20g)n/2 this is ≤ 1
2 . 2

We aim at giving an efficient algorithm to compute a random effective

divisor which is uniformly randomly distributed in the set of all effective

divisors of a specific degree. We want to use the fact that we can efficiently
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compute prime divisors which are uniformly randomly distributed among all

prime divisors of a specific degree. Let us for this first fix the following usual

definition and the following notations which are inspired by the notations

in [Heß05]. Let us for this fix a curve C over a finite field.

Definition 3.24 Let n ∈ N0 and m ∈ N. Then an effective divisor on C of

degree n which is the sum of prime divisors of degree at most m is called

m-smooth or (n,m)-smooth.

Notation 3.25 Let n ∈ N0 and m ∈ N. Then the number of effective

divisors on C of degree n which split into prime divisors of degree ≤ m (resp.

= m, resp. ≥ m) is denoted by ψ≤(n,m) (resp. ψ=(n,m), resp. ψ≥(n,m)).

We also set ψ(n,m) := ψ≤(n,m), the number of (n,m)-smooth divisors.

Note that in the notation of subsection 3.3.4, ψ(n, n) = An.

Lemma 3.26 Given the L-polynomial of a curve of genus g over a finite

field Fq and two natural number m ≤ n, one can compute the numbers

ψ≤(n,m), ψ=(n,m) and ψ≥(n,m) in a time which is polynomially bounded

in n, g and log(q).

The proof of this lemma is inspired by the product formula for the zeta-

function. As in subsection 3.3.4 let An be the number of effective divisors

of degree n, and let Bn be the number of prime divisors of degree n. Then

the zeta-function is
∑

i∈N

Ait
i =

∑

D an eff. divisor

tdeg D =

∏

P a prime divisor

(1− tdeg(P ))−1 =
∏

ℓ∈N

(1− tℓ)−Bℓ .

Similarly, for all m ∈ N,

∑

i∈N

ψ≤(i,m)ti =
∏

ℓ≤m

(1− tℓ)−Bℓ , (3.23)

∑

i∈N

ψ=(i,m)ti = (1− tm)−Bm , (3.24)

and ∑

i∈N

ψ≥(i,m)ti =
∏

ℓ≥m

(1− tℓ)−Bℓ . (3.25)

The algorithm to compute ψ≤(n,m) is as folllows:

Let the an L-polynomial L(t) be given. We first compute S1, . . . , Sm via

Newton’s identities (that is, via the equation L′(t) = −L(t) · (∑∞
i=1 Sit

i))
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from the coefficients of the L-polynomial. From these we computeB1, . . . , Bm

using (3.18). Then we compute
∏

ℓ≤m(1−tℓ)Bℓ and the inverse of its residue

class modulo tn+1, which is
∑n

i=1 ψ≤(i,m) [t] i
(tn+1).

The other algorithms operate similarly. 2

Lemma 3.27 Given the L-polynomial of a curve g over a finite field Fq and

natural numbers n,m with m ≤ n, one can with a randomized algorithm

compute in an expected time which is polynomially bounded in g, n and

log(q) a random tuple e ∈ Nn
0 with

∑
ℓ eℓℓ = n whose distribution is equal to

the distribution of the decomposition type of a random effective divisor on C
which is uniformly distributed among all (n,m)-smooth divisors.

Proof. The algorithm operates in a recursive way and is based on partition-

ing the set of (n,m)-smooth divisors into subsets, according to how many

prime divisors (with multiplicities) of degree m occur in an (n,m)-smooth

divisor.

If m ≥ 2 and ℓ ∈ {0, . . . , ⌊ n
m⌋}, there are

ψ=(ℓm,m) · ψ(n − ℓm,m− 1)

(n,m)-smooth divisors of the form
∑ℓ

i=1 Pi + D′, where the Pi are prime

divisors of degree m and D′ is an m− 1-smooth divisor.

Algorithm to compute a random tuple reflecting the distribution
type of a random smooth divisor

Input: L, the L-polynomial of a curve over a finite field and two natural numbers

n,m. (The algorithm is called by A(L, n,m)).

If m = 1, output (n, 0, . . . , 0) ∈ N n
0 . Otherwise:

1. Compute ψ(n,m) and the numbers aℓ ←− ψ=(ℓm,m) ·ψ(n−ℓm,m−1)

for ℓ = 0, . . . , ⌊ n
m⌋.

2. Let bℓ ←−
∑ℓ

i=0 ai for i = 0, . . . , ⌊ n
m⌋; let b−1 ←− 0.

3. Choose a natural number x ≤ ψ(n,m) uniformly at random.

4. Determine ℓ such that x ∈ [bℓ−1 + 1, bℓ].

5. Output

(0, . . . , 0, ℓ, 0, . . . , 0) + (A(L, n − ℓm,m− 1) | 0) ∈ N n
0 ,

where the non-trivial entry in the first tuple is at index m and (A(L, n−
ℓm,m−1) 0) is the concatenation of the output of the algorithm applied

to L, n− ℓm,m− 1 and the zero-tuple of length ℓm.
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By the remarks above the algorithm, the distribution of the random

variable ℓ in the algorithm is equal to the distribution of the number of

(n,m)-smooth divisors being the sum of ℓ prime divisors of degree m and

an m− 1-smooth divisor.

It follows by induction onm that the algorithm operates correctly. More-

over, the running time is as claimed by Lemma 3.26. 2

We now easily obtain:

Proposition 3.28 Given a curve C over a finite field Fq, represented by a

plane model of degree d as well as its L-polynomial, one can with a ran-

domized algorithm compute a random effective divisor of degree n which is

uniformly randomly distributed in the set of all effective divisors of degree n

on C in an expected time which is polynomially bounded in d, log(q) and n.

Proof. Given the previous statements, the algorithm for this proposition

is straightforward: We compute a random tuple e ∈ Nn
0 with

∑
ℓ eℓℓ = n

whose distribution is equal to the distribution of the decomposition type of

a random effective divisor on C which is uniformly distributed among all

effective divisors of degree n.

Then for each ℓ = 1, . . . , n, we compute eℓ prime divisors Pℓ,i which are

uniformly distributed among the set of all prime divisors of degree ℓ.

We output the divisor
∑

ℓ

∑
i Pℓ,i.

By Proposition 3.23 and Lemma 3.27 these computations can be per-

formed in the claimed expected running time. 2

Proposition 3.29 Given a curve C over a finite field Fq, represented by

a plane model of degree d as well as its L-polynomial and a divisor D0 of

degree 1 whose height is polynomially bounded in d and log(q), one can with

a randomized algorithm compute a uniformly randomly distributed element

of Cl0(C), represented by an along D0 reduced divisor, in an expected time

which is polynomially bounded in d and log(q).

Proof. Every divisor of degree ≥ 2g− 1 is non-special. Therefore, if D is an

effective divisor which is uniformly distributed among all divisors of some

degree n ≥ 2g − 1, [D −D0] is uniformly distributed in Cl0(C). Moreover,

2g − 1 ≤ (d− 1)(d − 2)− 1.

In order to compute the desired uniformly distributed divisor class, we

first compute a uniformly distributed effective divisor D of degree (d−1)(d−
2)− 1, and then we compute its reduction along D0.

The computations can be performed in the claimed expected running

time by the previous proposition and Proposition 2.110. 2

We now prove:
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Proposition 3.30 There exists a randomized algorithm such that the fol-

lowing holds: Given a curve C over a finite field Fq, represented by a plane

model of degree d, as well as its L-polynomial and a divisor D0 of degree 1

whose height is polynomially bounded in d and log(q), the algorithm computes

a system of elements c1, . . . , cu ∈ Cl0(C), represented by along D0 reduced

divisors, where u := eℓ with e := ⌈log2(# Cl0(C))⌉ and ℓ := ⌈log2(e) + 1⌉.
Moreover, the expected running time is polynomially bounded in d and log(q),

and with a probability ≥ 1
2 , the system c1, . . . , cu is a generating system of

Cl0(C).

The proposition immediately follows from the preceding proposition and

the following lemma (cf. the proof of [Heß05, Lemma 50]).

Lemma 3.31 Let G be a finite abelian group with N elements, let e :=

⌈log2(N)⌉, ℓ := ⌈log2(e) + 1⌉, u := eℓ, and let g1, . . . , gu be uniformly dis-

tributed random elements of G. Then with a probability of ≥ 1
2 , g1, . . . , gu

generate G.

Proof. Let first H be a proper subgroup of G, and let g1, . . . , ga be uniformly

randomly distributed elements from G. Then as #H
#G ≤ 1

2 , with a probability

≤ 1
2a , all gi lie in H, that is, with a probability ≥ 1− 1

2a , H ( 〈H, g1, . . . , ga〉.
It follows by induction on b: Let a, b ∈ N, and let g1, . . . , gab be uniformly

randomly distributed elements from G. Then with a probability ≥ (1 −
1
2a )b ≥ 1− b

2a , 〈g1, . . . , ga〉 contains at least min{N, 2b} elements.

With b := e and a := ℓ, we have 2b ≥ N and b
2a ≤ 1

2 . The lemma thus

follows. 2

Proposition 3.17 follows from Proposition 3.30 and the fact – already

mentioned in subsection 3.3.2 – that for curves of a bounded degree over

finite fields, one can compute the L-polynomial in polynomially bounded

time in log(q), where q is the base field.

3.4 Index calculus for curves of lower-bounded

genus

3.4.1 Introduction and results

Previous works on computing discrete logarithms in class groups of curves

over finite fields have been directed in two distinct directions: In one class of

works, curves of a fixed genus are considered (cf. [Gau00], [Thé03], [GTTD07]

and also [Die06]). In the other class of works, only curves whose genus is is

a certain sense large against the bit-length of the cardinality of the ground

field are considered (cf. e.g. [Cou01], [Eng02], [EG02], [Heß05]). (Often more
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conditions are imposed, for example that the curves are hyperelliptic and

given in imaginary quadratic representation).

The algorithms in the first kind of works give rise to expected running

times which are exponential but not subexponential in qg whereas in the

second kind of works expected running times which are subexponential in

qg are established.

In this section, we break with this tradition by proving the following

result.

Theorem 2 Let some natural number g0 ≥ 2 be fixed. Then the discrete

logarithm problem in the degree 0 class groups of curves of genus ≥ g0 over

finite fields can with a randomized algorithm be solved in an expected time

of

Õ((qg)
2

g0
(1− 1

g0
)
) ,

where Fq is the ground field and g the genus of the curve.

Here as well as in the rest of this section, we assume that the curve is rep-

resented by a plane model of degree O(g) (which is possible by Proposition

2.6). As in Proposition 2.117, the divisor classes are represented by an

along a divisor D0 reduced divisors, where the height of D0 is polynomially

bounded in d, that is, polynomially bounded in g.

Note that this theorem clearly generalizes Theorem 1. Of course, the

expected running time is exponential and not subexponential in qg because

we cannot even for any fixed genus prove a subexponential expected running

time.

It is natural to bound the running time in terms of the number of ele-

ments in the degree 0 class group instead of qg. We show that the corre-

sponding statement then holds too:

Theorem 3 Let some natural number g0 ≥ 2 be fixed. Then the discrete

logarithm problem in the degree 0 class groups of curves C/Fq of genus ≥ g0
over finite fields can with a randomized algorithm be solved in an expected

time of

Õ((# Cl0(C))
2

g0
(1− 1

g0
)
) .

By applying Theorem 3 with g0 = 3 we obtain that one can solve the

discrete logarithm problem in degree 0 class groups of curves of genus ≥ 3

in an expected time of

Õ(# Cl0(C)) 4
9 ) = Õ((# Cl0(C)) 1

2 )
8
9 ) . (3.26)
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Outline of the proof

We give an outline of the proof of Theorems 2 and 3.

Below we prove the following result.

Proposition 3.32 Let C > 0 be fixed. Then there exists some g1 ∈ N

such that one can solve the discrete logarithm problem in the degree 0 class

groups of curves of genus ≥ g1 in an expected time of O((qg)C), where q is

the cardinality of the ground field and g is the genus.

We show how one can obtain Theorems 2 and 3 via this result and

Theorem 1. We first consider the statement in Theorem 2.

Let g0 be a natural number ≥ 2, and let C := 2
g0

(1 − 1
g0

). Let g1 be as

in the proposition for this constant C.

Then given an instance of the discrete logarithm problem with a curve of

genus g ≥ g0, we first compute its genus g (this is possible in poly-logarithmic

time by Proposition 2.96). Then we proceed with a case distinction. If the

genus is ≥ g1 we apply an algorithm which satisfies Proposition 3.32. If the

genus is < g1, we apply an algorithm which satisfies Theorem 1 for genus g

curves.

We now come to Theorem 3.

Note first that # Cl0(C) ∈ [(
√
q − 1)2g, (

√
q + 1)2g]. This implies that

# Cl0(C) ≥ (
√
q − 1)2g = (qg)

log((
√

q−1)2)

log(q) ≥ (qg)
log((

√
2−1)2)

log(2) .

Let now again g0 be a natural number ≥ 2, and this time let C :=
2
g0

(1 − 1
g0

) · log((
√

2−1)2)
log(2) , such that # Cl0(C)

2
g0

(1− 1
g0

) ≥ (qg)C . Let g1 again

be as in Proposition 3.32. Now again for curves of genus ≥ g1 we apply an

algorithm satisfying Proposition 3.32 and for curves of genus g < g1 (and

of course g ≥ g0) we apply an algorithm satisfying Theorem 1 for genus g

curves.

3.4.2 The algorithm

We now outline an algorithm for Proposition 3.32, accompanied by state-

ments on running times. The algorithm is substantially easier to state than

the index calculus algorithm in Section 3.3: It is a ”basic” index calculus

algorithm, and there is no precomputation like for example a construction

of a graph of large prime relations. The algorithm is closely related to the

algorithms in [Heß05], and we make use of various results from [Heß05].

We again wish to follow the “general algorithm” in subsection 3.2.3.

Recall that the input to the “general algorithm” not only consists of the
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curve and the two group elements a, b but also of a system of elements

c1, . . . , cu of the degree 0 class group. We could now proceed as in Section

3.3: Using a very small system which with probability ≥ 1
2 is a generating

system and terminating the algorithm if a predefined time bound is reached.

However, in the situation we are concerned with here, there is an easier

solution: It is shown in [Heß05] that one can compute a generating system

of a size which is polynomially bounded in q and g in an expected time

which is also polynomially bounded in q and g (see [Heß05, Theorem 34 and

Algorithm 35]).

Note that generally if any subroutine of our algorithm has an expected

running time which is polynomially bounded in q and g, then this subroutine

in particular has an expected running time of O(qCg) for g large enough.

Thus if such a subroutine is executed once or even a number of times which

is polynomially bounded in q and g, then the running time of this subroutine

is not critical for the establishment of the desired result.

We now describe the various subroutines for the ”general algorithm”; we

also discuss the expected running times of the routines.

Obviously, we only have to establish Proposition 3.32 for constants C of

the form C = 1
k for k ∈ N. So let k ∈ N be fixed, and let C := 1

k .

As usual, let us fix an instance consisting of a curve C/Fq, a, b ∈ Cl0(C)
and a generating system c1, . . . , cu.

a) Computation of the group order

A. Lauder and D. Wan have shown in [LW] that one compute the order of

the degree 0 class group of a curve over Fq given by a plane model of degree

d in a time which is polynomially bounded in q and d. (In fact, if q = pe

with p prime and n ∈ N, the running time is polynomially bounded in p, e

and d.) Note that as by our assumption d ∈ O(g), the running time is in

particular polynomially bounded in q and g.

c) Construction the factor base

We first compute the genus g. We fix a ”smoothness bound” m := ⌈ g
8k ⌉,

and let the factor base F be the set of prime divisors of degree ≤ m. Let

us assume (wlog.) that in Step 2 of the ”general algorithm”, the ideal

representation is set up with respect to the covering x|C : C −→ P1
Fq

. Then

we construct the set of prime divisors by iterating over all prime divisors

of degree ≤ m on P1
Fq

and considering the preimages under the covering

x|C : C −→ P1
Fq

.

The factor base has ≤ r · (q + 1)m elements, where r := deg(x|C). For

g ≥ 8k, we have m ≤ g
4k . As further r ≤ d ∈ O(g), the size of the factor
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base is then (for g ≥ 8k) in Õ(q
g
4k ), and the expected running time is also

in Õ(q
g
4k ).

d) Relation generation

Let c1, . . . , cu ∈ Cl0(C) be a generating system, and let c ∈ Cl0(C). Then

we proceed as follows: We choose s1, . . . , su uniformly at random and then

choose an effective divisor D uniformly at random in the class s1c1 + · · · +
sucu + c+(2g− 1) · [D0], which has degree 2g− 1. We compute the free rep-

resentation of D. If D is m-smooth, we have obtained a relation. Otherwise

we repeat the process.

Each iteration can be performed in an expected time of Poly(g log(q))·u.
Note also that as the random divisor class s1c1 + · · ·+sucu +c+(2g−1)[D0]

is uniformly distributed in the set of divisor classes of degree 2g − 1 and

divisors of degree ≥ 2g−1 are non-special, the random divisorD is uniformly

distributed in the set of all effective divisors of degree 2g − 1.

In order to bound the expected running time of this relation generation

procedure, we need a lower bound on the probability that a uniformly dis-

tributed random divisor of degree 2g − 1 is m-smooth. For this we can use

[Heß05, Theorem 8] which gives a much more precise statement than the

one we need. In fact, just from the fact that m ∈ Ω(2g − 1), we learn from

[Heß05, Theorem 8] that the probability in question is in gΩ(1).

This establishes that the expected running time of the relation generation

procedure is in Poly(g · log(q)) · u.

Analysis of the algorithm

It is now easy to establish that the algorithm gives rise to Proposition 3.32.

First, in Step 1 the expected running time is polynomially bounded in q

and d for the computation of the group order. The expected running time

for the factorization is in L# Cl0(C)[
1
2 ,O(1)] = Lq[

1
2 ,O(1)].

Let g2 ∈ N be a constant such that for g ≥ g2 the size of the generating

systems in O(q
g
4k ) and expected running time of the procedure to compute a

generating system is in O(q
g
4k ) too. Let us restrict to instances with g ≥ g2.

Let us – as already indicated in subroutine c) above – restrict to instances

which additionally satisfy g ≥ 8k, such that the size of the factor base is in

Õ(q
g
4k ) and the expected running time of the subroutine for generation of the

factor base too. The expected time for the generation of the relation matrix

is in Poly(g · log(q)) ·u · Õ(#F) ⊆ Õ(q
g
2k ). The size of the relation matrix is

in Õ(q
g
4k ), and the number of non-zero entries is in Õ(q

g
2k ). Therefore, the

expected time for the linear algebra is in Õ(q
3g
4k ).
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In total, for g large enough, the expected running time is in O(q
g
k ). This

establishes the result.

3.5 Index calculus for elliptic curves over exten-

sion fields

3.5.1 Introduction and results

In this section we show that the index calculus technique can also be suc-

cessfully applied to the discrete logarithm problem in elliptic curves over

finite non-prime fields.

We establish the following theorem.

Theorem 4 Let ǫ > 0. Then the discrete logarithm problem in the groups of

rational points of elliptic curves over finite fields Fqn with (2+ǫ)·n2 ≤ log2(q)

can with a randomized algorithm be solved in an expected time which is

polynomially bounded in q.

Here and in the following, q is a prime power and n a natural number.

The theorem leads to the following corollary.

Corollary 3.33 Let again ǫ > 0, and let a > 2 + ǫ. Then the discrete

logarithm problem in the groups of rational points of elliptic curves over

finite fields Fqn with (2 + ǫ) · n2 ≤ log2(q) ≤ a · n2 can be solved in an

expected time of

eO(1)·(log(qn))2/3
.

This corollary follows easily from the theorem. Indeed, restricted to in-

stances as in the corollary the elliptic curve discrete logarithm problem can

be solved in an expected time which is polynomially bounded in

q = 2log2(q) = 2(log2(q))(1+1/2)·2/3 ≤ 2(
√

a·n log2(q))2/3
.

We note that the corollary establishes for the first time that there exists

a sequence of finite fields of increasing size such that the elliptic curve dis-

crete logarithm problem over these fields can be an expected time which is

subexponential in the field size (or the group order or the input length).

When fixing the extension degree, we obtain the following result, which

is analogous to Theorem 1 in Section 3.3.
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Theorem 5 Let some natural number n ≥ 2 be fixed. Then the discrete

logarithm problem in the groups of rational points of elliptic curves over

finite fields Fqn can with a randomized algorithm be solved in an expected

time of

Õ(q2−
2
n ) .

Similarly to the algorithm for Theorem 1 the algorithm has storage require-

ments of Õ(q1−
1
n

+ 1
n2 ).

On the proofs

We give here a very brief overview of the algorithms leading to the above

theorems.

As already mentioned, the algorithms again follow the index calculus

method. From a macroscopic point of view we proceed as in the previous

index calculus algorithms in this work: We first compute a “potential gen-

erating system”, and then we follow the “general algorithm” in subsection

3.2.3.

Note that in Section 3.2 we consider the discrete logarithm problem in

degree 0 class groups of curves, but the general approach outlined there also

applies to elliptic curves if the consider the canonical isomorphism E(K) −→
Cl0(E), P 7→ [P − O] for an elliptic curve E/K. Note here also that for

computational purposes we represent degree 0 divisor classes on any curve

by divisors which are reduced along a fixed divisor of degree 1. Thus if we

fix the divisor O on an elliptic curve, the class [P − O] is represented by

P (for P 6= O). Thus to say that we compute in the degree 0 class group

Cl0(E) means by definition that we compute in E(K). In the following,

we use the corresponding capital letters to denote points corresponding to

divisor classes in the general algorithm (which are denoted there by small

letters). Divisors (apart from points in E(K) of course) are not used in the

following.

The most challenging aspects in the proofs of the above results lie (as

might be expected) in finding appropriate factor bases and efficient relation

generation procedures as well as in analyzing the procedures.

For the definition of the factor base and the relation generation we de-

part from the previous algorithms in this work: In contrast to the usual

approach in index calculus, we define the factor base in an algebraic rather

than an arithmetic way, and for the relation generation we solve systems of

multivariate polynomial equations.

Let us discuss the approach for Theorem 4:

Let E/Fqn be an elliptic curve. Then we compute a covering ϕ : E −→
P1

k of degree 2 which satisfies ϕ ◦ [−1] = ϕ as well as certain additional
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conditions. The factor base is then given by

{P ∈ E(Fqn) | ϕ(P ) ∈ Fq} , (3.27)

where as always we identify Fq = A1(Fq) with P1(Fq)− {0}.
The relation generation relies on an algorithm which we call decompo-

sition algorithm. Given an elliptic curve E/Fqn the extension degree n, a

covering ϕ as above and some point P ∈ E(Fqn), this algorithm either fails

or outputs a tuple (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ Fq or Pi = O for

i = 1, . . . , n such that

P1 + · · ·+ Pn = P .

The decomposition algorithm is based on solving multivariate systems of

polynomial equations over Fq. Of course it fails if there is no such tuple

(P1, . . . , Pn). But it also fails if the solution set of the associated multivariate

system is not zero-dimensional. We remark here that the most difficult part

of the proof is to show that for a uniformly distributed point P ∈ E(Fqn)

with a sufficiently high probability the solution sets to these systems are

indeed zero-dimensional. In order to prove this result, we pass to higher-

dimensional schemes over Fq by using so-called Weil restrictions. The proof

then relies crucially on intersection theory in (P1
Fqn

)n.

For Theorem 5 we proceed similarly. But now we let the factor base be

an appropriate subset of the set defined in (3.27). We then proceed with a

double large prime variation, similarly to the algorithm for curves of a fixed

genus in subsection 3.3.2.

Some historical comments

In Feb. 2004 I. Semaev put a preprint on the server of the International

Association for Cryptographic Research (IACR) in which he discussed the

possibility of index calculus in the groups of rational points on elliptic curves

over prime fields ([Sem04]). In his work, Semaev defined the factor base via

an upper bound on the x-coordinates of points.

He also introduced so-called summation polynomials: Let E be an el-

liptic curve over a field K, given by a Weierstraß model, and let m ∈ N,

m ≥ 2. Then the m-th summation polynomial as defined by Semaev is an

irreducible polynomial f ∈ K[x1, . . . , xm] such that for the following holds:

Given P1, . . . , Pm ∈ E(K)− {O}, we have

f(x(P1), . . . , x(Pm)) = 0←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} : ǫ1P1+· · ·+ǫmPm = O ,

where we identify A1(K) = P1(K)− {∞} with K. These summation poly-

nomials have degree 2m−2 in each variable.
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Now, any algorithm to determine solutions with “small coordinates” for

multivariate equations of high degree would give rise to an algorithm for

relation generation. However, no efficient algorithm for this task is known

(except for very special equations), and therefore, Semaev’s approach does

(currently) not lead to an algorithm which is faster than generic algorithms

to solve discrete logarithm problems.

Semaev’s work lead however both P. Gaudry and the author to reflect

on the question whether a similar approach over extension fields might not

give algorithms which (at least asymptotically) are faster than generic algo-

rithms.

Both had previous work on G. Frey’s “Weil descent” idea in mind, which

is based on the so-called Weil restriction: Given any separable finite field

extension K|k and an abelian variety A over K, the Weil restriction of

A with respect to K|k is an abelian variety ResK
k (A) such that for any k-

scheme Z one has ResK
k (A)(Z) ≃ A(Z) in a functorial way, thus in particular

ResK
k (A)(k) ≃ A(K). The Weil restriction of A with respect to K|k has

dimension [K : k] · dim(A) and is attached to A in a functorial way. Very

generally speaking, Frey’s idea was as follows: Let K and k be finite fields,

and let E be an elliptic curve over k. Now maybe one can use the fact

that ResK
k (E)(k) is an abelian variety of higher dimension over a smaller

field to attack the discrete logarithm problem in E(K). More concretely, his

idea was to find curves on ResK
k (E)(k) of low genus and to “pull-back” the

discrete logarithm problem in E(k) to the Jacobians of such curves, where

one then might use index calculus methods. These ideas lead for example to

the so-called GHS-attack8 (see for example [GHS02], [Heß03], [Die03]) and

more generally to what the author calls covering attacks (see for example

the appendix of [Die03]). Now both Gaudry and the author wanted to use

the Weil restriction directly, without a transfer to any further curve.

Already in March 2004 Gaudry put a first version of his work on the

archive of the IACR ([Gau04a]). This work in fact not only focuses on elliptic

curves but includes also a discussion on the discrete logarithm problem in

any abelian variety, in particular including Jacobians of hyperelliptic curves.

For elliptic curves, Gaudry fixes the extension degree n and lets q go to

infinity. Using a single-large prime variation Gaudry originally obtained, on

a heuristic basis, an expected running time of

Õ(q
2− 2

n−1/2 ) .

Later, using a double large prime variation, he improved this to a heuristic

expected running time of

Õ(q2−
2
n ) .

8GHS stands for Gaudry, Heß, Smart.
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The author on the other hand tried if a common variation of n and q would

lead to a sequence of finite fields such that the elliptic curve discrete loga-

rithm problem over these fields would become subexponential.

Gaudry then presented his results at the Elliptic Curve Cryptography

Workshop (ECC) 2004 in Bochum. In his presentation he also mentioned

the results by the author, and this lead to an ad-hoc presentation by the

author on the next day. The author then in particular argued – again on

a heuristic basis – that restricted to instances over finite fields Fqn with

n ∈ Θ(log(q)), one can solve the elliptic curve discrete logarithm problem in

an expected time of

eO(1)·(log(qn))3/4
.

In the meantime, Gaudry’s work has been accepted for publication in the

Journal of Symbolic Computation. The newest publically available version

of Gaudry’s work is from Oct. 2004 ([Gau04b]). We would like to make some

comments on this version: This work contains in particular two statements

which are called “Theorems”. Theorem 1 is concerned with index calculus

on abelian varieties of a fixed dimension, Theorem 2 is Theorem 5 above.

However, in the setting of [Gau04b] Theorem 1 is incorrect and Theorem 2

is correct as we show below but in [Gau04b]) this result in not established

but only heuristically argued to be true.

We first explain why in the context of [Gau04b] [Gau04b, Theorem 1] is

incorrect: It is claimed that for fixed n one can solve the discrete logarithm

problem in abelian varieties of dimension n in an expected time of Õ(q2−
2
n ),

where as usual Fq is the ground field. We conjecture that this statement is

correct provided one represents the abelian varieties appropriately. However,

the statement is clearly not correct if one follows the information on the

representation given in [Gau04b], and additionally, during the description

of the representation a severe mathematical mistake is made:

On page 3 of [Gau04b] it is stated that an abelian variety A over Fq

is represented as follows: An open part U of A is embedded in An+m
Fq

such

that the projection to the first n coordinates U −→ An
Fq

is quasi-finite. Then

the author states that “a coordinate system with these properties is called

Noether normalization of the variety”. With other words: It is concluded

that the map U −→ An
Fq

is finite, but this is incorrect.

However, even if we restrict ourselves to a representation as above with

a finite map, the alleged running time cannot be accurate for a very simple

reason: No bound in m is given, thus the description can be arbitrarily

complex. We note here that it would however not suffice to fix a bound

on m. One should for example also fix some upper bound on the number

of defining equations and their degrees. But even if one has done so, one

should still also consider the group law.
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We are now coming to the shortcomings in the establishment of [Gau04b,

Theorem 2].

• The factor base is a subset of the set {P ∈ E(Fqn) | x(P ) ∈ Fq}. Under

the bijection E(Fqn) ≃ Res
Fqn

Fq
(E)(Fq) this set corresponds to the set

of rational points in a particular 1-dimensional subscheme of the Weil

restriction. In [Gau04b] it is written “For simplicity we assume that

[this subscheme] is irreducible.” But what if it is not irreducible? For

example, it might be that it only contains one irreducibility component

but is geometrically reducible. In this case the factor base might be

very small.

• Even if we assume that the factor base is defined by a curve, to estab-

lish that it contains about q elements, one should establish a bound

on the genus of the curve, but this is not done.

• In subsection 3.6 the average number of “decompositions” generated

by solving one system is discussed. There is however an important

shortcoming: In the algorithm only systems which give rise to zero-

dimensional solution sets are solved. Therefore, when computing the

average number of decompositions, solutions in systems with higher-

dimensional solution sets should be discarded. It is implicitly assumed

that the number of solutions of the systems with higher-dimensional

solution sets is negligible, but this is not established.

• The algorithm uses a double large prime variation. However, it is

not at all discussed why this leads to the desired expected running

time. Heuristically, this is the case, but one has to establish that the

constructed graph of large prime relations contains (with sufficiently

high probability) sufficiently many points and has a sufficiently small

diameter.

• Even if all the previous points are addressed, the algorithm in [Gau04b]

only gives the desired result if the group is cyclic.

We also make some comments on the relationship between Theorem 4

and our heuristic result presented at ECC 2004: For the result at ECC

2004 we enlarged the factor base – it is not anymore the set of rational

points of a 1-dimensional subscheme but of a higher dimensional subscheme.

We have tried hard to prove that with a sufficiently high probability the

generated systems of polynomial equations have a zero-dimensional solution

set. However, we can only prove this important statement if we go back to

1-dimensional subschemes and to rather small extension degrees.
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An outline

Let us give an outline of the rest of this section:

In the next subsection, we give the algorithms for the two theorems

stated above. For this we start off with an overview of the “decomposition

algorithm”. Then we give the two algorithms. The subalgorithms for the

computation of a suitable covering ϕ are given in the following subsection.

In subsection 3.5.4 we review some well known facts on multihomogeneous

polynomials. We in particular discuss intersection theory in (P1
k)

n and re-

sultants, including computational aspects. Then we introduce the homoge-

neous summation polynomials via an abstract approach. Finally, the last

subsection contains the analysis of the algorithm.

An interesting aspect about the algorithm and its analysis is that the

algorithm can be stated with substantially less theoretical background than

the analysis, and our exposition reflects this fact. In particular, it is not

necessary to speak about Weil restriction when describing the algorithm,

and consequently we only introduce the Weil restriction at the beginning

of the analysis. One might however argue that the Weil restrictions are

implicitly present in the definition of the factor base and the construction

of the multivariate system in the decomposition algorithm.

3.5.2 The algorithms

In this subsection we outline the algorithms for theorems 4 and 5.

As already mentioned, the relation generation procedure of both algo-

rithms relies on a decomposition algorithm. Before we come to the two

algorithms, we give an overview over this procedure. All computational

results in this subsection are over finite fields and on a bit-RAM.

3.5.2.1 The decomposition algorithm

The decomposition algorithm relies on “homogeneous summation polynomi-

als”. These polynomials can be obtained by homogenizing the summation

polynomials introduced by Semaev in [Sem04] in an appropriate way. A more

systematic point of view is however to regard Semaev’s summation polyno-

mials as being obtained by dehomogenization of the homogeneous summa-

tion polynomials. The homogeneous summation polynomials are studied in

detail in subsection 3.5.5; here we merely merely mention the key results

which are needed to describe the decomposition algorithm.

Let us fix some notation and terminology.

Notation and Terminology 3.34 We identify (P1)n componentwise with

Proj(Z[X1,Y1]) × · · · × Proj(Z[Xn,Yn]). Therefore we have bases Xi,Yi ∈
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Γ((P1)n,O(0, . . . , 0, 1, 0, . . . , 0)), where the 1 is at the ith position. For any

commutative ring A we have the multigraded homogeneous coordinate ring

A[X1,Y1, . . . ,Xn,Yn] of (P1
A)n. In the following by a multihomogeneous

polynomial in A[X1,Y1, . . . ,Xn,Yn] we mean a polynomial which is homo-

geneous with respect to the multigrading. A multihomogeneous ideal in

A[X1,Y1, . . . ,Xn,Yn] is then an ideal in A[X1,Y1, . . . ,Xn,Yn] which is gen-

erated by multihomogeneous polynomials. Now for some multihomogeneous

ideal I, we denote the subscheme defined by I in (P1
k)

n by V (I). Moreover,

we set xi := Xi
Yi

and An := Spec(Z[x1, . . . , xn]).

In subsection 3.5.5 we show the following two propositions.

Proposition 3.35 Let E be an elliptic curve over a field k, and let us fix a

covering ϕ : E −→ P1
k of degree 2 with ϕ◦ [−1] = ϕ. Let m ∈ N with m ≥ 2.

Then there exists an up to multiplication by a non-trivial constant unique ir-

reducible multihomogeneous polynomial Sϕ,m ∈ k[X1,Y1,X2,Y2, . . . ,Xm,Ym]

such that for all P1, . . . , Pm ∈ E(k) we have Sϕ,m(ϕ(P1), . . . , ϕ(Pm)) =

0 ←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} such that ǫ1P1 + · · · ǫmPm = O. The poly-

nomial Sϕ,m has multidegree (2m−2, . . . , 2m−2).

Definition 3.36 We call a multihomogeneous polynomial Sϕ,m as in the

proposition an mth summation polynomial of E with respect to ϕ.

Proposition 3.37 Given an elliptic curve in Weierstraß form over a finite

field Fq m ∈ N with m ≥ 2 and ϕ : E −→ P1
k of degree 2 with ϕ ◦ [−1] =

ϕ, the mth summation polynomial with respect to the covering ϕ : E −→
P1

Fq
can be computed with a randomized algorithm in an expected time of

Poly(em2 · log(q)).

Now let K|k be a field extension of degree n with basis b1, . . . , bn, let E

be an elliptic curve over K (rather than over k!), and let ϕ : E −→ P1
K be

a covering of degree 2 with ϕ ◦ [−1] = ϕ.

Now let P ∈ E(K). Let Sϕ,n+1(X1,Y1, . . . ,Xn,Yn, ϕ(P )) be a polyno-

mial obtained by inserting the coordinates of ϕ(P ) for the variables

Xn+1, Yn+1 in an (n + 1)th summation polynomial of E with respect to ϕ;

note that this polynomial is unique up to multiplication with a non-trivial

constant.

Let S(1), . . . , S(n) ∈ k[X1,Y1, . . . ,Xn,Yn] be defined by

n∑

j=1

bjS
(j) = Sϕ,n+1(X1,Y1, . . . ,Xn,Yn, ϕ(P )) . (3.28)

Clearly, if S(j) is non-zero, just as Sϕ,n+1 it is multigraded of multidegree

(2n−1, . . . , 2n−1). Note also that a different basis of K|k would give rise
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to a system of polynomials over k which generate the same k-vector space.

The same holds if the summation polynomial is multiplied by a non-trivial

constant or if the coordinates of ϕ(P ) are simultaneously multiplied by a

non-trivial constant. In particular, the subscheme V (S(1), . . . , S(n)) of (P1
k)

n

does not depend on these choices.

For Q1, . . . , Qn ∈ P1(k), the following conditions are equivalent:

• There exist P1, . . . , Pn ∈ E(K) such that P1 + · · · + Pn = P and

x(Pi) = Qi for all i = 1, . . . , n.

• Sϕ,n+1(Q1, . . . , Qn, ϕ(P )) = 0.

• For all j = 1, . . . , n, S(j)(Q1, . . . , Qn) = 0, that is, (Q1, . . . , Qn) is a

k-rational point of V (S(1), . . . , S(n)).

By a “decomposition algorithm” we mean an algorithm for the follow-

ing computational problem: Given a prime power q, n ∈ N, an Fq-basis

b1, . . . , bn of Fqn |Fq, an elliptic curve E over Fqn (given by a Weierstraß

model), ϕ : E −→ P1
k as well as P ∈ E(Fqn), determine if the subscheme

V (S(1), . . . , S(n)) of (P1
Fq

)n defined by S(1), . . . , S(n) is zero-dimensional, and

if this is the case, determine all tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈
P1(Fq) for all i = 1, . . . , n and P1 + · · ·+ Pn = P !

In subsection 3.5.4 we show the following proposition (see subsubsection

3.5.4.1 and Proposition 3.65 in subsubsection 3.5.4.3).

Proposition 3.38

a) Let k be a field, and let F1, . . . , Fn ∈ k[X1,Y1, . . . ,Xn,Yn] be multi-

graded polynomials of multidegree (d, d, . . . , d) for some d ∈ N. If then

V (F1, . . . , Fn) is zero-dimensional, its degree is n!·dn (that is, the number

of solutions over k “with multiplicities” is n! · dn).

b) Given a system of multihomogeneous polynomials F1, . . . , Fn ∈
Fq[X1,Y1, . . . ,Xn,Yn] of multidegree (d, d, . . . , d) for some d ∈ N, one

can determine if the system has a zero-dimensional solution set and if

this is the case compute all solutions over Fq in an expected time of

Poly(n! · dn · log(q)).

Based on the previously mentioned computational results, we have the

following decomposition algorithm.

We have already remarked that one can compute the polynomial Sϕ,n+1

in an expected time of Poly(en2 · log(q)). Thus one can also determine the

polynomials S(1), . . . , S(n) in an expected time of Poly(en2 · log(q)). By the

previous proposition one can then determine if the subscheme
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V (S(1), . . . , S(n)) of (P1
Fq

)n is zero-dimensional and if this is the case com-

pute all its Fq-rational points in an expected time of Poly(n! · 2n2 · log(q)) =

Poly(en2 · log(q)).

Assume now that the scheme is indeed zero-dimensional, and that all

Fq-rational points have been computed. We now want to find all tuples

(P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ P1(Fq) for all i = 1, . . . , n and P1 +

· · ·+ Pn = P .

For this we iterate over all Fq-rational points of V (S(1), . . . , S(n)). For

each (Q1, . . . , Qn) ∈ V (S(1), . . . , S(n))(Fq) we consider all possibles tuples

(P1, . . . , Pn) ∈ E(Fqn)n with x(Pi) = Qi for i = 1, . . . , n and check if P1 +

· · ·+ Pn = P . We output all tuples (P1, . . . , Pn) for which this is the case.

Now for each tuple (P1, . . . , Pn) ∈ V (S(1), . . . , S(n))(Fq) we need Õ(2n) ·
Poly(log(q)) bit operations, and we have Poly(en2

) such tuples (P1, . . . , Pn).

The expected total running time is then still in Poly(en2 · log(q)).

We obtain:

Proposition 3.39 Given q, n ∈ N, E, ϕ and P as above, one can de-

termine if the subscheme V (S(1), . . . , S(n)) of (P1
Fq

)n is zero-dimensional,

and if this is the case determine all tuples (P1, . . . , Pn) ∈ E(Fqn)n with

ϕ(Pi) ∈ P1(Fq) for i = 1, . . . , n in an expected time of Poly(en2 · log(q)).

Terminology 3.40 We say that “the decomposition algorithm succeeds” if

applied to an instance as described above if the scheme V (F1, . . . , Fn) is zero-

dimensional and there exists a tuple (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈
P1(Fq) and P1 + · · · + Pn = P . Otherwise we say that “the decomposition

algorithm fails”.

In order to analyze the index calculus algorithms we need a lower bound

in the probability that the decomposition algorithm succeeds. Let us men-

tion the key result for the analysis of the algorithm for Theorem 4, which

we prove in subsubsection 3.5.6.5 (Proposition 3.98):

Proposition 3.41 Let ǫ > 0. Then for n large enough9 and (2 + ǫ) · n2 ≤
log2(q) the following holds: Let E/Fqn be an elliptic curve, and let ϕ :

E −→ P1
K be a covering of degree 2 with ϕ◦ [−1] = ϕ such that the following

condition holds:

There exists a point P ∈ P1(k) which is a ramification point of ϕ such

that the points P, σ(P ), . . . , σn−1(P ) are all distinct and ϕ is not ramified at

σ(P ), . . . , σn−1(P ).

Then the probability that the decomposition algorithm succeeds if applied

to a uniformly randomly distributed element in E(Fqn) is ≥ q− 1
2 .

9As usual, by the phrase “for n large enough” we mean that there exists a constant
C > 0 such that the statement holds for n ≥ C.
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3.5.2.2 The algorithm for Theorem 4

Below we give an algorithm which leads to the following result.

Proposition 3.42 Let ǫ > 0. Then there exists a randomized algorithm

such that the following holds: Given a prime power q, a natural number n

with (2 + ǫ) · 2n ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form)

and two points A,B ∈ E(Fqn) with B ∈ 〈A〉 as well as a generating system of

E(Fqn) whose size is polynomially bounded in log(qn), the algorithm outputs

the discrete logarithm of B with respect to A. Moreover, the expected running

time is polynomially bounded in q, and each LOAD and STORE operation

operates in a time which is polynomially bounded in log(q).

Let us see how one can with this proposition obtain Theorem 4:

First, Proposition 3.42 implies (see the proof of Proposition 3.18 from

Proposition 3.16):

Proposition 3.43 Let ǫ > 0. Then there exists a randomized algorithm

such that the following holds: Given a prime power q, a natural number n

with (2 + ǫ) · n2 ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form)

and two points A,B ∈ E(Fqn) with B ∈ 〈A〉 as well as a generating system of

E(Fqn) whose size is polynomially bounded in log(qn), the algorithm outputs

the discrete logarithm of B with respect to A or fails. Moreover, the running

time of the algorithm is polynomially bounded in q, and the probability of

failure is ≤ 1
2 .

If we repeat the two steps

1. choose a “potential generating system” of size Poly(log(qn)) with an

algorithm satisfying Proposition 3.17

2. apply an algorithm satisfying Proposition 3.43

until we have obtained the discrete logarithm, we obtain:

Proposition 3.44 Let ǫ > 0. Then there exists a randomized algorithm

such that the following holds: Given a prime power q, a natural number n

with (2 + ǫ) · n2 ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form)

and two points A,B ∈ E(Fqn) with B ∈ 〈A〉, the algorithm outputs the

discrete logarithm of B in an expected time which is polynomially bounded

in q.

Note now that in Proposition 3.43 in particular the extension degree n

is part of the input whereas in Theorem 4 this is not the case. To obtain
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Theorem 4 we apply an algorithm for Proposition 3.43 with all possible

extension degrees “in parallel”.

We are now coming to the algorithm for Proposition 3.42. For this we

outline – as already mentioned – an index calculus algorithm which follows

the “general algorithm” in subsection 3.2.3. The input of the algorithm

consists of q, n,E,A,B as described in Proposition 3.42 as well as a system

of elements C1, . . . , Cu in E(Fqn).

We give the subroutines together with an analysis of their complexity.

The subroutines and thus also the complete algorithm apply to all instances

without any bound on n, but they might not always terminate. Indeed, we

prove the following statement:

Let ǫ > 0. Then given a prime power q, a large enough natural number n

with (2+ǫ) ·2n ≤ log2(q), an elliptic curve over Fqn (in Weierstraß form) and

two points A,B ∈ E(Fqn) with B ∈ 〈A〉 as well as a generating system of

E(Fqn) whose size is polynomially bounded in log(qn), the algorithm outputs

the discrete logarithm of B with respect to A. Moreover, the expected

running time is then polynomially bounded in q.

Proposition 3.42 can then be obtained by applying this algorithm “in

parallel” with a brute force computation.

a) Computation of the group order

We use Schoof’s algorithm to compute the L-polynomial ([Sch85]), which

operates in a time which is polynomially bounded in log(qn).

c) Construction of the factor base

We have already mentioned that the factor base is a set

{P ∈ E(Fqn) | ϕ(P ) ∈ Fq} .

for a suitable covering of degree 2 ϕ : E −→ P1
Fqn

with ϕ ◦ [−1] = ϕ.

Let σ be the relative Frobenius automorphism of Fq|Fq. Now the condi-

tion on ϕ we impose is the following condition, already mentioned in Propo-

sition 3.41.

Condition 3.45 There exists a point P ∈ P1(Fq) which is a ramification

point of ϕ such that the points P, σ(P ), . . . , σn−1(P ) are all distinct and ϕ

is not ramified at σ(P ), . . . , σn−1(P ).

This condition might seem strange for the moment. The reasons for this

condition will be discussed in subsubsection 3.5.6.3. Very briefly, the factor
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base is in a certain sense defined by a 1-dimensional Fq-scheme, and the

condition ensures that this scheme is birational to a curve over Fq.

In subsection 3.5.3 we prove:

Proposition 3.46 Given a prime power q, n ∈ N and an elliptic curve over

Fqn in Weierstraß form such that (q, n) 6= (3, 2) one can compute a covering

ϕ : E −→ P1
Fqn

of degree 2 with ϕ◦ [−1] = ϕ satisfying Condition 3.45 in an

expected time which is polynomially bounded in n · log(q).

Thus clearly the factor base can be constructed in an expected time

which is polynomially bounded in log(qn).

d) Relation generation

Let C1, . . . , Cu be the system of elements in E(Fqn) which is part of the

input, and let C ∈ E(Fqn) be given.

We choose s1, . . . , su ∈ {0, . . . ,#E(Fqn) − 1} uniformly at random and

compute
∑

j sjCj + C. Then we apply the decomposition algorithm as

described in the previous subsubsection to this element and the covering

ϕ. If the procedure does not fail, we have obtained at least one relation

between factor base elements, C1, . . . , Cu and the input elements A,B. We

output such a relation. (It does not matter which one we output as long

as the distribution of the output only depends on the element
∑

j sjCj +C

(and not on the further internal state of the algorithm).) We repeat this

procedure until we have obtained such a relation.

In our applications of the algorithm, u is polynomially bounded in log(qn).

Then the time to compute
∑

j sjCj + C is polynomial in log(qn). By

Proposition 3.39, the expected running time of one iteration is then in

Poly(en2 · log(q)). Moreover, by Proposition 3.41 (Proposition 3.98) for in-

stances with (2 + ǫ) · n2 ≤ log2(q) and n large enough the expected number

of iterations is in O(q1/2).

We conclude that for instances with (2 + ǫ) · n2 ≤ log2(q) and n large

enough and for u polynomially bounded in log(qn), the expected running

time of the relation generation procedure is in Poly(en2 · log(q)) · O(q1/2) ⊆
Poly(q).

The overall running time

We again restrict ourselves to instances with (2 + ǫ) · n2 ≤ log2(q) and u

polynomially bounded in log(qn). As the factor base has a size of O(q), it

is now clear that for n large enough the expected running time of the whole

algorithm is then polynomially bounded in q.
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3.5.2.3 The algorithm for Theorem 5

It order to obtain Theorem 5 we modify the previous algorithm with a double

large prime variation.

Let us fix n and consider the discrete logarithm problem in elliptic curves

over finite fields Fqn . Then we follow exactly the algorithm in subsubsection

3.3.2, with the following obvious modifications: Let ϕ be a covering as above.

Then the factor base is a subset of size ⌈q1− 1
n ⌉ of {P ∈ E(Fqn) | ϕ(P ) ∈ Fq}

which is invariant under application of [−1], for relation generation we rely

on the “decomposition algorithm”, and generally the genus g is substituted

by the extension degree n. An important observation is (cf. Proposition

3.39): For fixed extension degree n there is a decomposition algorithm whose

expected running time is polynomially bounded in log(q).

The analysis is also similar to the analysis of the algorithm in subsection

3.3.2. It relies on the following proposition.

Proposition 3.47 Let n be fixed. Then again for elliptic curves E/Fqn and

coverings ϕ such that Condition 3.45 holds the following is true:

a) #{P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)} ∼ q.

b) There exist constants C,D > 0 such that the following holds: Let M

be any subset of {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i =

1, . . . , n}. Then the number of elements P ∈ E(K) such that the de-

composition algorithm succeeds and there exist P1, . . . , Pn ∈ M with

P1 + · · ·+ Pn = ±P is

≥ D ·#M − C · qn−1 .

For a) we refer to Remark 3.79 in subsubsection 3.5.6.3. Part b) is a sum-

mary of Proposition 3.96 in subsubsection 3.5.6.5 for fixed n.

The subroutines a) and b) are exactly as above. So let us describe

subroutines c) and d) in greater detail.

c) Construction of the factor base and the graph of large prime
relations

First we again construct a covering ϕ : E −→ P1
Fqn

of degree 2 with ϕ◦[−1] =

ϕ satisfying Condition 3.45. As indicated above, this can be done in an

expected time which is polynomially bounded in log(qn). We enumerate this

set and define the factor base F as any subset F of cardinality ⌈q1− 1
n ⌉ or

⌈q1− 1
n ⌉+1 of {P ∈ E(Fqn) | ϕ(P ) ∈ Fq} which is invariant under application

of [−1]. The set of large primes is then L := {P ∈ E(Fqn) | ϕ(P ) ∈ Fq , P /∈
F}.
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Clearly these operations can be performed in an expected time of Õ(q).

Now as already mentioned the construction of the tree of large prime

relations is performed as in subsection 3.3.2. A minor difference is that we

do not anymore have unique factorization, and we check for each output

of the decomposition algorithm if it leads to an FP or a PP relation. The

procedure is therefore as follows:

Procedure: Construction of the tree of large prime relations

Construct a tree T with vertex set contained in L ∪̇ {∗} as follows:

Let T consist only of the root ∗.
Let Nmax ←− ⌈q1−1/n+1/n2⌉
Let s←− 1.

Repeat

Repeat

Choose s1, . . . , su ∈ Z/NZ uniformly and independently at random.

Apply the decomposition algorithm to
∑

j sjCj .

If the decomposition algorithm succeeds,

check for every tuple (P1, . . . , Pn) with ϕ(Pi) ∈ P1(Fq) and∑
j Pj =

∑
j sjCj if it leads to a FP or a PP relation, that is,

to a relation of the form
∑

j rjFj + cPP + cQQ =
∑

j sjCj where

cP > 0, cQ > 0 and P ∈ F ∪ Ts−1, Q ∈ L − (F ∪ T ).

If this is the case,

fix such a relation.

if P ∈ F (i.e. if we have an FP relation),

insert Q and an edge from ∗ to Q into T

if P ∈ Ts−1 (i.e. if we have a PP relation),

insert Q and an edge from P to Q into T .

In both cases label Q with s and the edge with (rj)j (in sparse

representation).

Until T contains 2s−1 · ⌈q1−1/n⌉ edges or the number of edges equals

Nmax.

If the number of edges equals Nmax, STOP.

Let s←− s+ 1.

Here as in subsection 3.3.2 Ts is the subtree of T consisting of vertices

with label ≤ s, that is, the tree which is constructed until including stage s.

With part b) of Proposition 3.47 the analysis in subsection 3.3.3 carries

also easily over to the present setting. Let us first consider Stage 1 of the

algorithm, that is, s = 1.
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We set

M := Fn−1 × (L − T ) .

For q large enough (independently of T ) this set has cardinality ≥ (q1−
1
n )n−1·

q
4 . Therefore the number of elements in E(Fqn) for which we obtain a new

edge is ≥ D
4 · (q1−

1
n )n−1 · q − C · qn−1 = D

4 · qn−1+ 1
n − Cqn−1. For q large

enough this is

≥ D

8
· qn−1+ 1

n ,

and the probability to obtain an FP relation is therefore

≥ D

16
· q−(1− 1

n
) .

We thus obtain: A tree of large prime relations of size ⌈q1−
1
n

+ 1
n2 ⌉ is

constructed in an expected time of Õ(q2−
2
n ).

Let us now assume that we are in Stage s with s ≥ 2. We set

M := Fn−2 × (F × Ts−1)× (L − T ) .

Now for q large enough (and independently of T , in particular independently

of s) this set has cardinality ≥ (q1−
1
n )n−2 ·2s−2 ·qg−1+ 1

g · q4 = 2s−2 ·(q1− 1
n )n−1 ·

q
4 . For q large enough the number of elements in E(Fqn) for which we obtain

a new edge is

≥ D

16
· 2s−2 · q−(1− 1

n
) .

This implies that for q large enough (independently of s) the following holds:

Given any tree Ts−1 with 2s−2 · ⌈q1−
1
g ⌉ edges, the expected number of tries

until a tree T with min{2s−1 · ⌈q1−
1
g ⌉, Nmax} edges is constructed is

≤ 32

D
· q−(1− 1

n
) .

This completes the analysis.

d) Relation generation

The relation generation is also as in subsection 3.3.2, again with the obvious

difference that we use the decomposition algorithm. Again by item b) of

Proposition 3.47 it is obvious that the expected running time is in Õ(q2−
2
n ).

The overall running time and conclusion

Altogether we obtain an expected running time of Õ(q2−
2
n ), and we have

storage requirements of Õ(q1−
1
n

+ 1
n2 ).
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3.5.3 Computing a suitable covering

We discuss how a covering ϕ : E −→ P1
Fqn

as required in the construction of

the factor base can be computed.

We make some case distinctions. In each case we start off with a specific

Weierstraß model and determine some automorphism α of P1
Fqn

. Then we

set ϕ := α ◦ x|E.

3.5.3.1 Even characteristic

Let first j(E) = 0. Then E is the projective curve defined by the homoge-

nization of some polynomial of the form

y2 + a3y + x3 + a4x+ a6 .

(see [Sil86, Appendix A]) (with a3 6= 0). (In similar situations we say from

now on that E is “defined” by a polynomial for shortness.) Now x|E is

ramified exactly over ∞. We set α := ax−1
x for some a ∈ Fqn which is not

contained in any proper subfield of Fqn |Fq.
10 Then α maps∞ to a, and thus

ϕ is ramified exactly at a. Clearly the condition is satisfied.

Let now j(E) 6= 0. Then E is the projective curve defined by the poly-

nomial

y2 + xy + x3 + a2x
2 + a6 .

Then x|E is ramified exactly over 0 and ∞. We set α := x + a with a as

above. Then ϕ is ramified at a and ∞, and again the condition is satisfied.

3.5.3.2 Odd characteristic

Let E be defined by

y2 − f(x) ,

where f(x) ∈ Fq[x] is monic of degree 3. The conditions which have to be

satisfied are now more subtle but the algorithm is very simple:

We choose λ ∈ Fqn uniformly at random and with α := x − λ we check

if the condition is satisfied. We repeat this until the condition is satisfied.

Note here that if f(x) = (x− λ1)(x− λ2)(x− λ3) (with λi ∈ Fq6n), then

the ramification points of ϕ = α ◦ x|E in P1(Fq) are λi− λ for i = 1, 2, 3. So

it is easy to check the condition.

Proposition 3.46 now follows from the following lemma. (Note that we

only apply the lemma in the case that q is odd.)

10By a “proper subfield” we mean here a subfield of a field extension K|k which is not
equal to K.
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Lemma 3.48 There exists a constant C ∈ (0, 1) such that the following

holds:

Let q be a prime power and n a natural number such that (q, n) 6=
{(2, 2), (3, 2), (2, 3), (2, 4)}. Now let λ1, λ2, λ3 ∈ Fq, and let λ be a uniformly

distributed element in Fqn . Then with a probability ≥ C we have

(λ1 − λ)q
i
/∈ {λ1 − λ, λ2 − λ, λ3 − λ}

for i = 1, . . . , n− 1.

Proof. Let ℓ = 1, 2, 3. We have (λ1 − λ)q
i
= λℓ − λ if and only if λqi − λ =

λqi

1 − λℓ. The map λ 7→ λqi − λ is an Fq-linear map with kernel Fqgcd(i,n) .

There are thus either no or qgcd(i,n) such λ.

We obtain: In total there are at most 3
∑n−1

i=1 q
gcd(i,n) elements λ for

which the condition in the lemma is not satisfied.

Now 3
∑n−1

i=1 q
gcd(i,n) ≤ 3(n − 1) · qn/2, and therefore the probability in

question is

≥ 1− 3(n − 1)

qn/2
≥ 1− 3(n − 1)

2n/2
.

For n ≥ 10 this is ≥ 5
32 > 0.

One also easily sees that for n ≤ 9 and (q, n) 6= {(2, 2), (3, 2), (2, 3), (2, 4)}
the probability is positive. 2

3.5.4 Some results on multihomogeneous polynomials

In this subsection we are concerned with results related to multihomogeneous

polynomials and systems of such polynomials. In particular, we give some

information on aspects of intersection theory in the special case of (P1
k)

n, in-

cluding multigraded resultants, and we discuss computational aspects. Here

and in this whole subsection, k is a field.

3.5.4.1 Intersection theory in (P1
k)

n

In this subsubsection we review some standard material on intersection the-

ory in the special case of (P1
k)

n.

Lemma 3.49 Let X be a closed subscheme of (P1
k)

n of dimension at least 1,

and let F ∈ k[X1,Y1, . . . ,Xn,Yn] be a multihomogeneous polynomial whose

multidegree is componentwise positive. Then V (F ) and X intersect non-

trivially.

Proof. The invertible sheaf O(d) is very ample, and under the corresponding

embedding into projective space F corresponds to a non-trivial linear form.

The result thus follows from intersection theory in projective space. 2
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Definition 3.50 We define the dimension of the empty scheme as −1.

Lemma 3.51 Let k ≤ n + 1. Let F1, . . . , Fk be multihomogeneous polyno-

mials in k[X1,Y1, . . . ,Xn,Yn] such that all multidegrees are componentwise

positive. Then dim(V (F1, . . . , Fk)) ≥ n − k. Moreover, we have equality if

and only if for ℓ = 2, . . . , k no irreducibility component of V (F1, . . . , Fℓ−1)

is contained in V (Fℓ).

Proof. Let first k ≥ n (such that the first statement is non-trivial). Then

by the previous lemma V (F1, . . . , Fk) is non-empty. The first statement

thus follows with Krull’s Hauptidealsatz. The second statement also follows

easily with the previous lemma and Krull’s Hauptidealsatz. 2

Notation 3.52 Let V be a fixed quasi-projective variety, and let X be a

closed subscheme of V . Then we denote the class of V in the Chow ring

of V by [X]. (We do not fix a notation for the cycle corresponding to a

closed subscheme as we never perform operations with cycles but only with

classes.)

Remark 3.53 Let X be a closed subscheme of (P1
k)

n and let F ∈
k[X1,Y1, . . . ,Xn,Yn] be a multihomogeneous polynomial such that no ir-

reducibility component of X is contained in V (F ). Then

[X ∩ V (F )] = [X] · [V (F )] ,

where X ∩ V (F ) is the scheme-theoretic intersection. Indeed, this is a spe-

cial case of Axiom A7 on intersection theory in [Har77, Appendix A]. In

particular, if F1, . . . , Fk are multihomogeneous polynomials such that for all

ℓ = 2, . . . , k no irreducibility component of V (F1, . . . , Fℓ−1) is contained in

V (Fℓ), then

[V (F1, . . . , Fk)] = [V (F1)] · · · [V (Fk)] .

Note that by the previous lemma this is in particular the case if the

multidegrees of the polynomials are componentwise positive and

dim(V (F1, . . . , Fk)) = n− k.

We have the following explicit description of the Chow ring of (P1
k)

n:

Proposition 3.54 Let hi be the class of V (Xi) ⊆ (P1
k)

n for i = 1, . . . , n.

Then the Chow ring of (P1
k)

n is generated by h1, . . . , hn, and we have an

isomorphism Z[H1, . . . ,Hn]/(H2
1 , . . . ,H

2
n) −→ CH((P1

k)
n) , [Hi] 7→ hi.

This proposition can easily be derived from a general result on the Chow

rings of toric varieties (cf. the proposition on page 106 of [Ful93, Section 5.2]).

We remark here that the book [Ful93] is concerned with toric varieties over
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the complex number. However, analytic arguments play a minor role in the

exposition, and the few such arguments can rather easily be replaced with

algebraic arguments. In particular, the proposition just mentioned holds

over arbitrary fields.

Example 3.55 The class of an effective Cartier divisor on (P1
k)

n of multi-

degree (d1, . . . , dn) is d1h1 + · · · + dnhn.

Let us consider the pull-back and push-forward homomorphisms associ-

ated with the canonical projections between products of P1
k’s. The following

considerations follow immediately from the axioms of intersection theory in

[Har77, Appendix A].

Let for n1 > n2 p : (P1
k)

n1 −→ (P1
k)

n2 be the projection to the first n2

components. Let us denote by hi for i = 1, . . . , n2 the class of V (Xi) in any

of the two Chow groups.

Then the pull-back p∗ : CH((P1
k)

n2) −→ CH(P1
k)

n1), which is a ring

homomorphism, is given by the homomorphism which corresponds to the

obvious inclusion under the isomorphism in Proposition 3.54. This means

that it is given by p∗(hi) = hi.

The push-forward, which is a group homomorphism, is given as follows:

Lemma 3.56 Let e ∈ {0, 1}n1 . Then p∗(h
e1
1 · · ·h

en1
n1 ) = 1 if en2+1 = · · · =

en1 = 1 and p∗(h
e1
1 · · · h

en1
n1 ) = 0 otherwise.

Let now F1, . . . , Fn be multihomogeneous polynomials whose multide-

gree is componentwise positive. Let the multidegree of Fi be (di,1, . . . , di,n),

and let D := ((di,j))i,j . If now the scheme V (F1, . . . , Fn) is zero-dimensional

we conclude with the above proposition and Remark 3.53 that the class

of V (F1, . . . , Fn) in the Chow group is a cycle of degree Perm(D), the

permanent of D. With other words: If the scheme V (F1, . . . , Fn) is zero-

dimensional, it has degree Perm(D). In particular, if additionally the mul-

tidegree of each Fi is (d, . . . , d) for a common d ∈ N, then the degree of

V (F1, . . . , Fn) is n! · dn.

3.5.4.2 Multigraded resultants

We will make repeated use of resultants for systems of multihomogeneous

polynomials in k[X1,Y1, . . . ,Xn,Yn]. Let us recall the definition and basic

properties:

Let us fix some n ∈ N. Let for d ∈ N Md be the set of monomials of

multidegree d in k[X1,Y1, . . . ,Xn,Yn].

Let for each i = 1, . . . , n + 1 some d(i) ∈ Nn be given. (Note that

all coefficients are positive). We want to define the generic resultant for
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multihomogeneous polynomials of multidegrees d(1), . . . , d(n+1). For this we

consider a “universal coefficient ring”, which is a multivariate polynomial

ring over the integers which for each pair (i,m) with m ∈ Md(i) has one

indeterminate ci,m, that is, it is the ring Z[{ci,m}i=1,...,n+1,m∈M
d(i)

]. We de-

fine the generic system of n + 1 multihomogeneous polynomials with multi-

degrees d(1), . . . , d(n+1) as G1, . . . , Gn+1 ∈ Z[{c(i,m)}i,m][X1,Y1, . . . ,Xn,Yn]

with Gi =
∑

m∈M
d(i)

ci,mm.

The generic resultant under consideration is then an element of

Z[{ci,m}i,m], and the resultant of a particular system of multihomogeneous

polynomials is obtained by substituting the coefficients of the polynomials

for the generic coefficients.

Proposition 3.57

a) There is an irreducible polynomial Res ∈ Z[{ci,m}i=1,...,n+1,m∈M
d(i)

] which

for i = 1, . . . , n+1 is homogeneous in the coefficients the ith generic poly-

nomial and which has the following property: For all fields k

and all systems of multihomogeneous polynomials F1, . . . , Fn+1 ∈
k[X1,Y1, . . . ,Xn,Yn], where Fi has multidegree d(i), we have

Res(F1, . . . , Fn+1) = 0 if and only if V (F1, . . . , Fn+1) is non-empty. Here

Res(F1, . . . , Fn+1) is obtained by substituting the coefficients of the poly-

nomials for the generic coefficients.

b) The polynomial Res with the above properties unique up to sign.

c) For every field k, the induced polynomial in k[{ci,m}i,m] is irreducible.

d) For each i = 1, . . . , n+ 1, Res has degree Perm(Di) in the coefficients of

the ith generic polynomial, where Di is obtained from the matrix


d(1)

...

d(n+1)



 by deleting the ith row.

Sketch of a proof. A corresponding result over the complex numbers follows

from the general results in [GKZ94]. (The polynomial Res is then unique up

to multiplication by a non-trivial complex number.) Even though there are

various other works on general resultants, we could not find this “universal”

result in the literature. We explain now how it can be derived from the

results on “mixed resultants” in [GKZ94, Section 3.3].

For every commutative ring R, the set Spec(Z[{ci,m}i,m])(R) ≃ ∏i,mR

corresponds in an obvious way to the set of systems F1, . . . , Fn+1 ∈
R[X1, Y1, . . . ,Xn, Yn], where Fi has multidegree d(i). For such a system

of polynomials over a field such that at least one polynomial is non-trivial,
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we denote by (F1, . . . , Fn+1) the class of the coefficient vectors in projective

space Proj(Z[{ci,m}i,m])(k).

Let p : (P1)n ×Z Proj(Z[{ci,m}i,m]) −→ Proj(Z[{ci,m}i,m]) be the projec-

tion to the second component. Let V (G1, . . . , Gn+1) be the closed subscheme

of (P1)n×ZProj(Z[{ci,m}i,m]) defined by the generic multihomogeneous poly-

nomials G1, . . . , Gn+1 introduced above.

We consider p(V (G1, . . . , Gn+1)), which is a closed subscheme of

Proj(Z[{ci,m}i,m]), with the induced reduced structure. Note that for a

system F1, . . . , Fn+1 of polynomials as above over a field k, the fiber of

V (G1, . . . , Gn+1) above (F1, . . . , Fn+1) is V (F1, . . . , Fn+1), and thus the fiber

of p(V (G1, . . . , Gn+1)) at (F1, . . . , Fn+1) is set-theoretically equal to

pk(V (F1, . . . , Fn+1)). In particular, (F1, . . . , Fn+1) is contained in

pk(V (G1, . . . , Gn+1)k) if and only if V (F1, . . . , Fn+1) is non-empty.

Now the results in [GKZ94] immediately generalize to aribitrary alge-

braically closed fields, and therefore V (G1, . . . , Gn+1))Q as well as

V (G1, . . . , Gn+1))Fp
for every prime number p are irreducible of codimen-

sion 1. It follows that V (G1, . . . , Gn+1) is irreducible of codimension 1. As

Proj(Z[{ci,m}i,m]) is regular, this implies that it is a Cartier divisor and

thus given by a section of an invertible sheaf on Proj(Z[{ci,m}]). But every

invertible sheaf on a projective space over Z is isomorphic to O(a) for some

a ∈ N (cf. [Mum65, §0, 5 b)]). Therefore V (G1, . . . , Gn+1) is defined by a

homogeneous polynomial in Z[{ci,m}i,m]; let Res be such a polynomial.

We already know that Res is irreducible. Moreover, for every prime

number p, the residue class [Res]Fp[{ci,m}i,m] is non-trivial, and thus the gcd

of the coefficients of Res is 1. It is immediate that Res is homogeneous in

the coefficients of each generic polynomial.

We have established a) and b). Result d) follows from the general results

in [GKZ94] over the complex numbers.

It remains to prove c), where we can restrict ourself to algebraically

closed fields. So let k be such a field. Let Resk be the induced polynomial

obtained from Res. We already know that Resk is the product of a con-

stant and a power of an irreducible polynomial. Now first, by d), Resk is

a polynomial of degree
∑

i Perm(Di). Also, by applying the reasoning in

[GKZ94] for k instead of C, one obtains that pk(V (G1, . . . , Gn+1)k) with

the reduced structure also has degree
∑

i Perm(Di). As we already know

that set-theoretically pk(V (G1, . . . , Gn+1)k) is defined by Resk, we know

now that this is also true scheme-theoretically. We conclude that Resk is

irreducible. 2

We call the polynomial Res a generic mixed multigraded resultant. If the

multidegrees of the generic polynomials are equal, we speak of a multi-

graded resultant. For some commutative ring R and multihomogeneous
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F1, . . . , Fn+1 ∈ R[X1,Y1, . . . ,Xn,Yn] we call Res(F1, . . . , Fn+1) (where Res

is the generic mixed multihomogeneous resultant for polynomials of appro-

priate multidegree) the multigraded resultant of F1, . . . , Fn+1.

3.5.4.3 Computing resultants and solving systems

In this subsubsection we address computational problems related to multi-

graded resultants and the solution of zero-dimensional multihomogeneous

polynomial systems. In particular, we give an algorithm to determine all so-

lutions of a multihomogeneous polynomial system F1, . . . , Fn over a field k,

where each Fi has multidegree (d, d, . . . , d) for some d ∈ N and the scheme

V (F1, . . . , Fn) is zero-dimensional. We have not explicitly found our ap-

proach in the literature, but similar algorithms for related computational

problems have been proposed.

Let F1, . . . , Fn+1 ∈ k[X1,Y1, . . . ,Xn,Yn] be non-constant multihomoge-

neous polynomials of equal multidegree (d, d, . . . , d), and let Res(F1, . . . , Fn+1)

be the multigraded resultant of these polynomials. Now just as the usual

Sylvester resultant, this resultant can be expressed as the determinant of a

matrix each of whose entries is 0 or a coefficient of one of the polynomials

Fi.

Let us to state this result fix the following definition.

Definition 3.58 Let M be a multigraded k[X1,Y1, . . . ,Xn,Yn]-module,

and let d ∈ Zn. Then the k-vector subspace of M consisting of elements

of multidegree d is denoted by Md.

We now consider the linear map

Φ : (k[X1,Y1, . . . ,Xn,Yn](d−1,2d−1,...,nd−1))
n+1 −→

k[X1,Y1, . . . ,Xn,Yn](2d−1,3d−1,...,(n+1)d−1) ,

(A1, . . . , An+1) 7→
∑n+1

i=1 FiAi .

(3.29)

Note that both the domain as well as the codomain have dimension

(n+ 1)! · dn. Now in [SZ94] it is proven:

Proposition 3.59 Let M be the matrix of Φ with respect to the monomial

bases in the domain and the codomain with any ordering. Then

Res(F1, . . . , Fn+1) = ± det(M) .

Note here that the resultant is only defined up to a sign, and a change of

the ordering of any of the two the bases changes a sign too.

This description of the resultant immediately gives rise to the following

result in the generic field RAM model:



180 Chapter 3. Computing discrete logarithms

Proposition 3.60 Given F1, . . . , Fn+1 of multidegree (d, . . . , d) one can

compute Res(F1, . . . , Fn+1) with a number of field and bit operations which

is polynomially bounded in (n+ 1)! · dn.

Proposition 3.59 states in particular that V (F1, . . . , Fn+1) is empty if and

only if Φ is surjective, that is, the ideal (F1, . . . , Fn+1)(2d−1,3d−1,...,(n+1)d−1) is

equal to the whole ambient space k[X1,Y1, . . . ,Xn,Yn](2d−1,3d−1,...,(n+1)d−1).

This statement can be generalized:

Proposition 3.61 Let F1, . . . , Fm be multihomogeneous polynomials in

k[X1,Y1, . . . ,Xn,Yn] of multidegree (d, d, . . . , d). Then V (F1, . . . , Fm) is

empty if and only if (F1, . . . , Fm)(2d−1,3d−1,...,(n+1)d−1) =

k[X1,Y1, . . . ,Xn,Yn](2d−1,3d−1,...,(n+1)d−1).

Proof. It is obvious that the latter statement implies the former. So let

V (F1, . . . , Fm) be empty. To show the equality we can perform a base-

change. So we consider the field extension k((ci,j)i=1,...,n+1,j=1,...,m)|k, where

the ci,j are indeterminates, and let Gi :=
∑m

j=1 ci,jFj for i = 1, . . . , n+1. By

the following lemma, if g1, . . . , gn+1 are obtained by any dehomogenization

from G1, . . . , Gn+1, then V (g1, . . . , gn+1) is empty. Thus V (G1, . . . , Gn+1)

is empty too. Therefore (G1, . . . , Gn+1)(2d−1,3d−1,...,(n+1)d−1) is equal to the

ambient space. This clearly implies that (F1, . . . , Fm)(2d−1,3d−1,...,(n+1)d−1)

is equal to the ambient space too. 2

Lemma 3.62 Let k be a field, and let R be a non-trivial commutative

noetherian k-algebra of dimension n. Let f1, . . . , fm ∈ R with (f1, . . . fm) =

R. Now let gi :=
∑m

j=1 ci,jfj in R ⊗k k((ci,j)i,j) for i = 1, . . . , n + 1. Then

g1, . . . , gn+1 generate the unit ideal of R⊗k k((ci,j)i,j).

Proof. This statement follows from the following statement by induction on

n:

Let R be a non-trivial commutative noetherian k-algebra, and let

f1, . . . , fm ∈ R with (f1, . . . , fm) = R. Then dim((R⊗kk(c1, . . . , cm))/(c1f1+

· · · + cmcm)) < dim(R ⊗k k(c1, . . . , cm)) = dim(R), where we define the di-

mension of the trivial algebra as −1.

To prove this we have to show that c1f1 + · · · + cmfm is not contained

in any minimal prime ideal of R⊗k k(c1, . . . , cm).

Now, the minimal prime ideals of R ⊗k k(c1, . . . , cm) are exactly the

ideals of the form (p), where p is a minimal prime ideal of R. (Let first

p be a prime ideal of R. Then R/(p) ⊗k k[c1, . . . , cn] ≃ (R/p)[c1, . . . , cn]

is a domain. Therefore R/p ⊗k k(c1, . . . , cn) ≃ (R ⊗k k(c1, . . . , cn))/(p),

which is a localization of the previous ring, is a domain too. Thus (p)

is prime. Let us assume that p is minimal, and let P ⊆ (p) be a prime
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ideal of R ⊗k k(c1, . . . , cm). Then P ∩ R = p by the minimality of p, thus

(P ∩ R) = (p). As (P ∩ R) ⊆ P, we have P = (p). We conclude that

(p) is a minimal prime ideal. Now let P be any minimal prime ideal of

R ⊗k k(c1, . . . , cm). Then by what we just have shown (P ∩ R) is then a

prime ideal of R⊗kk(c1, . . . , cm). Moreover, this ideal is obviously contained

in P and thus equal to P. Now P ∩ R is also minimal because otherwise

(P ∩ P ) was not minimal either.)

So let us fix a minimal prime ideal p of R. By assumption the residue

classes [f1]p, . . . , [fm]p generate R/p. This implies in particular that there

exists some i ∈ {1, . . . ,m} such that [fi]p 6= 0. Therefore c1[f1]p + · · · +
cm[fm]p 6= 0 ∈ R/p ⊗k k(c1, . . . , cm) ≃ (R ⊗k k(c1, . . . , cm))/(p). Thus

c1f1 + · · · + cmfm /∈ (p). 2

Proposition 3.61 implies immediately:

Proposition 3.63 Given F1, . . . , Fm ∈ k[X1,Y1, . . . ,Xn,Yn] as above, one

can determine if V (F1, . . . , Fm) is empty in a number of field and bit oper-

ations which is polynomially bounded in m · n! · dn.

We now prove:

Proposition 3.64 Given multihomogeneous polynomials F1, . . . , Fn ∈
k[X1,Y1, . . . ,Xn,Yn] of multidegree (d, d, . . . , d) as well as a list of (n+1)·dn

distinct elements from k, one can determine in a number of field and bit

operations which is polynomially bounded in n! · dn if V (F1, . . . , Fn) is zero-

dimensional. If this is the case, one can compute in an expected number

of field and bit operations which is polynomially bounded in n! · dn all its

k-rational points.

Proof. Let for i = 1, . . . , n pi : (P1
k)

n −→ P1
k be the projection to ith compo-

nent. Then V (F1, . . . , Fn) is not zero-dimensional if and only if there is some

i = 1, . . . , n such that pi(V (F1, . . . , Fn)) is equal to P1
k. (If

pi(V (F1, . . . , Fn)) = P1
k for some i, then clearly V (F1, . . . , Fn) is not zero-

dimensional. Otherwise V (F1, . . . , Fn) is contained in the finite set⋂n
i=1 p

−1
i (pi(V (F1, . . . , Fn))).)

For each i = 1, . . . , n we consider the multigraded resultant of F1, . . . , Fn

with respect to all coordinates except Xi,Yi. Let us denote this resultant by

Res ∨
(Xi,Yi)

(F1, . . . , Fn). By definition Res ∨
(Xi,Yi)

(F1, . . . , Fn) vanishes exactly

on pi(V (F1, . . . , Vn)), and one easily see with Proposition 3.57 c) that this

is a homogeneous polynomial of degree n! · dn. We conjecture in fact that it

defines the scheme-theoretic image of V (F1 . . . , Vn) under pi but we do not

need this statement.

We thus see that V (F1, . . . , Fn) is not zero-dimensional if and only if
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at least one of the resultants Res ∨
(Xi,Yi)

(F1, . . . , Fn) vanishes. We can thus

decide if V (F1, . . . , Fn) is zero-dimensional or not by checking if all these

resultants are non-trivial.

Each of these resultants is a homogeneous polynomial of degree n! · dn,

thus it vanishes if and only if it vanishes on n! · dn + 1 distinct points in

P1(k).

By assumption we have a list of n! · dn elements of k at our disposal.

Including ∞ these give n! · dn + 1 elements of P1(k). We can therefore

check if the resultant Res ∨
(Xi,Yi)

(F1, . . . , Fn) vanishes by computing all the

resultants obtained by substituting Xi and Yi with the n! · dn + 1 elements

of P1(k) and checking if the result is 0. By Proposition 3.60 each of these

computations can be performed in a number of field operations which is

polynomially bounded in n! · dn−1, and there are n · (n! · dn + 1) resultants

to be computed. The overall running time is thus polynomially bounded in

n! · dn. We have shown the first statement of the proposition.

We now come to the computation of the k-rational solutions, provided

that the system is indeed zero-dimensional.

We start off in the same way as above, and from the “evaluated resul-

tants” we compute the resultants Res ∨
(Xi,Yi)

(F1, . . . , Fn) by interpolation.

For this we again compute the “evaluated resultants” as determinants as

in Proposition 3.59. Here for each i all the n! · dn + 1 matrices have to be

computed with respect to the same ordering of monomials in order that the

sign is consistent.

By assumption all these resultants are non-trivial. We factorize them and

determine their roots in k; let Li be a list of the roots of the ith resultant,

that is, of the k-rational points of pi(V (F1, . . . , Fn)).

We now compute the solutions in an iterative manner, by successively

imposing conditions of the coordinates. We start out with the k-rational

points in p1(V (F1, . . . , Fn)), that is, L1. Suppose now that we know the

k-rational points of (p1, . . . , pi)(V (F1, . . . , Fn)), which we have stored in a

list Si. Then for each point of P = (P1, . . . , Pi) in Si and Q in Li+1, we

check if the system obtained by substituting P for X1,Y1, . . . ,Xi,Yi and Q

for (Xi+1,Yi+1) is consistent, that is if it has a solution over k. Then all

tuples (P,Q) are inserted into a new list Si+1 for later inspection. Note here

the important point that the list Si has ≤ n! · dn elements.

Let us give the algorithm in a more formal way:
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Algorithm for solving multihomogeneous zero-dimensional systems

Input: Multihomogeneous polynomials F1, . . . , Fn ∈ k[X1,Y1, . . . ,Xn,Yn] of

multidegree (d, d, . . . , d) and n! · dn distinct field elements a1, . . . , an!·dn such

that V (F1, . . . , Fn) is zero-dimensional.

1. For each i = 1, . . . , n, compute Res ∨
(Xi,Yi)

(F1, . . . , Fn) by interpolation.

(Each of these resultants is non-trivial by assumption.)

2. Factorize these resultants and compute their roots in P1(k). Let Li be a

list of roots of the ith resultant.

3. Let S1 ←− L1.

4. For i = 1, . . . , n− 1 do

Determine a list Si+1 consisting of elements of (P1(k))i+1 as follows:

For each P = (P1, . . . , Pi) ∈ L and Q ∈ Li+1 check if the system

obtained by substituting P for X1,Y1, . . . ,Xi,Yi and Q for Xi+1,Yi+1

is consistent. If this is the case, insert (P,Q) into Si+1.

5. Output Sn.

It is obvious that each of the lists Si contains exactly the k-rational points

of (p1, . . . , pi)V (F1, . . . , Fn). Thus the output of the algorithm consists of

the k-rational points of V (F1, . . . , Fn).

Let us analyze the complexity: Step 1 can clearly be performed in a

number of field operations which is polynomially bounded in n! · dn (cf.

Proposition 3.60). Step 3 can be performed in an expected running time

of O(n! · dn) bit and field operations. Each of the checks in Step 4 can be

performed with a number of field and bit operations which is polynomially

bounded in n! · dn by Proposition 3.61. Now, as already remarked each list

Si contains at most n! · dn elements. Therefore, there are at most (n! · dn)2

tuples (P,Q) to be considered for each value of i. Thus Step 4 can also be

performed with a number of bit and field operations which is polynomially

bounded in n! · dn. 2

Over finite fields one might have to pass to a field extension of degree

≤ log2(n! · dn) in order that enough field elements are available. By doing

so, one obtains:

Proposition 3.65 Given multihomogeneous polynomials F1, . . . , Fn ∈
Fq[X1,Y1, . . . ,Xn,Yn] of multidegree (d, d, . . . , d), one can determine if

V (F1, . . . , Fn+1) is zero-dimensional and if this is the case compute all its

Fq-rational points in an expected time which is polynomially bounded in

n! · dn · log(q).
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3.5.4.4 Interpolation

Similarly to the algorithm above, the computation of the summation poly-

nomials will be based on an interpolation. In contrast to the computation

above, the result is however a multihomogeneous polynomial. Here we con-

sider the corresponding interpolation problem.

Let us first consider the classical 1-dimensional interpolation problem in

the context of homogeneous polynomials: Let d ∈ N and (aj , bj) ∈ k2 − {0}
for j = 1, . . . , d + 1 such that the induced elements in P1(k) are pairwise

distinct. Moreover, let c1, . . . , cd+1 ∈ k. Then there is exactly one homoge-

neous polynomial F (X,Y) ∈ k[X,Y] of degree d with F (aj , bj) = cj for all

j = 1, . . . , d+ 1. Moreover, with

Lj :=
∏

ℓ 6=j

bℓX− aℓY

ajbℓ − aℓbj
(3.30)

we have

F =
∑

j

cjLj . (3.31)

Proposition 3.66 Let d ∈ Nn, and let S := {1, . . . , d1 + 1} × · · · × {1, . . . ,
dn + 1}. Let k be a field, let (ai,j, b,j) ∈ k2 − {0} for i = 1, . . . , n and

j = 1, . . . , di + 1 such that for each i, the elements (ai,1 : bi,1), . . . , (ai,di+1 :

bi,di+1) ∈ P1(k) are pairwise distinct, and let cj ∈ k for j ∈ S.

Then there is exactly one multihomogeneous polynomial F ∈
k[X1,Y1, . . . ,Xn,Yn] of multidegree d with F (a1,j1 , b1,j2 , . . . , an,jn , bn,jn) =

bj for all j ∈ S.

Proof. The case n = 1 is treated above. For the general case we proceed by

induction on n.

Let us first prove the uniqueness. For this, let d, S, k, and (ai,j , b,j) ∈
k2 − {0} for i = 1, . . . , n and j = 1, . . . , di + 1 be as in the proposition,

and let F ∈ k[X1,Y1, . . . ,Xn,Yn] be of multidegree d with

F (a1,j1 , b1,j2, . . . , an,jn , bn,jn) = 0 for all j ∈ S.

Then be induction hypothesis, for each j = 1, . . . , dn + 1,

F (X1,Y1, . . . ,Xn−1,Yn−1, an,j , bn,j) = 0 ∈ k[X1, Y1, . . . ,Xn−1, Yn−1]. We

now regard F (X1, Y1, . . . ,Xn, Yn) as a bivariate homogeneous polynomial

in the ring k(X1, Y1, . . . ,Xn−1, Yn−1)[Xn,Yn]. Then by the uniqueness of

the solution of the 1-dimensional interpolation problem, we conclude that

F = 0.

We come to the existence. So let objects as in the proposition be given.

For each j = 1, . . . , dn + 1 there is by induction assumption exactly one

multihomogeneous polynomial Cj ∈ k[X1,Y1, . . . ,Xn−1,Yn−1] of multide-

gree (d1, . . . , dn−1) with Cj(a1,j1 , b1,j2, . . . , an−1,jn−1 , bn−1,jn−1) = cj for all
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j ∈ S with jn = j. Let Lj :=
∏

ℓ 6=j
bℓXn−aℓYn

ajbℓ−aℓbj
for j = 1, . . . , dn + 1. Then

the polynomial F :=
∑

j CjLj fulfills the requirements. 2

We call the computation problem to determine the polynomial F , given

the data in the proposition the multihomogeneous interpolation problem.

One can solve this problem with an obvious linear algebra approach. We

therefore obtain:

Proposition 3.67 The multihomogeneous interpolation problem can be

solved in a number of field and bit operations which is polynomially bounded

in (d1 +1) · · · (dn +1), where as above d is the multidegree of the polynomial

to be computed.

3.5.5 The summation polynomials

In this subsection we prove Propositions 3.35 and 3.37 on the summation

polynomials. Let E be an elliptic curve over a field k, let m ∈ N,m ≥ 2,

and let ϕ : E −→ P1
k be a covering of degree 2 which satisfies ϕ ◦ [−1] = ϕ.

Now let Nm (or N) be the kernel of the addition map Em −→ E,

(P1, . . . , Pm) 7→ P1 + · · ·+Pm. (Here the Pi are Z-valued points for some k-

scheme Z.) Note that N is isomorphic to Em−1 via the projection

(P1, . . . , Pm) 7→ (P1, . . . , Pm−1).

We now consider the projection Em −→ (P1
k)

m induced by ϕ. Note that

[−1] operates on N , and the map N →֒ Em −→ (P1
k)

m factors through the

quotient N/[−1].

Definition 3.68 Let Hϕ,m (or Hm or H) be the image of N in (P1
k)

m (with

the induced subscheme structure).

Lemma 3.69

a) The induced map N/[−1] −→ H is finite and birational.

b) H is a hyperplane (P1
k)

m of multidegree (2m−2, . . . , 2m−2).

c) The projections H −→ Pm−1
K to any m− 1 of the m components are flat

coverings of degree 2m−2.

Proof. The maps N →֒ Em −→ (P1
k)

m and H −→ (P1
k)

m are clearly finite.

It follows immediately that the induced map N −→ H is also finite. This in

turn implies that the induced map N/[−1] −→ H is finite too (by definition

of the geometric quotient).
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Let us now consider the commutative diagram

N

{{vvvvvvvvv

� � //

��

Em

��uukkkkkkkkkkkkkkkkk

Em−1

��

H
� � //

{{xxxx
xxxxx

(P1
k)

m ,

uullllllllllllll

(P1
k)

m−1

where the morphisms Em −→ Em−1 and (P1
k)

m −→ (P1
k)

m−1 are the pro-

jections to the first m− 1 coordinates. Then the induced morphism N −→
Em−1 is an isomorphism, and the morphism Em−1 −→ (P1

k)
m−1 is finite

separable of degree 2m−1.

Below we show that the map N −→ H has degree 2, and the map H −→
(P1

k)
m−1 generically has degree 2m−2. This statement implies statements a)

and b) in the lemma. Indeed, first as N −→ H has degree 2, the induced

map N/[−1] −→ H has degree 1, that is, it is birational. Second, the fact

that the map H −→ (P1
k)

m−1 is quasi-finite and generically of degree 2m−2

implies that the last component of the multidegree of H is 2m−2. By “by

symmetry” (or by a repetition of the argument with projections to different

components) then all components of the multidegree are 2m−2.

Note first that we have already established that both maps are separable,

and that the product of the two degrees is 2m−1. Therefore, it suffices to

show that the extension of function fields k(N)|k(H) has separability degree

2.

We are going to apply the isomorphism Em−1 −→ N which is the inverse

of the projection N −→ Em−1 and consider the extension k(Em−1)|k(H).

Let Ω := k(Em−1), let pi : Em−1 −→ E be the projection to the ith

coordinate, and let Pi ∈ E(Ω) be the induced points. (That is, Pi is the

morphism Spec(Ω) −→ Spec(k(Em−1)) −→ Em−1 pi−→ E, where the first

two morphisms are the canonical ones.) Let pm := −∑m−1
i=1 pi and Pm :=

−∑m−1
i=1 Pi.

Then the inverse of the projection N −→ Em−1 to the first n − 1 coor-

dinates is given by (p1, . . . , pm); the corresponding k(En−1)-valued point of

N is given by (P1, . . . , Pm).

The Pi are linearly independent, since the pi are linearly independent,

the map Mork(E
m−1, E) −→ E(k(Em−1)) is injective (in fact, it is an iso-

morphism), and the map E(k(Em−1)) −→ Spec(Ω) is injective too.

Now let us consider the preimage of x(P1, . . . , Pm) = (x◦P1, . . . , x◦Pm) ∈
H(Ω) in N(Ω). This set consists of all tuples (ǫ1P1, . . . , ǫmPm) ∈ Em(Ω)

with ǫi = ±1 and
∑m

i=1 ǫiPi = O. Clearly, there are exactly two such tuples:
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±(P1, . . . , Pm).

We conclude: There are exactly two Ω-valued points of Em−1 which

induce the Ω-valued point (x ◦ P1, . . . , x ◦ Pm) ∈ H(Ω) under the projection

N −→ H. This means that there are exactly two extensions of the canonical

inclusion k(Em−1) −→ Ω to k(N). Therefore, the separability degree of the

extension k(Em−1)|k(H) is 2.

We come to c). We still (wlog.) only consider the projection p : H −→
(P1

k)
m−1 to the first m − 1 components. As the map is quasi-finite and

as H has multidegree (2m−2, . . . , 2m−2), each fiber has degree 2m−2. With

other words: The Hilbert polynomials of the fibers are equal to 2m−2. With

[Har77, Theorem 9.9] we conclude that p is flat.

Note that H is a projective over (P1)m−1, thus in particular proper.

Moreover, p is quasi-finite. These two properties together are equivalent to

being finite by [Gro61, Proposition 4.4.2]. 2

Now clearly, if S is any irreducible polynomial in k[X1,Y1, . . . ,Xm,Ym]

which is multihomogeneous, then S satisfies the conditions of Proposition

3.35 if and only if H = V (S). This establishes Proposition 3.35.

Thus the mth summation polynomial (cf. Definition 3.36) with respect

to ϕ is the (up to a multiplicative constant unique) polynomial S with

V (S) = H.

Remark 3.70 Let α ∈ Aut(P1
k). Then Hα◦ϕ,m = α(Hϕ,m), with other

words: Hα−1◦ϕ,m = α−1(Hϕ,m). This implies that Sα−1◦ϕ,m = α∗(Sϕ,m).

We now discuss how the summation polynomials for elliptic curves in

Weierstraß form can be given in an explicit and constructive way, following

[Sem98].

Lemma 3.71 Let E be an elliptic curve in P2
k in Weierstraß form:

E = V (Y 2Z + a1XY Z + a3Y Z
2 − (X3 + a2X

2Z + a4XZ
2 + a6Z

3))

with a1, a2, a3, a4, a6 ∈ k and O = [0 : 1 : 0]. Then the 3rd summation

polynomial of E with respect to x|E is given by

(
(x2

1x
2
2 + x2

2x
2
3 + x2

1x
2
3)− 2(x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3)

−(a2
1 + 4a2)x1x2x3 − (a1a3 + 2a4) · (x1x2 + x2x3 + x1x3)

−(a2
3 + 4a6) · (x1 + x2 + x3)

−a2
1a6 + a1a3a4 − a2a

2
3 − 4a2a6 + a2

4

)
·Y2

1Y
2
2Y

2
3 .

Sketch of the proof. Let S be the polynomial in the lemma. Using the inver-

sion and addition formulae for elliptic curves in Weierstraß form (cf. [Sil86]),
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one can check (with a rather lengthy computation) that for all P1, P2 ∈ E(k),

S(x(P1), x(P2), x(P1 + x(P3)) = 0. This implies that S3 divides S. As both

polynomials have multidegree (2, 2, 2), it follows that they are equal. Let

us note here that one only has to check that S(x(P1), x(P2), x(P1 +P3)) for

P1 6= ±P2 and P1, P2 6= O because then S vanishes on an open part of H3

and thus also on all of H3. 2

Let us indicate how the polynomial S was found, following [Sem04]:

Let P1, P2 ∈ E(k) with P1, P2 6= O and P1 6= ±P2. Then clearly both

x(P1 +P2) and x(P1−P2) satisfy the polynomial (x−x(P1 +P2))(x−x(P1 +

P2)). So we computed this polynomial over the field Q(a1, a2, a3, a4, a6)

and for “generic” P1, P2, using the computer algebra system MAGMA. The

polynomial S is then obtained by multiplication with the denominator and

homogenization.

Lemma 3.72 Let E still be an elliptic curve and ϕ : E −→ P1
k a covering

of degree 2 with ϕ ◦ [−1] = ϕ. Let s, t ∈ N with s, t ≥ 2. Then

Sϕ,s+t(X1,Y1, . . . ,Xs+t,Ys+t) =

Res(X,Y)(Sϕ,s+1(X1,Y1, . . . ,Xs,Ys,X,Y),

Sϕ,t+1(Xs+1,Ys+1, . . . ,Xs+t,Ys+t,X,Y)) .

Here by Res(X,Y) we mean the usual Sylvester resultant for homogeneous

polynomials in X and Y of degrees 2s−1 and 2t−1.

Proof. For (P1, . . . , Ps+t) ∈ (E(k))s+t we have P1 + · · · + Ps+t = O if

and only if there exists some P ∈ E(k) with P1 + · · · + Ps + P = O and

Ps+1 + · · ·+ Ps+t + P = O.

It follows that topologically the hyperplane Hs+t is the image of

V (Sϕ,s+1(X1,Y1, . . . ,Xs,Ys,X,Y), Sϕ,t+1(Xs+1, Ys+1, . . . ,Xs+t−1,Ys+t,X,Y))

in (P1
k)

n×Proj(k[X,Y]) under the projection to (P1
k)

n. As Hs+t is irreducible

it follows that the resultant in the lemma is (up to a multiplicative constant)

a power of Sϕ,s+t.

In order to prove that the resultant is (up to a constant) equal to Sϕ,s+t,

we consider their multidegrees.

The generic Sylvester resultant for polynomials of degrees a and b has

degree b in the coefficients of the first polynomial and degree a in the coeffi-

cients of the second polynomial. We apply this with a = 2s−1 and b = 2t−1.

In our case we obtain a polynomial of degree 2s−1 · 2t−1 = 2s+t−2 in (Xi,Yi)

for all i = 1, . . . , s+ t.

As Sϕ,s+t has multidegree (2s+t−2, . . . , 2s+t−2), the result follows. 2

The two preceeding lemmata give rise to algorithmic constructions of the

summation polynomials.
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First, given an elliptic curve in Weierstraß form and a covering of degree

2 ϕ : E −→ P1
k with ϕ ◦ [−1] = ϕ (which means that the automorphism

α ∈ Aut(P1
k) with ϕ = α ◦ x|E is given), one can easily determine Sϕ,3 via

Lemma 3.71 and Remark 3.70.

Further, one can compute Sϕ,m for m ≥ 3 from Sϕ,m−1 and Sϕ,3 by

applying the above lemma with s = m − 2 and t = 2. This computation

can be performed via interpolation provided we have 2m−2 distinct field

elements available (which give rise to 2m−2 + 1 distinct elements in P1(k))

(cf. Proposition 3.67). We therefore obtain:

Proposition 3.73 Given an elliptic curve E over a field k in Weierstraß

form and a covering ϕ : E −→ P1
k of degree 2 with ϕ ◦ [−1] = ϕ, a natural

number m ≥ 3 and a list of 2m−2 elements of k, one can compute the mth

summation polynomial of E with respect to ϕ in a number of field and bit

operations of Poly(em2
).

Proposition 3.37 is a consequence of this proposition. (It might be nec-

essary to compute in field extensions.)

3.5.6 Geometric background on the algorithm and analysis

The main purpose of this subsection is to prove Propositions 3.41 and 3.47.

Additionally, we give some background information on the definition of the

factor base from a geometric point of view.

3.5.6.1 Weil restrictions

We make use of Weil restrictions of schemes. Here we briefly recall the

definition and some basic properties of Weil restrictions. For further infor-

mation we refer to [BLR80, 7.6] and [Die01, Chapter 1]. Let us first fix the

following terminology:

Terminology 3.74 Let X and Y be locally noetherian schemes. Then a

finite and flat morphism X −→ Y is also called a flat covering.

Note that a flat covering is locally free (see [Mat89, Theorem 7.10]).

Now let S′ and S locally noetherian schemes, and let a flat covering

S′ −→ S be fixed. Let X ′ be an S′-scheme such that the fibers of X ′ over S′

are quasi-projective. Then one can show that the functor from S-schemes to

sets Z 7→ MorS′(ZS′ ,X ′) is representable by an S-scheme; the (up to unique

isomorphism unique) representing object is called the Weil restriction of X ′

with respect to S′ −→ S. We denote it by ResS′
S (X ′).11

11The similarity between the notations for Weil restrictions and resultants is accidental.
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A reformulation of this definition is: The Weil restriction of X ′ with re-

spect to S′ −→ S is a an S-scheme ResS′
S (X ′) together with an S′-morphism

u : (ResS′
S (X ′))S′ −→ X ′ such that the following holds: Whenever Z is

an S-scheme, and α : Z ×S S
′ = ZS′ −→ X ′ is an S′-morphism, there

is a unique S-morphism β : Z −→ ResS′
S (Z) with α = βS′ ◦ u, where

βS′ := β ×S S
′ = β ×S idS′ . We denote the morphism β by α⊚.

The assignment X 7→ ResS′
S (X ′) gives rise to a functor (which we call

scalar-restriction functor) from the category of S′-schemes with quasi-pro-

jective fibers to the category of S-schemes. Moreover, if X ′ is an affine

S′-scheme (that is, the structural morphism is affine), then ResS′
S (X ′) is an

affine S-scheme.

We will use the following two lemmata.

Lemma 3.75 Let S′ −→ S′ be as above, and let X ′, Y ′,W ′ be S′-schemes

with S′-morphisms X ′ −→ W ′ and Y ′ −→ W ′. Then we have a Cartesian

diagram

ResS′
S (X ′ ×W ′ Y ′) //

��

ResS′
S (Y ′)

��

ResS′
S (X ′) // ResS′

S (W ′)

with the obvious canonical morphisms.

Proof. Let for this Z be an S-scheme, and let two S-morphisms Z −→
ResS′

S (X ′) and Z −→ ResS′
S (Y ′) be given which induce the same morphism

Z −→ ResS′
S (W ′). These morphisms induce S′-morphisms ZS′ −→ X ′ and

ZS′ −→ Y ′, again inducing the same morphism toW ′. Thus by the universal

property of the product, we have an induced morphism ZS′ −→ X ′. Again

this morphism corresponds to a morphism Z −→ ResS′
S (X ′); it is immediate

that it has the correct property. 2

Lemma 3.76 Let S′ −→ S′ as above, let T be an S-scheme, and let T ′ :=

T ×S S
′. Let X ′ be a T ′-scheme with structural morphism α : X ′ −→ T ′.

Let v : (ResT ′
T (X ′))T ′ −→ X ′ be the universal morphism; v is thus a

T ′-morphism. We have (ResT ′
T (X ′))×T T

′ ≃ (ResT ′
T (X ′))×S S

′, and v is in

particular an S′-morphism. Thus by the universal property of ResS′
S (X ′) we

have an induced S-morphism v⊚ : ResT ′
T (X ′) −→ ResS′

S (X ′).

Now we have a Cartesian diagram

ResT ′
T (X ′)

��

// ResS′
S (X ′)

��

T // ResS′
S (T ′) ,
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where the morphisms are defined as follows: The left morphism is the struc-

tural morphism, the right morphism is ResS′
S (α), the upper morphism is v⊚,

and the lower morphism is the morphism id⊚ : T −→ ResS′
S (T ′) correspond-

ing to the identity on T ′ under the defining functorial property of ResS′
S (T ′).

This lemma follows from [Die01, Chapter I, Lemma 1.2].

Let now K|k be a finite field extension. Then if X ′ is a quasi-projective

(resp. projective) scheme over K, ResK
k (X ′) is a quasi-projective (resp. pro-

jective) scheme of dimension [K : k] · dim(X ′) over k. Note that by the

defining functorial property of the Weil restriction we have in particular a

bijection

X ′(K) = MorK(Spec(K),X ′) −→ ResK
k (X ′)(k) = Mork(Spec(k),ResK

k (X ′)),

7→ P⊚ .

If X ′ is a group scheme over K, ResK
k (X ′) is in a natural way again a group

scheme, and in particular if A′ is an abelian variety over K, then ResK
k (A)

is in a natural way an abelian variety too.

Let K|k now be an extension of finite fields of degree n, and let σ be

the relative Frobenius automorphism of K|k. We denote the induced iso-

morphism Spec(k) −→ Spec(k) again by σ. Let X ′ be a quasi-projective

K-scheme. Then we have a canonical isomorphism

(ResK
k (X ′))K ≃

n−1∏

i=0

σi(X ′)

of K-schemes under which the universal morphism u : (ResK
k (X ′))K −→ X ′

corresponds to the projection

u :

n−1∏

i=0

σi(X ′) −→ X ′ .

Moreover, if Z is any k-scheme and α : ZK −→ X ′ is a morphism, then

(α⊚)K corresponds to

(α, σ(α), . . . , σn−1(α)) : ZK −→
n−1∏

i=0

σi(X ′)

and if ϕ : X ′ −→ Y ′ is a morphism of quasi-projective K-schemes, then

ResK
k (ϕ) corresponds to

ϕ× σ(ϕ) × · · · × σn−1(ϕ) :

n−1∏

i=0

σi(X ′) −→
n−1∏

i=0

σi(Y ′) .
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3.5.6.2 Background on the factor base

Let still K|k be an extension of finite fields of degree n, and as above let σ

the Frobenius automorphism relative to k. Let E be an elliptic curve over

K, and let us fix a covering ϕ : E −→ P1
K of degree 2 with ϕ ◦ [−1] = ϕ.

Let ι = id⊚ : P1
k −→ ResK

k (P1
K) be the morphism corresponding to the

identity on P1
K . One can easily see (for example via base change to K) that

ι is a closed immersion.

Let V be the preimage of ι⊚(P1
k) under ResK

k (ϕ) : ResK
k (E) −→ ResK

k (P1
k).

This means by definition that we have a Cartesian diagram

V
� � //

��

ResK
k (E)

ResK
k (ϕ)

��
P1

k
� � ι⊚ // ResK

k (P1
k) .

(3.32)

Note that ResK
k (ϕ) : ResK

k (E) −→ ResK
k (P1

k) is a flat covering of degree

2n (as one sees after base change to K), and therefore V −→ P1
k is a flat

covering of degree 2n too.

Let us now explain the connection of these definitions to the definition of

the factor base in the algorithm for Theorem 4: Let us consider a particular

run of the algorithm. Then under the bijection P1(K) ≃ ResK
k (P1

K)(k)

the inclusion P1(k) ⊆ P1(K) corresponds to ι⊚(P1
k(k)) ⊆ ResK

k (P1
K))(k).

Therefore the factor base F = (ϕ−1(A1
k))(k) corresponds to V (k) − {O}

under the bijection E(K) ≃ ResK
k (E)(k). One can therefore say that the

factor base is defined in a “geometric way” – something that immediately

apparent from the definition of the factor base in the algorithm.

The addition on the Weil restriction induces a morphism V n −→ ResK
k (E),

and – again under the bijection E(K) ≃ ResK
k (E)(k) – for P ∈ E(K) the

tuples (P1, . . . , Pn) with ϕ(Pi) ∈ P1(k) and
∑

i Pi = P correspond to the

k-valued points of the fiber of V n −→ ResK
k (E) at P⊚, the k-rational point

of ResK
k (E) corresponding to P .

3.5.6.3 Study of the factor base

In this subsubsection we study the addition morphism V n −→ ResK
k (E).

Proposition 3.77 Let Condition (3.45) be satisfied. Then

a) V is geometrically reduced and geometrically irreducible (and thus bira-

tional to a curve),

b) the addition morphism V n −→ ResK
k (E) is surjective.
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Proof. By (3.32) and Lemma 3.76 we have V ≃ Res
P1

K

P1
k

(E), with respect to

the covering ϕ : E −→ P1
k. This implies that

VK ≃ E ×P1
K
σ(E) ×P1

K
· · · ×P1

K
σn−1(E) , (3.33)

where the morphisms are ϕ : E −→ P1
K , . . . , σ

n−1(ϕ) : σn−1(E) −→ P1
K .

Let us now fix an algebraic closure k(x) of k(x). Let us denote the

Frobenius automorphism of k|k also by σ. Let us then prolong σ first to

k(x) via σ(x) := x, and and let us fix any automorphism of k(x)|k(x) which

restricts to σ; let us denote this automorphism again by σ. Moreover, let us

fix an injection of k(E) into k(x) over k(x).

We now consider the total quotient ring of the scheme Vk, which is

isomorphic to

k(E)⊗k(x) σ(k(E)) ⊗k(x) · · · ⊗k(x) σ
n−1(k(E)) .

By Condition (3.45) for i = 1, . . . , n − 1, the extension σi(k(E))|k(x) is

ramified at σi(P ) but for any j = 0, . . . , i−1, the extension σj(k(E))|k(x) is

not ramified at σi(P ), thus the extension k(E)σ(k(E)) · · · σi−1(k(E))|k(x)

in k(x) is also not ramified at σi(P ). Thus σi(k(E)) is not contained in

k(E)σ(k(E)) · · · σi−1(k(E)). It follows therefore by induction that the

extension k(E)σ(k(E) · · · σn−1(k(E))|k(x) in k(x) has degree 2n. Thus

the total quotient ring of Vk is is isomorphic to the composite

k(E)σ(k(E)) · · · σn−1(k(E)) in k(x) and therefore a field. We see that Vk is

reduced and irreducible, thus V is geometrically reduced and geometrically

irreducible.

We come to b). Let C be the curve which is birational to V , and let

us fix a birational morphism π : C −→ V . Let β : C −→ ResK
k (E) be

the composition of π with the inclusion into ResK
k (E). We claim that the

induced homomorphism

β∗ : JC −→ ResK
k (E)

is surjective.

We show this statement after base change toK. Let v : V = Res
P1

K

P1
k

(E)×P1
k

P1
K ≃ Res

P1
K

P1
k

(E)×k K −→ E be the universal morphism (this is the projec-

tion to the first factor in (3.33)), and as always let u : (ResK
k (E))K −→ E

be the universal morphism. Let ψ := v ◦ πK : CK −→ E.

Note that the inclusion V = Res
P1

K

P1
k

(E) −→ ResK
k (E) is given by v⊚ (cf.

Lemma 3.76). We therefore have

β = v⊚ ◦ π = (v ◦ πK)⊚ = ψ⊚ .
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Thus βK is given by

(ψ, σ(ψ), . . . , σn−1(ψ)) : CK −→ E × σ(E) × · · · × σn−1(E) ,

and we have

(β∗)K = (ψ∗, σ(ψ)∗, . . . , σ
n−1(ψ)∗) .

Let now γ : E × σ(E) × · · · × σn−1(E) −→ JC be homomorphism which is

induced by (σi(ψ))∗ : σi(E) −→ (JC)K . (Under the identification of JC with

its dual, this is the dual homomorphism to (β∗)K .)

We claim that

(β∗)K ◦ γ = [2n−1] .

For this we have to show:

• i = 0, . . . , n− 1 : (σi(ψ))∗ ◦ (σi(ψ))∗ = [2n−1]

• i, j = 0, . . . , n with i 6= j : (σj(ψ))∗ ◦ (σi(ψ))∗ = 0

By the proof for item a) the extension K(C)|K(x) ≃ K(V )|K(x) is iso-

morphic to the extensionK(E) · · · σ(K(E)) · · · σn−1(K(E))|K(x) (where the

composite is with respect to the fixed inclusions into k(x)). The first claim is

therefore obvious. For the second claim we consider the diagram of function

fields

k(C)

σi(k(E))σj(k(E))

QQQQQQQQQQQQQ

mmmmmmmmmmmm

σi(k(E))

QQQQQQQQQQQQQQ
σj(k(E)) .

mmmmmmmmmmmmmm

k(x)

As σi(k(E))σj(k(E))|k(x) is a Z/2Z × Z/2Z-extension, the conorm-norm

homomorphism from Cl0(σi(k(E))) to Cl0(σj(k(E))) via σi(k(E))σj(k(E))

is trivial. Thus the conorm-norm homomorphism via k(C) is trivial too.

This gives the second claim.

We have therefore derived that β∗ : JC −→ ResK
k (E) is surjective.

Let for i ∈ N ai : V i −→ ResK
k (E) be the map which is induced by

the addition in ResK
k (E). Assume now that the map an : V n −→ ResK

k (E)

is not surjective. Then an(V n) a variety of dimension < n. Therefore

dim(ai(V
i)) = dim(ai+1(V

i+1)) for some i < n. Moreover, ai+1(V
i+1)
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clearly contains a translate of ai(V
i). Thus ai+1(V

i+1) is equal to a trans-

late of ai(V
i). By induction one easily sees that am(V m) is a translate of

ai(V
i) for all m ≥ i. But the image of β∗ is ag(C)(V

g(C)), a contradiction. 2

2

Proposition 3.78 Let us still assume that Condition 3.45) is satisfied, and

let C be as above. Then

a) The genus of C is ≤ (2n − 1) · (2n − 1).

b) C(k) contains at most n · 2n+2 points which map to singular points under

the birational morphism π : C −→ V .

Proof. By a general result on elementary abelian extensions (see e.g. [KR89])

we have

g(C) =
∑

L

g(L) ,

where L runs over all subextensions of k(C)|k(x) of degree 2. We show below

that the genus of a function field L as in the sum is always ≤ 2n− 1. This

implies that g(C) ≤ (2n− 1) · (2n − 1).

To show the claim on the subfields L we proceed with a case distinction.

Let q be even. By Artin-Schreier theory every subfield L of k(x)|k(x) of de-

gree 2 corresponds to the a 1-dimensional subspace of the F2-vector space

k(x)/P(k(x)), where P is the Artin-Schreier operator.

If now k(E) corresponds to 〈f〉, where f is the residue class of some

f ∈ k(x), then each field L as in the sum corresponds to 〈a0f + a1σ(f) +

· · ·+ an−1σn−1(f)〉 for a uniquely defined tuple (a0, . . . , an−1) ∈ Fn
2 − {0}.

Let first j(E) = 0. In this case the extension k(E)|k(x) is ramified at one

place, and k(E) corresponds to some space 〈f〉, where f is either a polyno-

mial of degree 3 or of the form g
(x−λ)3

for λ ∈ k and deg(g) = 3.

Using [Sti93, Proposition III.7.8] one sees: If L is any field as in the sum,

then L|k(x) is ramified at at most n places (this is also immediately obvious),

and the corresponding discriminant exponents are all 4. This implies that

the genus of L is ≤ 2n− 1.

Let now j(E) 6= 0. In this case k(E)|k(x) is ramified at 2 places, and k(E)

corresponds to 〈f〉, where f is the sum of two distinct polynomials f1, f2

such that each of these polynomials is either x or 1
x−a for some a ∈ k. Now

each subfield L as in the sum is ramified over at most 2n places and the

different exponents are all 2. Again the genus of L is ≤ 2n− 1.

Let q be odd. In this case k(E)|k(x) is (tamely) ramified at 4 places. If thus

L is as in the sum, L|k(x) is ramified at at most 4n places. Thus the genus

of L is ≤ 2n− 1.
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We come to b). Let S be the set of points of P1(k) over which one of

the coverings σi(E) −→ P1
k

is ramified. Using the fact that a morphism

obtained from an étale morphism via base change is étale we obtain: The

canonical morphism V −→ P1
k is étale outside S. This implies that V is

smooth outside the preimage of S, and the birational morphism π : C −→ V

is an isomorphism outside the preimages of S. With other words: All points

in C(k) which map to singular points of V are contained in the preimage of

S.

As the covering C −→ P1
k has degree 2n, the preimage of the set S has

at most #S · 2n ≤ 4n · 2n elements. 2

Remark 3.79 Let k = Fq. Then under Condition 3.45 by the above propo-

sitions, and the Hasse-Weil bound we have

#{P ∈ E(K) | ϕ(P ) ∈ P1(k)} = #V (k)

≥ q + 1− 2 · (2n − 1) · (2n − 1) · q 1
2 − n · 2n+2 + 1 .

For fixed n this is clearly ∼ q. Moreover, for log2(q) ≥ 3n, that is, 2
3
2
·n ≤ q 1

2 ,

and n large enough we have

V (k) ≥ 1

2
· (q + 1) .

(The bound q ≥ 3 log2(n) is a bit arbitrary but it serves its purposes, and in

order to complete the analysis for the algorithm for Theorem 4, we anyway

have to impose a more restricted bound.)

This result shows that if ϕ satisfies Condition 3.45, the set

{P ∈ E(K) | ϕ(P ) ∈ P1(k)} is “reasonably large”. Note that this applies

then of course in particular to the factor base constructed in the algorithm

for Theorem 4. We remark however that the main purpose of showing that

V is birational to a curve is not to prove that a suitably large factor base can

be efficiently constructed – this goal can also easily be reached by choosing

the automorphism α used to define ϕ in a randomized fashion. Rather the

key statement is that V n contains an irreducibility component which maps

surjectively to ResK
k (E) under the addition morphism and which contains

“enough” elements.

Remark 3.80 There is a connection between the considerations here and

the GHS-attack ([GHS02]) for elliptic curves: Let the notations be as above

but let us drop Condition 3.45. Then Vk can be reducible. Let us assume

that V contains an irreducibility component which is geometrically irre-

ducible; let D be a curve which is birational to such a component, and let

us fix a map from D to V which is birational to its image. The map from

D to ResK
k (E) corresponds to a covering c : DK −→ E.
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Now the GHS-attack applied to E consists of finding such a D and the

covering explicitly and transferring the discrete logarithm problem in E(K)

to a discrete logarithm problem in Cl0(D) via the homomorphism

E(K)
c∗−→ Cl0(DK) −→ Cl0(D) ,

where the second homomorphism is the norm. This homomorphism is also

related to the considerations above: One can show that under the isomor-

phism E(K) ≃ ResK
k (E) this homomorphism corresponds to the pull-back

homomorphism from β∗ : ResK
k (E) −→ JD ≃ Cl0(D).

The idea of the GHS attack is that it might be faster to solve the discrete

logarithm problem in Cl0(D) than in E(K). Of course, for this one requires

that the kernel of the homomorphism is “small” and the genus of D is as

small as possible under this condition.

For the analysis of the present algorithm it is important that Vk is ir-

reducible. In the GHS attack one has in a certain sense an opposite re-

quirement on the covering ϕ : E −→ P1
K used to define V than we have

here: one wants that V contains a component which is birational a curve

C of “small genus”, however still such that the induced addition morphism

Cn −→ ResK
k (E) is surjective.

We would however like to stress that the Weil restriction ResK
k (E) is not

needed for an explicit construction of such a curve D. Indeed, the function

field of K(D) is a composite of K(E),K(σ(E)), . . . ,K(σn−1(E)), and one

can construct such a composite and then the function field of a suitable curve

D over k (provided that such a curve exists) with a purely field-theoretic

approach. For further information on the function field theoretic approach

to the GHS attack we refer to [Die03] and [Heß03].

3.5.6.4 The role of the summation polynomials

Let the hyperplane H = Hn+1 of (P1
k)

n+1 be defined as in subsection 3.5.5.

By applying the scalar-restriction functor, we obtain:

ResK
k (H) −→ ResK

k ((P1
K)n+1) ≃ (ResK

k (P1
K))n+1 .

Via base change to K one sees immediately that we have a closed immersion.

LetX be the scheme-theoretic preimage of ResK
k (H) in (P1

k)
n×ResKk (P1

K)

under the closed immersion ι⊚× ι⊚× · · · × ι⊚× id : (P1
k)

n ×ResK
k (P1

K) −→
ResK

k ((P1))n+1. This means by definition that we have a Cartesian diagram

X� _

��

� � // ResK
k (H)

� _

��
(P1

k)
n × ResK

k (P1
K)

� � // (ResK
k (P1

K))n+1 .

(3.34)
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Note that – again under the obvious bijections – the elements of X(k) cor-

respond to the tuples (Q1, . . . , Qn, Q) with Qi ∈ P1(k) and Q ∈ P1(K) with

(Q1, . . . , Qn, Q) ∈ H(K). The latter condition means of course that there

are P1, . . . , Pn, P ∈ E(K) with ϕ(Pi) = Qi and
∑

i Pi = P .

Notation 3.81 Let p1 : (P1
k)

n × ResK
k (P1

K) −→ (P1
k)

n and p2 : (P1
k)

n ×
ResK

k (P1
K) −→ ResK

k (P1
K) be the two projections.

Lemma 3.82 (p1)|X : X −→ (P1
k)

n is a flat covering of degree 2(n−1)·n.

Proof. By Lemma 3.69 c) the projection to the first n components H −→
(P1

K)n is a flat covering of degree 2n−1. Therefore the induced map

ResK
k (H) −→ ResK

k ((P1
K)n) ≃ (ResK

k (P1))n is a flat covering of degree

2(n−1)·n. The map (p1)|X : X −→ (P1
k)

n is obtained from this map via

base change with ι× · · · × ι : (P1
k)

n −→ (ResK
k (P1

K))n. 2

Notation 3.83 Let G be the graph of −an : V n −→ ResK
k (E), where as in

the proof of Proposition 3.77 an is the restriction of the addition morphism

to V n. (Note the minus sign!)

As in subsection 3.5.5 let for m ∈ N Nm be the kernel of the addition

morphism Em −→ E. One easily sees that ResK
k (Nm) is (as a subscheme

of ResK
k (Em)) the kernel of the addition homomorphism on ResK

k (Em). Let

now N := Nn+1. By considering Z-valued points for any k-scheme Z, one

obtains immediately:

Lemma 3.84 G is the scheme-theoretic intersection of V n ×ResK
k (E) and

ResK
k (N) in ResK

k (En+1) ≃ (ResK
k (E))n+1.

Proposition 3.85 There is a canonical surjective morphism G −→ X.

Moreover, if Condition 3.45 is satisfied, then X is geometrically irreducible

and (p2)|X : X −→ ResK
k (P1

K) is surjective.

Proof. Let us consider the commutative diagram

G
� � //
� _

��

ResK
k (N)

� _

��

((RRRRRRRRRRRRR

X
� � //

� _

��

ResK
k (H)

� _

��

V n × ResK
k (E)

))RRRRRRRRRRRRRR

� � // (ResK
k (E))n+1

((RRRRRRRRRRRRR

(P1
k)

n × ResK
k (P1

K)
� � // (ResK

k (P1
K))n+1
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with the obvious canonical morphisms. As by definition of X the right-lower

subdiagram (i.e. diagram (3.34)) is Cartesian, we have an induced morphism

G −→ X.

It suffices to prove the surjectivity on k-valued points. So let Q ∈ X(k).

As the map N −→ H is surjective, so is ResK
k (N) −→ ResK

k (H). Let us con-

sider Q as a point in ResK
k (H), and let us fix a preimage P ∈ ResK

k (N)(k).

We claim that P lies in G(k), or with other words that the image of P

in (ResK
k (E))n+1(k) lies in (V n × ResK

k (E))(k). For this we have to check

that the image of P in ResK
k (P1

K))(k) lies in ((P1)n × ResK
k (P1

K))(k). But

this is obvious as the image is nothing but the point Q we started with.

Let now Condition 3.45 be satisfied. By Proposition 3.77 a) V is then

geometrically reduced and geometrically irreducible, thus so is V n, which is

isomorphic to the graph G. As the map G −→ X is surjective, X is then

also geometrically irreducible.

For the second claim we consider the commutative diagram

G� _

��

// X� _

��

V n × ResK
k (E)

��

// (P1
k)

n × ResK
k (P1

K)

p2

��
ResK

k (E) // ResK
k (P1

K) .

The image of G in ResK
k (E) is the image of −an : V n −→ ResK

k (E) (which

is equal to the image of an), and by Proposition 3.77 b) this is ResK
k (E).

Moreover, the morphism ResK
k (E) −→ ResK

k (P1
K) (being a flat covering) is

also surjective. Thus the morphism (p2)|X : X −→ ResK
k (P1

K) is surjective

too. 2

Let us now fix some Q ∈ P1(K). Following our notation, let Q⊚ be the

corresponding k-rational point of ResK
k (P1

K). Let XQ⊚
be the fiber of X at

Q⊚, that is, we have the Cartesian diagram

XQ⊚

� � //
� _

��

X� _

��
(P1

k)
n � � //

��

(P1
k)

n × ResK
k (P1

K)

��
Spec(k) � � Q⊚ // ResK

k (P1
K) .

Then we have the following connection with the decomposition algo-

rithm:
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Proposition 3.86 As a subscheme of (P1
k)

n × ResK
k (P1

K), XQ⊚
is

V (S(1), . . . , S(n)), where the polynomials S(j) ∈ k[X1,Y1, . . . ,Xn,Yn] are

defined as in Equation (3.28).

We show first:

Lemma 3.87 Let HQ ⊂ (P1
K)n be the restriction of H to (P1

K)n via the

closed immersion id× · · ·×id×Q : (P1
K)n ≃ (P1

K)n×KSpec(K) −→ (P1
K)n+1.

Then we have a Cartesian diagram

XQ⊚

� � //
� _

��

ResK
k (HQ)

� _

��
(P1

k)
n � � // (ResK

k (P1
K))n ,

where the lower arrow is given by ι× · · · × ι.

Proof. We have ResK
k (Spec(K)) = Spec(k) and ResK

k (Q) = Q⊚. By Lemma

3.75 the defining Cartesian diagram

HQ
� � //

� _

��

H� _

��
(P1

K)n � � // (P1)n+1

gives rise to the Cartesian diagram

ResK
k (HQ)

� � //
� _

��

ResK
k (H)

� _

��
(ResK

k (P1
K))n

� � // (ResK
k (P1

K))n+1 ,

where the lower arrow is given by id× · · · × id×Q⊚ : (ResK
k (P1

K))n ≃
(ResK

k (P1
K))n ×k Spec(k) −→ (ResK

k (P1
K))n+1.

Now XQ⊚
is the pull-back of ResK

k (H) to (P1
k)

n under the map ι× · · · ×
ι × Q⊚ : (P1

k)
n ≃ (P1

k)
n ×k Spec(k) −→ (ResK

k (P1
K))n+1. This implies that

we have a Cartesian diagram

XQ⊚

� � //
� _

��

ResK
k (HQ)

� � //
� _

��

ResK
k (H)

� _

��
(P1)nk

� � // (ResK
k (P1

K))n
� � // (ResK

k (P1
K))n+1 .

2
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We come to the proof of Proposition 3.86.

By Lemma 3.87 and Lemma 3.76 we have a commutative diagram

XQ⊚ � q

""EE
EE

EE
EE

EE

∼ // Res
(P1

K)n

(P1
k)n (HQ)

xxrrrrrrrrrr

(P1
k)

n ,

where the arrow to the left is the structural morphism, which of course is

then also a closed immersion.

To establish the result we thus have to show that as a closed subscheme

of (P1
k)

n, Res
(P1

K)n

(P1
k)n (HQ) is equal to V (S(1), . . . , S(n)).

Let now Sϕ,n+1 be the same summation polynomial as in subsubsection

3.5.2.1 (recall that the (n + 1)th summation polynomial with respect to ϕ

is only unique up to multiplication by a non-trivial constant). Also, let

b1, . . . , bn be the fixed k-basis of K from subsubsection 3.5.2.1. Note that

b1, . . . , bn is then also a basis of the free k[x1, . . . , xn]-module K[x1, . . . , xn].

Moreover, let S′ := Sϕ,n+1(X1,Y1, . . . ,Xn,Yn, Q) be the polynomial ob-

tained by inserting the same coordinates of Q = ϕ(P ) into the summation

polynomial as in 3.5.2.1 (again these are only unique up to multiplication

by a non-trivial constant).

We now prove the result by restriction to affine parts of (P1
k)

n.

Let for the moment Xi,1 := Xi and Xi,2 := Yi. Moreover, let for some

multihomogeneous polynomial F ∈ k[X1, Y1, . . . ,Xn, Yn] UF := (P1
k)

n −
V (F ) be the corresponding open subscheme.

One can now show that for any a ∈ {1, 2}n, the restrictions of both

schemes to UX1,a1
∩UX2,a2

∩ · · · ∩UXn,an
are equal; and this implies that the

schemes are equal. For notational convenience we consider in the following

the case of a = (2, . . . , 2) (“dehomogenization with respect to Y1, . . . , Yn”);

the other cases can be established in exactly the same way.

Let s(x1, . . . , xn) := S′(x1, 1, x2, 1, . . . , xn, 1) ∈ K[x1, . . . , xn]. Then HQ∩
An

k ⊆ An
k = Spec(k[x1, . . . , xn]) corresponds to the quotient ring

k[x1, . . . , xn]/(s) of k[x1, . . . , xn].

As the formation of the Weil restriction commutes with base-change

on the base, we have (Res
(P1

K)n

(P1
k)n (HQ)) ∩ An

k = Res
An

K
An

k
(HQ ∩ An

K) as closed

subschemes of An
k . A defining system of polynomials for Res

An
K

An
k

(HQ ∩ An
K)

can be derived via the well-known method to obtain defining equations for

Weil restrictions of affine schemes over rings (see example [Die01, Chapter

1] or the proof of [BLR80, §7.6., Theorem 4]):
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Let s(1), . . . , s(n) ∈ k[x1, . . . , xn] be defined by the equation

∑

j

bj s
(j) = s .

Then Res
An

K
An

k
(HQ ∩ An

K) = Spec(k[x1, . . . , xn]/(s(1), . . . , s(n))) =

V (s(1), . . . , s(n)) ⊂ An
k . But the s(j) are exactly the dehomogenizations

of the polynomials S(j), and thus (XQ⊚
) ∩ An

k = (Res
(P1

K)n

(P1
k)n (HQ)) ∩ An

k =

Res
An

K
An

k
(HQ∩An

K) = V (s(1), . . . , s(n)) = V (S(1), . . . , S(n))∩An
k as subschemes

of An
k . 2

3.5.6.5 Determination of non-zero-dimensional fibers

We are interested in the number of points Q ∈ P1(K) for which the fiber

XQ⊚
= p−1

2 (Q⊚) is not zero-dimensional. For this we first consider a base

change to K, such that XK is a closed subscheme of (P1
K)n× (P1

K)n, and we

perform explicit computations in the Chow ring of (P1
K)n× (P1

K)n. We iden-

tify for notational reasons (P1)n × (P1)n componentwise with∏n
i=1 Proj(Z[X1,i,Y1,i]) ×

∏n
i=1 Proj(Z[X2,i,Y2,i]), and let hℓ,i be the class

of Xℓ,i in the Chow ring of (P1
K)n × (P1

K)n.

Lemma 3.88 The class of XK in CH((P1
K)n×(P1

K)n) is 2(n−1)·n∏n
i=1(h1,1+

· · ·+ h1,n + h2,i).

Proof. XK is defined inside (P1
K)n × (P1

K)n by the polynomials

Fj := Sϕ,n+1(X1,1,Y1,1, . . . ,X1,n,Y1,n,X2,j ,Y2,j)

for j = 1, . . . , n. One can easily see with this explicit description that for all

ℓ = 2, . . . , n no irreducibility component of V (F1, . . . , Fℓ−1) is contained in

V (Fℓ).

Indeed, let C be an irreducibility component of V (F1, . . . , Fℓ−1). Then

C = C ′× (P1
K)n−ℓ+1 for some C ′ ⊆ (P1

K)n× (P1
K)ℓ−1. Let (Q1, Q2) ∈ C ′(K),

where Q1 ∈ (P1)n(K) and Q2 ∈ (P1)ℓ−1(K). Now there are at most 2n−1

points in Q3 ∈ P1(K) with Fℓ(Q1, Q3) = 0. Choose some Q3 ∈ P1(K) which

is distinct from these points, and choose Q4 ∈ (P1)n−ℓ(K) arbitrarily. Then

(Q1, Q2, Q3, Q4) is a K-valued point of C which does not lie in V (Fℓ).

We therefore have [XK ] = [V (F1)] · · · [V (Fn)] in the Chow ring of (P1
K)n×

(P1
K)n (cf. Remark 3.53). Moreover, [V (Fi)] = 2n−1(h1,1 + · · ·+ h1,n + h2,i).

This gives the statement. 2

Remark 3.89 By the lemma we have in particular ((p2)K)⊚([XK ]) = n! ·
2(n−1)·n, thus (p2)K(XK) is equal to the ambient space
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∏n
i=1 Proj(K[X2,i,Y2,i]), or with other words: (p2)|X is surjective. Another

way to see this is: Let Q = (Q1, . . . , Qn) ∈ ∏n
i=1 Proj(K[X2,i,Y2,i])(K).

Then the geometric fiber XQ is the subscheme of
∏n

i=1 Proj(K[X1,i,Y1,i])

defined by Fi(X1,1,Y1,n, . . . ,X1,n,Y1,n, Qi) for i = 1, . . . , n. We see in par-

ticular that the fiber is never empty. More precisely, if it is zero-dimensional

then its degree is n! ·2(n−1)·n. Under Condition 3.45 we have already proven

in Proposition 3.85 that (p2)|X is surjective.

Let now qi :
∏n

i=1(Proj(K[X1,i,Y1,i])) −→ Proj(K[X1,i,Y1,i]) be the

projection to the ith component.

For some Q ∈ ∏n
i=1(Proj(K[X2,i,Y2,i]))(K) the geometric fiber XQ

(which is contained in
∏n

i=1 Proj(K[X1,i,Y1,i])) is zero-dimensional if and

only if for no i = 1, . . . , n the image of XQ under qi is equal to

Proj(K[X1,i,Y1,i]).

Let Ri ∈ K[X1,i,Y1,i,X2,1,Y2,1, . . . ,X2,n,Y2,n] be the multigraded re-

sultant of F1, . . . , Fn with respect to the variables X1,1,Y1,1, . . . ,X1,i−1,

Y1,i−1,X1,i+1,Y1,i+1, . . . ,X1,n,Y1,n. Then for Q = (Q1, . . . , Qn) ∈∏n
i=1 Proj(K[X2,i,Y2,i])(K) the geometric fiber XQ is zero-dimensional if

and only if for all i = 1, . . . , n Ri(Xi,Yi, Q1, . . . , Qn) is non-trivial (cf. also

the proof of Proposition 3.64).

Note now that not all fibers are non-zero-dimensional because X has

dimension n (see Lemma 3.82) and (P1
K)n has dimension n too. Thus the

polynomials R1, . . . , Rn are all non-trivial.

Lemma 3.90 Each polynomial Ri has multidegree (n! · 2(n−1)·n, (n − 1)! ·
2(n−1)·n, . . . , (n − 1)! · 2(n−1)·n).

Proof. The polynomials F1, . . . , Fn have multidegree (2n−1, . . . , 2n−1) ∈
Nn−1 with respect to the variables under consideration. Therefore the corre-

sponding generic resultant is homogeneous in the coefficients of each of the

polynomials of degree (n − 1)! · 2(n−1)2 . This implies that the degree with

respect to X2,i,Y2,i for some i is (n− 1)! · 2(n−1)2 · 2n−1 = (n− 1)! · 2(n−1)·n.

Moreover, the degree with respect to X1,i,Y1,i is (n− 1)! · 2(n−1)2 ·n · 2n−1 =

n! · 2(n−1)·n. 2

Let us now for every i = 1, . . . , n fix some non-trivial coefficient Ci of

Ri regarded as a polynomial in K[X2,n,Y2,n, . . . ,X2,n,Y2,n][X1,i,Y1,i]. Then

clearly the points Q ∈ ∏n
i=1

∏
Proj(K[X2,i,Y2,i]) for which the fiber XQ is

not zero-dimensional are contained in

n⋃

i=1

V (Ci) ⊆ (P1
K)n .
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Let us fix some i = 1, . . . , n. Then V (Ci) is an effective Cartier divisor of

multidegree ((n−1)!·2(n−1)·n, . . . , (n−1)!·2(n−1)·n) in
∏n

i=1 Proj(K[X2,i,Y2,i]),

and (p2)
−1
K (V (Ci)) is an effective Cartier divisor of multidegree

(0, . . . , 0, (n − 1)! · 2(n−1)·n, . . . , (n − 1)! · 2(n−1)·n) in (P1
K)n × (P1

K)n.

It follows that

[XK ] · [(p2)
−1
K (V (Ci))] =

(n− 1)! · 22(n−1)·n · (
n∏

i=1

(h1,1 + · · ·+ h1,n + h2,i)) · (h2,1 + · · ·+ h2,n)

in CH((P1
K)n × (P1

K)n). With Lemma 3.56 this implies that

((p1)K)⊚([XK ] · [(p2)
−1
K (V (Ci))])

= (n− 1)! · 22(n−1)·n · n · (h1,1 + · · ·+ h1,n)

= n! · 22(n−1)·n · (h1,1 + · · ·+ h1,n) .

(3.35)

Assumption 3.91 Let us from now on assume that Condition 3.45 is sat-

isfied.

Notation 3.92 Let k = Fq (such that K = Fqn).

Recall thatX is now geometrically irreducible (Proposition 3.85). Clearly

XK is not contained in V ((p2)
−1
K (Ci)) (because otherwise (p2)K(XK) would

be contained in V (Ci), contradicting the surjectivity of p2). Thus we have

[XK ] · [V ((p2)
−1
K (Ci))] = [XK ∩ V ((p2)

−1
K (Ci))] (cf. Remark 3.53). As the

map (p1)K : XK −→
∏n

i=1 Proj([X1,i,Y1,i]) is finite and flat (cf. Lemma

3.82), the dimension of (p1)K(XK∩Ci) is equal to the dimension of XK∩Ci.

With (3.35) we conclude:

Lemma 3.93 (p1)K(XK ∩Ci) (with the induced reduced scheme structure)

is a reduced effective Cartier divisor of
∏n

i=1 Proj([X1,i,Y1,i]) whose multi-

degree is componentwise ≤ (n! · 22(n−1)·n, . . . , n! · 22(n−1)·n).

The subscheme
n⋃

i=1

n−1⋃

j=0

σj((p1)K(XK ∩ Ci))

of
∏n

i=1 Proj([X1,i,Y1,i]) is Gal(K|k)-invariant. It thus descends to a sub-

scheme of (P1
k)

n; let B be this scheme.

Lemma 3.94

a) B is a reduced effective Cartier divisor whose multidegree is component-

wise ≤ (n2 · n! · 22(n−1)·n, . . . , n2 · n! · 22(n−1)·n).
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b) Let Q ∈ (P1(k))n − B(k), and let Q′ be any preimage of Q under p1.

Then the fiber Xp2(Q′) is zero-dimensional.

c) There are at most n3 · n! · 22(n−1)·n · (q + 1)n−1 points in B(k).

Proof. Let Ai be a multihomogeneous polynomial defining (p1)K(XK ∩
Ci). Then B is V (

∏n−1
j=0 A1 · · ·An)red. The polynomial in question has a

multidegree which is componentwise ≤ (n2 ·n!·22(n−1)·n, . . . , n2 ·n!·22(n−1)·n).

Statement b) follows immediately from the definition of B.

Statement c) follows from a) and the following lemma. 2

Lemma 3.95 Let H be an effective Cartier divisor of multidegree d in

(P1
k)

n. Then

#H(k) ≤ (

n∑

i=1

di) · (q + 1)n−1 .

Proof. It clearly suffices to show the result under the condition that all

indices of the multidegree are positive.

We proceed with induction by n. For n = 1 the claim is that #H(k) ≤
d1, and this is surely correct.

Now let H be defined by the polynomial F (X1,Y1, . . . ,Xn,Yn) ∈
k[X1,Y1, . . . ,Xn,Yn]. Let us consider the projection to the first n−1 compo-

nents: (P1
k)

n −→ (P1
k)

n−1 and the induced morphism H −→ (P1
k)

n−1. Now

for every point P = (P1, . . . , Pn−1) ∈ (P1
k)

n−1(k) for which

F (P1, . . . , Pn−1,Xn,Yn) does not vanish, the fiber has degree dn, thus in par-

ticular it contains at most dn k-rational points. Let now C be a non-trivial

coefficient of F regarded as a polynomial in k[X1,Y1, . . . ,Xn−1,Yn−1][Xn,Yn].

Then all points P ∈ (P1
k)

n−1(k) for which F (P1, . . . , Pn−1,Xn,Yn) vanishes

are contained in V (C). Now C has multidegree (d1, . . . , dn−1), and thus

#V (C)(k) ≤ (
∑n−1

i=1 di) · (q + 1)n−2 by induction. We conclude:

#H(k) ≤ dn · (q + 1)n−1 + #V (C)(k) · (q + 1)

≤ dn · (q + 1)n−1 + (
∑n−1

i=1 di) · (q + 1)n−1

= (
∑n

i=1 di) · (q + 1)n−1

2

Given an element P ∈ E(K), the decomposition algorithm succeeds

when applied to P if and only if the fiber Xϕ(P )⊚
is zero-dimensional and

contains a k-rational point (Q1, . . . , Qn) such that there exist P1, . . . , Pn ∈
E(K) with ϕ(Pi) = Qi and

∑
i Pi = P .

We want to derive a lower bound on the number of such elements

P ∈ E(K). More generally, given any subset M of {(P1, . . . , Pn) ∈ E(K)n |
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ϕ(Pi) ∈ P1(k) for all i = 1, . . . , n}, we want to derive a lower bound on

the number of elements P ∈ E(K) such that the decomposition algorithm

succeeds and there exist P1, . . . , Pn ∈M with
∑

i Pi = ±P .

Let us for this consider the commutative diagram of sets of k-valued

points

G(k)
ρ // X(k)

(p1)|X
��

V n(k)

γ

OO

τ //
∏n

i=1 Proj(k[X1,i,Y1,i])(k) ,

where the map γ : V (k) −→ G(k) is induced by the graph morphism,

that is, it is explicitly given by (P1, . . . , Pn) 7→ (P1, . . . , Pn,−
∑

i Pi), the

map ρ : G(k) −→ X(k) is induced by the morphism G −→ X defined in

Proposition 3.85, and the map τ : V n(k) −→ ∏n
i=1 Proj(k[X1,i,Y1,i])(k) is

induced componentwise by the canonical morphism in diagram (3.32).

Note that under the scalar restriction functor and in the context of

the algorithms V (k) corresponds to {P ∈ E(K) | ϕ(P ) ∈ P1(k)}, G(k)

corresponds to the set of tuples (P1, . . . , Pn, P ) with ϕ(Pi) ∈ P1(k) and

P = −∑i Pi, and X(k) corresponds to the set of tuples (Q1, . . . , Qn, Q)

with Qi ∈ P1(k) and Q ∈ P1(K) and Sn+1(Q1, . . . , Qn, Q) = 0. The map

γ corresponds then to the map which is again given by (P1, . . . , Pn) 7→
(P1, . . . , Pn,−

∑
i Pi), and the maps ρ and τ correspond to the component-

wise application of ϕ.

Let nowM ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i = 1, . . . , n},
and let M⊚ be the corresponding subset of V (k). Then every element

P ∈ E(K) such that ϕ(P )⊚ ∈ ResK
k (P1

K)(k) is the image under p2 of

an element in (ρ ◦ γ)(M⊚) − p−1
1 (B(k)) is an element as desired. (In-

deed, if P is such an element, first the fiber Xϕ(P⊚) is zero-dimensional

because ϕ(P⊚) ∈ p2(p
−1
1 (B(k))) (cf. Lemma 3.94 b)), and second there exist

P1, . . . , Pn ∈M with ϕ(P1 + · · ·+ Pn) = ϕ(P ), thus P1 + · · · + Pn = ±P .)

We are thus interested in the cardinality of the set

p2

(
(ρ ◦ γ)(M⊚)− p−1

1 (B(k))
)
.

For this we first derive a lower bound on

(ρ ◦ γ)(M⊚)− p−1
1 (B(k)) .

The image of this set in
∏n

i=1 Proj(k[X1,i,Y1,i])(k) is contained in

τ(M⊚)−B(k) .

As τ corresponds to the componentwise application of ϕ, we have #τ(M⊚) ≥
1
2n #M⊚ = 1

2n #M .
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With Lemma 3.94 c) we obtain:

#((ρ ◦ γ)(V n(k))− p−1
1 (B(k)))

≥ #(τ(M⊚)−B(k))

≥ #M
2n − n3 · n! · 22(n−1)·n · (q + 1)n−1 .

(3.36)

Now if an element Q in the set p2((ρ ◦ γ)(V n(k))− p−1
1 (B(k))) is given,

the fiber of p2(Q) under p2 is zero-dimensional, and thus its degree is n! ·
2(n−1)·n (see Remark 3.89 or consider the structure of the system in the

decomposition algorithm in subsubsection 3.5.2.1). We therefore have the

following proposition.

Proposition 3.96 Let

M ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i = 1, . . . , n} .

Then the number of elements P ∈ E(K) such that the decomposition al-

gorithm succeeds and there exist P1, . . . , Pn ∈ M with P1 + · · ·Pn = ±P
is

≥ #M − n3 · 22n2−n · (q + 1)n−1

n! · 2n2 .

This proposition is crucial for the analysis of the algorithm for Theorem 5.

For Theorem 4 we set the factor base equal to the full set {P ∈ E(K) |
ϕ(P ) ∈ P1(k)} and we vary n and q.

As mentioned in Remark 3.79 for log2(q) ≥ 3n and n large enough

we have #V (k) ≥ q+1
2 , thus #V n(k) ≥ (q+1)n

2n . With Proposition 3.96

we obtain that the number of elements P ∈ E(K) such that there exist

P1, . . . , Pn ∈ E(K) with ϕ(Pi) ∈ P1(k) and
∑
Pi = P is

≥ (q + 1)n−1

n! · 2n·(n+1)
· (q + 1− n3 · 22n2

) .

Let now ǫ > 0. Then for n large enough this is

≥ qn−1

n! · 2n·(n+1)
· (q − 1

2
· 2(2+ǫ)·n2

) .

Then for log2(q) ≥ (2 + ǫ) · n2 this is

≥ qn

n! · 2n·(n+1)+1
.

Again for n large enough and log2(q) ≥ (2 + ǫ) · n2 this is

≥ 2 · qn− 1
2 .

We therefore have:
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Proposition 3.97 Let ǫ > 0. Then for n large enough and (2 + ǫ) · n2 ≤
log2(q) there are at least 2 · qn− 1

2 elements in E(K) for which the decompo-

sition algorithm succeeds.

And this implies the main result for the analysis of the algorithm for

Theorem 4:

Proposition 3.98 Let ǫ > 0. Then for n large enough and (2 + ǫ) · n2 ≤
log2(q) the following holds: Let E/Fqn be an elliptic curve, and let ϕ be

chosen such that Condition 3.45 holds. Then the probability that the decom-

position algorithm succeeds if applied to a uniformly randomly distributed

element in E(Fqn) is ≥ q− 1
2 .
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[Noe84] M. Noether. Rationale Ausführung der Operationen in der Theo-

rie der algebriaschen Functionen. Math. Ann., 23:311–358, 1884.

[Odl84] A. Odlyzko. Discrete logarithms in finite fields and their cryp-

tographic significance. In T. Beth, N. Cot, and I. Ingemarsson,

editors, Advances in Cryptology — EUROCRYPT 1984, volume

209 of LNCS, pages 224–314, 1984.

[Pap94] C. Papadimitriou. Computational Complexity. Addison Wesley,

1994.

[Pil90] J. Pila. Frobenius maps of abelian varieties and fining roots of

unity in finite fields. Math. Comp., 55:745–763, 1990.

[Pil91] J. Pila. Counting points on curves over families in polynomial

time. available on the arXiv under math.NT/0504570, 1991.

[Pol78] J. Pollard. Monte Carlo methods for index computations (mod

p). Math. Comp., pages 918–924, 1978.

[Pom87] C. Pomerance. Fast, rigorous factorization and discrete loga-

rithm algorithms. In D. Johnson, T. Nishizeki, A. Nozaki, and

H. Wolf, editors, Discrete Algorithms and Complexity, Proceed-

ings of the Japan US Joint Seminar, June 4-6, 1986, Kyoto,

Japan, pages 119–143, 1987.

[PS85] F. Preparata and M. Shamos. Computational Geometry.

Springer-Verlag, 1985.

[RS62] J. Rosser and L. Schoenfeld. Approximate formulas for some

functions of prime numbers. Illinois J. Math., 6(64-94), 1962.

[Sch85] R. Schoof. Elliptic curves over finite fields and the compuation

of square roots mod p. Math. Comp., 44:483–494, 1985.

[Sch91] W. Schmidt. Construction and estimation of bases in function

fields. J. Number Th., 39:181–224, 1991.

[Sem98] I. Semaev. Evaluation of discrete logarithms in a group of p-

torsion points of an elliptic curve in characteristic p. Math.

Comp., 67:353–356, 1998.



Bibliography 215

[Sem04] I. Semaev. Summation polynomials and the discrete

logarithm problem on elliptic curves. available under

http://eprint.iacr.org/2004/031, Feb. 2004.

[Ser79] J.-P. Serre. Local Fields. Springer, 1979.

[Sil86] J. Silverman. The Arithmetic of Elliptic Curves. Springer-

Verlag, 1986.

[Sti93] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-

Verlag, 1993.

[SZ94] B. Sturmfels and A. Zelevinsky. Multigraded Resultants of

Sylvester Type. J. Algebra, 163:115–127, 1994.

[Thé03] N. Thériault. Index calculus attack for hyperelliptic curves of

small genus. In Advances in Cryptology — ASIACRYPT 2003,

volume 2894 of LNCS, pages 75–92. Springer-Verlag, 2003.

[Vol94] E. Volcheck. Computing in the Jacobian of a Plane Algebraic

Curve. In L. Adleman and M.-D. Huang, editors, Algebraic Num-

ber Theory – ANTS I, volume 877 of LNCS, pages 221–233.

Springer-Verlag, 1994.

[Vol95] E. Volcheck. Addition in the Jacobian of a Curve over a Finite

Field. Manuscript for a presentation given at the Oberwolfach

institute, available under http://www.emilvolcheck.com, 1995.

[vzGG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.

Cambridge Unversity Press, 2003.

[Wie86] D. Wiedemann. Solving Sparse Linear Equations Over Finite

Fields. IEEE Trans. Inform. Theory, 32(1):54–62, 1986.

[WM68] A.E. Western and J.C.P. Miller. Tables of Indices and Primi-

tive Roots, volume 9. Royal Society Mathematical Tables, 1968.

Published for the Royal Society at the Cambridge University

Press.

[Zas67] H. Zassenhaus. Ein Algorithmus zur Berechnung einer Minimal-

basis über gegebener Ordnung. In L Collarz, G. Meinardus, and

H. Ungers, editors, Funktionalanalysis, Approximationstheorie,

Numerische Mathematik (Oberwolfach 1965), pages 90 – 103.
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Zusammenfassung

In dieser Arbeit werden Berechnungsprobleme, die einen Bezug zu Divisoren

und Divisorklassen auf Kurven haben, von einem komplexitätstheoretischen

Standpunkt aus untersucht. Besondere Betonung liegt hierbei auf der Kom-

plexität des diskreten Logarithmusproblems in Grad 0 Klassengruppen von

Kurven über endlichen Körpern. Hierbei studieren wir die folgende allgemei-

ne Fragestellung: Welche interessanten Resultate über erwartete Laufzeiten

kann man erhalten, wenn man Bedingungen an das Geschlecht und den

Grundkörper aber keine weiteren Bedingungen an die Kurven stellt und die

erwartete Laufzeit entweder mittels qg, wobei q die Körpergröße und g das

Geschlecht ist, oder mittels der Kardinalität der Grad 0 Klassengruppe der

Kurve ausdrückt?

Man beachte hier, dass, wenn E eine elliptische Kurve über einen Körper

K ist, die Gruppe der rationalen Punkte E(K) von E kanonisch isomorph zu

Cl0(E), der Grad 0 Klassengruppe, ist. Wir betrachten also insbesondere das

diskrete Logarithmusproblem in in Gruppen rationaler Punkte elliptischer

Kurven.

Außerdem wird in dieser Arbeit ein Beitrag zu den Grundlagen der al-

gorithmischen Mathematik geleistet.

Es folgt eine Zusammenfassung der wesentliche Aspekte der einzelnen

Kapitel der Arbeit.

Kapitel 1

Berechnungsprobleme, Berechnungsmodelle und

Komplexität

Ausgangspunkt der Fragestellungen in Kapitel 1 ist die Beobachtung, dass

man die folgenden drei Fragen beantworten muss, um ein Berechnungspro-

blem wohldefiniert zu machen:

• Auf welchem Berechnungsmodell ist das Problem basiert?

• Wie lautet das Komplexitätsmaß / die Kostenfunktion?

217



218 Zusammenfassung

• Wie werden die betrachteten mathematischen Objekte dargestellt?

Das Kapitel beginnt mit einigen Definitionen, die es ermöglichen, über Be-

rechnungsprobleme vom “mathematischen Inhalt” her zu sprechen, d.h. ohne

eine zu große Betonung darauf zu legen, wie die betrachteten Objekte für

Berechnungen dargestellt werden, und dabei gleichzeitig nicht zu unpräzise

zu sein. Die grundlegende Idee der Definitionen ist, dass sich Darstellun-

gen von Objekten wohlverhalten sollen bezüglich Isomorphismen aber nicht

notwendigerweise bezüglich anderen Morphismen.

Die wesentliche Definition lautet dann wie folgt:

Seien C und X zwei große Gruppoide (d.h. Kategorien, in denen jeder

Morphismus ein Isomorphismus ist). Dann ist eine Darstellung von C durch

X ein essenziell surjektiver partieller Funktor von X nach C, dessen Defi-

nitionsbereich eine volle Unterkategorie von X ist.

Es ist naheliegend, nach einen Berechnungsmodell zu fragen, dass die

intuitive Idee von bit-Komplexität erfasst und dabei in effizienter Weise in-

direkte Adressierung erlaubt. Sicher bieten RAM-Modelle eine angemesse-

ne Antwort, wenn indirekte Adressierung gewünscht wird. Ein Problem ist

jedoch, dass RAM-Modelle immer auf einer bestimmten Menge von Kom-

mandos beruhen, und die Auswahl der Kommandos geht mit einer gewissen

Willkürlichkeit einher. Um diese Willkürlichkeit zu überwinden, schlagen wir

eine gewisse bit-orientierte Registermaschine, die wir bit-orientierte Random

Access Machine (bit-RAM) nennen.

Eine intuitive Beschreibung dieser Maschine ist schnell zu geben: wie

üblich besteht die Maschine aus Registern und einem Programm. Der Be-

fehlssatz besteht aus den üblichen Befehlen LOAD, STORE, GOTO, IFGOTO,

END, und zusätzlich gibt es für jede Turing Maschine T (in einem bestimm-

ten Modell) einen Befehl cT .

Außerdem definieren wir randomisierte bit-RAMs.

Der bit-orientierte Zugang ist jedoch nicht immer der angemessenste,

um Berechnungsprobleme zu modellieren. Zum Beispiel könnte man, gege-

ben ein Körper k, nach der Komplexität der Multiplikation zweier Matrizen

mit Einträgen in k fragen, gemessen in Körperoperationen. In diesem Fall

scheint es nicht angemessen, zu verlangen, dass die Körperelemente durch

bit-Strings dargestellt werden, was ohnehin nur möglich ist, wenn der Körper

abzählbar ist. Stattdessen wünscht man, was in [BCS91] ein “makroskopi-

scher Standpunkt, ausgehend von einen idealisierten Computer” genannt

wird, einzunehmen.

In der Tat gibt es einige Modelle in der Literatur, die es erlauben, einen

solchen “makroskopischen Standpunkt” einzunehmen. Hier sei zunächst das

Modell der Rechenbäume erwähnt. Dieses Modell ist jedoch nicht uniform

über verschiedene Eingabelängen, während wir ein uniformes Modell anstre-
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ben, um die Idee eines Algorithmus zu modellieren. Ein anderes bekanntes

Modell ist das Modell von Blum, Shub und Smale ([BSS89]), welches als ein

algebraisches Turing-Maschinenmodell betrachtet werden kann. Wir sind je-

doch an einem Registermodell interessiert. Ausgehend von dem bit-RAM

Modell definieren wir so ein so ein Berechnungsmodell, das über einem fe-

sten Ring R arbeitet. Wir nennen die resultierenden Maschinen R-RAMs

(wobei sich R auf den Ring bezieht).

Sei nun R ein kommutativer Ring. Wenn S eine R-Algebra ist, definiert

jede R-RAM in natürlicher Weise eine S-RAM. Wenn wir betonen wollen,

dass eine R-RAM Eingaben aus allen R-Algebren entgegennimmt, sprechen

wir von einer R-Algebra RAM. Eine Z-Algebra RAM nennen wir auch eine

(generische) Ring RAM ; wenn wir uns auf Eingaben über Körpern statt

Ringen beschränken, sprechen wir auch von einer generischen Körper RAM.

Für Kapitel 2 ist die folgende Variante der generischen Körper RAM beson-

ders relevant: Wir reichern das generische Körper RAM Modell mit einem

Kommando an, um p-te Einheitswurzeln in Charakteristik p > 0 zu berech-

nen.

Außerdem definieren wir noch randomisierte generische Körper RAMs.

Hierfür reichern wir das generische Körper RAM Modell mit einem Kom-

mando zur Berechnung von Zufallszahlen und einem Kommando zum Fak-

torisieren an. Das Kommando zum Faktorisieren ahmt dabei das Verhalten

der Bekannten (Las Vegas) Algorithmen zum Faktorisieren von Polynomen

über endlichen Körpern nach.

Zuletzt beschäftigen wir uns in diesem Kapitel mit algebraischer Kom-

plexität und endlichen Algebren und als Anwendung hiervon mit grundle-

genden Fragen, die mit Berechnungsproblemen und Körpererweiterungen zu

tun haben.

Kapitel 2

Darstellungen und grundlegende Berechnungen

In diesem Kapitel diskutieren wir verschiedene Methoden, um die den Be-

rechnungen zugrundeliegenden Objekte darzustellen: Kurven sowie Punk-

te, Divisoren und Divisorklassen auf Kurven. Weiterhin geben wir einige

Resultate zu grundlegenden Berechnungen mit Divisoren, insbesondere zu

Berechnungen in der Divisorgruppe und die Berechnung der sogenannten

“Riemann-Roch-Räume” L(D), sowie Anwendungen auf die Arithmetik in

der Divisorklassengruppe, an. Wir beschränken uns hierbei auf Kurven über

vollkommenen Körpern.

Nach einer Darstellung der in dieser Arbeit verwendeten Notationen be-

handeln wir zunächst die Darstellung endlicher separabler Körpererweite-
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rungen für rechnerische Zwecke. Die wichtigste Aussage ist hier die folgende:

Gegeben eine endliche Körpererweiterung λ|k, dargestellt durch eine Mul-

tiplikationstabelle, kann man mittels eines randomisierten Algorithmus ein

primitives Element von λ|k (und sein Minimalpolynom) in einer erwarteten

Anzahl von Körperoperationen berechnen, welche polynomiell beschränkt in

[λ : k] ist.

Danach behandeln wir die Darstellung von Kurven, wobei im dieser Ar-

beit eine Kurve – wenn keine andere Information gegeben ist – immer geome-

trisch irreduzibel, eigentlich und glatt ist. Wir stellen Kurven immer durch

ebene Modelle dar; ein ebenes Modell einer Kurve ist eine möglicherweise

singuläre Kurve, die birational zur ursprünglichen Kurve ist. Die ebenen

Modelle stellen wir durch eine definierende homogene Gleichung dar.

Die folgenden beiden Sätze legen nahe, dass diese Form der Darstellung

vernünftig ist. (Der erste Satz ist [Heß05, Theorem 56].)

Jede Kurve über einem endlichen Körper hat ein ebenes Modell von Grad

O(g) (unabhängig von den endlichen Körpern).

Jede Kurve von Geschlecht ≥ 1 mit einem Divisor von Grad 1 über einem

undendlichen Körper hat ein ebenes Modell von Grad höchstens 4g.

Im größten Abschnitt des Kapitels behandeln wir die Darstellung von

Punkten und Divisoren und hiermit zusammenhängende Berechnungspro-

bleme. Wir geben hierbei verschiedene Möglichkeiten an, abgeschlossene

Punkte und Divisoren auf Kurven über vollkommenen Körpern darzustel-

len, ausgehend von einem ebenen Modell. Dabei gehen wir auch auf hiermit

zusammenhängende algorithmische Aspekte wie z.B. die Arithmetik in der

Divisorgruppe, die Berechnung von Hauptdivisoren und die Berechnung von

Riemann-Roch-Räumen, ein.

Es gibt drei klassische Zugänge, um abgeschlossene Punkte und Divisoren

auf Kurven darzustellen:

Der erste (und wohl auch intuitivste Zugang), um abgeschlossene Punk-

te darzustellen, beruht auf Koordinaten (in endlichen Erweiterungskörpern

des Grundkörpers) von Punkten in einem ebenen Modell. Divisoren können

dann dargestellt werden, indem man den Träger und die Koeffizienten an-

gibt. Um jedoch für eine feste Kurve und ein festes singuläres ebenes Modell

alle abgeschlossenen Punkte beschreiben zu können, benötigt man oft noch

zusätzliche Information. Wenn nämlich das ebene Modell Singularitäten mit

mehreren Zweigen hat, benötigt man weitere “lokale Information”, um die

Punkte über den Singularitäten zu beschreiben. Es ist einfach, solche lokale

Information zu geben, wenn das ebene Modell nur gewöhnliche Singula-

ritäten hat (d.h. wenn die Tangenten der lokalen Zweige alle verschieden

sind). Weiterhin kann man in Charakteristik 0 oder in “großer” positiver

Charakteristik abgeschnittene Newton-Puiseux Entwicklungen verwenden.
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In kleiner positiver Charakteristik stößt man allerdings auf größere techni-

sche Schwierigkeiten.

Die zweite Methode basiert auf der Idealtheorie in Funktionenkörpern.

Hier stellt man eine Kurve als eine Überlagerung der projektiven Geraden

dar und definiert zwei Ordnungen in ihrem Funktionenkörper, eine “endli-

che” und eine “unendliche” Ordnung. Nun gibt es eine Bijektion zwischen

der Divisorklassengruppe der Kurve und dem Produkt der Idealklassen der

beiden Ordnungen. Man kann jeden Divisor durch das korrespondierende

Paar von Idealen darstellen. Die Ideale kann man durch Modulbasen darge-

stellen (zum Beispiel durch Hermite Normalform-Basen). Wir nennen diese

Darstellung zusammengesetzte Idealdarstellung. Alternativ kann man auch

jeden Divisor als formale Summe von Primdivisoren darstellen, wobei jeder

Primdivisor (= abgeschlossener Punkt) als Primideal einer der beiden Ord-

nungen dargestellt wird. Wir nennen diese Darstellung freie Idealdarstellung.

Man beachte, dass die so genannte “Mumford Darstellung” von so ge-

nannten semi-reduzierten Divisoren auf hyperelliptischen Kurven in ima-

ginär quadratischer Darstellung ein Spezialfall der zusammengesetzten

Idealdarstellung ist.

Drittens kann man effektive Divisoren durch lineare Unterräume von

Riemann-Roch-Räumen von Divisoren genügend hohen Grades oder allge-

meiner von Räumen globaler Schnitte invertierbarer Garben genügend hohen

Grades darstellen. Wir nennen die entsprechende Darstellung zusammenge-

setzte globale Darstellung, und wiederum haben wir eine verwandte freie

Darstellung.

Aufgrund der schon erwähnten technischen Schwierigkeiten gehen wir

auf die Darstellung mittels Entwicklungen an singulären Punkten nicht ein

und richten unser Hauptaugenmerk auf die idealtheoretische Darstellung.

Wir geben eine ausführlichen Überblick über die Darstellung und hiermit

zusammenhängende Berechnungsprobleme. Insbesondere gehen wir hierbei

– in einem Anhang zu diesem Kapitel – auf die Berechnung von Hauptord-

nungen in Funktionenkörpern ein. Wir zeigen, dass diese Berechnung mit

einem deterministischen Algorithmus (ohne Polynomfaktorisation) in einer

Anzahl von Körper- und Bitoperationen durchgeführt werden kann, welche

polynomiell im Grad des ebenen Modells ist.

Die idealtheoretische Darstellung erlaubt auch auf einfache Weise die

Berechnung des Riemann-Roch Raums L(D) zu einem Divisor D. Wir ge-

ben den entsprechenden Algorithmus an, der von F. Heß in seiner Doktor-

arbeit entwickelt wurde ([Heß01]). Es gibt einen Zusammenhang zwischen

Heß’ Algorithmus und “nicht-archimedischen Gittern”. Wir diskutieren die-

sen Zusammenhang und gehen dabei auch auf eine Verbindung zur explizi-

ten Bestimmung der Riemann-Roch-Räume ein, die von K. Hensel und G.

Landsberg in [HL02] angegeben wurde.
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Außerdem gehen wir auf die globale Darstellung und den rechnerischen

Transfer zwischen den verschiedenen Darstellungen (inklusive der Koordina-

tendarstellung von Punkten, die über nicht-singulären Punkten im ebenen

Modell liegen) ein.

Schließlich kommen wir zur Darstellung der Divisorklassen und Berech-

nungen in der Klassengruppe. Hierbei sind die folgende Definitionen grund-

legend:

Sei C eine Kurve und D0 ein fester Divisor auf C von Grad ≥ 1. Sei D̃ ein

effektiver Divisor auf C. Dann ist D̃ (maximal) reduziert entlang D0, wenn

das lineare System |D̃ −D0| leer ist.

Sei nun D ein Divisor auf C und D̃ ein entlang D0 reduzierter effektiver

Divisor mit D ∼ D̃ + rD0 für ein r ∈ Z. Dann heißt D̃ eine Reduktion von

D entlang D0.

Die Reduktionen von D entlang D0 bilden ein nicht-leeres vollständiges

Linearsystem. Ferner ist die Reduktion eindeutig, wenn D0 den Grad 1 hat.

Um die Elemente der Divisorklassengruppe darzustellen, fixieren wir so

einen Divisor D0 und stellen dann eine beliebige Divisorklasse a mittels eines

reduzierten Divisors D̃ und einer ganzen Zahl r mit [D̃]− r[D0] = a dar.

Der kanonische Divisor hat Grad 2g − 2. Wenn man nun diesen Divisor

(oder einen Divisor kleineren Grades) für die Darstellung verwendet und

Divisoren in zusammengesetzter Idealdarstellung darstellt, erhält man die

folgende Aussage:

Die Arithmetik in der Divisorklassengruppe kann in einer Anzahl von

Körper- und Bitoperation durchgeführt werden, die polynomiell beschränkt

im Grad des ebenen Modells ist.

Kurven über endlichen Körpern haben immer einen Divisor von Grad 1.

Wir zeigen, wie man einen solchen Divisor effizient konstruieren kann. Für

das 3. Kapitel ist nun die folgende Aussage grundlegend:

Wir betrachten Kurven über endlichen Körpern. Wie immer stellen wir

Kurven durch ebene Modelle dar, und definieren d als den Grad des ebenen

Modells. Wir stellen Divisorklassen durch entlang einem Divisor D0 von

Grad 1 und mit einer Höhe, welche polynomiell beschränkt in d ist, reduzier-

te Divisoren dar. Außerdem stellen wir Divisoren in freier Idealdarstellung

dar. Dann kann die Arithmetik in den Grad 0 Klassengruppen mittels eines

randomisieren Algorithmus in einer erwarteten Zeit durchgeführt werden,

welche polynomiell beschränkt in d und log(q) ist, wobei q die Größe des

Grundkörpers ist. Wenn die Kurven durch ebene Modelle von Grad O(g)

dargestellt werden, kann man mittels eines randomisierten Algorithmus die

Arithmetik in den Grad 0 Klassengruppen in einer Zeit durchführen, die po-

lynomiell beschränkt in g und log(q) ist; man kann dann mit einem rando-

misieren Algorithmus die Arithmetik in einer erwarteten Zeit durchführen,



Zusammenfassung 223

die polynomiell beschränkt in log(# Cl0(C)) ist, wobei C die Kurve ist.

Kapitel 3

Berechnen diskreter Logarithmen

Kapitel 3 ist das Herz dieser Arbeit und beinhaltet die Berechnung von

diskreten Logarithmen in Grad 0 Klassengruppen von Kurven, inklusive der

Gruppen rationaler Punkte elliptischer Kurven, über endlichen Körpern.

Alle Resultate über das diskrete Logarithmusproblem in dieser Arbeit

basieren auf der Index Calculus Methode. Grob gesagt besteht die Index

Calculus Methode aus dem Folgenden: Man fixiert eine Menge von Prim-

divisoren F , genannt Faktorbasis, und sucht nach Relationen zwischen den

Faktorbasiselementen und den Eingabeelementen. Wenn man genug Relatio-

nen hat, versucht man, den gesuchten diskreten Logarithmus mittels linearer

Algebra zu finden.

Wir geben hier einen groben Überblick über die Variante von Index

Calculus, auf der dieses Kapitel beruht:

Seien eine Kurve C über einem endlichen Körper Fq sowie a, b ∈ Cl0(C)
mit b ∈ 〈a〉 gegeben, wobei die Kurve und die Klassen a, b dargestellt werden,

wie in Kapitel 2 beschrieben. Wir setzen der Einfachheit halber voraus, dass

die Grad 0 Klassengruppe prime Gruppenordnung hat und von a erzeugt

wird. Ferner setzen wir voraus, dass die Gruppenordnung N := # Cl0(C)
bekannt ist.

Sei x ∈ {0, . . . , N−1} mit x·a = b der unbekannte diskrete Logarithmus,

den wir berechnen wollen.

Man wählt zuerst die Faktorbasis F , sagen wir F = {F1, . . . , Fk} mit

paarweise verschiedenen Primdivisoren Fj . Außerdem wählt man einen Di-

visor D1 von Grad 1.

Dann erzeugt man Relationen zwischen den Eingabeelementen a, b, den

Faktorbasiselementen und D1:
∑

j

ri,j[Fj ]− (
∑

j

ri,j deg(Fj)) · [D1] = αia+ βib

mit ri,j, αi, βi ∈ Z/NZ.

Es seien nun k + 1 Relationen erzeugt; sei R = ((ri,j))i,j ∈ Z(k+1)×k die

Relationenmatrix, d.h. die Matrix, deren Zeilen den Koeffizienten entspre-

chen, die in den Relationen vorkommen.

Nun ist der Links-Kern der Matrix R nicht-trivial. Man berechnet einen

nicht-trivialen Zeilenvektor γ ∈ (Z/NZ)1×(k+1) mit γR = 0. Man sieht nun

leicht, dass ∑

i

γiαia+
∑

i

γiβib = 0 .
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Wenn nun
∑

i γiβi 6= 0, dann haben wir mit ξ := (
∑

i γiαi)(
∑

i γiβi)
−1 ∈

Z/NZ

ξ · a = b ∈ Cl0(C) .
Das bedeutet, dass der eindeutige Repräsentant x ∈ {0, . . . , N − 1} von ξ

der gesuchte diskrete Logarithmus von b bezüglich a ist.

Nach einer Einleitung geben wir im 2. Abschnitt des Kapitels einen “all-

gemeinen Index Calculus Algorithmus” für das diskrete Logarithmusproblem

in Grad 0 Klassengruppen von Kurven. Dieser Algorithmus ist eine Variante

eines Algorithmus von A. Enge und P. Gaudry ([EG02]). Eine Besonder-

heit dieses Algorithmus ist, dass man den diskreten Logarithmus mit großer

Wahrscheinlichkeit berechnen kann, wenn die Relationensuche beendet ist.

Der Algorithmus basiert auf fünf Unterroutinen für

a) Berechnung der Ordnung der Grad 0 Klassengruppe

b) Faktorisierung ganzer Zahlen

c) Konstruktion einer Faktorbasis und Vorberechnung

d) Relationenerzeugung

e) dünne lineare Algebra.

Im weiteren Verlauf des Kapitels geben wir dann spezielle Unterroutinen

für a), c) und d) und für spezielle Klassen von Kurven an. Für Unterrou-

tinen b) und e) verwenden wir (respektive) den Algorithmus von Lenstra

und Pommerance ([LP92]) sowie einen Algorithmus, der auf Wiedemanns

Algorithmus ([Wie86]) beruht.

Doppelt große Primvariation ist eine Möglichkeit, die Relationensuche

zu beschleunigen. Hier geht man wie folgt vor: Zusätzlich zur Faktorbasis F
definiert man eine weitere Menge von Primdivisoren L, der Menge der so ge-

nannten großen Primdivisoren, die disjunkt zu F ist. Man betrachtet dann

Relationen mit höchstens zwei großen Primdivisoren. Die grundlegende Idee

ist wie folgt: Solche Relationen werden wie folgt in einem Graphen auf der

Menge L ∪̇ {∗} abgespeichert: Relationen mit zwei großen Primdivisoren

P,Q werden mittels einer Kante zwischen P und Q abgespeichert, und Re-

lationen mit einem großen Primdivisor P werden durch eine Kante zwischen

∗ und P abgespeichert. Zykel in dem Graph führen dann zu “kombinierten

Relationen” zwischen den Eingabeelementen und den Faktorbasiselementen.

Wir gehen in unseren Algorithmen allerdings etwas anders vor: Wir kon-

struieren nicht einen vollen Graphen sondern nur einen Baum, wobei wir

zusätzlich noch diesen Baum in “Abschnitten” konstruieren. Bei Konstruk-

tion eines Abschnitts betrachten wir nur solche Relationen, die eine Kante

ergeben, die mit dem vorherigen Abschnitt verbunden ist.
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Die gesamte Konstruktion des Baumes findet in der Unterroutine c)

statt. In d) werden dann neue Relationen erzeugt, die zunächst auch Ele-

mente aus L enthalten dürfen. Mittels des Baums werden dann diese “großen

Primdivisoren” eliminiert.

Mittels dieser Methode zeigen wir in Abschnitt 3 das folgende Theorem:

Theorem 1 Es sei eine natürliche Zahl g ≥ 2 fixiert. Dann kann das dis-

krete Logarithmusproblem in den Grad 0 Klassengruppen von Kurven von

Geschlecht g über endlichen Körpern mittels eines randomisierten Algorith-

mus in einer erwarteten Zeit von

Õ(q
2− 2

g )

gelöst werden, wobei Fq der Grundkörper der Kurve ist.

Für dieses Resultat wählen wir den Divisor D1 als einen Fq-rationalen Punkt

P0, die Faktorbasis als eine Teilmenge von C(Fq)−{P0} mit ⌈q1−
1
g ⌉ Elemen-

ten und L := C(Fq)− (F ∪ {P0}).
Neben dem Index Calculus Algorithmus beruht dieses Resultat auch auf

einem effizienten Algorithmus, der mit hoher Wahrscheinlichkeit ein klei-

nes Erzeugendensystem berechnet. Allerdings können wir nicht überprüfen,

dass es sich tatsächlich um ein Erzeugendensystem handelt. Deshalb gehen

wir wie folgt vor: Wir wenden diesen Algorithmus an, um ein “potenzielles

Erzeugendensystem” zu berechnen, und dann wenden wir den Index Cal-

culus Algorithmus an. Wenn der Index Calculus Algorithmus nicht in einer

vorgegebenen Zeit terminiert, starten wir den ganzen Prozess von vorne.

Im nächsten Abschnitt zeigen wir dann ausgehend von dem obigen Theo-

rem die folgenden beiden Theoreme.

Theorem 2 Es sei eine natürliche Zahl g0 ≥ 2 fixiert. Dann kann das dis-

krete Logarithmusproblem in den Grad 0 Klassengruppen von Kurven von

Geschlecht ≥ g0 über endlichen Körpern mittels eines randomisierten Algo-

rithmus in einer erwarteten Zeit von

Õ((qg)
2

g0
(1− 1

g0
)
)

gelöst werden, wobei Fq der Grundkörper der Kurve ist.

Theorem 3 Es sei eine natürliche Zahl g0 ≥ 2 fixiert. Dann kann das dis-

krete Logarithmusproblem in den Grad 0 Klassengruppen von Kurven C/Fq

von Geschlecht ≥ g0 mittels eines randomisierten Algorithmus in einer er-

warteten Zeit von

Õ((# Cl0(C))
2

g0
(1− 1

g0
)
)

gelöst werden.
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Wenn man Theorem 3 mit g0 := 3 anwendet erhält man:

Man kann das diskrete Logarithmusproblem in den Grad 0 Klassengrup-

pen von Kurven C/Fq von Geschlecht mindestens 3 in einer erwarteten Zeit

von

Õ((# Cl0(C)) 4
9 )

lösen.

Im Gegensatz hierzu haben “generische Methoden” für jede Folge von

Kurven, deren Gruppenordnung durch eine Primzahl der Größe

Θ(# Cl0(C)) teilbar ist, eine erwartete Laufzeit von Ω(# Cl0(C) 1
2 ).

Um diese beiden Theoreme zu erhalten, gehen wir wie folgt vor: Für klei-

nes Geschlecht wenden wir einen Algorithmus für Theorem 1 an. Für großes

Geschlecht ist der Algorithmus viel einfacher: Es ist ein “einfacher” Index

Calculus Algorithmus ohne große Primvariation. Die Analyse für großes Ge-

schlecht beruht auf einer Aussage aus [Heß05].

Im letzten Abschnitt zeigen wir die folgenden beiden Theoreme:

Theorem 4 Es sei ǫ > 0. Dann kann das diskrete Logarithmusproblem

in den Gruppen rationaler Punkte von elliptischen Kurven über endlichen

Körpern Fqn mit (2+ ǫ) ≤ log2(q) mittels eines randomisierten Algorithmus

in einer erwarteten Zeit gelöst werden, welche polynomiell beschränkt in q

ist.

Theorem 5 Es sei eine natürliche Zahl n ≥ 2 fixiert. Dann kann das dis-

krete Logarithmusproblem in den Gruppen rationaler Punkte von elliptischen

Kurven über endlichen Körpern Fqn mittels eines randomisierten Algorith-

mus in einer erwarteten Zeit von

Õ(q2−
2
n )

gelöst werden.

Theorem 4 hat das folgende offensichtliche Korollar:

Sei ǫ > 0, und sei a > 2+ǫ. Dann kann das diskrete Logarithmusproblem

in den Gruppen rationaler Punkte von elliptischen Kurven über endlichen

Körpern Fqn mit (2 + ǫ) · n2 ≤ log2(q) ≤ a · n2 in einer erwarteten Zeit von

eO(1)·(log2(q
n))2/3

gelöst werden.

In der Tat erhält man eine erwartete Laufzeit, welche polynomiell be-

schränkt in

q = 2log2(q) = 2(log2(q))
(1+1/2)·2/3 ≤ 2(

√
a·n log2(q))2/3
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ist.

Mit diesem Korollar wird zum ersten Mal gezeigt, dass es Folgen end-

licher Körper wachsender Größe gibt, über denen das elliptische Kurven

diskrete Logarithmusproblem in einer erwarteten Zeit gelöst werden kann,

welche subexponententiell in der Eingabelänge (oder im Logarithmus der

Körpergröße bzw. der Gruppenordnung) ist.

Im Algorithmus zu Theorem 4 ist die Faktorbasis wie folgt gegeben:

Es wird eine Überlagerung ϕ : E −→ P1
Fqn

von Grad 2 mit ϕ ◦ [−1] = ϕ

fixiert. Dann ist die Faktorbasis

F := {P ∈ E(Fqn) | ϕ(P ) ∈ Fq} .

Die Relationensuche beruht auf einem “Zerlegungsalgorithmus”, der auf dem

Lösen polynomieller Gleichungssysteme beruht. Diese Gleichungssysteme

beruhen auf einer homogenisierten Variante der von I. Semaev eingeführ-

ten Summationspolynome. Diese Polynome sind durch die folgende Aussage

definiert:

Es sei E eine elliptische Kurve über einem Körper k und ϕ : E −→ P1
k

eine Überlagerung von Grad 2 mit ϕ ◦ [−1] = ϕ. Sei m ∈ N mit m ≥
2. Dann gibt es ein bis auf Multiplikation mit einer nicht-trivialen Kon-

stanten eindeutig bestimmtes multihomogenes irreduzibles Polynom Sϕ,m ∈
k[X1,Y1, . . . ,Xm,Ym] so dass für alle P1, . . . , Pm ∈ E(k) gilt:

Sϕ,m(ϕ(P1), . . . , ϕ(Pm)) = 0←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} : ǫ1P1+· · ·+ǫmPm =

O. Das Polynom Sϕ,m hat Multigrad (2m−2, . . . , 2m−2).

Diese Polynome werden wie folgt eingesetzt:

Zu einer festen Überlagerung ϕ wie oben, einem Punkt P ∈ E(Fqn) und

einer Fq-Basis von Fqn definieren wir wie folgt Polynome S(1), . . . , S(n) ∈
Fq[X1, Y1, . . . ,Xn, Yn]:

n∑

j=1

bjS
(j) = Sϕ,n+1(X1, Y1, . . . ,Xm, Ym, ϕ(P )) .

FürQ1, . . . , Qn ∈ P1(Fq) sind nun die folgenden beiden Aussagen äquivalent:

• Es gibt P1, . . . , Pn ∈ E(Fq) so dass P1 + · · ·+ Pn = P und x(Pi) = Qi

für i = 1, . . . , n.

• Für alle j = 1, . . . , n ist S(j)(Q1, . . . , Qn) = 0, d.h. (Q1, . . . , Qn) ist ein

Fq-rationaler Punkt von V (S(1), . . . , S(n)) ⊆ (P1
Fq

)n.

Unter einem Zerlegungsalgorithmus verstehen wir nun einen Algorithmus

für das folgende Berechnungsproblem: Gegeben q, n, eine Fq-Basis b1, . . . , bn,

E/Fqn und eine Überlagerung ϕ : E −→ P1
Fqn

wie oben, bestimme man, ob
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das Unterschema V (S(1), . . . , S(n)) ⊆ (P1
Fq

)n 0-dimensional ist, und wenn

dies der Fall ist, bestimme man alle seine Fq-rationalen Punkte!

Der schwierigste Teil der Analyse des Algorithmus ist nun, für geeignetes

ϕ eine untere Schranke für die Anzahl der Punkte P ∈ E(Fq) anzugeben,

für die V (S(1), . . . , S(n)) 0-dimensional ist und es P1, . . . , Pn wie soeben be-

schrieben gibt.

Hierfür verwenden wir insbesondere Schnitttheorie in Produkten projek-

tiver Geraden. Es folgt ein kurzer Einblick in den Beweis.

Sei Res
Fqn

Fq
(P1

Fqn
) die Weil Restriktion von P1

Fqn
bezüglich der Erweiterung

Fqn |Fq; dies ist eine n-dimensionale Varietät über Fq so dass es insbesondere

eine kanonische Bijektion P1(Fqn) ≃ Res
Fqn

Fq
(P1

Fqn
)(Fq) gibt.

Für Q ∈ P1(Fqn) sei Q⊚ der entsprechende Fq-rationale Punkt in

Res
Fqn

Fq
(P1

Fqn
). Außerdem seien p1 : (P1

Fq
)n × Res

Fqn

Fq
(P1

Fqn
) −→ (P1

Fq
)n und

p2 : (P1
Fq

)n × Res
Fqn

Fq
(P1

Fqn
) −→ Res

Fqn

Fq
(P1

Fqn
) die beiden Projektionen.

Wir definieren ein gewisses Unterschema X von (P1
Fq

)n × Res
Fqn

Fq
(P1

Fqn
)

mit der folgenden Eigenschaft: Für P ∈ E(Fqn) ist die Faser XQ⊚
kanonisch

isomorph zu V (S(1), . . . , S(n)).

Es wesentlicher Aspekt des Beweises ist es, die Anzahl der Fq-rationalen

Punkte in den nicht-nulldimensionalen Fasern unter p2 nach oben abzu-

schätzen.

Hierfür bestimmen wir einen effektiven Cartierdivisor B in (P1
Fq

)n so

dass alle nicht-nulldimensionalen Fasern bezüglich p2 in p−1
1 (B) enthalten

sind. Mittels Schnitttheorie können wir den Multigrad von B nach oben

abschätzen. Das gewünschte Ergebnis erhalten wir dann, weil p1 eine flache

Überlagerung eines bekannten Grades ist.

Auch der Algorithmus für Theorem 5 beruht auf dem Zerlegungsalgo-

rithmus, und zusätzlich verwenden wir eine doppelt große Primvariation. Bis

auf die Verwendung des Zerlegungsalgorithmus ist dieser Algorithmus sehr

ähnlich zu dem für Theorem 1.

Bezug zu anderen Arbeiten

Wir erwähnen noch kurz, wie sich diese Arbeit von verwandten Arbeiten

abgrenzt.

Die wesentlichen neuen Resultate sind die Theoreme 1 – 5 oben, und alle

diese Theoreme sind neu.

Für hyperelliptische Kurven in imaginär quadratischer Darstellung mit

zyklischer Grad 0 Klassengruppe wurde Theorem 1 in [GTTD07] bewiesen.

In einer Arbeit von P. Gaudry ([Gau04]) befindet sich auch ein “Theo-
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rem”, in der die Aussage von Theorem 5 behauptet wird. Jedoch wird kein

Beweis der Aussage sondern lediglich eine knappe heuristische Argumenta-

tion gegeben.

Wie betrachten die Aussagen von Kapitel 2 als “mehr oder weniger be-

kannt” unter Experten. Grundlegende Ideen befinden sich in der Arbeit

[Heß01] von F. Heß sowie im Buch [Coh96] über Algorithmen für Zahlkörper

von H. Cohen. Wir möchten jedoch betonen, dass, obwohl die grundlegen-

den Techniken dieses Kapitels schon vorher bekannt waren, einige wesent-

liche Aussagen noch nicht in der Literatur erschienen sind. Wir erwähnen

hier beispielhaft die effiziente Transformation zwischen den verschiedenen

Darstellungen von Divisoren, die wir diskutieren, sowie die effiziente fakto-

risierungsfreie Berechnung der Maximalordnung.

Kapitel 1 besteht hauptsächlich aus Definitionen, wobei einige vollkom-

men neu und andere Varianten von Definitionen in der Literatur sind.

Wir kommen abschließend auf die zu Beginn gestellte allgemeine Frage

zum diskreten Logarithmusproblem in Grad 0 Klassengruppen von Kurven

über endlichen Körpern zurück. Neben den soeben beschriebenen neuen Re-

sultaten sind uns die folgenden Resultate zu der Frage bekannt:

Mit dem baby-step-giant-step Algorithmus und Resultaten über Arith-

metik in Klassengruppen in Kapitel 2 dieser Arbeit kann das diskrete Lo-

garithmusproblem für Kurven C/Fq in einer Zeit von Õ(# Cl0(C) 1
2 ) gelöst

werden. Mit der Schranke # Cl0(C) ≤ (
√
q + 1)2g erhält man auch obere

Schranken mittels qg anstatt mittels # Cl0(C).
Neben diesen Resultaten ist uns nur ein weiteres (bewiesenes) Resultat

bekannt. Es ist das Resultat über “Kurven großen Geschlechts” von F. Heß

in ([Heß05]). Um dieses Resultat zu formulieren, definieren wir die übliche

Komplexitätsfunktion

LN [α, c] := ec·log(N)α·(log log(N))1−α

für Parameter α ∈ (0, 1) und c > 0. Dann ist das Resultat wie folgt:

Wir betrachten eine Klasse von Kurven über endlichen Körpern so dass

log(q) ∈ o(g log(q)), wobei wie üblich q die Körpergröße und g das Geschlecht

ist. Dann kann für jedes ǫ > 0 das diskrete Logarithmusproblem in den Grad

0 Klassengruppen solcher Kurven in einer erwarteten Zeit von

Lqg [
1

2
, 32

1
2 + ǫ]

gelöst werden.

Ähnlich zum vorherigen Resultat kann man mit der Ungleichung

(
√
q − 1)2g ≤ # Cl0(C) auch obere Schranken mittels # Cl0(C) erhalten.


