
Systems of polynomial equations associated to

elliptic curve discrete logarithm problems

Claus Diem

Institute for Experimental Mathematics, University of Duisburg-Essen

October 27, 2004

Abstract. We show that the discrete logarithm problem (DLP) in E(K),
where E/K is an elliptic curve over a finite field K, can be solved if one
can decide whether certain systems of multivariate quadratic polynomial
equations over K are consistent, i.e. whether they have a solution in the
algebraic closure of K. If the cyclic subgroup of E(K) in which one wants
to solve the DLP has a size of N bits, one has to determine whether less
than 2N systems with each less than N variables are consistent or not.

Keywords. Elliptic curve discrete logarithm problem, multivariate sys-
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1 Introduction and main result

The fact that the security of many cryptographic systems would be jeopardized if
one could solve certain systems of multivariate polynomial equations has recently
received considerable attention of cryptologists (see e.g. [4, 17, 10]). In this paper,
we show that in a certain way also the security of elliptic curve cryptography
relies on the difficulty of finding solutions to systems of multivariate polynomial
equations.

The elliptic curve discrete-logarithm problem (ECDLP) is the following al-
gorithmic problem: Given a finite field K, an elliptic curve E/K (given by an
explicit curve equation), a point P ∈ E(K) and a point Q ∈ 〈P 〉 (given by
explicit coordinates), where 〈P 〉 is the cyclic subgroup generated by P , find a
natural number e such that e·P = Q. By abuse of terminology, if the field K, the
elliptic curve E/K and the points P and Q are fixed, we speak of the (elliptic
curve) discrete-logarithm problem with respect to E/K, P and Q.

The best (publicly) known methods to attack the ECDLP which apply to
all discrete logarithm problems in all elliptic curves over all finite fields are
“generic” methods which only rely on the fact that E(K) is a group: First of all,
with the Chinese Remainder Theorem one can easily reduce to the case that the
group order is prime. Now (for example) with Pollard’s ρ-method one obtains an
expected running time of Θ(

√
`) (counted in field operations), where ` := #〈P 〉.

In this paper, we present a completely new approach to attack the ECDLP
which also applies to all discrete logarithm problems in all elliptic curves over
all finite fields. Our main result is as follows:



Main result. To the elliptic curve E/K, a point P ∈ E(K) such that the group
〈P 〉 has bit-length N (i.e. N = [log2(#〈P 〉)] + 1), a second point Q ∈ E(K)
and an integer s with 3 ≤ s ≤ N − 2, one can associate a system of quadratic
polynomials in K[X1, . . . , Xs−1, Y1, . . . , YN−s] of the form

fk := (
∑N−s

j=1 (
∑s−1

i=1 a
(k)
i,j XiYj) + a

(k)
s,j Yj) + a(k) (k = 1, . . . , M, a

(k)
i,j , a(k) ∈ K)

(where M ≥ N) with the following property: All solutions of the system of equa-
tions f1 = f2 = · · · = fM = 0 in the algebraic closure K of K lie in K, and they
correspond bijectively to tuples e ∈ {0, 1}{0,...,N−1} with (

∑N−1
i=0 ei2

i) · P = Q

such that |e| :=
∑N−1

i=0 ei = s. (In particular, the associated algebraic set is
0-dimensional.)

Moreover, the calculation of the system of polynomials is very fast from a
practical point of view, and counted in field operations, it is polynomial in N
from a theoretical point of view. Also, once one has found a solution to the
system, one can easily derive the corresponding tuple e ∈ {0, 1}{0,...,N−1}.

Let Q ∈ 〈P 〉. Note that according to the definition of N , there always exists

at least one and at most two e ∈ {0, 1}{0,...,N−1} with (
∑N−1

i=0 ei2
i) · P = Q.

Accordingly, one of the following two possibilities is always satisfied.
1. The union of the sets of solutions to the above systems over K (or – what

is the same – over K) consists of at least one and at most two elements, and
each of these elements corresponds to a solution of the DLP given by P and Q.

2. There exists some e ∈ {0, 1}{0,...,N−1} with |e| = 0, 1, 2, N − 1, N with

(
∑N−1

i=0 ei2
i) · P = Q.

In the second case one can easily derive the vector e by a “brute-force”
approach. We can thus conclude that we can solve the DLP given by E/K, P
and Q if we can solve the above quadratic systems.

We will see at the end of the following section that there is an alternative to
solving the above system which potentially is computationally easier:

By an analogous procedure as the one which we use to construct the above
systems, one can construct certain systems with slightly less variables. If one
can now check whether these systems are consistent, i.e. whether they have a
solution in K, one can also solve the discrete logarithm problem in E(K).

2 Construction of the system

As above, let K be a finite field and E/K an elliptic curve. Let us first fix some
notations.

Notations

We denote the divisor group of E/K (i.e. the group of K-rational divisors of
E/K) by Div(E/K) and the (divisor) class group (sometimes also called Pi-
card group) of E/K by Cl(E/K). We denote by Div0(E/K) and Cl0(E/K) the
corresponding groups consisting of divisors (resp. divisor classes) of degree 0.



If P ∈ E/K, we denote the corresponding divisor of degree 1 in Div(E/K)
by [P ], and if a ∈ Div(E/K), we denote the corresponding class in Cl(E/K) by
a. Let us denote the neutral element in E(K) by O.

If f is a non-trivial element in the function field K(E)∗, we denote the corre-
sponding residue class in K(E)∗/K∗ by f . (This notation should not be confused
with the above notation for elements in Cl(E/K).)

If D ∈ Div(E/K), we denote the corresponding Riemann-Roch space by
L(D). Recall that by definition L(D) is the K-vector subspace of the function
field K(E) consisting of the zero-element and all rational functions f ∈ K(E)∗

with (f) ≥ −D.
Note that for P, Q, R ∈ E(K), we have P + Q = R if and only if [P ] + [Q] =

[R] + [O] ∈ Cl(E/K) by definition of the group law on E(K).
If L/K is an extension field, we write E/L if we consider E as an elliptic

curve over L. Then Div(E/L) and Cl(E/L) will be the divisor group, resp. the
class group of E over L. Note that if D is a divisor on E, the notation L(D) does
not indicate whether one considers the Riemann-Roch space of D over K or over
L. Because of this, in the following lemma, we state explicitly if we consider the
Riemann-Roch space in K(E) or in K(E).

Lemma 1. Let P1, P2, Q ∈ E(K). Then the following assertions are equivalent.

1. P1 + P2 = Q ∈ E(K).
2. [P1] + [P2] = [Q] + [O] ∈ Cl(E/K).
3. There exists some function f ∈ K(E)∗ such that (f) = [P1]+[P2]−[Q]−[O] ∈

Div0(E/K).
4. There exists some function f ∈ K(E)∗ such that (f) = [P1]+[P2]−[Q]−[O] ∈

Div0(E/K).
5. There exists some function f ∈ K(E)∗ such that f lies in L([Q]+[O]− [P1]−

[P2]) ⊂ K(E) and f−1 lies in L([P1] + [P2] − [Q] − [O]) ⊂ K(E).
6. There exists some function f ∈ K(E)∗ such that f lies in L([Q]+[O]− [P1]−

[P2]) ⊂ K(E) and f−1 lies in L([P1] + [P2] − [Q] − [O]) ⊂ K(E).

If these conditions are satisfied, the functions f in assertions 3 and 5 are uniquely
determined up to multiplication by an element in K∗, and the functions f in
assertions 4 and 6 are uniquely determined up to an element in K

∗
.

Proof. The assertions 1,2,3 and 5 are equivalent by the definition of the group
law on E/K and the definitions of the divisor class group and the Riemann-Roch
spaces. The same holds for the assertions 1,4,6. The last assertion can easily be
derived from the fact that L(0) = K ([18, I.4.7]). ut

The equivalence between the first and the last two assertions is a first step
towards the system of quadratic equations we have in mind.

Lemma 2. Let P1, . . . , Pa, Q ∈ E(K) such that the Pi are pairwise distinct and
all points are different from the neutral element O, and let s ∈ N. Then there is
a natural bijection between the set

{

e ∈ {0, 1}a|
a

∑

i=1

eiPi = Q ∧ |e| = s

}



and the set
{

f ∈ K(E)∗/K∗| f ∈ L([Q] + (s − 1)[O]) ∧ f−1 ∈ L(

a
∑

i=1

[Pi] − [Q] − (s − 1)[O])

}

.

Explicitly, this bijection is given as follows:
To every e ∈ {0, 1}a with

∑a

i=1 eiPi = Q and |e| = s, we assign the residue
class in K(E)∗/K∗ determined by an f ∈ K(E)∗ with (f) =

∑a

i=1 ei[Pi]− [Q]+
(1 − s)[O]. Conversely, to a residue class of functions f lying in the second set,
we associate the tuple e ∈ {0, 1}a which is defined by ei := vPi

(f), where vPi
is

the valuation of the function field K(E)/K at Pi.
In particular, the second set is invariant under the replacement of the field

K by the algebraic closure K.

For the proof one just has to check that the two maps are well-defined. This is
straightforward. We just note that a function in any residue class in the second
set always has a simple pole at Q, i.e. the valuation at Q is always 1. The “in
particular” statement follows from the fact that the first set is invariant under
the replacement of K by K.

For the derivation of the system of quadratic equations, we apply the above
lemma to a = N , Pi := 2i−1P (i = 1, . . . , N), where N is the bit-size of #〈P 〉
and some s with 3 ≤ s ≤ N − 2.

We obtain a bijection between

{

e ∈ {0, 1}{0,...,N−1}|
N−1
∑

i=0

ei2
iP = Q ∧ |e| = s

}

and






f ∈ K(E)∗/K∗

∣

∣

∣

∣

∣

∣

f ∈ L([Q] + (s − 1)[O])
∧

f−1 ∈ L(
∑N−1

i=0 [2iP ] − [Q] − (s − 1)[O])







.

Choosing bases

By the Riemann-Roch Theorem ([18, I.5.15.], [11, IV, Theorem I.3]), the space
L((s− 1)[O]) is an s− 1-dimensional K-vector space; let α1, . . . , αs−1 be a basis
of this space (α1 can chosen to be 1). As again by the Riemann-Roch Theorem
L([Q]+(s−1)[O]) is an s-dimensional K-vector space, there exists an element αs

in this space such that α1, . . . , αs is a basis of L([Q] + (s− 1)[O]). Furthermore,

the space L(
∑N−1

i=0 [2iP ] − [Q] − (s − 1)[O]) is an N − s-dimensional K-vector
space; let β1, . . . , βN−s be a basis of this space.

With these definitions, the second set is equal to the following set.

{

f ∈ K(E)∗/K∗| f ∈ 〈α1, . . . , αs〉K ∧ f−1 ∈ 〈β1, . . . , βN−s〉K
}



By definition, every residue class in this set is defined by a function which has a
(simple) pole at Q. Together with the definition of α1, . . . , αs, this means that
the above set is in natural bijection with the set

{

f ∈ K(E)| f ∈ αs + 〈α1, . . . , αs−1〉K ∧ f−1 ∈ 〈β1, . . . , βN−s〉K
}

,

and this set is in natural bijection with
{

(f, g) ∈ K(E)2| f · g = 1 ∧ f ∈ αs + 〈α1, . . . , αs−1〉K ∧ g ∈ 〈β1, . . . , βN−s〉K
}

,

which in turn is in natural bijection with






(x, y) ∈ Ks−1 × KN−s| (αs +
s−1
∑

i=1

xiαi) · (
N−s
∑

j=1

yjβj) = 1







,

that is,






(x, y) ∈ Ks−1 × KN−s|
N−s
∑

j=1

((

s−1
∑

i=1

xiyjγi,j) + γs,jyj) = 1







,

where
γi,j := αiβj (i = 1, . . . , s, j = 1, . . . , N − s).

Let K(E) = K(X)[Y ], where Y satisfies an equation of degree 2 over the rational
function field K(X). The idea is now to expand “everything” with respect to
the basis 1, Y of the K(X)-vector space K(E).

For this, first write γi,j = γi,j,1 + Y γi,j,2 wit γi,j,1, γi,j,2 ∈ K(X). Now let
D(X) ∈ K[X ] be the least common multiple of the denominators of all the

γi,j,1, γi,j,2 (written as reduced fractions). Now we have γi,j =
δi,j,1

D
+ Y

δi,j,2

D

with some polynomials δi,j,1, δi,j,2 ∈ K[X ].
With these definitions, the above set is equal to










(x, y) ∈ Ks−1 × KN−s

∣

∣

∣

∣

∣

∣

∣

∑N−s

j=1 (
∑s−1

i=1 xiyjδi,j,1 + yjδs,j,1) = D(X)

∧
∑N−s

j=1 (
∑s−1

i=1 xiyjδi,j,2 + yjδs,j,2) = 0











.

For k ∈ N, let δ
(k)
i,j,1 (resp. δ

(k)
i,j,2) be the k-th coefficient of the polynomial δi,j,1 ∈

K[X ] (resp. δi,j,2 ∈ K[X ]), and let D(k) be the k-th coefficient of D ∈ K[X ].
Then the above set is equal to










(x, y) ∈ Ks−1 × KN−s

∣

∣

∣

∣

∣

∣

∣

∀k ∈ N :
∑N−s

j=1 (
∑s−1

i=1 xiyjδ
(k)
i,j,1 + δ

(k)
s,j,1yj) = D(k)

∧
∀k ∈ N :

∑N−s
j=1 (

∑s−1
i=1 xiyjδi,j,2 + δ

(k)
s,j,2yj) = 0











.

The system of polynomials in K[X1, . . . , Xs−1, Y1, . . . , YN−s] we want to derive
consists of

(
N−s
∑

j=1

(
s−1
∑

i=1

δ
(k)
i,j,1XiYj) + δ

(k)
s,j,1Yj) − D(k)



and

(

N−s
∑

j=1

(

s−1
∑

i=1

δ
(k)
i,j,2XiYj) + δ

(k)
s,j,2Yj) (k ∈ N).

Note that only finitely many of these polynomials are non-trivial.

Algorithmic aspects

To explicitly construct the system of polynomials starting from an explicitly
given equation of E/K and two points P, Q ∈ E(K), one just has to follow the
above procedure. The only step which we did not explain in a constructive way
is the finding of the bases of the Riemann-Roch spaces in question. For this
well-known algorithmic problem, we refer to [12], in particular [12, Algorithm I
and Remark 6.2]. Furthermore, if one has found a solution, one can derive the
corresponding vector in {0, 1}{0,...,N−1} which gives the solution to the DLP by
first constructing the class f ∈ K(E)∗/K∗ corresponding to the solution (by
inverting the above procedure) and then checking for each i = 0, . . . , N − 1
whether f has a zero at 2iP .

A question of consistency

One can reduce the problem of finding solutions to the above systems of quadratic
polynomial equations to a question of consistency, i.e. to the question whether
certain systems of polynomials have a solution in the algebraic closure K of the
ground field K. Note that by Hilbert’s “Nullstellensatz” a system is consistent
if and only if the generated ideal in the surrounding polynomial ring is strictly
smaller than the unit ideal.

For this variant, we proceed as follows: First of all, for some s with 3 ≤ s ≤
N − 3, we consider the system obtained by the above method after substituting
L(

∑N−1
i=0 [2iP ]− [Q]− (s− 1)[O]) by L(

∑N−2
i=0 [2iP ]− [Q]− (s− 1)[O]). Now the

union of sets the solutions of the systems contains at most one element (instead
of at most 2 elements).

Now we first of all check the systems for consistency to determine the s (if it
exists) such that there exists a e ∈ {0, 1}{0,...,N−2} with (

∑

i ei2
i) · Pi = Q and

|e| = s. (If no such s exists, we replace Q by Q − 2N−1P and proceed with this
system as just described.)

After we have determined s, we want to find the unique e ∈ {0, 1}{0,...,N−2}

with (
∑

i ei2
i)·Pi = Q and |e| = s. To do so, we repeatedly replace the Riemann-

Roch space L(
∑N−2

i=0 [2iP ]− [Q]− (s−1)[O]) by L((
∑N−2

i=0 [2iP ])− [2i0P ]− [Q]−
(s− 1)[O]), where i0 is any element in the set {0, . . . , N − 2}. We check whether
the system one obtains with the above method is consistent. If it is, we know
that in the unique vector e ∈ {0, 1}{0,...,N−2} with

∑N−2
i=0 ei2

iP = Q, there is a
0 at the index i0. It it is not, there is a 1 at this index.



3 Testing the systems for consistency

In this section, we want to discuss what complexity one can expect if one tries
to determine whether the above systems are consistent (solvable). In contrast to
the previous section, this discussion will involve some heuristic considerations.

We have conducted experiments with the above systems. In these exper-
iments, the dimension of the space generated by the equations in the “main
result” was always exactly N , i.e. it was equal to the number of variables +1.
Also the smaller systems described at the end of the previous section had the
property that the difference between the dimension of the space generated by
the equations and the number of variables present in the system was always 1
(independent of whether or not the systems were consistent).

While we do at present not have a theoretical explanation or a proof for this
statement, it seems to be reasonable to make the assumption that the difference
between the dimension of the spaces generated by the equations and the number
of variables present in the systems is 1.

In the appendix to this work, we present a Monte-Carlo algorithm to test
whether a system given by n + 1 homogeneous polynomials in n + 1 variables
is consistent, i.e. whether it has a non-trivial solution. The algorithm could be
called a “Monte-Carlo test for consistency via Macaulay matrices”; it is closely
related to Lazards’ algorithms ([14, 15]), to the F5-algorithm ([9]), as well as
the XL-algorithm ([3]). (See also the subsection “Comparison with F5” in the
appendix.)

If one tries to apply this algorithm (or Lazard’s algorithms / the XL-algorithm)
to the homogenizations of the system we derived, one encounters however a prob-
lem: By the structure of the equations, the algebraic set of solutions at infinity is
not empty (and its dimension is quite high), thus in particular, the systems are
always consistent. (In principle, it is possible to apply the F4- or F5-algorithms,
but because of the solutions are infinity, the running time might be quite bad.)

One can however modify the systems and the algorithm such that we can
avoid this problem.

For this modification, we start with a system

gk := (
∑N−1−s−ε

j=1 (
∑s−1

i=1 a
(k)
i,j XiYj) + a

(k)
s,j Yj) + a(k)

(k = 1, . . . , M, a
(k)
i,j , a(k) ∈ K)

(1)

obtained by the method in the previous section (in the variant described in the
subsection “A question of consistency”). Here ε is 0 or 1, depending on whether
one wants to determine s or if s has already been determined. We want to test
this system for consistency.

We introduce a new variable Xs and consider the system

g̃k := (
∑N−1−s−ε

j=1

∑s
i=1 a

(k)
i,j XiYj) + a(k) (k = 1, . . . , M, a

(k)
i,j , a(k) ∈ K). (2)

By the construction of the system in the previous section, every solution (x, y)
of this system satisfies xs 6= 0 (see in particular the definition of the basis of



L([Q] + (s − 1)[O]) in the subsection “Choosing bases”). It follows that this
system is consistent if and only if the previous one is.

Now we apply a variant of the “relinearization technique” ([13]) once:
Let us consider the map

K
N−1−s−ε × K

s −→ K
(N−1−s−ε)·s

, (x, y) 7→ z = (zij) with zij = xiyj (3)

All elements in the image of this map obviously satisfy the system of equa-
tions

ZijZ`k − ZikZ`j . (4)

It is not hard to see that this set of equations defines the image of the map.
Moreover, it is also not hard to see that if x 6= 0 and y 6= 0, then exactly the

elements of the form (λx, 1
λ
y) with some λ ∈ K

∗
map to the same image. Also,

exactly the elements (0, y) and (x, 0) map to 0.
Let us consider the system consisting of (4) and the following linear equations.

lk := (
∑N−1−s−ε

j=1

∑s

i=1 a
(k)
i,j Zij) + a(k) (k = 1, . . . , M, a

(k)
i,j , a(k) ∈ K) (5)

The group K
∗

operates on the set of solutions of (2) in K via (λ, (x, y)) 7→
(λx, 1

λ
y). By what we said about the map (3), the classes of the solutions (x, y)

in K with x 6= 0 and y 6= 0 of (2) modulo this operation correspond bijectively

to the non-trivial solutions in K of the corresponding “relinearized” system
consisting of (4) and (5). As at least one of the a(k) is non-trivial, the solutions
(x, y) in K of (2) are in bijection with the solutions in K of the “relinearized”
system.

This implies that system (2) is consistent if and only if the “relinearized”
consisting of (4) and (5) system is.

The “relinearized” system has no non-trivial solutions at infinity. This can
be seen as follows: The non-trivial solutions at infinity in K of the “relinearized
system” correspond bijectively to classes of solutions (x, y) in K with x 6= 0,
y 6= 0 of the system

N−1−s−ε
∑

j=1

s
∑

i=1

a
(k)
i,j XiYj (k = 1, . . . , M, a

(k)
i,j ∈ K).

By going through Section 2, one sees that a solution of this system in K with
x 6= 0, y 6= 0 would give rise to a pair (f, g) ∈ K(E) × K(E) with f · g = 0,
f 6= 0, g 6= 0 which does not exist.

We are thus left with the question of deciding whether the homogenization of
the “relinearized” system is consistent or not (as a homogeneous system). In the
subsection “examples for generalizations” in the appendix, we show that with a
generalization of the “Monte-Carlo test for consistency via Macaulay matrices”
one can test the consistency of the homogenization of the system in Õ(24N ) bit
operations. This complexity is of course far worse than the complexity of a brute
force attack on the ECDLP itself.



4 Conclusions

We have shown that one can solve an N -bit discrete-logarithm problem in an
elliptic curve over a finite field K if one can determine whether less than 2N
systems of multivariate quadratic polynomial equations with at most N variables
over K are consistent, that is, whether they have a solution in the algebraic
closure K of K.

We found no indication that it might be possible to check whether the systems
are consistent with a running time which is better than that of a brute force attack
on the ECDLP itself.

Even though the proposed attack thus clearly seems to fail and not to pose
a threat to elliptic curve cryptography, we find it however interesting that just
as the security of many other cryptographic schemes, also the security of elliptic
curve cryptography relies on the difficulty of the problem of solving systems
of polynomial equations over finite fields (more precisely, determining whether
they are consistent). If for example the systems we derived have some unexpected
special property (for example concerning Gröbner bases), it might be possible
to determine much faster whether they are consistent, and this might also lead
a veritable attack on the ECDLP.

We would also like to point out that there is also another approach to asso-
ciate systems of polynomial equations to the DLP in elliptic curves (and in other
algebraic groups): One introduces variables Xi, the i-th variable corresponds to
the i-th bit in the unknown (and one introduces equations Xi(Xi−1) = 0, as the
bits are either 0 or 1), and then one uses the group law to construct equations
relating the variables Xi (possibly after introducing certain auxiliary variables).
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A A Monte-Carlo test for consistency via Macaulay

matrices

In this section we describe an algorithm which could be called a “Monte-Carlo
test for consistency of homogeneous systems via Macaulay matrices”.

The input of the algorithm are n + 1 non-trivial homogeneous polynomials
F1, . . . , Fn+1 ∈ K[X0, . . . , Xn] of degrees d1, . . . , dn+1, K an “effective” field.

We want to determine whether there exists an element x ∈ K
{0,...,n}\{0} with

Fk(x) = 0 for all k = 1, . . . , n + 1. If this is the case, we say that the system is
(as a homogeneous system) consistent, otherwise we say that it is inconsistent.

Note that K[X0, . . . , Xn]/(F1, . . . , Fn+1) is a graded K[X0, . . . , Xn]-algebra;
we will denote the dth homogeneous component of this algebra by
(K[X0, . . . , Xn]/(F1, . . . , Fn+1))d.



The algorithm is based on the following lemma:

Lemma 3. The following conditions are equivalent:

1. The system F1, . . . , Fn+1 is inconsistent.
2. The ring K[X0, . . . , Xn]/(F1, . . . , Fn+1) is 0-dimensional.
3. The K-algebra K[X0, . . . , Xn]/(F1, . . . , Fn+1) is a finite-dimensional

K-vector space.
4. The system F1, . . . , Fn+1 forms a regular sequence, i.e. each Fi+1 is a non-

zerodivisor in K[X0, . . . , Xn]/(F1, . . . , Fi).
5. (K[X0, . . . , Xn]/(F1, . . . , Fn+1))D = 0, where D = d1 + · · · dn+1 − n.

Sketch of the Proof. The equivalence of the first two items follows from
Hilbert’s “Nullstellensatz”. For the equivalence of the second and third item
note that both statements are equivalent to K[X0, . . . , Xn]/(F1, . . . , Fn+1) be-
ing artinian.

We now show that 2. −→ 4., 4. −→ 5. and 5. −→ 2.
The implication 2. −→ 4. is essentially a special case of [7, Corollary 17.7.].

(Note that this corollary is only stated for local rings, but it is easy to derive
from the statement on local rings the corresponding statement on graded rings.)

Let 4. be satisfied. It is rather straightforward that the Hilbert series of

K[X0, . . . , Xn]/(F1, . . . , Fn+1) is
Qn+1

i=1 (1−T di )

(1−T )n+1 , in particular the degree of the

Hilbert series is d1 + · · · dn − n − 1. This implies 5. (For more information
on Hilbert series and a proof of the statement concerning the Hilbert series
of K[X0, . . . , Xn]/(F1, . . . , Fn+1) see (e.g.) [5, Section 4].)

Let 5. be satisfied. Then for all d > D, the K-vector space
(K[X0, . . . , Xn]/(F1, . . . , Fn+1))d is also trivial; it follows that
K[X0, . . . , Xn]/(F1, . . . , Fn+1) is a finite-dimensional K-vector space, i.e. 3. is
satisfied. ut

The algorithm is based on the equivalences between assertions 1. and 5. A
brief description of the algorithm is: Consider the set P of all polynomials of the

form X i · Fk , where i ∈ N
{0,...,n}
0 is a multiindex and deg(X i) + dk = D with

D = d1 + · · · dn − n, dk = deg(Fk). Now the system F1, . . . , Fn+1 is consistent
if and only if the K-vector space 〈P 〉K is strictly smaller than K[X0, . . . , Xn]D.
To check whether this is the case, use some method from linear algebra.

To apply methods from linear algebra, one should first construct a ma-
trix. To do this, one chooses an order on the set of all monomials of degree
D = d1 + · · · dn − n (this order might for example be given via an admissible
monomial order on K[X0, . . . , Xn]). With respect to this order, one can associate
a coefficient vector to each polynomial of degree D. Now the rows of the matrix
we want to consider consist of the coefficient vectors of the polynomials of the
form X i ·Fk as above. In order to define the matrix rigorously, one also has to de-
fine an order on the tuples of the form (X i, j) with deg(X i)+k = d1 + · · · dn−n.
Let us assume that we have chosen such an order. Say that with respect to this
order, (X i, j) is tuple number a. Then the a-th row of the matrix consists of the
coefficient vector of the polynomial X i · Fk.



The matrix we just defined is in fact exactly the so-called Macaulay matrix
M

acaulay
D,m with D = d1 + · · · dn − n considered for example in Section 2.2. of [1].
A first description of the algorithm (which still lacks quite a bit of determi-

nacy) is as follows:

The algorithm (Outline)

Input: An effective field K and a system of forms (homogeneous polynomials)
F1, . . . , Fn+1 ∈ K[X0, . . . , Xn]
Output: A statement on the consistency of the system.

Let M be the Macaulay matrix to degree D = d1 + · · · + dn − n (with respect
to some order) corresponding to the system F1, . . . , Fn+1.

Let c :=
(

D+n
n

)

=
(

d1+···+dn

n

)

be the number of columns of M.
Test whether the rows of M do not generate Kc. If the outcome of the test

is “yes”, output “consistent”, otherwise output “inconsistent”.

The question is now of course how one should test whether the rows of
M generate the surrounding space. Depending on this method, one obtains a
deterministic or a randomized test.

One can for example use structured Gaussian elimination. Like this, one
obtains a deterministic test. As the Macaulay matrix is however very sparse,
a randomized (Monte-Carlo) test based on sparse linear algebra is much more
efficient.

Note that the following statements are equivalent:

– The rows of M generate the surrounding space Kc.
– The rank of M is equal to c.
– The columns of M are linearly independent.
– The kernel of M is trivial.

One can use a randomized algorithm to check whether the last condition is
satisfied. Let us assume that the field K is finite. Then we can (for example) use
a variant of the randomized Lanczos algorithm presented in [6] to check whether
ker(M) 6= 0. The following proposition is an easy corollary of [8, Theorem 3]
which relies on the algorithm in [6].

Proposition 1. There exists a Monte-Carlo test on the non-triviality of the
kernel of a matrix A ∈ F

r×c
q given in sparse form with ω non-zero entries which

has an expected running time of O(c · (ω + c) · log2(c q)) bit operations.

Recall that by definition, a Monte-Carlo test on a property P is a randomized
algorithm which outputs “yes” / “no” and has the following properties: If the
input does not satisfy P, it always outputs “no”, and if the input satisfies P, it
outputs “yes” with a probability of ≥ 1

2 . A brief description of this and related
notions can for example be found in [16, Section 2].

We can apply this algorithm to test whether the Macaulay matrix has trivial
kernel. We obtain the following proposition.



Proposition 2. There exists a Monte-Carlo test on the question whether a sys-
tem of forms (homogeneous polynomials) F1, . . . , Fn+1 ∈ Fq[X1, . . . , Xn] is con-
sistent which has the following property:

Let dk := deg(Fk), let Tk the number of (non-trivial) terms in Fk, and let

T :=
∑n+1

k=1 Tk. Then the algorithm has an expected running time of

O
((

d1+···+dn

n

)

· ((∑n+1
j=1 Tk ·

(

d1+···+dn−dk

n

)

) +
(

d1+···+dn

n

)

)·
(d1 + · · · + dn + log(q))2

)

⊂ O
(

(T + 1) ·
(

d1+···+dn

n

)2 · (d1 + · · · + dn + log(q))2
)

bit operations.
In particular, if all polynomials are quadratic, the algorithm has an expected

running time of Õ(24n).

Comparison with F5

The F5-algorithm ([9]) is an algorithm to calculate Gröbner bases of homo-
geneous systems of multivariate polynomials. One might think that the F5-
algorithm could lead to substantially better running times than our above “Monte-
Carlo test for non-consistency via Macaulay matrices”. This is however not the
case if one wants to check whether “randomly generated” / “sufficiently general”
systems are consistent.

If one wants to use the F5-algorithm to test whether a system is consistent,
one has to calculate Gaussian normal forms of various matrices, the largest being
(generally) a quadratic matrix of size

(

d1+···dn

n

)

. The system is consistent if and
only if the kernel of this quadratic matrix is non-trivial.

Being quadratic, the final matrix in the F5-algorithm is smaller than the
Macaulay matrix we consider, but it is reasonable to assume that the Macaulay
matrix has less non-zero entries than the final matrix in the F5-algorithm.

As said, the F5-algorithm relies on the calculation of Gaussian normal forms
of various matrices. It is not obvious if one can modify the algorithm in such a
way that one can apply any of the “standard” algorithms to solve sparse linear
systems. (These algorithms can be used to test whether the final matrix in the
F5-algorithm has a non-trivial kernel, but the usage of the Gaussian normal
forms of the intermediate matrices seems to be inherent in the algorithm.) If
one compares the F5-algorithm with structured Gaussian elimination with our
test with randomized Lanczos’ algorithm, then asymptotically our algorithm is
clearly faster.

Generalization

One can generalize the above algorithm in the following way: Let R1, . . . , Rr be
a system of forms in the polynomial ring K[Z0, . . . , Za], and suppose that the
ring R := K[Z0, . . . , Za]/(R1, . . . , Rr) is Cohen-Macaulay and n+1-dimensional.
(See [7, Sections 17 and 18], in particular [7, Section 18.2] for information on



Cohen-Macaulay rings.) Let F1, . . . , Fn+1 be system of forms in K[Z0, . . . , Za]
with deg(Fk) = dk. Then a generalization of the above algorithm can be used to
decide whether the system R1, . . . , Rr, F1, . . . , Fn+1 is consistent.

This generalization is based on the following lemma which generalizes
Lemma 3.

Lemma 4. Let D := deg(
∏n+1

i=1 (1 − T di) · HR) + 1, where HR is the Hilbert
series of R. Then the following conditions are equivalent:

1. The system R1, . . . , Rr, F1, . . . , Fn+1 is inconsistent.
2. The ring K[Z0, . . . , Za]/(R1, . . . , Rr, F1, . . . , Fn+1) ' R/(F1, . . . , Fn+1) is

0-dimensional.
3. The K-algebra R/(F1, . . . , Fn+1) is a finite-dimensional K-vector space.
4. The system F1, . . . , Fn+1 forms a regular sequence in R, i.e. each Fi+1 is a

non-zerodivisor in R/(F1, . . . , Fi) (i = 0, . . . , n).
5. (K[Z0, . . . , Za]/(R1, . . . , Rr, F1, . . . , Fn+1))D ' (R/(F1, . . . , Fn+1)D = 0.

The proof of this lemma is analogous to the one of Lemma 3. We just note that
by the Cohen-Macaulay property the ring R/(F1, . . . , Fn+1) is 0-dimensional if
and only if F1, . . . , Fn+1 defines a regular sequence in R. (This follows again from
[7, Corollary 17.7.].) Also, if F1, . . . , Fn+1 is a regular sequence, then the Hilbert

series of R/(F1, . . . , Fn+1) is
∏n+1

i=1 (1−T di)HR, and thus (R/(F1, . . . , Fn+1))D =
0.

The general outline of our test on the consistency of the system R1, . . . , Rr,
F1, . . . , Fn+1 is analogous to the above algorithm: One calculates the Macaulay
matrix M of degree D of the system R1, . . . , Rr, F1, . . . , Fn+1, and one tests
whether ker(M) 6= 0. The correctness of the algorithm is guaranteed by the
above lemma.

Let us assume that we have an explicit K-basis B of R consisting of homoge-
neous elements such that if P, Q ∈ B, then P ·Q ∈ B, and this element is easily
computable. Under this condition, there is a variant of the algorithm which can
be substantially faster:

For some d ∈ N, let Bd be the elements of the fixed basis B of degree d.
Now instead of considering the system of all polynomials X i · Rk, X i · Fk with
deg(X i) + deg(Rk) = D, deg(X i) + deg(Fk) = D, one considers the system
consisting of all H ·Fk ∈ RD, where for some j, H runs through BD−deg(Fk), the
set of basis elements of degree D − deg(Fk).

Then analogously to above, one represents each H ·Fk ∈ Rd by its coefficient
vector with respect to B, and one forms a matrix M (which could be called
a generalized Macaulay matrix ) whose rows consist of these coefficient vectors.
Again, by the equivalences of the assertions 1 and 5 in the above lemma, the
system is consistent if and only if ker(M) 6= 0. If the field K is finite, condition
ker(M) 6= 0 can again be tested with the randomized algorithm of Proposition
1.

The advantage of this variant is that the size of the vectors is equal to the
dimension of RD (and not the dimension of K[Z0, . . . , Za]D which can be much
larger), and the number of rows can also be substantially smaller.



Examples for generalizations

Two Cohen-Macaulay rings are particularly important from a practical point of
view.

The first one is the ring R(n) given by (n + 1)2 indeterminates Zij (i, j =
0, . . . , n) modulo the relations Zij − Zji for all i, j and ZijZ`k − ZikZ`j for all
i, j, `, k. That is,

R(n) := K[{Zij}i,j=0,...,n]/({Zij − Zji, ZijZ`k − ZikZ`j}).

This ring is canonically isomorphic to the subring of K[X0, . . . , Xn] generated by
all XiXj (where XiXj corresponds to Zij), and it is n+1-dimensional. Note that
a single application of the “relinearization technique” ([13]) to a homogeneous
system F1, . . . , Fn+1 ∈ K[X0, . . . , Xn] corresponds to considering the Fi as linear
forms in R(n).

The second one is the ring

R(a,b) := K[{Zij}i=0,...,a,j=0,...,b]/({ZijZ`k − ZikZ`j}).

This ring is canonically isomorphic to the subring of the polynomial ring
K[X0, . . . , Xa, Y0, . . . , Yb] generated by all monomials of the form XiYj (where
XiYj corresponds to Zij), and it is a + b + 1-dimensional.

For both rings, one has homogeneous K-bases such that the products of
basis elements are again (easily computable) basis elements: In the ring R(n)

(considered as subring of K[X0, . . . , Xn]), the monomials of even degree in
K[X0, . . . , Xn] form such a basis; in the ring R(a,b) (considered as subring of

K[X0, . . . , Xa, Y0, . . . , Yb]), all monomials of the form X i ·Y j , where i ∈ N
{0,...,a}
0 ,

j ∈ N
{0,...,b}
0 and i0 + · · · + ia = j0 + · · · + jb form such a basis.

Note also that if R is a Cohen-Macaulay ring, so is the polynomial ring R[Z]
([7, Proposition 18.9]). This fact can in particular be applied to the above two
rings.

Because of the application in Section 3 we have in mind, we now concentrate
on the following question:

We suppose we are given a system of a + b + 2 polynomials of the form

Fk =

a
∑

i=0

b
∑

j=0

a
(k)
i,j XiYj + a(k)Z (a

(k)
i,j , a(k) ∈ K). (6)

over a finite field K. Similarly to Section 3, we want to find out whether there

exists a solution (x, y, z) ∈ K
a+b+3

to this system with x 6= 0, y 6= 0. To study
this question, we study whether the homogeneous system consisting of the linear
equations

Lk =
a

∑

i=0

b
∑

j=0

a
(k)
i,j Zi,j + a(k)Z (a

(k)
i,j , a(k) ∈ K). (7)



and the quadratic equations

ZijZ`k − ZikZj` (8)

is consistent. (These two questions are equivalent by the arguments of Section 3.)
To study this question, we can apply the generalization of our algorithm to

systems in the Cohen-Macaulay ring R(a,b)[Z].
The d-th component of the ring R(a,b) has dimension

(

a+d
d

)

·
(

b+d
d

)

(because

the polynomials X i · Y j with i0 + · · · ia = j0 + · · · + jb = d form a basis). We
have

(1 − T )a+b+1HR(a,b) =
∑

i∈N0

(

a

i

)(

b

i

)

T i;

the degree of this polynomial is thus min{a, b} ([2]). It follows that
(1 − T )a+b+2HR(a,b) [Z] = (1 − T )a+b+1HR(a,b) also has degree min{a, b}.

Let a ≤ b and n := a + b. Note that

dimK(R
(a,b)
d ) =

(

a + d

d

)

·
(

b + d

d

)

≤
(

n
2 + d

d

)2

by the inequality of the arithmetic-geometric mean. This implies that

dimK(R
(a,b)
a+1) ≤

(

n
2 + a + 1

a + 1

)2

≤
(

n + 1
1
2n + 1

)2

≤ 22n+2

which in turn implies that

dimK(R(a,b)[Z]a+1) ≤ (
n

2
+ 2) · 22n+2.

Together with the algorithm of Proposition 1, one obtains a Monte-Carlo test
on the consistency of system consisting of (7) and (8) which has a running time
of

Õ(24n)

bit operations (for n = a + b). (Note the similarity of this result with Proposi-
tion 2).
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