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Foreword
For a �xed �nite, separable extension of �elds Kjk, one an attah in afuntorial way to every quasi-projetiveK-variety a higher-dimensionalquasi-projetive k-variety, the so-alled Weil-restrition.This work is devoted to the study of various aspets of these varieties.At �rst, the emphasis is on purely theoretial results. Later these re-sults are applied to outline potential attaks on the disrete-logarithmproblem in lass groups of urves over �nite non-prime �elds.

Historial bakground and motivationLet Kjk be a �nite Galois extension of �elds, X 0 a quasi-projetive K-variety. 1Then there exists a quasi-projetive k-variety W whih has in partiular theproperties that X 0(K) ' W (k) and WK = W 
k K is a produt of Galois-onjugates of X 0. Within the framework of arithmeti algebrai geometry, W isde�ned by the property that for all k-shemes Z, there exists a funtorial bijetionW (Z) �= X 0(Z 
k K).To prove the existene of W one an for example de�ne a ertain 1-oyledatum for a produt of Galois-onjugates of X 0 and then apply \desent" as inA.Weil's paper \The �eld of de�nition of a variety"; see [We-F℄. Although Weildoes not state it expliitly, his paper even ontains a onstrution of W as asubvariety of some onrete projetive spae; see proof of [We-F, Proposition 1℄.In honor of him,W is often alled theWeil-restrition of X 0 (with respet to Kjk).(Here, the word \restrition" refers to the fat that the base-�eld is \restrited"from K to k.) We follow this terminology.Weil-restritions of abelian varieties were studied to solve various problems ofarithmeti algebrai geometry and thus also number theory. Prominent examples1Throughout this work, if we are given an extension of �elds Kjk, we will denote varietiesover k by X;Y , et., and varieties over K by X 0; Y 0, et.iii



iv Forewordare Milne's proof that the onjetures of Birh and Swinnerton-Dyer for abelianvarieties over the rationals imply the onjetures for abelian varieties over allnumber �elds and Honda's theorem about the lassi�ation of isogeny lasses ofabelian varieties over �nite �elds; see [Mi-AA℄ and [Ho℄ respetively.With the rise of arithmeti algebrai geometry, Weil-restritions were shownto exist in a muh a more general ontext. A onstrution of the Weil-restritionin a very general setting an be found in the book \N�eron Models" by Bosh,L�utkebohmert and Raynaud; see [BLR, 7.6℄.After Weil-restritions where suessfully studied to solve problems of \puremathematis" for deades, a new diretion of researh was shown by Frey in a talkin 1998; see [Fr℄. He suggested to use Weil-restritions of ellipti urves both as atool to onstrut as well as to break disrete-logarithm problems.The general idea for the use of Weil-restritions as a means to onstrut attakson the disrete-logarithm problem in the group of rational points of an elliptiurve over a �nite non-prime �eld is that as an abelian variety of dimension greaterthan 1, a Weil-restrition has \more struture" than the original ellipti urve.In partiular, Frey noted that for a �xed ellipti urve and a �xed onstant�eld extension, it should be possible to transform the DL-problem in the group ofrational points into DL-problems in lass groups of urves on the Weil-restrition.Thus it should in priniple be possible to transform the original DL-problem intoDL-problems in lass-groups of urves of higher genera over a smaller �eld. If one�nds a suitable urve on the Weil-restrition whose genus is not too high, it shouldbe more eÆient to solve the DL-problem in this urve than in the original elliptiurve. This is suggested by the results of Gaudry and Enge; see [En℄, [EG℄, [Gau℄.As disrete-logarithm problems are one of the bases of publi-key ryptography(another one being the fatorization problem), this shows that Weil-restrition maybe relevant from an applied point of view as well.The �rst results in this diretion were obtained by Galbraith and Smart, andthe �rst major paper in this new diretion was written by Gaudry, Hess and Smart;see [GHS℄.IntrodutionIn this work we study Weil-restritions of varieties both from a pure as well as froman applied point of view. In partiular, we show how questions on Weil-restritionsof abelian varieties motivated by the ryptoanalytial appliations outlined abovean often be proven diretly from the de�ning funtorial properties.Conversely, the problem of �nding urves of low genus on Weil-restritionsof a (non-singular, projetive, geometrially integral) urve X 0 is by the de�ningfuntorial property equivalent to �nding ertain overings of X 0. Most of the timeit is probably easier to �nd these overings of X 0 (where one an use Galois theory)



Introdution vthan to �nd urves on the Weil-restrition using hyperplane-setions.Thus when trying to transform the DL-problem in the lass group of urveX 0 over a non-prime �nite �eld into a potentially easier DL-problem in a lassgroup of a urve de�ned over a smaller �eld, we emphasis on a Galois-theoretiapproah. We would like to regard the Weil-restrition as being only a tool provid-ing the neessary bakground to motivate that we indeed transform the originalDL-problem into an equivalent problem.The work onsists of three hapters and an appendix. Eah hapter has its ownintrodution. The main results are mostly stated in or around a \theorem". 2Whenever stating a theorem, we have tried to inlude all neessary onditions tounderstand the ontext properly.In the hapter one, we �rst give basi de�nitions related to Weil-restritions ofvarieties and shemes. After having given two onstrutions of the Weil-restritionin rather abstrat settings, we study its �rst properties. Then we restrit ourselvesto a projetive variety X 0=K with a rational point and study the Weil-restritionof X 0 with respet to a Galois �eld extension Kjk. We analyze the Piard funtorof the Weil-restrition W and relate it to the restrition of the Piard funtorof X 0. In the third setion we �rst give an introdution to Weil-restritions ofabelian varieties. Then we derive the struture of the endomorphism ring of Weil-restritions of an abelian variety over �nite �elds.For the seond hapter, let Kjk be a Galois �eld extension of perfet �eldsand let A be an abelian k-variety, 3 W the Weil-restrition of AK with respet toKjk. In the �rst setion, we give a desription of Endk(W ) as a skew-group-ringover EndK(AK). We then restrit ourselves to the ase that A is an ellipti urveE. Then W is isogenous to the produt of E and an abelian variety N alled itstrae-zero-hypersurfae. We study the N�eron-Severi group of N and in partiularthe polarizations of N . As a �rst step towards the determination of the N�eron-Severi group of N we inlude a study of the N�eron-Severi group of a produt ofellipti urves. In the last setion of this hapter, we study an aÆne open part ofN with expliit equations for the partiular ase that the extension degree [K : k℄equals 3.The third hapter is entirely devoted to ryptoanalytial appliations. Let kbe a �nite �eld, Kjk a �eld extension of prime degree n. Let X 0 be a non-singular,geometrially irreduible urve over K. Assume that X 0 has \ryptographiallygood" properties. In partiular, the group Cl0(X 0) of lasses of divisors of degree0 should have a large prime fator. Let C be a non-singular, geometrially irre-duible urve over k with a overing C
kK �! X 0. Using this overing, we have2A Less important result is alled \proposition", a smaller or more tehnial result is alled\lemma". The reader should keep in mind however that when we ite a result and all it \propo-sition" or \lemma" it may in fat be a theorem deeper and more important than the \theorems"in this work.3In our terminology, AK is an old abelian variety. Thus the title of the hapter.



vi Forewordan expliit morphism from Cl0(X 0) to Cl0(C). The hope is that if the genus of Cis not \too large", perhaps the disrete-logarithm problem in the group Cl0(C) is\easier" than the disrete-logarithm problem in the original group Cl0(X 0). Apply-ing results of the previous two hapters, we will give theoretial results preditingwhen the large prime fator to be preserved under the morphism to Cl0(C). Thenwe use Galois theory to onstrut rather expliitly some examples.AknowledgmentsFirst and foremost, I thank my supervisor, Prof. Dr. Dr. h.. G. Frey, for suggestingthe initial diretion for this work, his enthusiasm and the ideas he gave me innumerous disussions.With great pleasure, I thank my wife, Marianne, for her understanding andsupport.I thank Prof. Dr. B. Green for his great hospitality during my stay at theUniversiteit van Stellenbosh in South Afria and N. Naumann for the fruitfulooperation.Additionally, I thank (in alphabetial order): Dr. S. Galbraith, Prof. Dr.R. G�obel, Dr. F. Hess, Prof. Dr. U. Jansen, Prof. Dr. E. Kani, Prof. Dr. K.K�unnemann, Prof. Dr. W. L�utkebohmert, Prof. Dr. G. Mihler, Dr. S. M�uller-Stah, Prof. Dr. F. Pop, Prof. Dr. H. Stihtenoth, Prof. Dr. E. Viehweg.I would like to express my gratitude for �nanial support by the Friedrih-Naumann-Stiftung, the Deutshe Forshungsgemeinshaft DFG and the Volkswa-gen Stiftung. The funds of the �rst two bodies were made available by the Bun-desrepublik Deutshland and the Land Nordrhein-Westfalen.The Institut f�ur Experimentelle Mathematik in Essen provided exellent work-ing onditions.Needless to say, it is often impossible to try to give redit to spei� persons ifan idea or a method has been \in the publi domain" for a ertain time. However,we try to state to whom rather onrete and reent results whih we have inludedin our work or on whih our results are built are due.� The ontent of Setion 1.1 is mostly standard and well-known.� Subsetion 1.3.5 is joint work with N.Naumann.� Over �nite �elds, the dimensions of the simple isogeny-fators ofW in Corol-lary 2.8 were �rst established by N.Naumann.� Equations (2.20) in Setion 2.4 are due to a variety of people, inludingG. Frey, N.Naumann and the author.



Notations vii� Morphism (3.1) is due to F. Hess; see [GHS℄.� The example in Subsetion 3.2.2 is due to S.Galbraith, F.Hess and N. Smartfor harateristi 2; see [GHS℄.� The idea to use Lemma 3.11 in the proof of Proposition 3.12 was pointedout to the author by H. Stihtenoth.
NotationsIsomorphismsWe use three di�erent signs to denote isomorphisms: If we merely want to indiatethat two objets X and Y are isomorphi with some isomorphism we write X � Y .Most of the time, the isomorphism will be in a ertain (obvious) sense \anonial".If this is the ase, we write X ' Y . If we want to stress that an isomorphism isin a ertain sense funtorial, we write \�=". { Thus if we are given two ategoriesC;D, two funtors F;G : C �! D, an isomorphism of funtors F � G and X aC-objet, we write F(X) �= G(X).Let C be a ategory, Ens the ategory of sets, F : C �! Ens a ontravariantfuntor. Let F be a C-objet, u 2 F(F). Then by' : Hom(�;F) �! F; '(�) := F(�)(u)a natural transformation is de�ned. Reall that if ' is an isomorphism, one saysthat F with the universal element u represents F.Now assume that we know that F is representable. Then the representingobjet F with u is unique up to a unique isomorphism. 4 We think of F and u asbeing �xed. Thus, if F0 with u0 is some objet representing F, we write F ' F0.Rings and ShemesAll rings and shemes onsidered in this work are assumed to be ontained in some�xed universe.If k is a �eld, we �x an algebrai losure and denote it by k. The separablelosure of k inside k will be denoted by ksep.All shemes will assumed to be loally Noetherian, i.e. we will work entirelyin the ategory of loally Noetherian shemes whih are ontained in some �xeduniverse.Fix some sheme S and let X be an S-sheme. Then for any S-sheme T ,we all the S-morphisms from T to X T -valued points of X. Let Y be another4One speaks of \the" representing objet. Note however that if one speaks of \the" or \a"representing objet one always means an objet with a �xed universal element.



viii ForewordS-sheme. Any S-morphism X �! Y indues by \push-forward" a funtorialmorphism (in T ) from the T -valued points of X to the T -valued points of Y .Conversely, any suh funtorial morphism determines an S-morphism from X toY . 5 We will often use this fat to onstrut morphisms from X to Y . When wedo so we speak of :-valued points for T -valued points for some T .If X and Y are S-shemes, then the T -valued points of produt X �S Y willbe be denoted by (P;Q), where P 2 X(T ), Q 2 Y (Q) (analogous notation forproduts onsisting of more fators).If X and Z are S-shemes, we denote the produt X �S Z also by XZ . If weuse this notation, we think of X as being �xed and Z as being variable.In the ontext of shemes, all rings will automatially assumed to be om-mutative. Let A be a (ommutative) ring. Let X be an A-sheme, by whihwe mean a sheme over Spe(A). Let B be an A-algebra. Then we denoteSpe(X) �Spe(A) Spe(B) by X 
A B or simply by XB .Let � : X ,! Y be a losed immersion, � : Z �! Y some morphism. Then by��1(X) we always mean the sheme-theoreti preimage, i.e. ��1(X) := X �Y Zwhere the produt is taken relative to � and �. If � is also a losed immersion, wedenote X �Y Z also by X \ Z.Following [Ha, II,4,p.103℄, a quasi-projetive morphismX �! Y is a morphismwhih fators into an open immersion followed by a projetive morphism. Likewise,an immersion is a morphism whih fators into an open immersion followed by alosed immersion.Let k be a �eld. A k-variety X is a separated and redued sheme of �nitetype over k. Note that we do not assume X to be irreduible or geometriallyredued. Similarly, a k-urve is a separated and redued sheme of �nite type overk whih is equidimensional and of dimension 1.IfX is an irreduibleK-variety, we denote its funtion �eld by k(X). Note thatX is geometrially integral (i.e. geometrially redued, geometrially irreduible)i� k(X)jk is regular.Galois overingsLet h : S0 �! S be a Galois overing of shemes with Galois group G (in thesense of [SGA I, V℄). This means by de�nition (in partiular) that there is a �xedinjetive anti-homomorphism G ,! AutS(S0).This anti-homomorphism indues a homomorphism Gopp ,! AutS(S0). Weidentify Gopp with its image.We denote the elements of G by bold letters. The orresponding operatorsof h are usually denoted by the same symbol in \usual" letters, i.e. we have aninjetive anti-homomorphism � 7! �.5This is a trivial fat from ategory theory: For any ategory C, the funtor X 7! Hom(�; X)is a full and faithful. A less trivial fat is that it suÆes to de�ne a morphism of shemes onring-valued points.



Notations ixIf G is ommutative, we identify G with Gopp and denote the elements of Galso by \usual" letters.Now let S0 = Spe(K) and S = Spe(k) be spetra of �elds. Then h isdetermined by the �eld homomorphism h# : k ,! K.The extension Kjk given by h# is �nite and Galois with Galois group G, thegalois group of h. (In partiular, we denote the automorphisms of the extensionKjk also by bold letters.) The anti-homomorphism G �! AutS(S0) is given by� 7! � where � is given by � = �# 2 G = Aut(Kjk).The Piard groupLet X be a sheme. Sheaves on X are denoted by L;M, et.The Piard group is the group of isomorphism lasses of invertible sheaves onX, denoted Pi(X). Its elements are denoted by L;M, et.A morphism  : X �! Y indues a group-homomorphism  � : Pi(Y ) �!Pi(X).Let k be a �eld and let X be a non-singular, geometrially redued, geomet-rially irreduible, projetive k-variety with a k-rational point. Let Pi(X) bethe Piard funtor Z 7!Pi(X �k Z)=p�ZPi(Z), where pZ : X �k Z �! Z is theprojetion. We denote the elements of Pi(X)(Z) by L;M, et. Under our as-sumptions on X, the Piard-funtor is representable, and we denote a representingobjet of Pi(X) by Pi(X) and the universal element by P. The Piard-sheme,Pi0(X), is the onneted omponent of the zero of Pi(X). We still denotethe universal element by P. Under the isomorphism Hom(�;Pi(X)) ' Pi(X),Hom(�;Pi0(X)) orresponds to a funtor whih we denote by Pi0(X).Let X, Y be k-varieties as above,  : X �! Y a morphism. Then the\pull-bak" Pi(Y ) �! Pi(X) indued by  is denoted by  � and so is theorresponding morphism between the Piard shemes. 6Abelian varietiesLet k be a �eld. An abelian k-variety is a geometrially integral, projetive k-group-variety. The addition on A is denoted by \+".Let A be an abelian k-variety.If we speak of the endomorphism ring of A we mean the ring of endomorphismsof A over k, i.e. the endomorphisms of Ak de�ned over k. It is denoted by Endk(A).Likewise, the endomorphism algebra of A is the ring End0k(A) := End0k(A)
ZQ .If we say that two abelian k-varieties are isogenous or isomorphi, we meanisogenous or isomorphi as abelian k-varieties. We denote isogeny by �.The same applies also to omplex multipliation: By saying that an elliptik-urve has omplex multipliation, we mean that Ek has omplex multipliation6A brief expos�e of the Piard funtor and the Piard sheme an be found in subsetion 1.2.2.



x Forewordand the omplex multipliation is de�ned over k.Let Z be some k-sheme, P a Z-valued point of A. Then the translation byP is the morphism TP = idAZ + P Æ pZ : AZ �! AZ , where pZ : AZ �! Z is theprojetion.A dual abelian variety is denoted by bA, the universal divisional orrespondeneby P. By de�nition, Pi0(A)(Z) �= bA(Z) where Z is a k-sheme.If � : A �! B is a morphism, the dual morphism is denoted by b�. With otherwords, b� : bB �! bA is just another notation for �� : Pi0(B) �! Pi0(A).Let M be an invertible sheaf on A. Then �M : A �! bA is the morphismassoiated to the natural transformation Homk(�; A) �! Pi0(A) with is givenon Z-valued points by P 7! T �P p�Z(M) 
 q�Z(M)�1, where qZ : AZ �! A is theprojetion.Following [Mi-A℄, a polarization of A is a morphism ' from A to its dual bAsuh that '
k idk = �M : Ak �! bAk for some ample sheaf M on Ak.The group NS(A) := Pi(A)=Pi0(A) is alled N�eron-Severi group.For any natural number n, we denote the (sheme-theoreti) kernel of �n :A �! A by A[n℄.Let Kjk be a �nite �eld extension, A0 an abelian K-variety. Then, if A0 isde�ned over k, i.e. if there exists an abelian k-variety A suh that A0 � A
k K,we say that A is an old abelian variety (relative to Kjk). If A0 is not isogenous toan abelian variety de�ned over k or some proper intermediate �eld � of Kjk, thenwe all A0 a new abelian variety (relative to Kjk).Note that if the extension degree [K : k℄ is prime, every abelian K-variety iseither a new abelian variety or it is isogenous (not neessarily isomorphi) to anold abelian variety.



Chapter 1Basi properties ofWeil-restritions
Introdution and resultsLet k be a �eld, Kjk a �nite separable �eld extension and X 0=K a quasi-projetivevariety. The base-restrition of X 0 with respet to Kjk is the funtor ResKk (X 0)de�ned by ResKk (X 0)(Z) := X 0(Z 
k K) for any k-sheme Z. It an be shownthat the funtor ResKk (X 0) is represented by a k-variety ResKk (X 0), the so-alledWeil-restrition of X 0; see Proposition 1.4.In the �rst setion of this hapter we give two onstrutions of the Weil-restrition in a more general situation and show basi properties of it.In the seond setion we \pull-bak" the invertible sheaves on X 0 to invertiblesheaves on the Weil-restrition. It follows in partiular that the Weil-restritionof a quasi-projetive variety with a �xed immersion into some projetive spaeis in a anonial way immersed in some higher dimensional projetive spae; seeProposition 1.13.Let Kjk be a �nite Galois extension, let X 0 be a non-singular, projetive K-variety with a K-rational point. We show that under ertain onditions on X 0,the Weil-restrition of the Piard sheme of X 0 is an abelian variety whih isanonially isomorphi to the Piard sheme of the Weil-restrition of X 0. Thisis rather obvious for abelian varieties where the Piard sheme is nothing but thedual abelian variety; see Proposition 1.20. It is also true if har(k) = 0 or X 0Khas a \smooth, proper global lifting"; see Theorem 1, p. 25. (This assumptionis always ful�lled if X 0 is a urve.) The proof relies on the fat that the Piardsheme of a produt of varieties over an algebraially losed �eld is { under ourassumptions { redued and isomorphi to the produt of the Piard shemes ofthe fators.In the third setion, we begin with the study of the Weil-restrition of abelianvarieties. Using the results of the previous setion, we show how the Weil-restrition of X 0 inherits the polarizations of X 0. In partiular, if X 0 is prinipally1



2 Chapter 1. Basi Properties of Weil-Restritionspolarized, so is the Weil-restrition.We then derive the struture of the endomorphism algebra of the Weil-restri-tion of an abelian variety with respet to an extension of �nite �elds (see Theorem2, p. 29) and show that for prime extension degree [K : k℄, the Weil-restrition ofan abelian K-variety whih is not isogenous to an abelian variety de�ned over kis simple (see Theorem 3, p. 31).The study of the Weil-restrition of abelian varieties will be ontinued in thenext hapter where we onsider the Weil-restrition of an abelian variety whih isde�ned over k. (Suh abelian varieties will be alled old abelian varieties.)1.1 De�nition and onstrution ofWeil-restritionsIn this setion, we give the de�nition of \base-restrition" of a funtor. Thenwe show how to onstrut the Weil-restrition of a quasi-projetive sheme withrespet to a �nite and loally free morphism via \restrition of salars". Here, wefollow [BLR, 7.6℄. In the ase that the base-morphism is �etale, we show how toonstrut the Weil-restrition via a \geometrial approah". We then restrit our-selves to the ase that the base-morphism is Galois and show how the \geometrionstrution" is related to the onstrution via \restrition of salars". Finallywe show how the arithmeti operation of the Galois group indues a geometrioperation on the Weil-restrition.We start more abstratly with an abstrat ategory instead of a subategoryof the ategory of loally Noetherian shemes. This abstrat setting is in no waymore diÆult.In order to de�ne base-restrition properly, we �rst de�ne the funtor \base-hange". This is done in the �rst subsetion.1.1.1 Base-extension and base-hangeWe �x some universe U and denote the ategory of sets whih are ontained inthis universe by Ens.Let C be a ategory whose objets are ontained in U.Let D be another ategory whose objets are ontained in U. Then for somefuntors F;G : C �! Ens, the natural transformations between F and G form aset. Thus the ovariant funtors from C to D form a ategory, denoted Hom(C;D).Analogously, the ontravariant funtors form a ategory, denoted Homopp(C;D).If X and Y are two objets of C, we denote the set of morphisms between Xand Y by Hom(X;Y ). An S-objet is a morphism � : X �! S, and a morphismbetween S-objets � : X �! S and � : Y �! S is a morphism ' : X �! Y suhthat � Æ ' = �.



Definition and onstrution of Weil-restritions 3As usual, we write X for X �! S and HomS(X;Y ) for the set of morphismsof S-objets X and Y . For any S 2 C let C=S be the ategory of S-objets.De�nition Let F;G : C �! Ens be ontravariant funtors, � : F �! G a naturaltransformation, T some objet of C and t 2 G(T ). Then idT 7! t de�nes a naturaltransformation � : Hom(�; T ) �! G;  2 Hom(Z; T ) 7! G()(t) 2 G(Z).F�
��Hom(�; T ) �id 7!t // GNow let F�G T : C=T �! Ens be de�ned as follows:F�G T (Z) = F�G T () := ff 2 F(Z)j�Z(f) = �Z()g;  : Z �! T a T -objetand for a morphism f : Y �! Z of T -objets byF�G T (f) := F(f)jF�GT (Y )Assume that in C �ber produts exist, i.e. for all S 2 C, produts exist in theategory C=S. Let F be represented by (F; u) with u 2 F(F), G by (G; v) withv 2 G(G). Let F �G T be the �ber produt of the morphism F �! G whihis assoiated to � : F �! G and the morphism T �! G whih is assoiated to� : Hom(�; T ) �! G, let x : F�G T �! F; y : F�G T �! T be the struturalmorphisms. Then F �G T is represented by (F �G T;F(x)(u)), where we regardF�G T as a T -sheme via y.De�nition Let F : C=S �! Ens be a ontravariant funtor. The base-extensionof F with respet to a morphism T �! S is the funtor F�ST = FT : C=T �! Ensde�ned by FT (Z) := F(Z); Z a T -objetand for a morphism f : Y �! Z of T -objets byFT (f) := F(f) : F(Y ) �! F(Z)Note that this de�nition an be regarded as a speial ase of the preeding de�ni-tion with C=S instead of C and with G the trivial funtor whih assigns to everyobjet the set of one element.(�)T is a ovariant funtor from the ategory Homopp(C=S;Ens) to the ate-gory Homopp(C=T;Ens). The images of group-objets are group-objets.Again assume that in C �ber produts exist. Let T �! S be a morphism andlet X be an S-objet. If Z is a T objet, then HomS(Z;X)T = HomS(Z;X) 'HomT (Z;X �S T ), i.e. HomS(�;X)T is represented by some produt X �S T(regarded as T -objet) with the strutural morphism X �S T �! X.



4 Chapter 1. Basi Properties of Weil-RestritionsSine by assumption the objets of C form a set, we an apply the axiom ofhoie. For every X, we hoie produts X �S T (together with the struturalmorphisms).Now let f : X �! Y be an S-morphism. Then we de�ne f �S T to be theunique morphism suh that the diagramHom(�;X �S T )HomT (�;f�ST )
��

� // Hom(�;X)THomS(�;f)T
��Hom(�; Y �S T ) � // Hom(�; Y )Tis ommutative.We obtain the funtor base-hange ��ST : C=S �! C=T , and by onstrution,we have a natural isomorphismHomT (�;X �S T ) �= HomS(�;X)T :By onsidering the image of idX�ST , we see that the diagramX �S T //f�ST

��

Xf
��Y �S T // Yis ommutative. Sine by de�nition f �S T is also a T -morphism,f �S T = f �S idT :1.1.2 Base-restritionLet C be again a ategory whose objets are ontained in the universe U and inwhih �ber produts exist. Let h : S0 �! S be a morphism in C. Let F0 : C=S0 �!Ens be a ontravariant funtor.De�nition The base-restrition of F0 with respet to h is the following on-travariant funtor ResS0S (F0) = Resh(F0) : C=S �! Ens:Resh(F0)(Z) := F0(Z �S S0); Z an S-objetand for a morphism f : Y �! Z of S-objets byResh(X 0)(f) := F0(f �S idS0) : F0(Z �S S0) �! F0(Y �S S0):In partiular Resh(F0)(S) = F0(S0). Resh is a ovariant funtor from the ategoryHomopp(C=S0;Ens) to the ategory Homopp(C=S;Ens).The images of group-objets are group-objets and Resh restrits to a ovariantfuntor from the ategory Homopp(C=S0;Ens) to the ategory Homopp(C=S;Ens).Note In [BLR℄ base-restrition is alled \diret image" and is denoted by h�F.



Definition and onstrution of Weil-restritions 5Let X 0 2 C=S0. Then X 0 indues the funtor HomS0(�;X 0) : C=S0 �! Ens.We denote Resh(HomS0(�;X 0)) by Resh(X 0) = ResS0S (X 0). So Resh(X 0)(Z) =HomS0(Z �S S0;X 0) = X 0(Z �S S0)With this de�nition, Resh is a ovariant funtor form the ategory C=S0 to theategory Homopp(C=S;Ens).\Base-extension" ommutes with \base-restrition":Lemma 1.1 Let T �! S be a morphism, T 0 := T �S S0. Then(ResS0S (F0))T �= ResT 0T (F0T 0):(Funtorially in F0.)Proof Let Z be a T -sheme. ThenResT 0T (F0T 0)(Z) Def= F0T 0(Z �T T 0) = F0(Z �T T 0) �=F0(Z �S S0) = ResS0S (F0)(Z) = (ResS0S (F0))T (Z):2Lemma 1.2 Let T �! S; T 0 := T �S S0. Let � : X 0 �! T 0. ThenResT 0T (X 0) = ResS0S (X 0)�ResS0S (T 0) T:Here the right-hand side is de�ned by Res(�) and id 2 ResS0S (T 0)(T ) (whih de�nesthe natural transformation HomS(�; T ) �! ResS0S (T 0)).Proof Let  : Z �! T 0 be some T 0-sheme. ThenResT 0T (Z) = HomT 0(Z �T T 0;X 0) =f� 2 HomS0(Z �T T 0;X 0)j � Æ � =  �T T 0; i.e. ResS0S (�)(�) =  �T T 0g =ResS0S (X 0)�ResS0S (T 0) T (Z):2 Let F : C=S �! Ens be a funtor. Then the morphisms F(Z) �! F(Z�S S0) =FS0(Z �S S0) indue a natural transformationF �! ResS0S (FS0):This is natural in F. Thus we get a natural transformationid �! ResS0S ((:)S0);where id is the identity funtor on the ategory Homopp(C=S;Ens).



6 Chapter 1. Basi Properties of Weil-RestritionsLet X be an S-sheme. Then by this onstrution we get a natural transforma-tion HomS(�;X) �! ResS0S (X �S S0):given by � 7! ��S idS0 . It is de�ned by mapping the identity on X to the identityon X �S S0, and it is natural in X.Lemma 1.3 If the morphism S0 �! S is faithful (i.e. if the funtor � � S0 :C=S �! C=S0 is faithful), then the natural transformation Hom(�;X) �!ResS0S (X �S S0) is injetive.21.1.3 Weil-restritions of shemesIn the following and in the rest of the paper we will use the above de�nitionsonly for the ategory Sh of loally Noetherian shemes whih are ontained inthe �xed universe U.We will see that within this ategory for speial h and quite general X 0, thebase-restrition Resh(X 0) is representable. We all a representing objet the Weil-restrition of X 0 with respet to h : S0 �! S and denote it by ResS0S (X 0).Idea of the onstrution by restrition of salarsAssume that S =Spe(A), S0 =Spe(B), where B = A�1 � � � � � A�n is a �niteand free n-dimensional A-module. Let X 0 =Spe(B[X1; : : : ;Xm℄=(f1; : : : ; fl)) beaÆne and of �nite type. The oordinates Xi de�ne a losed immersion X 0 �!A mB = Spe(B[X1; : : : ;Xm℄). We use this immersion to de�ne a sheme W whihrepresents ResS0S (X 0), the Weil-restrition of X 0 with respet to S0 �! S. It anbe onstruted by \restrition of salars":Fix some A-algebra C. The idea is to express the m oordinates of someC 
A B-valued point P of A mA in the basis (�1; : : : ; �n) of the A-algebra B. Thisgives a point p in A nmA , and expanding out the \equations" fi in the new variablesgives equations fi;j; i = 1; : : : ; l; j = 1; : : : ; n. Now P satis�es the fi i� p satis�esthe fi;j. One then proves that the sheme onstruted in this way has the orretproperty not only for every A-algebra C but for any S-sheme Z.An exampleWe give a small example to present the idea:Let Kjk be a quadrati �eld extension with K = k(�) where �2 = a 2 k.Let V 0 be the aÆne variety in A 2K given by XY = 1. We are interested inthe C 
k K-valued points of this variety (for any k-algebra C). Let P be anarbitrary C 
k K-valued point of A 2K with oordinates X = X(P ), Y = Y (P ),



Definition and onstrution of Weil-restritions 7X = x1
k 1+x2
k�, Y = y1
k 1+y2
k�. (With xi; yi 2 k.) Then the de�ningequation XY = 1 beomes(x1y1 + ax2y2 � 1)
k 1 + (x1y2 + x2y1)
k � = 0:This equation is satis�ed i� (x1; x2; y1; y2) satis�esx1y1 + ax2y2 = 1; x1y2 + x2y1 = 0Let W be the k-sheme de�ned by these equations. From the onstrution,W (C) �= V 0(C 
k K) for all k-algebras C. From a general argument (whihwe will formalize below), it follows that one an generalize this funtorial iso-morphism from aÆne k-shemes to arbitrary shemes. It follows that W is theWeil-restrition of X 0 with respet to Kjk.We will now formalize these ideas and prove that the variety W onstrutedin this way has indeed the orret properties for any S-sheme Z.Formal onstrutionLet S =Spe(A), S0 =Spe(B) where the ring B is a free A module on the bases�1; : : : ; �n as above. Let also X 0 be as above. For eah i = 1; : : : ; l, let fi;j 2A[x1;1; : : : ; xm;n℄ be de�ned byfi;1�1 + � � � + fi;n�n = fi(x1;1�1 + � � � + x1;n�n; : : : ; xm;1�1 + � � � + xm;n�n)2 B[x1;1; : : : ; xm;n℄;where the right-hand side is the image of fi under the mapB[X1; : : : ;Xm℄ �! B[x1;1; : : : ; xm;n℄; Xi 7! xi;1�1 + � � � + xi;n�n:Let W :=Spe(A[x1;1; : : : ; xn;m℄=(fi;j)i=1;:::;l; j=1;:::;l).Now, if C is any A-algebra, then C 
A B = C 
A �1 � � � � � C 
A �n, and itis immediate that a C 
A B-valued point of X 0 (i.e. a solution of fi; i = 1; : : : ; nin C 
A B) orresponds under \restrition of salars" to exatly one C-valuedpoint of W (i.e. to a solution of the fi;j; i = 1; : : : k; j = 1; : : : ; n in C). Thisorrespondene is funtorial in C. Thus W (with the natural transformation\restrition of salars") represents ResS0S (X 0) in the ategory of aÆne shemes.Now let Z be an arbitrary S-sheme and let Z�SS0 �! X 0 be an S0-morphism.Then any open aÆne part Za of Z indues a morphism Za�S S0 �! X 0 and thusa morphism Za �! W . If Zb is another open aÆne part of Z, then we also geta morphism Zb �! W and from the funtoriality of the onstrution, it followsthat both morphisms agree on the intersetion Za \ Zb (beause they agree onall open, aÆne subsets of the intersetion). Thus by glueing we get a morphismZ �! W . This onstrution is again funtorial in Z. Moreover, any morphismZ �! W determines again by funtoriality and by glueing a unique morphismZ �! X 0. So, W is indeed a representing objet for the funtor ResS0S (X 0).



8 Chapter 1. Basi Properties of Weil-Restritions[The last step follows from fat that ResS0S (X 0) has the \sheaf property withrespet to the Zariski topology" i.e. one an glue morphisms (see [BLR, p.194℄)and the general fat that if an aÆne sheme represents a funtor in the ategory ofaÆne shemes and the funtor has the sheaf property with respet to the Zariskitopology than the sheme represents the funtor in the full ategory of shemes.℄With this onstrution, the Weil-restrition of an aÆne sheme regarded aslosed subsheme of m-dimensional aÆne spae is anonially a losed subshemeof m � n-dimensional aÆne spae.Proposition 1.4 ([BLR, 7.6, Theorem 4℄) Let S; S0 be shemes, h : S0 �! Sa morphism whih is �nite and loally free. Let X 0 be an S0-sheme (loally)of �nite type. Assume that for eah s 2 S and eah �nite set of points M �X 0 �S Spe(�(s)) (where �(s) is the residue lass �eld at s), there is an aÆneopen subsheme U 0 of X 0 ontainingM . (E.g. X 0 is a quasi-projetive S0-sheme.)Then the base-restrition is representable by an S-sheme (loally) of �nite type,i.e. the Weil-restrition of X 0 with respet to h exists and is (loally) of �nitetype. 1proof (outline) We an assume that S and S0 are aÆne and that S0 �! S is �niteand free. For aÆne X 0, one an onstrut the Weil-restrition by \restrition ofsalars". For general X 0, one glues the representing objets of the open aÆneparts of X 0 to get a sheme W . This an be done sine the Weil restrition of anopen inlusion is an open inlusion. Then one onstruts a natural transformationHom(�;W ) �! ResS0S (X 0) using the fat that W has the \sheaf-property withrespet to the Zariski-topology". Now one uses the assumption to show that thisnatural transformation is a bijetion. 2For the rest of this subsetion, let S0 �! S be �nite and loally free and let X 0be an S0-sheme whih ful�lls the assumptions of the proposition.We denote an S-sheme whih represents Resh(X 0) by ResS0S (X 0). We willoften abbreviate it by W . By de�nition as a representing objet of ResS0S (X 0),there is a universal morphism u = uX0 : ResS0S (X 0) �S S0 �! X 0 suh that ifY is any S-sheme and  : Y �S S0 �! X 0 is a morphism, there is a uniquemorphism b : Y �! W suh that  = u Æ (b�S idS0) : Y �S S0 �! X 0. As usual,1In [BLR℄, the proposition is stated without the assumption \loally of �nite type". That theWeil-restrition is loally of �nite type if X 0 is follows easily from the onstrution. That theWeil-restrition is of �nite type if X 0 is, is a more diÆult result. { It follows from [BLR, 7.6,Proposition 5 (e)℄ and our general assumption that all shemes onsidered be loally Noetherian.Further properties of the Weil-restrition depending on properties of X 0 and the base-morphismS0 �! S are given in [BLR, 7.6, Proposition 5℄. In the subsequent parts of this work, we willrestrit ourself to the ase that S is onneted, X 0 is quasi-projetive over S0 and the base-morphism is �etale. Under these assumptions, we will proof all properties of the Weil-restritionwe need.



Definition and onstrution of Weil-restritions 9(ResS0S (X 0); u) is unique up to unique isomorphism.Y �S S0 
**b�S idS0 //

��

ResS0S (X 0)�S S0 u //

��

X 0
Y 9! b // ResS0S (X 0)

(1.1)
If S; S0 and X 0 are aÆne (with notations as above) and ResS0S (X 0) is onstrutedby \restrition of salars" as above, then u is given byB[X1; : : : ;Xm℄=(fi)i=1;:::;l �! B[x1;1; : : : ; xm;n℄=(fi;j)i=1;:::;l;j=1;:::;n;Xi 7! �1xi;1 + � � �+ �nxi;n: (1.2)Let Y 0 be another S0-sheme whih ful�lls the assumptions of the proposition.As said above, every S0-morphism  : X 0 �! Y 0 indues a natural transforma-tion ResS0S () : ResS0S (X 0) �! ResS0S (Y 0) whih is given by \push-forward". Thisnatural transformation orresponds to a morphism ResS0S () : ResS0S (X 0) �!ResS0S (Y 0). By the universal property of ResS0S (Y 0), the morphism in the lowestline of the following ommutative diagram exists, is unique and equal to ResS0S ().X 0  // Y 0ResS0S (X 0)�S S0

��

uX0 88pppppppppppp

// ResS0S (Y 0)�S S0
��

uY 0 88ppppppppppppResS0S (X 0) ResS0S ()
// ResS0S (Y 0)

(1.3)
Let S = Spe(A), S0 = Spe(B) be aÆne, where B is a free A-module on thegenerators �1; : : : ; �n. Let X 0 = Spe(B[X1; : : : ;Xm℄=(f1; : : : ; fl)), Y 0 = Spe(B[Y1; : : : ; Y em℄=(g1; : : : ; gel)). Let  : X 0 �! Y 0 be given by Yi 7! hi(X1; : : : ;Xm).Then  uX0 is given by Yi 7! hi(�1x1;1 + � � �+ �nx1;n; : : : ; �1xm;1 + � � �+ �nxm;n).Let hi;j be de�ned by hi(�1x1;1 + � � � + �nx1;n; : : : ; �1xm;1 + � � � + �nxm;n) =hi;1�1 + : : :+ hi;n�n. Then ResS0S () is given by yi;j 7! hi;j .Let S be onneted. Let X be an S-sheme and let X 0 := X �S S0. (Againassume that X 0 �! S0 ful�lls the assumptions of the proposition.) By assumption,the morphism S0 �! S is at and surjetive, thus it is faithfully at. In partiular,it is faithful, i.e. the funtor � �S T is faithful. By Lemma 1.3 the naturaltransformation Hom(�;X) ,! ResS0S (X) is injetive. We get a morphism � :X �! ResS0S (X 0) whih is uniquely de�ned byidX0 = u Æ (��S idS0) (1.4)



10 Chapter 1. Basi Properties of Weil-Restritionsand whih is injetive on .-valued points.Lemma 1.5 Let S be onneted and let X �! S be separated suh that X �SS0 �! S0 ful�lls the assumptions of the proposition. Then � : X �! ResS0S (X �SS0) is a losed immersion.Proof Sine X �! S is separated, so is ResS0S (X 0) �! S0; see [BLR, 7.6, Propo-sition 5℄, under the assumption that X 0 is quasi-projetive over S0 and S0 �! Sis �etale, this follows also from the onstrution of W in the next subsetion.Now (1.4) implies that ��S idS0 is a losed immersion:The morphism (of topologial spaes) ��SidS0 is injetive. SineResS0S (X 0) �!S0 is separated, the subset U 0 := fx 2 ResS0S (X 0)j (� �S idS0) Æ u(x) = xg ofResS0S (X 0) is losed. If C 0 is a losed subset ofX 0, then ��S idS0(C 0) = U 0\u�1(C 0),and sine U 0 is losed, this is also losed in ResS0S (X 0)�S S0. Thus ��S idS0 is aninjetive, losed morphism of topologial spaes.For all x0 2 X 0, (1.4) indues an isomorphism of loal ringsOX0;x0 u# // OX0;(��S idS0)(x0) (��S idS0) // OX0;x0 :Thus �# : OResS0S (X0)�SS0 �! ��(OX0) is surjetive.This means that ��S idS0 is a losed immersion. Sine the morphism S0 �! Sis faithfully at, we obtain that � : X �! ResS0S (X 0) is a losed immersion; see[SGA I, VIII, Corollaire 5.5.℄. 21.1.4 The �etale aseNow let S be onneted and let S0 �! S be an �etale overing, i.e. a �nite, at andunrami�ed morphism; see [SGA I, I℄ for details. (For example, S0 and S ouldbe spetra of �elds, and S0 �! S ould be indued by a �nite separable �eldextension.)Let X 0 be a quasi-projetive S0-sheme. We will give an alternative onstru-tion of the Weil-restrition in this ase. In this onstrution we will de�ne aT 0-sheme W 0 for some Galois overing T 0 �! S and a Galois-operation on W 0.By [SGA I, V℄, the quotient sheme of W 0 under the Galois-operation exists. Thisquotient sheme will be the Weil-restrition.Note that under our assumption that all shemes onsidered be loally Noethe-rian, \�nite and at" is equivalent to \�nite and loally free"; see [Ha, III, Propo-sition 9.2. (e)℄. Thus we will onsider a speial ase of the situation in Proposition1.4.Base-hange by �etale overingsBefore we ome to the onstrution of the Weil-restrition via Galois-operation,we �rst �x some notation.



Definition and onstrution of Weil-restritions 11Let T 0 be an S-sheme and let � : T 0 �! S0 be an �etale overing of S-shemes. 2Then let ��1(X 0) be the T 0-sheme de�ned by the following Cartesian diagram 3��1(X 0) //

��

X 0
��T 0 � // S0: (1.5)

We denote the morphism ��1(X 0) �! X 0 in the �rst row of (1.5) by �.Let � : T 0 �! S0, � : T 0 �! T 0 be S-morphisms. Then (��)�1(X 0) and��1(��1(X 0)) are naturally isomorphi as S0-shemes. We denote the omposition(��)�1(X 0) ' ��1(��1(X 0)) ��! ��1(X 0) also by � .If � is an isomorphism, we denote (��1)�1(X) also by �(X).By base-hange, an S0-morphism � : X 0 �! Y 0 indues an S0-morphism �� :��1(X 0) �! ��1(Y 0). If � is an isomorphism, then �� = ��1��. In this ase, wedenote ���1 also by �(�).With this de�nition, p� : ��1(X 0) �! S0 is the left hand side morphism in(1.5).Let S = Spe(A), S0 = Spe(B) and T 0 = Spe(C) be aÆne. Let X 0 =Spe(B[x1; : : : ; xm℄=(f1; : : : ; fl)) be aÆne and of �nite type. Then � : T 0 �! S0 isgiven by an A-morphism �# : B �! C.Let � : T 0 �! S0 be as above and extend the morphism �# : B �! Cto an \arithmeti" A-morphism �# : B[x1; : : : ; xm℄ �! C[x1; : : : ; xm℄ given byB 3 b 7! �#(b); xi 7! xi. Then the diagramC[x1; : : : ; xm℄=(�#(f1); : : : ; �#(fl)) B[x1; : : : ; xm℄=(f1; : : : ; fl)�#ooCOO B�#oo

OO

is o-Cartesian and thus de�nes the underlying ring of ��1(X 0). If S; S0; T 0 or X 0are not aÆne, ��1(X 0) and the morphisms of diagram (1.5) an be de�ned likethis loally.2The morphism � : T 0 �! S0 might also be a pro-�etale overing, i.e. a projetive limit of �etaleoverings (provided T 0 is still loally Noetherian). For example, S0 �! S might be de�ned by a�nite separable extension of �elds Kjk, and � : T 0 �! S0 might orrespond to an inlusion of Kinto ksep.3The S0-sheme ��1(X 0) with the morphisms as in the diagram is unique up to a uniqueS0-isomorphism. In the following we will assume that for all S-shemes S0 and T 0, S0-shemesX 0 and S-morphisms � : T 0 �! S0 we have hosen suh a ��1(X 0).



12 Chapter 1. Basi Properties of Weil-RestritionsNote that in the ase that � : T 0 �! S0 is an isomorphism, the following diagramis Cartesian. X 0
��

X 0
��

S0��1��T 0 � // S0: (1.6)
Thus ��1(X 0) is (anonially isomorphi to) X 0 regarded as T 0-sheme via thestruture morphism X 0 �! S0 ��1�! T 0.ConstrutionWe now onstrut the Weil-restrition of X 0 with respet to S0 �! S via Galois-operation. If S0 �! S is itself Galois, the onstrution is relatively easy and willbe desribed in the next subsetion. Here we ontinue with the general ase.We �rst need the following lemma whih is a generalization of the fat that forevery �nite separable �eld extension Kjk there exists a splitting �eld. This meansthat there exists a �nite Galois �eld extension Ljk, inluded in k, suh that theimage of all inlusions of Kjk into k is ontained in L.Lemma 1.6 There exists a onneted Galois overing f : T 0 �! S suh that:Fixing a geometri point P0 of S and a geometri point Q0 of T 0 over P0, everygeometri point P 0 of S0 over P0 de�nes by Q0 7! P 0 a unique morphism T 0 �! S0over S.Proof This follows from the onstrution of the �etale fundamental group �1(S; P0);see [SGA I, V,4,g)℄. [If S0 is onneted, in the terms of the �etale fundamentalgroup, S0 �! S orresponds to a onjugay lass in �1(S; P0) of subgroups of�nite index. T 0 orresponds to the intersetion of all subgroups in the onjugaylass. This is a normal subgroup of �1(S; P0) of �nite index.℄ 2Fix suh a T 0 with Galois group G. This means by de�nition that there is a�xed injetive anti-homomorphism G ,! AutS(T 0). [Sine T 0 is onneted, this isan isomorphism.℄ 4This anti-homomorphism indues a homomorphism Gopp ,! AutS(T 0), whereGopp is the opposite group of G (i.e. there is an anti-isomorphism G ��! Gopp).We identify Gopp with its image.We denote the elements of G by bold letters and the orresponding elementsof the opposite group Gopp by usual letters, i.e. we have an injetive anti-homo-morphism � 7! �.4In [SGA I, V℄, the Galois group operates from the right. Writing all homomorphisms fromthe left, we obtain an anti-homomorphism G ,! AutS(T 0).



Definition and onstrution of Weil-restritions 13Let W 0 := Y�:T�!S0 ��1(X 0): 5For future appliation, we �x the notation that p� : W 0 �! ��1(X 0) is theprojetion to the \�-th" fator.Now de�ne a Galois-operation of W 0 whih is ompatible with the operationof G on f : T 0 �! S as follows:For � 2 G, let e� : Q�:T 0�!S0 ��1(X 0) �! Q�:T 0�!S0 ��1(X 0) be de�ned on.-valued points by (P�)� 7! (� Æ P�� )�, i.e.p� Æ e� = � Æ p�� : (1.7)Lemma 1.7 The map Gopp �! AutS(W 0); � 7! e� is a group-homomorphism.Proof e�1 Æ (e�2 Æ (P�)�) = e�1 Æ (�2 Æ P��2)� =(�1�2 Æ P��1�2)� = g�1�2 Æ (P�)�2 Sine we assumed that X 0 is quasi-projetive, so isW 0 and the quotient shemeW := W 0=G under this operation exists; see [SGA I, V, Proposition 1.8℄. More-over, sine the operation is ompatible with the Galois-operation on f : T 0 �! S,the quotient sheme is an S-sheme with W �S T 0 'W 0.We now show that W is the Weil-restrition of X 0 with respet to S0 �! S.Let Z be some S-sheme. We will establish a funtorial bijetion between theZ�S S0-valued points of the S0-sheme X 0 and the Galois invariant Z�S T 0-valuedpoints of the T 0-sheme W 0. (These points are funtorially in bijetion with theZ-valued points of W .)We start with the Z �S S0-valued points of X 0. If P is suh a point, then(P �)� is Galois-invariant. (In fat, for � 2 G, e� Æ (P �)� Æ ��1 = (�P �� ��1)� =(P ����1)� = (P �)�.)Lemma 1.8 The map P 7! (P �)� is an bijetion between the Z �S S0-valuedpoints of X 0 and the Galois-invariant Z �S T 0-valued points of W 0.Proof The map is obviously injetive. We now show that all Galois-invariantZ �S T 0-valued points of W 0 have this form.Let (P�)� be a Z�S T 0-valued point of W 0. Then this point is Galois invarianti� (�P�� ��1)� = (P�)� for all � 2 G, i.e. P�� = P �� for all � 2 G. Assume thatthis is the ase.5Here and for the rest of the subsetion, morphisms are always assumed to be S-morphisms.



14 Chapter 1. Basi Properties of Weil-RestritionsLet S0i; i = 1; : : : be the onneted omponents of S0, �i : S0i ,! S0 the immer-sions. Let �(0)i ; �(1)i ; : : : be the S-morphisms T �! S0i. The sets f�i�(j)i j j = 0; : : :gare the orbits of the operation of G on the set of � : T 0 �! S0.Fix some i. We will show that there is some Z �S S0i-valued point Pi ofX 0i := ��1i (X 0) with P�i�(j)i = P �(j)ii for all j. By the universal property of thedisjoint union, the �iPi de�ne a morphism P : Z �S S0i �! X 0 with P � = P� forall � : T 0 �! S0.Now, �(0)i : T 0 �! S0i is a onneted Galois overing, let Hi � G be its Galoisgroup. Then �(0)i �1(Xi) �! X 0i and Z �S T 0 �! Z �S S0i are also Galois with thesame Galois group.For all � 2 Hi, P ��i�(0)i = P�i�(0)i � = P�i�(0)i . Thus P�i�(0)i = P �(0)ii for someZ �S Si-valued point Pi of X 0i. Beause G operates transitively on the �(j)i , wealso have P�i�(j)i = P �(j)ii for all j. 2We have thus seen thatW is the Weil-restrition of X 0 with respet to S0 �! S.The Weil-restrition is again quasi-projetive, and if X 0 is projetive, it is alsoprojetive. In Subsetion 1.2.1, we will show that if we �x some immersion ofX 0 into a projetive spae, W is immersed in some onrete higher-dimensionalprojetive spae, the immersion being anonial up to an isomorphism of thesurrounding projetive spae.After we have onstruted W , equation (1.7) an be reinterpreted byp�� = p�� (1.8)or { what is the same { �(p�) = p���1 : (1.9)Let u : W �! X 0 be the universal morphism. Then by de�nition, u orre-sponds to the identity on W , whih is of ourse given by (p�)� : W 0 �! W 0. Itfollows that u� = p� : (1.10)By onstrution, W is quasi-projetive and in partiular separated. Many otherproperties of X 0 arry over to W 0 and then to W :Lemma 1.9 Let S be onneted and let h : S0 �! S be �etale. Let X 0 be a quasi-projetive S0-sheme and let W be the Weil-restrition of X 0 with respet to h.Then� If X 0 is projetive, so is W .� If X 0 is of �nite type, so is W .



Definition and onstrution of Weil-restritions 15� If X 0 is redued, so is W .� If X 0 is at, so is W .� If X 0 is smooth, so is W .Lemma 1.10 Let h : S0 �! S be given by a separable �nite extension of �elds.Then� If X 0 is geometrially irreduible, so is W .� If X 0 is geometrially redued, so is W .2We now review the Weil-restrition as a funtor. Let  : X 0 �! Y 0 be anS0-morphism. By diagram (1.3), ResS0S () : ResS0S (X 0) �! ResS0S (Y 0) is themorphism whih orresponds to the ResS0S (X 0)�S S0-valued point u of X 0.By the above onstrution, espeially (1.10), this is given byResS0S () �S T 0 = ((u)�)� = (�p�)� :Y� ��1(X 0) �!Y� ��1(Y 0): (1.11)Let h : S0 �! S still be �etale. Let n be the degree of h (i.e. the number ofgeometri points over some geometri point of S).Let X be a quasi-projetive S-sheme, X 0 := X �S S0.The quasi-projetive S-sheme X is in partiular separated, and by Lemma1.5, the injetive natural transformation HomS(�;X) ,! ResS0S (X 0) orrespondsto a losed immersion � : X �! ResS0S (X 0). After a base hange T 0 �! S asabove, ResS0S (X 0) is isomorphi to XnT 0 , and � �S idT 0 = (id)ni=1 : XT 0 �! XnT 0 .This shows again that ��S idT 0 is a losed immersion, and as S0 �! S is faithfullyat, so is � : X �! ResS0S (X 0).1.1.5 The Galois aseWe now restrit ourselves to the ase that the base-morphism S0 �! S is Galois.Let h : S0 �! S be Galois with Galois group G. Again let X 0 be a quasi-projetive S0-sheme. Then the \geometri onstrution" of the Weil-restritionbeomes muh easier:Let W 0 := Q�2Gopp ��1(X 0). As above, de�ne a Galois-operation on W 0 by� 7! e� where e� : (P�)�2Gopp 7! (� Æ P�� )�2Gopp .Sine by assumption X 0 and thus also W 0 is quasi-projetive, the quotientsheme W := W 0=G exists; see [SGA I, V, Proposition 1.8℄. We will now showthat W whih universal element u := oid is the Weil-restrition of W 0 with respetto S0 �! S.



16 Chapter 1. Basi Properties of Weil-RestritionsFix some S-sheme Z. Then the Z �S S0-valued points of W 0 whih areGalois-invariant are exatly the points of the form (P�)�2Gopp = (P �)�2Gopp =(��1(P ))�2Gopp , where P is a Z �S S0-valued point of X 0.Thus P 7! (��1(P ))�2Gopp is a bijetion between the Z �S S0-valued pointsof X 0 and the Galois-invariant Z �S S0-valued points of W 0. On the other hand,by Galois theory the Galois-invariant Z�S S0-valued points of W 0 are in bijetionwith the Z-valued points of W .The bijetion between the Z�S S0-valued points of X 0 and the Z-valued pointsof W is natural in Z. Moreover, the identity of W orresponds to the projetionpid from W 0 to X'.So, W = W 0=G with universal element u = pid is the Weil-restrition for X 0with respet to S0 �! S.Remark This onstrution is of ourse losely related to the onstrution in the�etale ase. For example, equations (1.7) to (1.11) still hold. However, the twoonstrutions are only equal if S0 is onneted.ComparisonAgain let S0 �! S be Galois with Galois group G and let X 0 be a quasi-projetiveS0-sheme. We show how the �rst onstrution arises in a natural way if one triesto �nd W starting from W 0 and the Galois ation.Sine a Galois overing is by de�nition �etale and �nite, it is also loally free(�nite and at is equivalent to �nite and loally free [Ha, III, Proposition 9.2.℄).Assume that S = Spe(A), S0 = Spe(B) and X 0 are aÆne and that B is freeover A, B = �1A � � � � � �nA and X 0 =Spe(B[X1; : : : ;Xm℄=(f1; : : : ; fl)) as inthe \Formal onstrution" of Subsetion 1.1.3. This presentation of X 0 de�nesa losed immersion X 0 ,! A mB , and if we �x this immersion, ��1(X) is also im-mersed in A mB , and W 0 = Q�2Gopp ��1(X 0) is a losed immersion of A mB Gopp =Spe(B[fxi;�gi=1;:::;m; �2Gopp ℄). The losed immersion of W 0 is de�ned by thepresentation B[fxi;�gi=1;:::;m; �2Gopp ℄=((�#(fi))(x1;� ; : : : ; xm;�)i=1;:::;l; �2Gopp) ofSpe(W 0).We try to �nd an aÆne A-sheme W and a B-isomorphism � :W 
A B �W 0where under the isomorphism �, the Galois-operation on W 0 orresponds to thenatural operation of W 
A B indued by the operation G on B. If we have suhan isomorphism, W with pid Æ � as universal element is the Weil-restrition of X 0with respet to S0 �! S. (Unique up to a unique isomorphism.)We think of W 0 with its onrete representation as immersed in A B mGopp .We are searhing for a losed subsheme W � of some aÆne B-spae whih is aslosed subsheme de�ned over A and an isomorphism between W � and W 0 whihis Galois-invariant. (Where the Galois-operation on W � is the one indued by theanonial one of the aÆne spae.)We know already that ResBA(X 0) 
A B as onstruted in Subsetion 1.1.3 is



Definition and onstrution of Weil-restritions 17suh an aÆne sheme. It is embedded in A mnB . The oordinate ring of A mB Gopp isthe free B-algebra on xi;�, i = 1; : : : ;m; � 2 Gopp and the oordinate ring of A mnBis the free B-algebra on x1;1; : : : ; xm;n.The invertible matrix 0B� �#(�1)...�#(�n) 1CA�2Goppde�nes an isomorphism�# : B[fxi;�gi=1;:::;m; �2Gopp ℄ �! B[fxi;jgi=1;:::;m; j=1;:::;n℄xi;� 7! �#(�1)xi;1 + � � �+ �#(�n)xi;n:And this indues an isomorphism� : A mnB �! A mB Gopp :Let i = 1; : : : ; l. Then under �#, �#(fi)(x1;�; : : : ; xm;�) is mapped to�#(�1)fi;1 + � � � + �#(�n)fi;n, where the fi;j are de�ned as in Subsetion 1.1.3.As the matrix (�i;�)i;� is invertible, the ideal generated by these elements for all� 2 Gopp equals the ideal generated by fi;1; : : : ; fi;n. Therefore, the ideal gener-ated by (�#(fi))(x1;� ; : : : ; xm;�) for i = 1; : : : ; l; � 2 Gopp is mapped to the idealgenerated by fi;j for i = 1; : : : ; l; j = 1; : : : ; n.Thus � identi�es the Weil-restrition W 0 with ResBA(X 0)
A B as onstrutedin Subsetion 1.1.3. It is also Galois invariant, as an be seen as follows:�#e�#(xi;�) = �#(xi;�� ) = �#�#(�1)xi;1 + � � � + �#�#(�n)xi;n = �#�#(xi;�)Arithmeti beomes geometri operationLet S0 �! S be Galois with Galois group G. 6Let X be a quasi-projetive S-sheme, X 0 := X �S S0. For � 2 Gopp, lets� : W 0 = X 0Gopp �!W 0 = X 0Goppbe given on .-valued points by(P�)�2Gopp 7! (P�� )�2Gopp :Then the Galois-operation onWS0 =W 0 = X 0Gopp is given by � 7! e� = �s� = s��:where � : X 0Gopp �! X 0Gopp is the \anonial" arithmetial operation indued bybase-hange from S0 �! S.For any S-sheme Z, G operates on ResS0S (X 0)(Z) = HomS0(Z �S S0;X �S S0)by �(P ) = �P��1:6For the moment and the next Lemma, S0 �! S might also be a pro-Galois overing.



18 Chapter 1. Basi Properties of Weil-RestritionsThese operations de�ne an automorphism of the funtor ResS0S (X 0) whih we de-note again by � , and Gopp �! Aut(ResS0S (X 0)) is a group-homomorphism. LetResS0S (X 0)(Z)G be the set of Galois-invariant elements, and let ResS0S (:)G be thefuntor de�ned by ResS0S (X 0)G(Z) := ResS0S (X 0)(Z)G.Lemma 1.11 The inlusion HomS(�;X) ,! ResS0S (X 0) indues a bijetionHomS(�;X) �= ResS0S (X 0)G;natural in X.2 The automorphism � of the funtor ResS0S (X 0) de�nes an S-automorphism ofthe representing objet ResS0S (X 0) whih we denote by a� .We want to alulate how a� operates on ResS0S (XS0)�S S0 �=Q�2Gopp XS0 =XGoppS0 .We have �(u) = �(pid) = p��1 by (1.8). The S-morphism a� of ResS0S (X 0) isthe ResS0S (X 0)-valued point of ResS0S (X 0) whih orresponds to �(u). So a� =(�(u)�)�2Gopp = ((p��1)�)�2Gopp = (p��1�)�2Gopp (The last equation is again(1.8).)Lemma 1.12 a� operates on :-valued points by (P�)�2Gopp 7! (P��1�)�2Gopp . Inpartiular, the group-homomorphism G �! Aut(ResS0S (X 0)) ' AutS(ResS0S (X 0))is injetive.Compare this operation with the operation of s� !Let X be a group-sheme. Then the map P 7!P�2Gopp �(P ) de�nes a naturaltransformation ResS0S (X 0) �! ResS0S (X 0)(:)G and thus by Lemma 1.11 a morphismResS0S (X 0) �! HomS(�;X); (1.12)whih is natural in X. The omposition HomS(�;X) ,! ResS0S (X 0) �!HomS(�;X) is given by multipliation with jGj.1.2 Pull-bak of sheaves to the Weil-restrition1.2.1 Pull-bak of modulesLet S be onneted and S0 �! S �etale, X 0 a quasi-projetive S0-sheme, W =ResS0S (X 0). Let T 0 be as in Lemma 1.6 so that WT 0 'Q� ��1(X 0).



Pull-bak of sheaves to the Weil-restrition 19Let L be an quasi-oherent OX0 -module on X 0. Then LWT 0 :=N� p����(L) isan OWT 0 -module withe��1 � O� p����(L) 'O� e��1 �p����(L) (1:7)' O� p����1��1 ���(L) 'O� p����1(���1)�(L) 'O� p����(L):Let w� be the isomorphism from right to left. Then � 7! w� de�nes a 1-oyle-datum for the OWS0 -module LWS0 . Thus LWS0 is a G-sheaf. Now, by PropositionA.30, it \desends" to an OX0 -module LW on W .This module is (up to unique isomorphism) independent of the hoie of T 0.For, assume the onstrution was performed with two di�erent f1 : T 01 �! S,f2 : T 02 �! S. Call the resulting sheaves L(1)W and L(2)W . Then there exists af3 : T 03 �! S (again Galois and onneted) suh that f3 fators through f1 andf2. Now the pull-baks of L(1)W and L(2)W to W �S T 03 are naturally isomorphi andthus so are L(1)W and L(2)W .Let S and thus S0 be aÆne. By onstrution, if L is a very ample invertiblesheaf, then LWT 0 = N� p����(L) is very ample and so is LW . Sine a sheaf isample, if some power is very ample, LW is ample, if L is ample.The anonial embeddingNow let S0 �! S be de�ned by a �nite, separable extension of �elds Kjk of degreen, let LjK be a splitting �eld ofKjk, and denote the Galois group of Ljk by G. LetX 0 be a separated quasi-projetive K-sheme with a �xed immersion X 0 �! PmK .Then for � : Spe(L) �! Spe(K) (over Spe(k)), ��1(X) is immersed in PmL ,and via the Segre-embedding, WL is immersed in P(m+1)n�1L . { We want to showthat W is also immersed in (m+ 1)n � 1-dimensional projetive spae. 7The immersionX 0 �! PmK orresponds to a very ample sheaf L with global se-tions M0; : : : ;Mm whih generate L. The ring �(X;L) is inluded in�(��1(X); ��(L)). If we identify �(X;L) with its image, the Mi are again globalsetions whih generate ��(L).Let i run through all maps(Spe(L) �! Spe(K) (over Spe(k)) �! f0; : : : ;mg; � 7! i�:Then the Mi are global setions of ��(L) whih generate the sheaf. The Segre-embedding is de�ned by the (m+1)n global setions 
�Mi� of LWL =N� ��(L),whih generate the sheaf.7The following argumentation is inspired by A.Weil's original use of the Weil-restrition in[We-F℄.



20 Chapter 1. Basi Properties of Weil-RestritionsNow, �(W;LW ) is inluded in �(WL;LWL), and we want to �nd (m + 1)nglobal setions of LW suh that all 
�Mi� are linear ombinations of these (andvie versa).The L-module LWL is isomorphi to the pull-bak of LW to WL. For thefollowing argumentation we will identify these two sheaves on WL. There is aGalois-operation on �(WL;LWL) and�(WL;LWL)G = �(W;LW ):(See the remark following Proposition A.30 for details.) Conversely,�(WL;LWL) ' �(W;LW )
k LHere we use that \taking global setions ommutes with at base-hange", i.eohomology ommutes with at base-hange" for the speial ase of 0-dimensionalohomology groups; see [Ha, III, Proposition 9.3℄.More generally, if H is any subgroup of G and LH the orresponding �xed�eld, �(WL;LWL)H ' �(W;LW )
k LH : (1.13)Call the (m + 1)n global setions 
�(Mi�) of LWL Pl, l = 1; : : : ; (m + 1)n. TheGalois group G operates on the set of Pl.For some l, let Gl be the stabilizer of Pl in G, kl the �xed �eld of Gl in L,let [kl : k℄ = d. Choose a basis �1; : : : ; �d of kljk. Then by (1.13), there existQ(l)1 ; : : : ; Q(l)d 2 �(W;LW ) with Pl = dXj=1 �j Q(l)j :For � 2 G, let �# denote the orresponding operation on LWL . The orbit of Plunder G has exatly d elements and �#(Pl) =Pdj=1 �#(�j)Q(l)j for all � 2 G.Choose from every orbit of the operation of G on the set of Ll one represen-tative. Call this set Pl1 ; Pl2 ; : : :. Then the Q(li)j are (m+1)n global setion of LWwhih span the same linear spae in �(WL;LWL) as the Pl do.We obtain an immersionW �! P(m+1)n�1k whih is anonial up to an isomor-phism of P(m+1)n�1k . Moreover, after base-hange and identi�ation of WL withQ�2G ��1(X), this immersion is up to an isomorphism of P(m+1)n�1k the Segreembedding.Proposition 1.13 Let Kjk be a �nite separable extension of �elds. Let X 0 be aseparated quasi-projetive K-sheme with a �xed immersion X 0 �! PmK . Thenthe Weil-restrition of X 0 with respet to Kjk is immersed in P(m+1)n�1k . Thisimmersion is anonial up to an isomorphism of P(m+1)n�1k .



Pull-bak of sheaves to the Weil-restrition 21Pull-bak of Weil-divisorsLet Kjk be a separable �eld extension, let Ljk be a splitting �eld. Let X 0 be anonsingular k-variety. Then Weil-divisor lasses orrespond to lasses of invertiblesheaves. Let the invertible sheaf L by de�ned by the e�etive Weil divisor B whihwe regard as (not neessarily redued) losed subsheme of X 0. Then by Proposi-tion A.29, the sheaf LWL is de�ned by the losed subsheme D :=P� p�1� ��1(B).The operation of e� on W 0L indues an operation on D. The immersion D �! WLis now invariant under this operation, and D desends. It de�nes the sheaf L(B)Won W .1.2.2 The Piard funtor and the Piard shemeWe inlude the following subsetion mainly for notational reasons.Let k be a �eld, let X be a geometrially integral non-singular projetive k-variety with a k-rational point P0.De�nitions We denote the isomorphism lass of an invertible sheaf L on somek-sheme by L. For any sheme Y , the isomorphism lasses of invertible sheaveson Y form a set, and with the operation of the tensor produt, this set is anabelian group, the so-alled Piard group of Y , denoted Pi(Y ).Let Pi(X) be the ontravariant group-funtor whih is de�ned as follows:For any k-sheme Z, let pZ : X�kZ �! Z be the projetion. Let Pi(X)(Z) :=Pi(X �k Z)=p�ZPi(Z). We will denote this quotient by Pi(X �k Z)=Pi(Z) andits elements by L;M, et.For any morphism � : Y �! Z, Pi(X)(�) is de�ned by (idX �k �)� :Pi(X �k Z)=Pi(Z) �! Pi(X �k Y )=Pi(Y ). (Consistently, we would haveto write (idX �k �)� or even more aurately (idX �k �)� but we omit the bar.)Note that pZ Æ (P0 �k idZ) = idZ implies that (P0 �k idZ)� Æ p�Z = idPi(Z).Thus Pi(X �k Z)=p�ZPi(Z) is funtorially isomorphi to the subgroup of M 2Pi(X �k Z) suh that (P0 �K idZ)�(M) = 0.The assoiation X 7! Pi(X) de�nes a ontravariant funtor from the ate-gory of puntured geometrially integral projetive k-varieties to the ategory ofontravariant funtors from the ategory of k-shemes to the ategory of abeliangroups. If � : X �! Y is a morphism, we denote Pi(�) : Pi(Y ) �! Pi(X) by��.Proposition 1.14 Under the above onditions on X, Pi(X) is represented by ak-group-sheme Pi(X) whih is loally of �nite type.Proof First see [BLR, 8.1, Proposition 4℄ and then [BLR, 8.2, Theorem 3℄. 2Let P 2 Pi(X �k Pi(X)) be a representative of the universal element P 2Pi(X �k Pi(X))=Pi(Pi(X)).



22 Chapter 1. Basi Properties of Weil-RestritionsLet Pi0(X) be de�ned by: For any k-sheme Z, let Pi0(X)(Z) be the subgroupof M 2 Pi(X)(Z) for whih there exists a onneted k-sheme T with two Z-rational points �; � : Z �! T and an N 2 Pi(X)(T ) suh that (idX�k�)�(N) = 0and (idX �k �)�(N) =M.De�nition The Piard sheme Pi0(X) is the identity omponent of Pi(X).It is immediate that Pi0(X) with the restrition of P represents Pi0(X). Wedenote the restrition of P still by P.Beause Pi0(X) has a k-rational point, it is also geometrially onneted; seeLemma A.28.Proposition 1.15 Again under the above onditions on X, Pi0(X) is a proje-tive k-group-sheme.Proof See [BLR, 8.4, Theorem 3℄. 2In the ase that X is a urve, the Piard sheme is geometrially redued, thusit is an abelian variety, alled the Jaobian variety of X, denoted in this work byJ(X); see [Mi-J℄ for a detailed aount about the Jaobian variety.Base hangeLet k �! � be a morphism of �elds. Then X� has a �-rational point, and for all�-shemes Z, Pi(X� �� Z)=Pi(Z) ' Pi(X �k Z)=Pi(Z), therefore Pi(X�) 'Pi(X)�.Let P 2 Pi(X �k Pi(X)) be the representative of the universal elementde�ned above, let P� be the pull-bak of P to Pi(X�kPi(X)
k �) ' Pi(X���Pi(X)�). This represents an element P� 2 Pi(X� �� Pi(X)�)=Pi(Pi(X)�).With this element, Pi(X�) is represented by Pi(X)�.An important speial ase of this is the following:Let Kjk be a Galois �eld extension, � 2 Gal(Kjk). Let X 0 be a non-singularprojetive K-variety with a K-rational point. ConsiderX 0=K and the orrespond-ing automorphism � : Spe(K) �! Spe(K) as a speial ase of the above result.It follows that Pi(��1(X 0)) is represented by (��1(Pi(X 0)); ��(P)), and analo-gously, Pi0(��1(X 0)) is represented by ��1(Pi(X 0)0).1.2.3 The Piard funtor of the Weil-restritionIn this subsetion we study the relationship between the Piard-funtor and theWeil-restrition.Let Kjk be a �nite Galois �eld extension, X a geometrially integral, non-singular, projetive k-variety with a k-rational point.



Pull-bak of sheaves to the Weil-restrition 23Sine Pi(X) is the disjoint union of projetive shemes, its Weil-restritionexists. By Lemma 1:11, we have a natural transformationHomk(�;Pi(X)) ' ResKk (Pi(X)K)G ' ResKk (Pi(XK))G; (1.14)and by (1:12) we have a morphismResKk (Pi(XK)) �! Homk(�;Pi(X)) (1.15)We de�ne a Galois-operation on the funtor ResKk (Pi(XK)): For � 2 G, let� : X �k Z 
k K ' (X 
K �KZK) be the \natural" operation indued by base-hange, i.e. � = idX�kidZ�k� or { what is the same { � = (idX�k�)�K(idZ�k�).Now let � 2 G operate on Pi(X �k Z 
k K))=Pi(Z 
k K) ' Pi((X 
k K)�K(Z 
k K))=Pi(Z 
k K) by ��1�.Lemma 1.16 The Galois-operation on ResKk (Pi(XK)) orresponds to the Ga-lois-operation on the funtor ResKk (Pi(XK)).Proof Let PK 2 Pi(XK �K Pi(X)K) be the representative of the universalelement of Pi(XK) onstruted above. Then PK by onstrution is invariantunder the Galois-operation.Let � : Z 
k K �! Pi(XK) be a K-morphism, � 2 G. Then by de�nition,idXK �K �(�) = � Æ (idXK �K �) Æ ��1. Thus(idXK �K �(�) )� (PK) = ��1� (idXK �K �)� �� (PK) =��1� (idXK �K �)� (PK)2 Let qK : XK �! X be the projetion. Then it follows from (1:14) that q�Kindues an isomorphismq�K : Pi(X) ~�!ResKk (Pi(XK))G: (1.16)Note that this means in partiular that every sheaf on XK whose isomorphismlass is invariant under G desends to a sheaf on X. This is a stronger statementthan Galois-desent of quasi-oherent modules.Let M0 2 ResKk (Pi(XK))(Z) = Pi(XK)(Z �k K). Then P�2Gopp ��(M0) 2ResKk (Pi(XK))G, thus there exists anM 2 Pi(X)(Z) with (qK�kidZ)�(M) =M0.De�nition We all the element M just de�ned the norm of M0 and denote itby N(M0). 8We get a natural transformationN : ResKk (Pi(XK)) �! Pi(X);whih we also all norm.Via the representing objets, this natural transformation orresponds to (1:15).8In [EGA II, 6.5℄, the norm of an invertible sheaf is de�ned in a more general situation. Notehowever that our de�nition applies for lasses of sheaves.



24 Chapter 1. Basi Properties of Weil-RestritionsNow let X 0 be any geometrially integral, non-singular, projetive K-varietywith a K-rational point P0, let W = ResKk (X 0) be the Weil-restrition of X 0 withrespet to Kjk. By de�nition of W , it has a k-rational point.Consider the natural transformationT : ResKk (Pi(X 0)) ResKk (u�)
// ResKk (Pi(WK))M0 7!N�2Gopp ��(M0)

��N
''

ResKk (Pi(WK))G� q�K�1
��Pi(W ):

(1.17)
Lemma 1.17 T is injetive.Proof Let Z be a k-sheme. Then � 2 G operates on Pi(WK�KZK) ' Pi(W�kZ 
k K) by ��1�. (Where � is the \natural" operation on W �k Z 
k K.)Now (W �k Z)K ' Q� ��1(X 0 �K ZK). Under this isomorphism, � operateson Pi(Q� ��1(X 0 �K ZK)) by e��1�, where e� is the \twisted" operation as in theonstrution of the Weil-restrition in the Galois ase.Under the identi�ation of (W�kZ)K withQ� ��1(X 0�KZK); P�2Gopp ��(:)ÆResKk (u�) : ResKk (Pi(X 0))(Z) �! ResKk (Pi(WK))G(Z) is given byPi(X 0 �K ZK)=Pi(ZK) �! (Pi( Y�2Gopp ��1(X 0 �K ZK))=Pi(ZK))GM 7! X�2Gopp e��(p�id(M)) = X�2Gopp p��(��(M)):By assumption X 0 has a K-rational point P0, and ��1(P0) is a k-rational pointof ��1(X 0). These rational points de�ne a losed immersion � = (��)� : X 0 �!Q� ��1(X 0), given by �id = idX0 ; �� = ��1(P ) for � 6= id. Now (� �k idZ)� ÆP�2Gopp ��(:) Æ (u�k idZ)� is the identity on ResKk (Pi(X 0))(Z). 2The funtor T restrits to a natural transformation T : ResKk (Pi0(X 0)) �!Pi0(ResKk (X 0)), and this indues a morphism between the orresponding repre-senting objets. T : ResKk (Pi0(X 0)) �! Pi0(ResKk (X 0))After the base hange Kjk, T beomes the anonial morphismU : ( Y�2Gopp ��1(Pi0(X 0)) �! Pi0( Y�2Gopp ��1(X 0)));indued by p�� : ��1(Pi0(X 0)) �! Pi0(Q� ��1(X 0)).



Weil-restritions of abelian varieties 25We are interested whether T or { what is the same { T is an isomorphism. Weonly have to hek this for U or U
K idK .The phrase \smooth proper global lifting" used in the following theorem isde�ned in Subsetion A.1.1. Under this ondition, U 
K idK is an isomorphismof abelian varieties; see Proposition A.4. It thus follows the following theorem.Theorem 1 Let Kjk be a �nite Galois �eld extension, let X 0 be an integral non-singular projetive K-variety with a K-rational point. Assume that har(k) = 0or that X 0K has a smooth proper global lifting. Then T : ResKk (Pi0(X 0)) �!Pi0(ResKk (X 0)) is an isomorphism of abelian varieties.Corollary 1.18 Let X 0 be a geometrially integral non-singular projetive K-urve with a K-rational point. Then T is an isomorphism of abelian varieties.Proof If har(k) > 0, every suh urve has a smooth, proper global lifting; see[Po, Satz 10.1℄. 2Corollary 1.19 Let X 0 be a urve as above. Then N Æ u� : Pi0(X 0) �!Pi0(ResKk (X 0)) is an isomorphism.1.3 Weil-restritions of abelian varietiesIn this setion, we study �rst properties of the Weil-restrition of abelian varietieswith respet to a �nite separable �eld extension. In the next hapter, we willstudy the Weil-restrition of old abelian varieties { i.e. abelian varieties whih arede�ned over k { more in depth.Let Kjk be a separable extension of �elds, A0 an abelian K-variety. Let W bethe Weil-restrition of A0 with respet to Kjk. ThenWksep ' Y� : Spe(ksep) �! Spe(K)(over Spe(k)) ��1(A0);thus W is also an abelian variety.1.3.1 Weil-Restritions and dual abelian varietiesLet Kjk be Galois, A0 an abelian K-variety.Sine the produt of a dual abelian variety of a produt of abelian varieties isthe produt of the duals, the morphismU on the previous page is an isomorphism.Thus the morphism T de�ned in the last subsetion is an isomorphism.Proposition 1.20 Let Kjk be a �nite Galois �eld extension, let A0 be an abelianvariety. Then T : ResKk (A0) �! \ResKk (A0) is an isomorphism of abelian varieties.2



26 Chapter 1. Basi Properties of Weil-Restritions1.3.2 The Galois-operation on geometri pointsThe following Proposition is well known; see for example [Mi-AA, par. 1℄.Proposition 1.21 Let k be perfet. The Galois-operation on ResKk (A0)(K) is theindued representation of the one of A0(K)ResKk (A0)(K) ' IndZ[Gal(Kjk)℄Z[Gal(KjK)℄(A0(K))and the same is true for the Tate-moduleTl(ResKk (A0)(K)) ' IndZl[Gal(Kjk)℄Zl[Gal(KjK)℄(Tl(A0K))for every prime l.In partiular, if Kjk is an extension of �nite �elds, the harateristi polyno-mials of the relative Frobenius morphisms are related by�ResKk (A0)=k(X) = �A0=K(Xn):Proof We only show the �rst isomorphism, the proof of the seond is analogous.The Galois-operation of Gal(Kjk) on ResKk (A0)(K) 'Q� ��1(A0)(K) is givenby � 7! ((P�)� 7! (�(P�� ))�).Let �# : K ,! K be the inlusion, orresponding to � : Spe(K) �! Spe(K).The immersion ��1(A0) ,!Q� ��1(A0) 'WK to the fator \�" indues an injetionA0(K) ,! Q� ��1(A0)(K) ' WK(K) whih is ompatible with the operation ofZ[Gal(KjK)℄. By the universal property of the indued representation, we have aZ[Gal(Kjk)℄-module-homomorphismIndZ[Gal(Kjk)℄Z[Gal(KjK)℄(A0(K)) �! ResKk (A0)(K): (�)Now for every inlusion �# : K ,! K (over k), let �0 be a ontinuation to aK-automorphism (i.e. �# = �0�# : K �! K or { what is the same { � = ��0 :Spe(K) �! Spe(K)).On the left-hand side of (*), every element has a unique representation in theform P� �0(P�) with P� 2 A0(K). Suh an element is mapped to the element(�0(P�))� . Also every element of the left-hand side has this form for unique P� .We thus have an isomorphism. 21.3.3 The funtor \Weil-restrition"We have already seen that ResKk is a funtor and so is ResKk . It restrits toa funtor from the ategory of abelian K-varieties to the ategory of abelian k-varieties whih respets the addition.For abelian K-varieties A0, B0, the homomorphism of abelian groups ResKk :HomK(A0; B0) �! Homk(ResKk (A0);ResKk (B0)) extends anonially to a homo-morphism ResKk : Hom0K(A0; B0) �! Hom0k(ResKk (A0);ResKk (B0)). Thus the



Weil-restritions of abelian varieties 27funtor ResKk extends to a funtor from the \ategory of abelian K-varietiesup to isogeny" to the ategory of abelian \ategory of abelian k-varieties up toisogeny". 9In partiular, ResKk is a ring-homomorphism from EndK(A0) toEndk(ResKk (A0)) and from End0K(A0) to End0k(ResKk (A0)).Let Kjk be Galois. Let A0; B0 be abelian K-varieties. ThenHomK(ResKk (A0)K ;ResKk (B0)K) ' HomK( Y�2Gopp ��1(A0); Y�2Gopp ��1(B0)) 'M�;�2GoppHomK(��1(A0); ��1(B0));see equation (A.3) in Subsetion A.2.3.Let � : A0 �! B0 be a morphism. Then by (1.11), ResKk (�)
k idK is given bythe diagonal \matrix" (��1(�)Æ�;� )�;�2Gopp 2L�;�2Gopp HomK(��1(A0); ��1(B0)).Now let � : A0 �! B0 be an isogeny. Then ResKk (�) : ResKk (A0) �!ResKk (B0) is also an isogeny.For every k-sheme Z, we have the ommutative diagram0 // ker(�)(Z 
k K) //� A0(Z 
k K) //� B0(Z 
k K)�0 // ResKk (ker(�))(Z) // ResKk (A0)(Z) // ResKk (B0)(Z):Sine the �rst row is exat (in the ategory of abelian groups), so is the last. Thusthe kernel of the isogeny ResKk (�) is ResKk (ker(�)).1.3.4 Weil-restritions of a polarized abelian varietiesLet Kjk be a Galois �eld extension, A0 an abelian K-variety, A0 the dual abelianvariety. By Proposition 1.20, ResKk (A0) is (anonially isomorphi to) the dualabelian variety of ResKk (A0).Let ' : A0 �!A0 be a polarization of A0, de�ned by an ample sheaf L on A0K ,i.e. '
K idK = �L : A0K �!A0K . 10 As above, this indues an isogenyResKk (') : ResKk (A0) �! ResKk (A0) ' \ResKk (A0)whih has by the above remarks kernel ResKk (ker(')). We show now that thismorphism is again a polarization.9The ategory of abelian k-varieties up to isogeny onsists of all abelian k-varieties, where fortwo abelian k- varieties A and B, the set of morphisms is Hom0k(A;B); f. [Mu, par. 19℄, see alsoSubsetion A.2.1.10For a polarization ' of A0, we do not require that there exists a sheaf de�ned over K whihde�nes '; see Subsetion A.2.2 for details.



28 Chapter 1. Basi Properties of Weil-RestritionsLet � 2 Gopp. As at the end of Subsetion 1.2.2, we regard ��1(A0) as thedual abelian variety of ��1(A0).Let �0 be a Spe(K)-automorphism with �0#jK = �#. Then by Lemma A.9,'� 
K idK = ��0L = ��0�(L). (In partiular, the lass of �0�(L) in the N�eron-Severigroup is independent of the hoie of �0.)After base-hange, we getResKk (')
k idK = ('� Æ p�)�2Gopp : Y�2Gopp ��1(A0) �! Y�2Gopp ��1(A0):This is a \produt polarization" de�ned by the ample sheafLWk :=O� (p� 
K idK)��0�(L) =O� e�0�(pid 
K idK)�(L)on Wk.If one starts with an ample sheaf L on A0, then the polarization ResKk (') isde�ned by the ample sheaf LWK :=N� e��p�id(L) on WK . The lass of LWK in thePiard group is invariant under the Galois-operation and thus this onstrutionde�nes an ample sheaf on W . (This follows also diretly from the results inSubsetion 1.2.1.)Proposition 1.22 Let Kjk be a �nite Galois �eld extension, A0 an abelian varietyover K. If ' is a (prinipal) polarization on A0 (de�ned by a sheaf over K), thenResKk (') is a (prinipal) polarization on ResKk (A0) (de�ned by a sheaf over k).Thus \Weil-restrition" is a funtor from the ategory of polarized abelian K-varieties (with polarizations de�ned by a sheaf over K) 11 to the ategory of polar-ized abelian k-varieties (with polarizations de�ned by a sheaf over k). The imagesof prinipally polarized abelian K-varieties are prinipally polarized.1.3.5 Weil-restritions of abelian varieties over �nite �elds 12Let Kjk be a �nite extension of �nite �elds of degree n. Let A0 be an abelianvariety over K of dimension d, W the Weil-restrition of A0 with respet to Kjk.We now study the endomorphism algebra 13 and the isogeny deomposition ofW . In the next hapter, we will study the same question for Weil-restritions ofabelian varieties with respet to an arbitrary Galois extension Kjk under theassumption that the abelian K-variety A0 is de�ned over k.11For de�nition of the ategory of polarized abelian varieties see Subsetion A.2.2 in the ap-pendix.12This subsetion is joint work with N.Naumann.13Reall the following de�nitions: The endomorphism ring of an abelian variety A over a �eldk is the ring of endomorphisms of A over k, i.e. the endomorphisms of Ak de�ned over k. It isdenoted by Endk(A). The endomorphism algebra of A is the ring End0k(A) := Endk(A)
ZQ.



Weil-restritions of abelian varieties 29In the following, we make use of various onepts of \Frobenius morphisms";see Subsetion A.3.4 for details.Identify Gal(Kjk) with its dual and denote by �Kk 2 Gal(Kjk) the Frobeniusautomorphism, de�ning a Spe(k)-automorphism �Kk of Spe(K). By base-hange,this indues the arithmeti Frobenius isomorphism �Kk : �Kk �1(A0) �! A0.We also have the geometri Frobenius endomorphism �k : A0 �! �Kk �1(A0)whih is an isogeny of p-power degree whose kernel is onneted. Just as for everyisogeny, there exists a ��1k 2 Hom0k(��1k (A0k); A0k) whih is a left- and right-inversefor �k; see Lemma A.7.Analogously, we have a geometri Frobenius endomorphism �k : W �!W .Let �K be the geometri Frobenius endomorphism of A0. Then the image of �Kunder the ring-homomorphismResKk equals the endomorphism �nk ofW . (In fat,after base-hange, ResKk (�K) as well as �nk is represented by the diagonal matrix�KI.) Thus the ring-homomorphism ResKk : EndK(A0) �! Endk(W ) restrits toan inlusion Z[�K℄ �! Endk(W ), given by �K 7! �nk . This ring-homomorphismextends to a ring-homomorphism Z[�K℄[X℄=(Xn � �k) �! Endk(W ), given byX �! �k.The geometri Frobenius endomorphism �k of W ommutes with all endo-morphisms of W . Thus by the universal property of the tensor produt (see[FD, proposition 3.2℄), the ring-homomorphisms EndK(A0) �! Endk(W ); � 7!ResKk (�) and Z[�K℄[X℄=(Xn � �K) �! Endk(W ); X 7! �k indue a ring-homomorphismEndK(A0)
Z[�K℄ Z[�K℄[X℄=(Xn � �K) �! Endk(W ); � 7! ResKk (�); X 7! �k:Theorem 2 Let Kjk be an extension of �nite �elds of degree n. Let A0 be anabelian K-variety, W the Weil-Restrition of A0 with respet to Kjk. ThenEnd0K(A0)
Q[�K ℄ Q [�K ℄[X℄=(Xn � �K) �! End0k(W ); � 7! ResKk (�); X 7! �kis an isomorphism.Proof By the de�ning property of the Weil-restrition, as abelian groups,Hom0k(W;W ) ' Hom0K(n�1Yi=0 �Kk �i(A0); A0) via a 7! pid Æ (a
k idK): (1.18)We show that the homomorphism of abelian groupsHom0K(A0; A0)
Q[�K ℄ Q [�K ℄[X℄=(Xn � �K) �! Homk(W;W ) 'Hom0K(Qn�1i=0 �Kk �i(A0); A0) 'Ln�1i=0 Hom0K(�Kk �i(A0); A0) (1.19)>from left to right is an isomorphism.Let �k 2 Gal(kjk) again be the Frobenius automorphism. Again by base-hange, this indues the arithmeti Frobenius automorphism �k :Wk �!Wk.



30 Chapter 1. Basi Properties of Weil-RestritionsThe morphism �k : W �! W is uniquely determined by the fat that itoperates on k-valued points P of Wk as the inverse of the arithmeti Frobeniusisomorphism: �k Æ P = ��1k (P ) = P �k ; see Lemma A.32.Let P = (Pi)n�1i=0 be a k-valued point of Wk ' Qn�1i=0 �Kk �i(A0)K . Then byde�nition of the Galois-operation on Wk, �k(P ) = (�(Pi+1))n�1i=0 (where Pn = P0).Thus �k Æ P = ��1k (P ) = (��1k (Pi�1))n�1i=0 = (�k Æ Pi�1)n�1i=0 .Thus under the isomorphism WK ' Qn�1i=0 �Kk �i(A0), the geometri Frobeniusendomorphism �k of W is given by the \matrix"0BBBB� 0 � � � � � � �k�k 0 � � � 00 . . . . . . ...0 . . . �k 0
1CCCCA :For some � 2 End0K(A0), ResKk (�) is given by the diagonal \matrix"0BBB� � �Kk �1(�) . . . �Kk 1�n(�) 1CCCA :Let x be the image of X in Q [�K ℄[X℄=(Xn � �K). Let �1x+ �2x2 + � � �+ �nxn 2Hom0K(A0; A0)
Q[�K ℄Q [�K ℄[X℄=(Xn��K) where �i 2 End0K(A0). Suh an elementis mapped under the homomorphism of in the theorem to an endomorphism of Wwhih is represented by the \matrix"0BBBBBBB� �n �nk �n�1 �n�1k � � � �2 �2k �1 �k�Kk �1(�1)�k �Kk �1(�n)�nk �Kk �1(�3)�3k �Kk �1(�2)�2k... . . . ...�Kk 2�n(�n�2)�n�2k �Kk 2�n(�n�3)�n�3k �Kk 2�n(�n)�nk �Kk 2�n(�n�1)�n�1k�Kk 1�n(�n�1)�n�1k �Kk 1�n(�n�2)�n�2k � � � �Kk 1�n(�1)�k �Kk 1�n(�n)�nk

1CCCCCCCA :
The elements of Hom0K(A0; A0) 
Q[�K ℄ Q [�K ℄[X℄=(Xn � �K) have a uniquerepresentation as �1x + �2x2 + � � � + �nxn where �i 2 End0K(A0). Under ho-momorphism (1.19), this element orresponds to the �rst row in the above ma-trix, i.e. to the row vetor ( �n�nk �n�1�n�1 � � � �1�k ). Now, every elementof Ln�1i=0 Hom0K(�Kk �i(A0); A0) has this form with unique �i. Thus (1.19) is anisomorphism. 2Remark Sine the geometri Frobenius endomorphism has degree a power ofp := har(k), we obtain in fat an isomorphism�EndK(A0)
Z[�K℄ Z[�K℄[X℄=(Xn � �K)�
ZZ[1=p℄ �! Endk(W )
ZZ[1=p℄:



Weil-restritions of abelian varieties 31Corollary 1.23 End0k(W ) is ommutative i� End0K(A0) is ommutative.2 Now assume that A0 is a simple new abelian variety 14 with ommutative endo-morphism ring.We are interested in the question whether W is simple. This is the ase i�End(W ) ' End0K(A0=K)[X℄=(Xn � �K) ' Q [�K ℄=(Xn � �K) is a �eld, i.e. i�Xn � �K is irreduible over End0K(A0) ' Q [�K ℄.So, W is not simple i� Xn � �K is reduible over End0K(A0) ' Q [�K ℄. Underthe ondition 4 - n, this is equivalent to the existene of a � 2 Q [�K ℄ and a primedivisor q of n with �q = �K ; see [Lo, par. 14, Satz 2℄.We laim that under the assumptions on A0 and the additional assumption4 - n, W is simple. 15Assume that 4 - n and W is not simple so that �q = �K for some prime qjnand � 2 Q [�K ℄ (so that Q [�K ℄ = Q [�℄). Let �jk be the intermediate �eld of Kjkwith [K : �℄ = q. We laim that A0 is isogenous to an abelian variety de�ned over�. Let V be the Weil-restrition of A0 with respet to Kj�. Then �V=�(X) =�A0=K(Xq), and � is a root of �V=�, the harateristi polynomial of the Frobe-nius of V ; see Proposition 1.21. So V ontains a simple abelian variety A suhthat the harateristi polynomial of the Frobenius of A has � as a root. Theendomorphism ring of A is ommutative (sine the endomorphism ring of V is)and thus isomorphi to Q [�℄ = Q [�K ℄. This is a number �eld of degree 2d overQ , thus A has dimension d. So A 
� K is a d-dimensional abelian subvari-ety of V 
� K ' Qn�1i=0 �K� �i(A0), thus A 
� K � �K� �i(A0) for some i. Now,�K� �i(A0) � A0 via the i-power of the (geometri) Frobenius endomorphism rela-tive to �. Thus A
� K � A0.We proved:Theorem 3 Let Kjk be an extension of �nite �elds of degree n and assume 4 - n.If A0 is a simple new abelian variety over K with ommutative endomorphism ring(i.e. A0 might be a non-super-singular ellipti urve), then the Weil-restrition ofA0 with respet to Kjk is simple.14We �xed the following de�nition: If A0 is de�ned over k, i.e. if there exists an abelian k-variety A suh that A0 � A
kK, then we say that A is an old abelian variety (relative to Kjk).If A0 is not isogenous to an abelian variety de�ned over k or some proper intermediate �eld � ofKjk, then we all A0 a new abelian variety (relative to Kjk).15The following proof is inspired by the proof of the \arithmetial part" of Honda's Theorem;f. [Ho℄. As stated by Honda, the argument goes bak to Tate.



32 Chapter 1. Basi Properties of Weil-Restritions



Chapter 2Weil-restritions of old abelianvarieties
Introdution and resultsIn this hapter, we ontinue with the study of Weil-restritions of abelian varieties.We restrit ourselves to the following situation:Let Kjk be a �nite Galois �eld extension, A an abelian k-variety. 1 Let W bethe Weil-restrition of AK with respet to Kjk.We begin with the determination of the ring of endomorphisms of W overk. The result is that this ring is anonially isomorphi to the so-alled skew-group-ring of EndK(AK) with the group Gal(Kjk) and the natural operation ofGal(Kjk) on EndK(AK); see Theorem 4, p. 35.We then restrit ourselves even further to the ase that A is an ellipti urveE and Kjk is a yli �eld extension of odd degree of perfet �elds. In this ase,W is isogenous to a produt of the ellipti urve E itself and the so-alled trae-zero-hypersurfae N . If E has no omplex multipliation, than N is simple; seeTheorem 5, p. 42. 2Our goal is then to study polarizations of N . In partiular, we want to knowif there exist prinipal polarizations on N .In order to do so we study in an exursus �rst the N�eron-Severi group of aprodut of ellipti urves. For eah element of the N�eron-Severi group we give anexpliit divisor whih de�nes the given element; see Theorem 6, p. 48.There exists a anonial polarization on N , and this polarization has kernelE[n℄ = E \ N . It follows in partiular, that after a hoie of a generator ofGal(Kjk), N is anonially isomorphi to its dual; see Proposition 2.17.However, the existene of this isomorphism does not mean that N is always1Aording to our terminology, AK is then an old abelian K-variety. Thus the title of thishapter.2By saying that all ellipti k-urve has omplex multipliation, we mean that Ek has omplexmultipliation and the omplex multipliation is de�ned over k.33



34 Chapter 2. Weil-restritions of old abelian varietiesprinipally polarized as one sees from the following result:If E has no omplex multipliation then N is not prinipally polarized. If nis prime, it is isogenous to a prinipally polarized abelian variety i� the groupsheme E[n℄ ontains a non-trivial sub-group sheme over k; see Corollary 2.26,p. 58 to Theorem 7, p. 57.If E has omplex multipliation, the situation is more ompliated. For n = 3,we give an expliit riterion whether the abelian surfae N is prinipally polarized;see Theorem 8, p. 59.In the last setion of this hapter, we speialize to the ase n = 3 so that N isan abelian surfae. We give expliit equations for an aÆne, open part of N andtry to �nd urves of genus 2 on N whose existene was predited by the previousresults. The urves onstruted will also serve as examples in the next hapter.2.1 The endomorphism ringThroughout this setion, let Kjk be a �nite Galois extension of �elds of degree nwith Galois group G, and let A be an abelian k-variety of dimension d. Let W bethe Weil-restrition of AK := A
k K with respet to Kjk.We want to determine the struture of the endomorphism ring of W , anddetermine in whih isogeny fators W splits.2.1.1 The endomorphism ring as skwe-group-ringReall that in Subsetion 1.1.5, we have seen that the arithmeti operation ofG on AK indues a geometri operation on W . If � 2 G, the orrespondingk-automorphism of W is denoted by a� .Lemma 2.1 Let � 2 G;� 2 EndK(AK). Then a� ÆResKk (�) = ResKk (�(�))Æa� 2Autk(W ).Proof We hek the relation for the orresponding automorphisms of the funtorResKk (AK). Let Z be a k-sheme, P 2 ResKk (AK)(Z). Then(a� �)(P ) = � Æ � Æ P Æ ��1 = � Æ � Æ ��1 Æ � Æ P Æ ��1= �(�) Æ � Æ P Æ ��1 = (�(�) a� )(P )2 To formulate the result about the struture of the endomorphism ring of W , weneed a generalization of the onept of a group ring �rst.



The endomorphism ring 35De�nition 3 Let � be a ring, G a group, t : G �! Aut(�) a group-homo-morphism. The image of � 2 G under t will again be denoted by �. Following[Kar℄, we de�ne the skew-group-ring �t[G℄ to be the following ring: 4 The un-derlying set is �G, i.e. the set of funtions (��)�2G : G �! �. The addition isde�ned pointwise, just as for the \usual" group ring. Also as usually, for � 2 G,let � 2 �t[G℄ also denote the funtion � 7! Æ�;� 2 �t[G℄. Here, Æ�;� is the \Kro-neker delta", Æ�;� = 1 and Æ�;� = 0 if � 6= � . The multipliation is de�ned byP�2G �� � �P�2G �� � =P�;�2G �� �(��)��.Lemma 2.2 �t[G℄ is a ring.Proof We only have to hek the assoiativity of the multipliation. Using thefat that t is a group-homomorphism, one alulates on generating elements (ofthe abelian group �t[G℄)(�� � � �) �  � = ��(�)�� �  � =��(�)��()��� = �� � � �() �� = �� � (� � �  �)2 �t[G℄ has the following universal property:Lemma 2.3 Let B be a ring, f : � �! B be a ring-homomorphism, and let g :G �! B� be a group-homomorphism. Assume that for � 2 �; � 2 G, g(�) f(�) =f(�(�)) g(�). Then there is a unique ring-homomorphism �t[G℄ �! B with � 7!f(�) and � 7! g(�).2 Now let G be the Galois group as above, t : Gopp �! Aut(EndK(AK)) the nat-ural operation given by � 7! (� 7! �(�) = ����1). From Lemmata 2.1 and 2.3 itfollows thatP�2Gopp �� � 7!P�2Gopp ResKk (��) a� de�nes a ring-homomorphismEndK(AK)t[Gopp℄ �! Endk(W ): (2.1)Theorem 4 Let Kjk be a �nite Galois extension of �elds with Galois group G,A an abelian variety over k, W the Weil-restrition of AK with respet to Kjk,t : Gopp �! Aut(EndK(AK)) the natural operation. Then EndK(AK)t[Gopp℄ �!Endk(W ) is an isomorphism.Proof Analogously to the proof of Theorem 2, we make use of the isomorphismHomk(W;W ) ' HomK(A GoppK ; AK) ' L�2Gopp HomK(AK ; AK) on the right-hand side.3This de�nition is a speial ase of the more general de�nition of a rossed produt (withrespet to some operation); f. [Kar, Chapter 10, 2℄.4In [CR℄, the same ring is alled twisted group ring. However, in [Kar℄, this word is reservedfor the speial ase of a rossed produt with respet to a trivial Galois-operation.



36 Chapter 2. Weil-restritions of old abelian varietiesBy (1.9), the image of some � 2 Gopp in HomK(A GoppK ; AK) is p��1 , orre-sponding to the row vetor whih is zero exept at the \�-th" entry where itis 1.Thus the image of P�2Gopp ��� (where �� 2 EndK(AK)) is P�2Gopp ���1 p�,orresponding to the row vetor (���1)�2Gopp .It is thus immediate that we have an isomorphism. 2By tensoring the above isomorphism over Z with Q , we getCorollary 2.4 End0K(AK)t[Gopp℄ �! End0k(W ) is an isomorphism.We know that the ring End0k(W ) is semi-simple. Thus the skew-group-ringEnd0K(AK)t[Gopp℄ is semi-simple.It an be proven more generally that every skew-group-ring of a semisimplering in whih the group order is (�nite and) invertible is semisimple or even moregenerally that every rossed produt of a semisimple ring is semisimple; see [Kar,Volume I, Chapter 10, Corollary 2.5℄.We now want to study the ring-homomorphism 5EndK(AK)t[Gopp℄ ��! Endk(W ) ,!EndK(WK) ' EndK(A GoppK ) ' MGopp(EndK(AK)): (2.2)For � 2 Gopp, let �� : AK �! A GoppK be the immersion to the \�-th" fa-tor, and let p� : Q�2Gopp AK �! AK be the projetion to the \�-th" fa-tor. Now, EndK(AGoppK ) �! MGopp(EndK(AK));  7! (p� ��)�;�2Gopp is a ring-homomorphism; see Subsetion A.2.3.We denote the matrix orresponding to a� by A� and the matrix orrespondingto ResKk (�) by J(�).We have already established in Subsetion 1.3.3 that J(�) is the diagonalmatrix (��1(�)Æ�;�)�;�2Gopp .We want to determine to whih matrix the endomorphism a� orresponds.First of all, p� : WK ' A GoppK �! AK orresponds to the row-vetor (Æ�;�)�2G.Reall that a� = (p��1�)�2G; see Lemma 1.12. ThusA� = (Æ��1�;�)�;�2G = (Æ�;��)�;�2G: (2.3)Before ontinuing we want to larify the de�nition of the left regular (matrix)representation.5Let � be a ring and � a �nite set. Then by M�(�) we mean the ring onsisting of: The setof funtions a = (a�;�)�;�2� : � � � �! � with pointwise addition and multipliation de�nedby (a � b)�;� :=P2� a�;b;� . After the hoie of a bijetion of � with the numbers 1; : : : ; j�j,M�(�) is anonially isomorphi to Mj�j(�), the matrix ring in j�j variables.



The endomorphism ring 37The left regular (matrix) representationLet � be a ring. If � �! � is a homomorphism of rings, we an regard � as�-right module, and if we do so, we write Endr�(�) for the ring of endomorphisms.Now let � �! � be a homomorphism of rings and assume additionally that� is as �-right module free on a �nite set of generators �, i.e. � ' �� as �-right modules. Multipliation of elements of � from the left on itself indues aring-homomorphism L : � �! Endr�(�) ' Endr�(��); (2.4)the left regular representation.For a �xed basis �, the right-hand side of (2.4) is anonially isomorphito the matrix ring M�(�). The isomorphism M�(�) ~�!Endr�(��) is given asfollows: To every matrix (a�;�)�;�2� assoiate the endomorphism (x�)�2� 7!(P�2� a�;�x�)�2�. (This is given on the basis elements � = (Æ�;�)�2� by � 7!P�2� � a�;� .) The inverse isEndr�(��) �! M�(�); a 7! (��;�)�;�2� with ��;� 2 �and a(�) =P�2� � ��;� (2.5)By omposition of (2.4) with (2.5), we get the left regular matrix representation(with respet to the basis �). l : � �! M�(�):(In partiular, for � = � and � = f1g, the left regular matrix representation isthe identity on �.)We now apply these onepts in the ontext of the skew-group-ring. Let G bea �nite group, t : G �! Aut(�) be a homomorphism, �t[G℄ the orrespondingskew-group-ring.We alulate expliitly the left regular representation l : �t[G℄ �!Endr�(�t[G℄) and the left regular matrix representation L : �t[G℄ �! MG(�)with respet to the basis G.Let � 2 G. Then l(�) : � 7! �� =P�2G �Æ�;�� and thusL(�) = (Æ�;��)�;�2G:Let � 2 �. Then l(�) : � 7! � � = � ��1(�) and thusL(�) = (��1(�) Æ�;�)�;�2G:So L(X�2G ���) = (X�2G ��1(��)Æ�;��)�;�2G = (��1(����1))�;�2G:



38 Chapter 2. Weil-restritions of old abelian varietiesWe are now going to relate these de�nitions and alulations with our situation.So let � := EndK(AK), G the Galois group and t : Gopp �! EndK(AK) thenatural operation. Let L be the left regular matrix representation of �t[G℄ 'Endk(W ) with respet to the basis Gopp. Then L(�) = A� and L(�) = J(�).Thus:Proposition 2.5 Homomorphism (2.2) is the left regular matrix representationof the skew-group-ring EndK(AK)t[Gopp℄ with respet to the basis Gopp.2.1.2 The Rosati involution, isotypi omponents and orthogo-nalityThe Rosati involutionLet ' : AK �! bAK be a polarization. Then ResKk (') : W �! W is also apolarization; see Subsetion 1.3.4.We want to alulate how the Rosati involution ofW with respet to ResKk (')is given under the isomorphism of Corollary 2.4.Let us denote the Rosati involution by (: : :)0.First of all, the (de�ning) equation �0 = '�1b�' where � 2 End0K(AK) impliesResKk (�0) = ResKk (')�1 ÆResKk (b�) ÆResKk (') = ResKk (�)0:To alulate the Rosati involution of a� , we use the inlusion of End0k(W ) intothe matrix ring MGopp(End0K(A)) and the fat that ResKk (')
k idK is a produtpolarization, and alulate the Rosati involution with the help of Lemma A.16.Sine a� orresponds to the matrix A� = (Æ�;��)�;�2Gopp (see (2.3)), a0� or-responds to the matrix (Æ�;��)�;�2Gopp = (Æ��1�;�)�;�2Gopp = (Æ�;��1�)�;�2Gopp =A��1 . Thus a0� = a��1 :Sine the Rosati involution is an anti-ring-endomorphism, this implies:Proposition 2.6 Let Kjk be a �nite Galois �eld extension with Galois group G,A an abelian k-variety, W the Weil-restrition of AK with respet to Kjk. Let' : A �! bA be a polarization. Let � 7! �0 be the Rosati involution assoiatedto '. Then under the isomorphism of Corollary 2.4, the Rosati involution as-soiated to the polarization ResKk (') : W �! W is given by P�2Gopp �� � 7!P�2Gopp ��1�0� =P�2Gopp ��1(�0�)��1.Dimensions of omponentsFrom now on, let k be perfet.



The endomorphism ring 39As in the above proposition, let A be an abelian k-variety, Kjk a galois �eldextension of degree n with galois group G, W the Weil-restrition of AK withrespet to Kjk, let t : Gopp �! EndK(AK) be the natural operation.Let D � End0K(AK) be a subring whih is a division ring and whih is invariantunder the operation t.Let Lsi=1 �i ' Dt[Gopp℄ be a deomposition of the Dt[Gopp℄-right moduleDt[Gopp℄, where we regard the �i as submodules ofDt[Gopp℄. This de�nes partitionof unity 1 = Pi ei where the ei are pairwise orthogonal and idempotent andei 2 �i. Now, �i = eiDt[Gopp℄, and onversely, if we are given a deompositionof the unity 1 =Pi ei with pairwise orthogonal idempotents ei, �i := eiDt[Gopp℄de�nes a deomposition of the Dt[Gopp℄-right module Dt[Gopp℄.Via the inlusion Dt[Gopp℄ ,! End0K(AK)t[Gopp℄ ' End0k(W ), we an regardthe ei to be elements of End0k(W ). For eah i, let i 2 N suh that iei 2 Endk(W ).Now let Wi := iei(W ). Then Lsi=1Wi � W . (Conversely, suh an isogenydeomposition where the Wi are abelian subvarieties of W de�nes a partition ofunity and thus a deomposition of End0K(AK) as right-End0K(AK) module; seeA.2.5 for details.)Proposition 2.7 Let D � End0K(AK) be a subring whih is a division ring whihis invariant under the operation t on End0K(AK). Let Lsi=1 �i ' Dt[Gopp℄ bea deomposition of the Dt[Gopp℄-right module Dt[Gopp℄. This orresponds to thepartition of unity 1 =Pi ei. Let Wi := iei(W ) as above. Then WiK � AniK whereni = dimD(�i):Proof Choose a bijetion of Gopp with the set f1; : : : ; ng. Then A GoppK ' AnK .Let l and L be the left regular (matrix) representations of End0K(AK)t[Gopp℄,lD and LD the left regular (matrix) representations of Dt[Gopp℄ (both regularmatrix representations with respet to the basis Gopp). Let �M : MGopp(D) �!MGopp(End0K(AK)) be the anonial inlusion. Then L = �M LD.By onstrution lD(ei) is the identity on �i and zero on all �j for j 6= i.Let ni be the dimension of the D-module �i. For eah i, hoose a basis(b(j)i )j=1;:::;ni of the D-module �i. Then all n elements b(j)i de�ne a basis of theD-module Dt[Gopp℄. With respet to this basis, the matrix assoiated to lD(ei) iszero outside a blok of size ni where it is the identity matrix.We now have two matrix representations of lD(ei) with respet to di�erentbases, and via a base hange matrix, we an transform one into the other: Thereexists an invertible matrix B suh that BLD(ei)B�1 is zero outside a blok of sizeni where it is the identity matrix. By multiplying B with a onstant in N, we anassume that all entries of B lie in D \ EndK(AK).Let b be the endomorphism of AGoppK ' AnK whih is assoiated to �M(B). Byour notational onventions, the endomorphism assoiated to the matrix L(ei) =�MLD(ei) is ei
k idK . We see that b�1(ei
k idK)b is the projetion of AGoppK ' AnK



40 Chapter 2. Weil-restritions of old abelian varietiesto AniK . Thus the image of b�1i(ei 
k idK)b is AniK , and the image of i ei 
k idKis isomorphi to AniK . 2Remark Let A be simple, D = End0K(AK). Assume that all ei in the aboveproposition are entral. Then all �i as above are rings andLsi=1 �i ' Dt[Gopp℄ isan isomorphism of rings. Further, the Wi = iei(W ) are generated by the isotypiomponents of W and �i ' End0k(Wi). So in partiular, the number ni in theabove proposition satis�es ni = dimD(End0k(Wi)).The Rosati involution and representation theoryIn Subsetion A.2.5, the following is shown:A deomposition of an abelian variety into isotypi omponents orresponds tothe partition of unity 1 = Pi ei into entral simple pairwise orthogonal idempo-tents. (The deomposition of the abelian variety as well as the partition of unityare unique up to a permutation.)Further, the isotypi omponents are orthogonal with respet to any polariza-tion. This orresponds to the fat that for any Rosati involution ei = e0i.We now want to show how for the Weil-restrition W the orthogonality of theisotypi omponents is losely related to a well-known result from representationtheory.To use this result, we make the assumption, that A is simple, the endomor-phism ring of AK is ommutative and all endomorphisms of AK are de�ned overk. Fix a polarization ' on A.Under our assumptions, End0k(W ) is isomorphi to the \ordinary" group ringEnd0K(AK)[Gopp℄.We �x an inlusion of End0K(AK) into Q . Then the Rosati involution operateson End0K(AK) by onjugation.Let (: : :)0 be the involution of Q [Gopp℄ given byP�2Gopp��� 7!P�2Gopp����1.Note that by Proposition 2.6, this involution restrits to the Rosati involution onEnd0K(AK)[Gopp℄.Let �j; j = 1; : : : be the harater maps of Gopp. And let 1 =Pj e(j) be thedeomposition of the unity in the ring Q [Gopp℄. Then by representation theory,e(j) =P�2Gopp 1n�j(1)�j(��1)�; see [La, XVIII, Proposition 4.4.℄.This implies e(j)0 =P�2Gopp 1n��1�j(1)�j(��1) =P�2Gopp 1n�j(1)�j(�)��1 =e(j).The entral idempotents ei of the group ring EndK(AK)[Gopp℄ have the formP e(i ), where all i are distint. Thus ei = e0i for the Rosati involution withrespet to ResKk ('), whih is onsistent with the result ei = e0i for general abelianvarieties and any polarization.



The endomorphism ring 412.1.3 The yli aseLet k still be a perfet �eld. We now apply the above results to the ase that Gis yli.We identifyG withGopp and �x some generator � 2 G. Let a = a� 2 Endk(W )be the automorphism orresponding to �. (Sine G is ommutative, a� = s�1� ; seep. 17)Denote the residue lass of X in Q [X ℄=(Xn � 1) by x. Then we have aninlusion Q [X ℄=(Xn � 1) �! End0K(AK)t[G℄; x 7! �:The polynomial Xn � 1 splits over Z[X℄Xn � 1 =Ydjn �dHere, �d is the d-th ylotomi polynomial, a normalized and irreduible poly-nomial of degree '(d) whose roots are the primitive d-th roots of unity. SoQ [X℄=�d = Q(�d).Let �0d := (Xn � 1)=�d. By the Eulidian algorithm, there exist 	d 2 Q [X℄withPdjn	d�0d = 1. Let Ed := 	d�0d. Then the Ed(x) 2 Q [X℄=(Xn�1) are pair-wise orthogonal idempotents and de�ne a partition of unity. The deompositionorresponding to this partition isQ [X℄=(Xn � 1) 'Ydjn Q [X℄=�d =Ydjn Q(�d):(This is nothing but the Chinese Remainder Theorem in this partiular ase.)Let Wd := dEd(a)(W ) for suitable d 2 N. We then have an isogeny deom-position W �YdjnWd;and by Proposition 2.7, the Wd are abelian varieties with WdK � A'(d)K .We also have Wd = �0d(a)(W ). { We only have to show that d�0d(a)(W ) �Wd. This follows from �0d(x) = (Pf jn	f (x)�0f (x))�0d(x) = 	d(x)�0d2(x) =Ed(x)�0d(x).It is lear thatWd is also the redued identity omponent of the kernel of d(id�Ed(a)) = dPf jn;f 6=d	f (a)�0f (a) = (dPf jn; f 6=d	f (a)Qgjn; g 6=d;f �g(a))�d(a).It is also the redued identity omponent of the kernel of �d(a). { We only haveto show that Wd is ontained in this kernel. But sine Wd = �0d(a)(W ) and�0d(x)�d(x) = 0, this is obvious.Let W 0d be the abelian subvariety whih is generated by the Wf , f jn; f 6=d. Then W 0d = (id � Ed(a))(W ) = (Pf 6=dEf )(W ). Analogously to the abovearguments one shows that W 0d = �d(a)(W ) and that W 0d is the redued identityomponent of the kernel of �0d(a).



42 Chapter 2. Weil-restritions of old abelian varietiesWe now want to study whether the Wd are simple or split further. We makethe following assumptions.AK is a simple abelian variety whose endomorphism are all de�ned over k andwhose endomorphism ring is ommutative.Note that if k is �nite, all endomorphisms of AK are automatially de�nedover k if we assume EndK(AK) to be ommutative.Also if A is a non-super-singular ellipti urve over any �eld and n is odd,then all endomorphism of AK are de�ned over k. This is beause under thisondition, End(AK) is either Z or a quadrati order, thus the only possible non-trivial automorphism of EndK(AK) has order 2, and onsequently the kernel ofthe representation Gal(Kjk) �! Aut(EndK(AK)) is trivial.Under the assumptions, we have the isomorphismsEnd0k(Ak)[X℄=(Xn � 1) ' End0K(AK)[G℄ ' End0k(W )x 7! � 7! a :Let �d split into the produt of the non-trivial irreduible polynomials �(1)d ;�(2)d ;: : : ;�(rd)d over End0k(A). Let �(i)d := (Xn�1)=�(i)d . SineXn�1 is in harateristi0 a separable polynomial, the �(i)d are all di�erent for all d and i, and there exist	(i)d with PdjnPrd1=i	(i)d �0d(i) = 1. Let E(i)d := 	(i)d �0d(i).Then again by Proposition 2.7, W (i)d := E(i)d (a)(W ) is an abelian varietywith W (i)dK � Adeg(�d(i))K . The abelian subvariety W (i)d is simple and its endo-morphism ring is isomorphi to the integral ommutative ring Endk(A)[X℄=�(i)d .Sine Endk(W ) is ommuntative, the W (i)d are pairwise non-isogenous and theyare thus the isotypi omponents of W .As above, one sees that W (i)d = �0(i)d (a)(W ) and that W (i)d is the reduedidentity omponent of the kernel of �(i)d (a).The omponentWd is simple i� �d is irreduible over End0k(A), i.e. i� End0k(A)and Q(�d ) are linearly disjoint. 6 If we �x an inlusion of End0k(A) into Q , this isthe ase i� End0k(A) \ Q(�d) = Q .It partiular, non of the Wd splits if End0k(A) = Q as is the ase if A is anellipti urve without omplex multipliation.We proved:Theorem 5 Let Kjk be a �nite yli �eld extension of degree n of perfet �elds.Let A be an abelian variety over a �eld k.Let W be the Weil-restrition of AK with respet to Kjk. For all djn, W on-tains anonially an abelian subvariety Wd with WdK � A'(d)K , and W is isogenousto the produt of the Wd. Here, W1 = A itself.Assume in addition that AK is simple, End0K(AK) is ommutative and allendomorphisms of AK are de�ned over k. Fix an inlusion of End0K(AK) into Q .6For de�nition of \linear disjoint" see Subsetion A.3.1 in the appendix.



The endomorphism ring 43Then the isotypi omponents of W are all simple, and its endomorphism ringsare all ommutative. For eah d, Wd is simple i� End0k(A) \ Q(�d) = Q.Let A be a non-super-singular ellipti urve with omplex multipliation (de-�ned over k). Fix an inlusion of Endk(A) into Q .Then End0k(A) is a imaginary quadrati extension of Q . Now End0k(A) andQ(�d) are not linearly disjoint i� End0k(A) � Q(�d ). If this is the ase then �dsplits into two polynomials of degree 12'(d).Let A still be a non-super-singular ellipti urve and let k be �nite. ThenEnd0k(A) = Q [�℄ where � is a root of the harateristi polynomial of the Frobe-nius. Thus �d splits i� � 2 Q(�d).Corollary 2.8 Under the assumptions of the theorem, let A be a non-super-singular ellipti urve with Endk(A) = EndK(AK) (this ondition is automatiallysatis�ed over �nite �elds or if n is odd).Then for eah d, Wd is not simple i� AK has omplex multipliation andEnd0k(A) � Q(�d). If this is the ase, Wd ontains anonially two simple non-isogenous abelian subvarieties with dimension '(d)2 , and Wd is isogenous to theprodut of these abelian subvarieties. 7The trae-zero-hypersurfaeLet again A be an abelian k-variety.By the above argumentation, W is isogenous to W1 whih is isomorphi to Aitself and W 01, the abelian subvariety of W generated by Wd for djn and d 6= 0.Now �1 = X � 1 and �01 = Xn�1 + � � � + 1 and thus W1 = (an�1 + � � � + id)(W ),W 01 = (a � id)(W ), and W1 is the redued itentity omponent of the kernel ofa� id and W 01 is the redued itentity omponent of the kernel of an�1 + � � �+ id.Now both these kernels are in fat itself equal to W1, W 01 respetively. This isobvious for W1, sine ker(a� id) is by de�nition equal to A embedded in W . Butit is also true for W 01:Let N := ker(�01(a)) = ker(an�1 + � � � + id). Let �n := f0; : : : ; n � 1g andonsider the isomorphism Wk ' EGk ' E�nk where the \�i-th" fator orrespondsto the i-the fator. Under this isomorphism,Nk orresponds to ker(p0+� � �+pn�1),where for i = 0; : : : ; n� 1, the pi : E�nk �! Ek are the projetions. Now ker(p0 +� � �+ pn�1) �! En�1k ; P = (P0; : : : ; Pn�1) 7! (P1; : : : ; Pn�1) is an isomorphism.As W 01 = N = ker(�00(a)) = ker(an�1 + � � � + id), we all N the trae-zero-hypersurfae of W (although this term is not ompletely aurate if dim(A) > 1).Note that W is isogenous to A �k N but not isomorphi to it, for N \ A :=N �W A = ker( n timesz }| {idA + � � � + idA) = ker([n℄) = A[n℄.7Over �nite �elds, the dimensions of the simple isogeny-fators of W in Corollary 2.8 were�rst established by N. Naumann using the l-adi representation; see [Na℄.



44 Chapter 2. Weil-restritions of old abelian varietiesThis fat makes the study of N partiularly interesting, and we will onentrateon this objet for the rest of the hapter.The following result gives a avor of the onsequent results about N .Let ' : A �! bA be a polarization of A, de�ned by the ample sheaf L on Ak.As said above, ResKk (') : W �! W is also a polarization, de�ned by the sheafLWk .We are interested in the kernel of the polarization �N ResKk (') �N de�ned by��N (LWk).Proposition 2.9 A \ N = A[n℄ is immersed in ker(�N ResKk (') �N ). If ' is aprinipal polarization, they are equal.Proof The �rst statement follows from Lemma A.19, the seond from Lemma A.23with f = id� an�1. (It is N = im(f), and further f = f 0 by proposition 2.6 andker(f 0) = ker(f) = A.) 2Let E be a non-super-singular ellipti urve, N the assoiated trae-zero-hyper-surfae. We want to study the N�eron-Severi group of N via a \geometri" ap-proah. In order to do so, we now study the N�eron-Severi group of the produt ofisomorphi ellipti urves.2.2 The N�eron-Severi group of a produt ofisomorphi ellipti urvesLet E be an ellipti urve over a perfet �eld K, let n be a natural number. Inthis setion, we want to study the various properties of the endomorphism ringand the N�eron-Severi group of En.In the �rst subsetion, we put the results of [Mu, p.208-210℄ into more onreteterms. In the seond subsetion, we give a basis for the N�eron-Severi group of En,then in the show the N�eron-Severi group on an abelian variety whih is a twistof En (i.e. whih is after a base-hange isomorphi to En) an (in priniple) bealulated. This result will be the basis of the alulations of the next setion.2.2.1 The N�eron-Severi group and the endomorphism ringThe anonial produt polarization of EnLet pi : En �! E be the projetions and let �i : E ,! En be the immersions ontothe \i-th fator".Let Di be the divisor 8 p�1i (0) = E � E � � � � �E � 0�E � � �E (0 in the i-thposition), D :=Pni=1Di.8Sine abelian varieties are non-singular, e�etive (Weil- or Cartier)-divisors are in bijetion



The N�eron-Severi group of a produt of ellipti urves 45Let ' : E �! bE be the anonial prinipal polarization de�ned by the ampledivisor (0). The divisor D de�nes the \anonial" produt polarization of En, let'n : En �! En denote this polarization. Sine (0) de�nes a prinipal polarizationof E, 'n is a prinipal polarization, i.e. 'n an isomorphism. (Corresponding tothe fat that D has Euler-harateristi n!.) 9The Galois group Gal(KjK) operates on NS(EnK), and we have an inlu-sion � : NS(EnK)Gal(KjK) �! HomK(En; En); M 7! �M. By omposition withthe homomorphism '�1n , NS(EnK)Gal(KjK) beomes a subgroup of EndK(En) 'Mn(EndK(E)). 10 Its image equals the subgroup of elements whih are �xedunder the Rosati involution; see Lemma A.14. 11The Rosati involutionIf � 2 End0K(E), let � denote the orresponding onjugated element. (If E issuper-singular, let � be the onjugated element in the �eld extension Q(�).) Thenthe Rosati involution of E (with respet to the ample divisor (0)) is given by� 7! �.The following lemma is a speial ase of Lemma A.16:Lemma 2.10 The Rosati involution of En with respet to L(D) is given by A 7!A> (transposition and onjugation) on Mn(End0K(E)).So if E is non-super-singular, NS(EnK)Gal(KjK) is isomorphi to the group ofhermitian matries of Mn(EndK(En)).The degree and the Euler-harateristiLet us state how the degree and the Euler-harateristi of a divisor an be alu-lated if it is given as an element of Mn(EndK(En)). We follow the ideas of [Mu,p.209℄.First, we need to know how the degree of an endomorphism given as an elementof Mn(EndK(En)) an be alulated. On EndK(E), the degree of � 2 EndK(E)is given by deg(�) = ��.Lemma 2.11 Assume that E is non-super-singular. The degree funtion of Enis given on Mn(EndK(E)) by deg(A) = det(A) det(A).with losed subshemes of pure odimension 1. We will also all suh subshemes (e�etive)divisors. We will use that for some surjetion a : A �! B of non-singular, onneted varietiesA, B and some losed subsheme of pure odimension 1 D of B, the \pull-bak" of the Cartier-divisor assoiated to D orresponds to the sheme-theoreti inverse image a�1(D); see SubsetionA.3.2.9This setion relies on Subsetion A.2.2 in the appendix.10It it important here that D de�nes a prinipal polarization.11We will see that NS(En) ,! NS(EnK)Gal(KjK) is an isomorphism.



46 Chapter 2. Weil-restritions of old abelian varietiesProof The equation is true for singular matries (whih orrespond to endomor-phism with non-�nite kernel and thus have by de�nition degree 0).Further, the equation is true for diagonal matries (the value on both sidesbeing the produt over the squares of the norms of the diagonal elements), forupper/lower triangular matries with diagonal elements all 1 (the value on bothsides being 1) and for permutation matries (where the value on both sides isagain 1).Let A be non-singular. By the omplete Gau�-Algorithm, there exist Bi; i =1; : : : ;m whih are diagonal matries or upper/lower triangular with diagonal el-ements 1 or permutation matries suh that Bm � � � B1A = aI, where a 2 N.Sine the equation is multipliative on both sides and true for all Bi and foraI, it is also true for A. 2Remark If E is super-singular, a similar result holds: If we hose a quadrati�eld extension F inside End0K(E), then Mn(F ) is a subgroup of Mn(End0K(E)).On this group, the lemma holds. (To alulate the degree for the whole groupEnd0K(En), one has to use the so-alled redued norm.)For any divisor C on En, the degree of C (i.e. the degree of �L(C)) is the degreeof the endomorphism '�1n Æ�L(C) of En. If this endomorphism orresponds to thematrix A with entries in a ommutative subring of EndK(E), by the Riemann-Roh-theorem and the above result, �(L(C))2 = deg(L(C)) = det(A)det(A), thusj�(L(C))j = jdet(A)j.Lemma 2.12 Again let C be a divisor on En. Assume that E is non-super-singular or that C ful�lls the onditions of the above remark. Then �(L(C)) =det(A).This follows from the following lemma.Lemma 2.13 Let the notations and the onditions on C be as above. Then�(L(D)z 
 L(C)) = det(zI + A) = p�A(z), where p�A is the harateristi poly-nomial of the matrix �A.Proof For any z 2 Z, j�(L(D)z 
 L(C))j = j�(L(zD + C))j = jdet(zI + A)j bylinearity and the above result. So we only have to hek that the sign is orret.By the Riemann-Roh theorem, z 7! �(L(D)z 
 L(C)) = 1n!(zD + C)n is apolynomial funtion of degree n, and 1n!(zD + C)n = 1n!(zn(D)n+(lower orderterms))= zn+ (lower order terms). Analogously, p�A(z) = zn+ (lower orderterms). Thus for large z, p�A(z) and �(L(D)z 
 L(C)) are both positive, andthus they are equal for these z. Espeially, they are equal for in�nitely many z,and being polynomial funtions they are equal. 2



The N�eron-Severi group of a produt of ellipti urves 47Lemma 2.14 Let the notations and the onditions on C be as above, and furtherassume L(C) to be non-degenerate. Then i(L(C)), the index of L(C), is thenumber of negative eigenvalues of A. In partiular, L(C) is ample i� det(A) 6= 0and the eigenvalues of A are all positive.Proof By Proposition A.25 (f. [Mu, par. 16, p. 155℄) and the above lemma, theindex is the number of positive roots of p�A, i.e. the number of positive eigenvaluesof �A, i.e. the number of negative eigenvalues of A. The seond statement is areformulation of Lemma A.26. 22.2.2 A basis for the N�eron-Severi groupFor eah i = 1; :::; n, let �i 2 EndK(E). Let not all �i be 0. Let � := (�1; : : : ; �n)and let � := �1p1 + � � �+ �npn : En �! E be the orresponding morphism.Now the losed subsheme C(�) := ker(�) is purely n � 1-dimensional and isthus an e�etive divisor on En. The .-valued points of C(�) arefP = (P1; : : : ; Pn)j �1 Æ P1 + �2 Æ P2 + � � �+ �n Æ Pn = 0g:Proposition 2.15 The lass of the sheaf L(C(�)) (in NS(En)) orresponds tothe endomorphism with the matrix0BBB� �1�1 �1�2 � � � �1�n�2�1 �2�2 � � � �2�n... ... . . . ...�n�1 �n�2 � � � �n�n 1CCCA = 0BBB� �1�2...�n 1CCCA� �1 �2 � � � �n � :Proof In the notation of Subsetion A.2.3, we have to show that '�1n �L(C(�)) = �0�.We may assume that K is algebraially losed. We use that for all K-valuedpoints P of En and endomorphisms �, � Æ TP = T�ÆP Æ �.Now, for every K-valued point P of En, �L(C(�)) ÆP is de�ned by T�1P (C(�))�C(�) = T�1P ��1(0)���1(0) = ��1(T�1�ÆP (0)� (0)). Thus �L(C(�)) = b�'� = 'n�0�.2Notation Let � 2 EndK(E) and 1 � i < j � n. Let C�i;j be the divisorassoiated with the losed subshemefP = (P1; : : : ; Pn)jPi + � Æ Pj = 0g:Then the by the above results the matrix of C is zero but at the entries (i; i); (i; j);(j; i); (j; j). Here it looks like � 1 �� �� �



48 Chapter 2. Weil-restritions of old abelian varietiesWe see that the group of endomorphisms of En invariant under the Rosatiinvolution is generated by the endomorphisms orresponding to Di and C�i;j. SoNS(En) 'NS(EnK)Gal(KjK). We an give a basis for NS(En) in terms of a basis ofEndK(E).Theorem 6 Let K be a perfet �eld and let E be a non-super-singular elliptiK-urve. Then NS(En) ' NS(EnK)Gal(KjK).With the above notations,� if E has no omplex multipliation (over K), then Di for i = 1; : : : ; n andC1i;j for i < j is a basis for NS(En).� if EndK(E) is an order in a quadrati imaginary �eld and �; � is a basis ofEndK(E), then Di for i = 1; : : : ; n and C�i;j, C�i;j for i < j is a basis forNS(En).� if EndK(E) is an order in a quaternion algebra and �; �; �; � is a basis ofEndK(E), then Di for i = 1; : : : ; n and C�i;j; C�i;j; C�i;j; C�i;j for i < j is abasis for NS(En).2.2.3 The N�eron-Severi group of a twistLet Kjk be a Galois �eld extension of odd degree and let E be a non-super-singular ellipti urve over k. Let A be an abelian k-variety suh that AK � EnK .We want to alulate the N�eron-Severi-group of A as a subgroup of EndK(EnK) 'Mn(EndK(EK)).By Lemma A.11, the N�eron-Severi-group of A onsists of those elements of theN�eron-Severi-group of AK � EnK whih are invariant under the Galois-ation. Foreah � 2 G, we have an arithmeti operation of AK=K. Under the isomorphismAK � EnK this operation orresponds to an automorphism e� on EnK . e� is of theform s�� with � the anonial automorphism of EnK=K and s� a K-automorphismof EnK .Under our assumption that E be non-super-singular and n be odd, all endo-morphisms of EK are de�ned over k. So also all endomorphisms of EnK are de�nedover k and so all elements of NS(EnK) are invariant under � and in order to de-termine the invariant elements under the ation of e� we have to alulate whihelements are invariant under s� for all � 2 G.A speial ase of Proposition A.15 is:Let x 2 NS(EnK), orresponding to a hermitian matrix X 2 Mn(Endk(E)).Then s��(x) orresponds to the matrix S�>XS�.This implies:Proposition 2.16 Let Kjk be a Galois �eld extension of with Galois group Gof odd degree. Let E be a non-super-singular ellipti urve over k. Let A be an



The N�eron-Severi group of the trae-zero-hypersurfae 49abelian k-variety suh that AK � EnK . Assume that all K-endomorphisms of EKare de�ned over k. For eah � 2 G, the Galois-operation on AK=K is de�nedby e� = �s� where s� is a K-automorphism of En orresponding to a matrixS� 2Mn(EndK(EK)).Let x 2 NS(En), orresponding to a hermitian matrix X 2 Mn(Endk(E)).Then x 2 NS(A) i� for all � 2 G,S�>XS� = X:
2.3 The N�eron-Severi group of the trae-zero-hypersurfaeIn this setion, we study the N�eron-Severi group of the trae-zero-hypersurfaeN of the Weil-restrition of a non-super singular ellipti urve with respet to ayli Galois extension of odd degree. In partiular, we want to know if N has aprinipal polarization; see Subsetion 1.3.4.Let Kjk be a yli Galois extension of degree n with Galois group G. IdentifyG with Gopp and let � be a generating element of G.Let E be an ellipti urve, W be the Weil-restrition of EK := E 
k K withrespet to Kjk. Let N be the trae-zero-hypersurfae, �N : N ,! W the embed-ding.2.3.1 The anonial polarization of the trae-zero-hypersurfaeLet ' be the anonial prinipal polarization of E. Then ResKk (') is a prinipalpolarization of W .As in the end of Subsetion 2.1.3, let �n denote the set f0; : : : ; n� 1g. ThenWK ' E �nK , and under this identi�ation ResKk (') is de�ned by the divisorD := PiDi where Di := p�1i (0). (This divisor is Galois-invariant under the\twisted operation" and desends to a divisor on W .)We all the pull-bak of the polarization ResKk (') the anonial polarizationof N . Sine W is not the produt of E and N but only isogenous to the produt,the pull-bak of this polarization is not prinipal.Reall that with Proposition 2.9, the kernel of this polarization isK(��N (L(D))) = E \N = E[n℄: (2.6)This implies:Proposition 2.17 After the hoie of the generator � of Gal(Kjk), N is anon-ially isomorphi to its dual.



50 Chapter 2. Weil-restritions of old abelian varietiesProof Sine the polarization ���NL(D) has kernel E[n℄, bN is anonially isomorphito N=E[n℄.Now hoose a generator � of Gal(Kjk). The morphism a� � id : N �! N haskernel E[n℄. Thus this morphism indues an isomorphism of N with N=E[n℄. 2We an give a suÆient ondition so that N is isogenous to a prinipallypolarized abelian variety.Proposition 2.18 Let Kjk be an extension of prime degree l. If the group shemeE[l℄ has a non-trivial subgroup over k - e.g. if k ontains an l-torsion-point of Eor if har(k) = l, then N is isogenous to a prinipally polarized abelian variety.Proof Any non-trivial subgroup of the group E[l℄ is automatially a maximalisotropi subgroup of ��N (L(D)); see [Mu, p.233-234℄. 12 If E has a k-rationall-torsion point, then this point de�nes a prime subgroup. If har(k) = l, then theFrobenius endomorphism of E is purely inseparable and has degree l. Its kernelde�nes a non-trivial (onneted) subgroup of E[l℄. 2To give an idea of the methods employed in this hapter, we give a new proofof equation (2.6).If we identify WK ' E GK with E �nK where the \�i-th" fator orrespondsto the i-th fator, then for any K-sheme S, the S-valued points of AK areP = (P0; : : : ; Pn�1) where Pi 2 EK(S) and P0 + � � � + Pn�1 = 0. So via P =(P0; : : : ; Pn�1) 7! (P1; : : : ; Pn�1), NK is identi�ed with En�1K .Under this identi�ation of NK with En�1K the divisor ��1N (D) is given byPn�1i=1 Di + C where C is the kernel of p0 + � � � + pn�1. By Proposition 2.15, theorresponding matrix is 0BBBBBBB� 2 1 � � � 1 11 2 . . . 1 1... . . . . . . . . . ...1 1 . . . 2 11 1 � � � 1 2
1CCCCCCCA :

By subtrating the lines one sees that all .-valued points of the kernel have thefrom P = (P1; : : : ; P1). Then one sees that P1 2 E[n℄. 2We identify NK with En�1K as in the above proof. Then � operates on NK bye� = �s, where � is the anonial arithmeti automorphism of En�1K =K and theautomorphism s is given by(P1; : : : ; Pn�1) 7! (P2; P3; : : : ; Pn�1;�P1 � � � � � Pn�1):12In [Mu℄ it is proven that over an algebraially losed �eld every abelian variety is isogenous toa prinipally polarized abelian variety. This is not true over an arbitrary ground�eld, the reasonbeing that the kernel of a polarization need not have a non-trivial subgroup.



The N�eron-Severi group of the trae-zero-hypersurfae 51This orresponds to the matrix
S = 0BBBBB� 0 1 . . . 0... . . . . . . 00 . . . 0 1�1 �1 � � � �1

1CCCCCA : (2.7)As a speial ase of Proposition 2.16 we get:Proposition 2.19 Let Kjk be a yli Galois extension of perfet �elds and letE be a non-super-singular ellipti urve. Assume that all K-endomorphism of EKare de�ned over k. Let N be the trae-zero-hypersurfae of the Weil-restritionwith respet to Kjk. Let S be de�ned as in equation (2.7). Then the N�eron-Severigroup of N orresponds to the subgroup of hermitian matries X with entries inEndk(E) whih satisfy S>XS = X:
2.3.2 A basis for the N�eron-Severi groupFrom now on we assume that the degree n is odd and that E is non-super singular.Reall that under our assumption that n be odd, all K-endomorphism of EKare de�ned over k.Let n = 2m + 1. Then N is an abelian variety of dimension 2m, NK ' E2mK .We want to de�ne a basis of NS(E2m) = NS(E2mK ) whih is permuted under theoperation of the Galois group of K over k, i.e. if x is an element of the basis, thens�(x) shall also be an element of the basis. Then the linear invariants of this basisform a basis of NS(NK)Gal(Kjk) ' NS(N).We onsider the ase that E has no omplex multipliation �rst. In this aseNS(E2m) is the group of symmetri 2m � 2m-matries with entries in Z, and sowe want to �nd a basis for this group suh that if X is an element of this basis,S>XS is also an element of this basis.Let Eij be the matrix whih is zero exept at the entry (i; j) where it is 1.Let Ai;j be the matrix whih is zero exept at (i; j) and (j; i) where it is 1. (Ifi = j there is only one non-zero entry.) So Ai;i = Ei;i and Ai;j = Ei;j + Ej;i fori 6= j. The m(2m + 1) matries Ai;j for 1 � i � j � n form a basis of the freeabelian group of symmetri matries with entries in Z. For any symmetri matrixX, let X = Pi�jX(i; j)Ai;j where X(i; j) 2 Z. We also write X(j; i) for X(i; j)(i � j).



52 Chapter 2. Weil-restritions of old abelian varietiesLet Bl :=Pi=1;��� ;2m�Ei;l +Pj=1;��� ;2m�El;j =0BBBBBBBBBBBB�
l-th olumn�1...�1l-th row �1 � � � �1 �2 1 � � � 1�1...�1

1CCCCCCCCCCCCA :
Let V :=P1�i;j�2mEi;j = ((1)) be the matrix whose entries are all 1.Lemma 2.20 Let m be a number. Then Ai;j for i � j; j � i 6= m;m + 1, Blfor l 6= m;m + 1 and V form a basis for the free abelian group of symmetri2m� 2m-matries with entries in Z.Proof The set de�ned in the lemma onsists of m(2m+1)� (2m� 1) of the formAi;j, 2m� 2 elements of the form Bl and V , thus the total number of elements ism(2m+ 1) { as required for a basis.We have to hek that that the base hange matrix from the basis Ai;j; i; j =1; : : : ; n to the elements in the lemma is invertible.For this, we only have to hek that the following 2m � 1� 2m� 1-matrix isinvertible:0BBBB� B1(1; m + 1) � � � Bm�1(1; m + 1) Bm+2(1; m+ 1) � � � B2m(1; m+ 1) V (1; m + 1)... ... ... ... ...B1(m; 2m) � � � Bm�1(m; 2m) Bm+2(m; 2m) � � � B2m(m; 2m) V (m; 2m)B1(1; m + 2) � � � Bm�1(1; m + 2) Bm+2(1; m+ 2) � � � B2m(1; m+ 2) V (1; m + 2)... ... ... ... ...B1(m � 1; 2m) � � � Bm�1(m � 1; 2m) Bm+2(m� 1; 2m) � � � B2m(m� 1; 2m) V (m � 1; 2m)

1CCCCAThis is 0BBBBBBBBBBBBBBBBBBB�
B1 B2 ��� Bm�1 Bm+2 ��� B2m�1 B2m V# # # # # # #�1 0 � � � � � � 0 1�1 �1 1. . . . . . ...�1 �1 10 � � � � � � 0 �1 1�1 �1 1�1 . . . 1. . . �1 ...�1 �1 1

1CCCCCCCCCCCCCCCCCCCA :



The N�eron-Severi group of the trae-zero-hypersurfae 53Exept for the sign this has the same determinant as0BBBBBBBBBBBBBBB�
1 0 � � � � � � 0 11 1 1. . . . . . ...1 1 10 � � � � � � 0 1 10 1 00 �1 . . . 0. . . . . . 1 ...0 �1 1 0

1CCCCCCCCCCCCCCCA :
And the determinant of this matrix isdet0BBBBBB� 1 11 0�1 . . . 0. . . 1 ...�1 1 0

1CCCCCCA = det0BBBB� 1�1 . . .. . . 1�1 1
1CCCCA = 1:2 We now hek that this basis is permuted under the Galois-operation, i.e. ifX is an element of the basis, then S>XS is another element of the basis.We do some alulations �rst.Let j < 2m. Then Ei;jS = Ei;j+1.Ei;2mS =Pj=1;:::;2m�Ei;j.Let i < 2m. Then S>Ei;j = Ei+1;j.S>E2m;j =Pi=1;:::;2m�Ei;j.It followsLet i; j < 2m. Then S>Ei;jS = Ei+1;j+1.Let i < 2m. Then S>Ei;2mS = S>(Pj=1;:::;2m�Ei;j) =Pj=1;:::;2m�Ei+1;j.Let j < 2m. Then S>E2m;jS = S>E2m;j+1 =Pi=1;:::;2m�Ei;j+1.S>E2m;2mS = S>(Pj=1;:::;2m�E2m;j) =Pi;j=1;:::;2mEi;j .And this impliesLet i < 2m. Then S>(Pj=1;:::;2mEi;j)S =Pj=1;:::;2m�1Ei+1;j+1 +Pj=1;:::;2m�Ei+1;j = �Ei+1;1.S>(Pj=1;:::;2mE2m;j)S =Pi=1;:::;2m; j=1;:::;2m�1�Ei;j+1 +Pi;j=1;:::;2mEi;j =Pi=1;:::;2mEi;1.Let j < 2m. Then S>(Pi=1;:::;2mEi;j)S =



54 Chapter 2. Weil-restritions of old abelian varietiesPi=1;:::;2m�1Ei+1;j+1 +Pi=1;:::;2m�Ei;j+1 = �E1;j+1.S>(Pi=1;:::;2mEi;2m)S =Pi=1;:::;2m�1 j=1;:::;2m�Ei+1;j +Pi;j=1;:::;2mEi;j =Pj=1;:::;2mE1;j .AndS>(Pi;j=1;:::;2mEi;j)S =(S>(Pi=1;:::;2m�1Pj=1;:::;2mEi;j)S + S>(Pj=1;:::;2mE2m;j)S =(Pi=1;:::;2m�1�Ei+1;1) + (Pi=1;:::;2mEi;1) = E1;1.It follows:Lemma 2.21Let 1 < i � j. Then S>Ai;jS = Ai+1;j+1.S>A2m;2mS = V .S>V S = A1;1.Let i < 2m. Then S>Ai;2mS = Bi+1.S>B2mS = B1.Let l < 2m. Then S>BlS = A1;l+1.With this result it is easy to give a basis of NS(N) as a subgroup ofM2m�2m(Z).For the onvenient notation let for l = 0; : : : ; 2m� 1 Vl :=Pi=1;:::;2m�lAi;i+l.So if we all the main-diagonal the 0-diagonal and give numbers 1; : : : ; 2m� 1to the upper diagonals and numbers �1; : : : ;�2m+1 to the lower diagonals, thenVi is zero exept at the ith and �ith diagonal where all entries are 1.It follows from the lemma that the following matries de�ne a basis of NS(N):V0 +Pi=0;:::;2m�1 Vi.V1 +B1 +B2m if m � 2.Vl + V2m�l+1 + Bl + B2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1).We now study the ase that E has omplex multipliation (over k). Sinewe assumed that E is non-super-singular, Endk(E) is an order in an imaginaryquadrati �eld. There exists an � 2Endk(E) suh that 1; � is a basis of thefree abelian group Endk(E). (If (1; �0) is a basis of the main order and f is theondutor of the order then (1; f�0) is a basis of Endk(E).)With respet to this � we want to de�ne a basis of the free abelian group ofhermitian n�n-matries with entries in Z[�℄ =Endk(E). The basis de�ned abovewill be a part of the new basis. Then we will show that the new elements of thebasis are also permuted by the Galois ation.Let i 6= j. Let A�i;j be the matrix whih is zero exept at the plaes (i; j)and (j; i). At the plae (i; j) it has value �, at plae (j; i) is has value �. SoAi;j := �Ei;j + �Ej;i.



The N�eron-Severi group of the trae-zero-hypersurfae 55Ai;j (i � j); A�i;j (i < j) is a basis for the group of hermitian n � n-matrieswith entries in Z[�℄. If X is any suh matrix we de�ne X(i; j; �) by X =Pi�jX(i; j)Ai;j +Pi<j X(i; j; �)A�i;j .Let B�l :=Pi=1;��� ;2m��Ei;l +Pj=1;:::;2m��El;j =0BBBBBBBBBBBB�
l-th olumn��...��l-th row �� � � � �� ��� � �� � � � ����...��

1CCCCCCCCCCCCA :
Let V � :=Pl=1;:::;2m(�+ �)Al;l +P1�j<i�2mA�i;j =0BBBBB� �+ � � : : : �� . . . . . . ...... . . . . . . �� . . . � �+ �

1CCCCCA :
Lemma 2.22 Ai;j for i � j; j � i 6= m;m + 1, Bl for l 6= m;m + 1, V;A�i;j fori < j; j � 1 6= m;m + 1; B�l for l 6= m;m + 1 and V � form a basis for the freeabelian group of hermitian 2m� 2m-matries with entries in Z[�℄.Proof We only have to hek that the matrix0BBBBB� B�1 (1; m + 1; �) : : : B�m�1(1; m+ 1; �) B�m+2(1;m + 1; �) : : : B�2m(1; m + 1; �) V�(1; m+ 1; �)... ... ... ... ...B�1 (m; 2m; �) : : : B�m�1(m; 2m;�) B�m+2(m; 2m;�) : : : B�2m(m; 2m; �) V�(m; 2m;�)B�1 (1; m + 2; �) : : : B�m�1(1; m+ 2; �) B�m+2(1;m + 2; �) : : : B�2m(1; m + 2; �) V�(1; m+ 2; �)... ... ... ... ...B�1(m� 1; 2m;�) : : : B�m�1(m � 1; 2m;�) B�m+2(m � 1; 2m;�) : : : B�2m(m� 1; 2m;�) V�(m � 1; 2m;�)

1CCCCCAis invertible. But this is the same matrix as the one onsidered in Lemma 2.20. 2Lemma 2.23Let i < j < 2m. Then S>A�i;jS = A�i+1;j+1.Let i < 2m. Then S>A�i;2mS = B�i+1.S>B�2mS = B�1 .Let l < 2m. Then S>B�l S = A�1;l+1.S>V �S = V �.



56 Chapter 2. Weil-restritions of old abelian varietiesProof Everything is proven by the alulations preeeding Lemma 2.21 but thelast equation.Now, S>(P1�i�j�2mEi;j)S = S>(P1�i�j�2m�1Ei;j)S+S>(Pi=1;:::;2mEi;2m)S =P2�i�j�2mEi;j +P1�j�2mE1;j =P1�i�j�2mEi;jandS>(P1�j�i�2mEi;j)S = S>(P1�j�i�2m�1Ei;j)S + S>(Pj=1;:::;2mE2m;j)S =P2�j�i�2mEi;j +P1�i�2mEi;1 =P1�j�i�2mEi;j .This implies S>V �S = V �. 2Let for l = 1; : : : ; 2m V �l := Pl=1;:::;2m�l A�i;i+l. Then the following matriesde�ne a basis of NS(N):V0 +Pi=0;:::;2m�1 ViV1 +B1 +B2m if m � 2Vl + V2m�l+1 + Bl + B2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1)V �1 +B�1 +B�2m if m � 2V �l + V �2m�l+1 + B�l + B�2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1)V � = (�+ �)V0 +Pl=1;:::;2m�1 V �l .We get the following proposition:Proposition 2.24 Let Kjk be a yli Galois extension of perfet �elds of degreen = 2m + 1. Let E be a non-super-singular ellipti urve over k. Let N be thetrae-zero-hypersurfae of the Weil-Restrition of EK with respet to Kjk. ThenNS(N), the N�eron-Severi group of N , equals NS(N)Gal(kjk) and is anonially asubgroup of the matrix group M2m�2m(Endk(E)). Under this inlusion, the freeabelian group NS(N) has the following basis:If E has no omplex multipliation:F0 := V0 +Pl=0;:::;2m�1 Vl { this de�nes the anonial polarization of NF1 := V1 +B1 +B2m if m � 2Fl := Vl + V2m�l+1 + Bl + B2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1).In partiular, NS(N) is m-dimensional.If E has omplex multipliation and 1; � is a basis of Endk(E):F0; : : : ; Fm�1 andF �0 := (�+ �)V0 +Pl=1;:::;2m�1 V �l .F �1 := V �1 +B�1 +B�2m if m � 2F �l := V �l + V �2m�l+1 +B�l +B�2m�l+1 for l = 2; : : : ;m� 1In partiular, NS(N) is 2m-dimensional.In this proposition, we use the same notations as above, i.e.Bl :=Pi=1;��� ;2m�Ei;l +Pj=1;:::;2m�El;j



The N�eron-Severi group of the trae-zero-hypersurfae 57B�l :=Pi=1;��� ;2m��Ei;l +Pj=1;:::;2m��El;jVl :=Pi=1;:::;2m�lEi;i+l +Pj=1;:::2m�lEj+l;j for l � 0V �l :=Pi=1;:::;2m�l �Ei;i+l +Pj=1;:::;2m�l �Ej+l;j for l � 1.De�nition Let Gm be the subgroup of M2m�2m(Z) whih is generated by thematries F0; : : : ; Fm. We have seen that F0; : : : ; Fm is a basis for this group.Let N be the trae-zero-hypersurfae as above. Then NS(N) is embedded inMn(Endk(E)), and the elements of NS(N) whih orrespond under this injetionto elements of Gm de�ne a subgroup of NS(N) whih we all the generi part ofNS(N). Loosely speaking, the elements of the generi part of NS(N) are thoseelements whih \do not ome from omplex multipliation". In partiular, if Ehas no omplex multipliation, the generi part of NS(N) is the full group.Theorem 7 Let Kjk be a yli Galois extension of perfet �elds of odd degreen. Let E be a non-super-singular ellipti urve over k. Let N be the trae-zero-hypersurfae of the Weil-Restrition of EK with respet to Kjk. Then NS(N), theN�eron-Severi group of N , equals NS(Nk)Gal(kjk).If E has no omplex multipliation (over k), the kernel of any element ofNS(N) ontains the group sheme E \N = E[n℄ of n-torsion points of E.If E has omplex multipliation, the statement is true for all elements of thegeneri part of NS(N) de�ned above.Proof Let n = 2m+1. Under the isomorphism NK ' E2mK , the .-valued points ofEK [n℄ orrespond to the .-valued points of E2mK whih are of the form (P; : : : ; P )for P 2 EK [n℄. We laim that for l = 0; : : : ;m� 1, the sum of all the olumns ofFl is a vetor of the form n0B� a1...a2m 1CA with ai 2 Z. It follows from this laim thatall .-valued points of E[n℄ are mapped to zero under every element of the generipart of NS(N).The laim is obviously true for F0; see Proposition 2.9 with the seond proof,p. 50.We make two de�nitions:First, for every symmetri 2m � 2m-matrix X, we denote Pj=1;:::;2mX(i; j) byX(i). The laim is then that for all l = 1; : : : ; m; i = 1; : : : ; 2m, F (i)l is divisibleby n.Seond, for 1 � i � j � 2m let �[i;j℄ := P=i;:::;j Æ;: : f1; : : : ; 2mg �! Z, i.e.�[i;j℄(�) = 1 i� i � � � j and 0 otherwise. (1 � � � 2m)Then V (:)l = �[1;2m�l℄ + �[l+1;2m℄.In partiular, V (1)1 = 1; V (i)1 = 2 for 2 � i � 2m � 1; V (2m)1 = 1. ThusV (i)1 = 2� Æ1;i � Æ2m;i.



58 Chapter 2. Weil-restritions of old abelian varietiesFurther, for l = 2;� m � 1; 1 � i � 2m, (Vl + V2m�l+1)(i) = (�[1;2m�l℄ +�[l+1;2m℄ + �[1;l�1℄ + �[2m�l+2;2m℄)(i) = 2� Æl;i � Æ2m�l+1;i.It follows for l = 1; : : : m� 1 :For i 6= l; 2m� l + 1 is F (i)l = 2 +Bl(i; l) +B2m�l+1(i; 2m� l + 1) = 2� 2 = 0.F (l)l = 1 +Pj=1;:::;2mBl(l; j) + B2m�l+1(l; 2m � l + 1) = 1 � (2m + 1) � 1 =�(2m+ 1) = �n.F (2m�l+1)l = 1+Pj=1;:::;2mB2m�l+1(2m� l+1; j)+Bl(2m� l+1; l) = 1� (2m+1)� 1 = �(2m+ 1) = �n. 2If follows:Corollary 2.25 No element of the generi part of NS(N) de�nes a prinipal po-larization.We already know that the anonial polarization has kernel E[n℄. So:Corollary 2.26 Let E have no omplex multipliation (over k). Then N is notprinipally polarized. If n is a prime, N is isogenous to a prinipally polarizedabelian variety i� E[n℄ has a non-trivial sub-groupsheme over k.2.3.3 Complex multipliationLet Kjk be as above and let E be a non-super-singular ellipti urve with omplexmultipliation (over k). We want to study whether the trae-zero-hypersurfae Nis prinipally polarized. Sine NS(N) ' NS(Nk)Gal(kjk), all polarizations of N arede�ned by ample sheaves on N itself.With Proposition 2.24 and the help of Lemmata 2.12 and 2.14 the questionwhether N has a prinipal polarization is equivalent to a numerial onditions:There exists a sheaf with Euler harateristi 1 i� the polynomial equation ofdegree 2m in 2m variablesdet(x0F0 + � � � + xm�1Fm�1 + y0F �0 + � � �+ ym�1F �m�1) = �1is solvable in the integers.A solution to this equation de�nes a prinipal polarization i� x0F0 + � � � +xm�1Fm�1 + y0F �0 + ym�1F �m�1 has only positive eigenvalues. (Of ourse, thisimplies that the determinant had to be 1 in the above equation.)We now perform these alulations expliitely for n = 3.Under our assumption of non-super-singularity, Endk(E) is an order in theimaginary quadrati �eld End0k(E). Let End0k(E) = Q(pD);D < 0 and let Æ :=pD. There exists an f 2 N suh that Endk(E) is of the form Z+ fO where Ois the main order in the �eld End0k(E) (i.e. it is the normal losure of Z). Thenumber f is alled the ondutor of the order.



The N�eron-Severi group of the trae-zero-hypersurfae 59D � 2; 3 mod 4 Then 1; fÆ is a basis of Endk(E).Note that if X is some 2�2-matrix with det(X) > 0 then either X or �X haspositive eigenvalues. So there exists a prinipal polarization on N i�1 != det(xF0 + yF fÆ0 ) = det� 2x x+ yfÆx� yfÆ 2x � = 3x2 + y2f2Dis solvable for x; y 2 Z.D � 1 mod 4 Then 1; f 1+Æ2 is a basis of Endk(E).xF0 + yF f 1+Æ20 = � 2x+ yf x+ yf 1+Æ2x+ yf 1�Æ2 2x+ yf �The determinant of this matrix is4x2 + 4xyf + y2f2 � x2 � xyf 1 + Æ2 � xyf 1� Æ2 � y2f2 1�D4 =3x2 + xy(4f � f) + y2f2 4� 1 +D4 =3x2 + 3xyf + y2f2 3 +D4So in this ase N has a prinipal polarization i�3x2 + 3xyf + y2f23 +D4 = 1is solvable with x; y 2 Z.Theorem 8 Let Kjk be a Galois �eld extension of perfet �elds of degree 3. LetE be a non-super-singular ellipti urve over k. Let N be the trae-zero-surfae ofthe Weil-restrition of EK with respet to Kjk.If E has no omplex multipliation (over k), then the N�eron-Severi group ofN is a free abelian group on 1 generator, generated by an ample sheaf with kernelE[3℄. In partiular, N is not prinipally polarized.If E has omplex multipliation (over k), then NS(N) is a free abelian groupon 2 generators. Let End0k(E) = Q(pD);D < 0. Let f be the ondutor of theorder Endk(E). Then:If D � 2; 3 mod 4, then N is prinipally polarized i� 3x2 + y2f2D = 1 issolvable in Z.If D � 1 mod 4 then N is prinipally polarized i� 3x2 + 3xyf + y2f2 3+D4 = 1is solvable in Z.



60 Chapter 2. Weil-restritions of old abelian varieties2.4 Curves on the trae-zero-hypersurfaefor degree 3For this setion, let Kjk be a Galois �eld extension of perfet �elds of degree 3, Ean ellipti k-urve, W the Weil-restrition of AK with respet to Kjk and N thetrae-zero-hypersurfae on W . 13We want to study the trae-zero-surfae N using expliit equations and therebyrelate the results of the previous setion with expliit alulations on N .By a theorem of A.Weil, a prinipal polarization of an abelian surfae A oversome �eld k is de�ned by a proper geometrially redued urve on A whih iseither non-singular, geometrially irreduible and of genus 2 or geometrially thepointed union of two ellipti urves. In the �rst ase, A is the Jaobian of thisurve, in the seond Ak is isomorphi to the diret produt of the two elliptiurves; see Proposition A.27 in Subsetion A.2.7 in the appendix.Now let A be a simple abelian surfae whih is isogenous to a prinipally po-larized abelian surfae eA, i.e. there exists an isogeny � : eA �! A. Assume that �is not an isomorphism. Then if the polarization on eA is given by a geometriallyirreduible urve, the image of this urve on A is a singular urve whose normal-ization has genus 2, and if the polarization on eA is given geometrially by twoellipti urves, the images of these ellipti urves are still ellipti urves, but theyinterset in more than one point.We want to �nd these urves in ases in whih we know that the trae-zero-hypersurfae is isogenous to a prinipally polarized abelian variety.We will sueed insofar as for har(k) = 3, we will �nd a urve on N whosenormalization has genus 2. If har(k) > 3; �3 2 k and the x-oordinate of a 3-torsion point lies in k, we will �nd suh a urve after possibly a quadrati extensionof k.Before starting with the onrete alulations we remark that by Corollary 2.8if E is non-super-singular and �3 =2 Endk(E), N is simple. Now, urves withj-invariant 0 have an endomorphism algebra whih ontains �3. Thus with [Mu,Appendix I, p.258, Corollary℄, we onlude that if k is �nite, N is simple providedthat E is non-super-singular and Ek is not isogenous to an ellipti urve withj-invariant 0.2.4.1 The trae-zero-hypersurfae for har(k) 6= 2; 3 14Let har(k) 6= 2; 3 and assume that the 3-rd roots of unity are ontained in k. Wewant to alulate equations of the trae-zero-hypersurfae N .13If S is a losed subsheme of a variety V , we say that S is on V .14The results in this subsetion are based on alulations by G.Frey and N.Naumann. Someorretions and additional remarks are due to the author.



Curves on the trae-zero-hypersurfae for degree 3 61Let �3 2 k be a third root of unity. (If k = Fp , p prime, this means thatp � 1 mod 3.) By Kummer-theory, there exists an � 2 k with �3 = a 2 k. Let� 2 Gal(Kjk) be given by �(�) = �3�.Let the ellipti urve E be de�ned by the aÆne equationY 2 = X3 +AX +B; (2.8)where A;B 2 k.Aording to the \onstrution of the Weil-restrition by restrition of salars"(see Subsetion 1.1.3), we make the substitutionsX = x0 
k 1 + x1 
k �+ x2 
k �2Y = y0 
k 1 + x1 
k �+ x2 
k �2 (2.9)and get the equation (y0 
k 1 + x1 
k �+ x2 
k �2)2 =(x0 
k 1 + x1 
k �+ x2 
k �2)3 +A(x0 
k 1 + x1 
k �+ x2 
k �2) +B 
k 1:Expanding out this equation, we get:y20 + 2ay1y2 = x30 + ax31 + a2x32 + 6ax0x1x2 +Ax0 +B;ay22 + 2y0y1 = 3x20x1 + 3ax0x22 + 3ax21x2 +Ax1;y21 + 2y0y2 = 3x20x2 + 3x0x21 + 3ax1x22 +Ax2: (2.10)This system of equations de�nes an open, aÆne part W0 of the Weil-restritionof W in A 6k , the 6-dimensional aÆne spae over k. (The losed subset WnW0 isequal to the support of the divisor D de�ning the \anonial" polarization of W .)We want to alulate the intersetion of the trae-zero-hypersurfae N withW0. We will denote this surfae by N0. We think of N0 as a surfae in A 6k .The trae zero-hypersurfae is de�ned by expanding the equation 15P � �(P ) = 	�2(P );(P a A
k K-valued point of E for some k-algebra A:) (2.11)Let P be a A 
k K-valued point of E whih orresponds to a A-valued point onW0 and satis�es this equation for the X-oordinate, i.e.:X(P � �(P )) = X(	�2(P )) = X(�2(P )) (2.12)Then P satis�es (2.11) or it satis�esP � �(P ) = �2(P ) (2.13)If this is the ase, P = �2(P ) 	 �(P ), and thus the A-valued point of W or-responding to P fators through E. This means that P = �(P ) = �2(P ), andsubstituting this into (2.13), we get P = 0, the zero on E. But this is not possiblesine the zero on E orresponds to a point of W whih does not lie on W0. Thuswe may use equation (2.12) instead of (2.11).15In this setion, in order to distinguish the addition on E from addition of oordinates, wewrite � for the addition on E.



62 Chapter 2. Weil-restritions of old abelian varietiesWe now want to use the \usual" group law on an ellipti urve E with Weier-stra�-equation given as above; see [Si, III,2℄. For a k-valued point P , let(x(P ); y(P )) denote the oordinates. Then, if P1; P2 are two k-valued points withx(P1) 6= x(P2), x(P1 � P2) = � y(P2)� y(P1)x(P2)� x(P1)�2 � x(P1)� x(P2): (2.14)To use this formula, we restrit ourselves from A
k K-valued points as above tok 
k K ' k3-valued points. This is possible beause the subvariety N0 of W0 isuniquely determined by its k-valued points.Let P1 and P2 be two k3-valued points with x-oordinate x(Pi) = (x(1)(Pi);x(2)(Pi); x(3)3 (Pi)). Then beause of the isomorphism E(k3) ' E(k)3, equation(2.14) remains valid if xi(P1) 6= xi(P2) for i = 1; 2; 3.Let X = x0 
k 1 + x1 
k � + x2 
k �2 2 k 
k K. Then X orresponds to(x(1); x(2); x(3)) 2 k3 where x(i) = (idk 
k �i�1)(X) = x0 + �i�13 �x1 + �2(i�1)3 �2x2.Let P 2 E(k
kK) with x-oordinate X = x0
k1+x1
k�+x2
k�2 2 k
kK.We want to apply the group law (2.14) toX and �(X). This is possible if x(i) 6= x(j)for i; j with i 6= j. We have x(i) = x(j)  !x0 + �i�1�x1 + �i�13 �2x2 = x0 + �j�13 �x1 + �j�13 �2x2  !(�i�13 � �j�13 )x1 = �(�2(i�1)3 � �2(j�1)3 )x2: (2.15)Thus the group law (2.14) remains valid outside the intersetion of W0 with thethree hyperplanes in A 6k de�ned by (2.15). We denote the union of these hyper-planes by H. We resrit ourselves to the subvariety W0nH.Now equation (2.12) is equivalent to� �(Y )� Y�(X) �X�2 = X + �(X) + �2(X): (2.16)Under the substitutions (2.9), this is equivalent to((y1��3y1)
k�+(y2��23y2)
k�2)2 = 3x0((x1��3x1)
k�+(x2��23x2)
k�2)2:Expanding out one obtains(1� �3)(1 � �23 )a (y1y2 � 3x0x1x2)
k 1 + (1� �23 )2a (y22 � 3x0x22)
k �+(1� �3)2a (y21 � 3x0x21)
k �2 = 0:Thus as a subvariety of W0nH, N0nH is de�ned byy1y2 = 3x0x1x2y21 = 3x0x21y22 = 3x0x22: (2.17)



Curves on the trae-zero-hypersurfae for degree 3 63We an insert these equations into (2.10). Thus N0nH is de�ned (as a subvarietyof A 6knH) by (2.17) andy20 = x30 + ax31 + a2x32 +Ax0 +B2y0y1 = 3x20x1 + 3ax21x2 +Ax12y0y2 = 3x20x2 + 3ax1x22 +Ax2: (2.18)Note that the variety de�ned by (2.17) and (2.18) in A 6k ontains E, thus it is notbirational to N0.Now regard the projetionq : A 6k �! A 4k ; (x0; x1; x2; y0; y1; y2) 7! (x0; x1; x2; y0):The restrition of q to the variety de�ned by (2.17) and (2.18) is an isomorphismoutside y0 = 0, beause for y0 6= 0, we an divide the last two equations of (2.18)by 2y0 and thus obtain equations for y1 and y2. (For y0 = 0, the projetion induesa 2-fold overing: For y0 = 0, equation (2.18) imposes no ondition on y1; y2, andby (2.17), (y1; y2) is only determined up to a sign.)Multiplying the resulting equations by 4y20 and dividing by x1x2, x21 and x22respetively (whih is possible outside H), (2.17) beomes(3x20 + 3ax1x2 +A)2 = 12x0y20 : (2.19)Thus under q, N0n(H [ fy0 = 0g) is isomorphi to the variety de�ned by thisequation and the �rst equation of (2.18), i.e. to the variety de�ned by the followingequations in A 4kn(q(H) [ fy0 = 0g).y20 = x30 + ax31 + a2x32 +Ax0 +B(3x20 + 3ax1x2 +A)2 = 12x0(x30 + ax31 + a2x32 +Ax0 +B) (2.20)Let N1 be the variety de�ned by these two equations in A 4k . We now want to showthat N1 has only one irreduible omponent and thus is birational to N0 = N\W0or { what is the same { to N .The seond equation de�nes by Krull's Prinipal Ideal Theorem ([Ei, Theorem10.1℄) a subsheme of pure dimension 2 in A 3k ; the projetion r : A 4k �! A 3k :(x0; x1; x2; y0) 7! (x0; x1; x2) restrits to a �nite (thus surjetive) morphism ofdegree 2 from N1 to the sheme de�ned by the seond equation.We study the sheme de�ned by the seond equation �rst. We know thatthis sheme is outside r Æ q(H) isomorphi to r Æ q(N0). If it had more than oneomponent, the additional omponent would have to be ontained in rÆq(H). Sineit has pure dimension 2, the additional omponent would have to be the image ofone omponent of H under r Æ q. But the intersetion of the sheme de�ned bythe seond equation with H is at most 1-dimensional and so the sheme does nothave suh a omponent.Sine no omponent of the variety de�ned by the seond equation lies in r Æq(H), no omponent of N1 lies in r�1(rq(H)) = p(H). Thus N1 is birational toN0, more preisely, the restrition of p to N1 is a birational map to N1 whih isan isomorphism outside H [ fy0 = 0g.



64 Chapter 2. Weil-restritions of old abelian varietiesThere is a �bration by projetion onto x0. We will now examine the resultingurves if we �x x0. The intersetion of these urves with p(H) and y0 = 0 respe-tively is 0-dimensional and so these urves are birational to urves whih lie onN . 16Let x0 6= 0 be �xed.By (2.19), the �bers under the projetions to x0 onsist (geometrially) of twoisomorphi omponents { de�ned by the seond equation of (2.20) (whih mightitself be reduible), both de�ned over k(p12x0).Let C0 denote the aÆne k-sheme de�ned by the seond equation. We laimthat C0 is a geometrially irreduible, geometrially redued k-urve.Proof Let f(x1; x2) := (3x20+3ax1x2+A)2� 12x0(x30+ax31+a2x32+Ax0+B)be the de�ning polynomial of C0.Consider the morphism C0k �! A 1k de�ned by (x1; x2) 7! x1, orrespondingto the inlusion k[x1℄ ,! k[x1; x2℄=(f).Under all speializations k[x1℄ �! k as well as under the inlusion k[x1℄ �!k(x1), the polynomial f has degree 3.Thus for some topologial point x of A 1k , the �ber of the morphism C0k �! A 1kat the �xed point x is given by a 3-dimensional algebra over the orrespondingresidue lass �eld at x.In partiular, the generi points of C0k are mapped to the generi point of A 1k .This implies that the sheme C0k is irreduible i� the �ber over the generipoint of A 1k is, i.e. if the nilideal in the spetrum of the algebra k(x1)[x2℄=(f) isprime. Further, sine k[x1; x2℄=(f) �! k(x1)[x2℄=(f) is an inlusion, the shemeC0k is redued i� the algebra k(x1)[x2℄=(f) is.Thus C0k is integral i� the algebra k(x1)[x2℄=(f) is a �eld. This is the ase i�the polynomial f is irreduible over k(x1).Now, if f was reduible over k(x1), it would ontain a fator of degree 1.This would mean that the the redued algebra (k(x1)[x2℄=(f))red splits into thediret sum of k(x1) and another k(x1)-algebra whih would imply that C0redk wouldontain a rational urve. This rational urve would be birational to a urve onthe abelian surfae Nk whih is impossible. 2Let C be the losure of C0 in P2k. This means that C is obtained by writingthe seond equation of (2.20) in homogeneous form (where x0 is a onstant), i.e.C is given by(3x20z4 + 3ax1x2 +Az4)2 = 12x0(x30z4 + ax31z + a2x32z + (Ax0 +B)z4):Setting z = 0, we obtain (3ax1x2)2 = 0:16We use the following fat: Let V be a proper k-variety, C a smooth k-urve, C0 an open, aÆnepart of C and C0 �! V a k-morphism. Then this morphism an be extended to a k-morphismC �! V .



Curves on the trae-zero-hypersurfae for degree 3 65Thus there are two points at in�nity: [1 : 0 : 0℄ and [0 : 1 : 0℄.The derivative with respet to z is for z = 012x0(ax31 + a2x32);and this is non-zero for the two points at in�nity. Thus there are no singularitiesof C at in�nity.The geometri operation a� on W de�ned by the arithmeti operation � onAK is given by (y0; x0; x1; x2) 7! (y0; x0; �3x1; �23x2). Analogously, one gets anoperation on C. In partiular, singularities outside (x1; x2) = (0; 0) our intriples.Now, the arithmeti genus of C0 is (4�1)(4�2)2 = 3, and this is equal to thegenus of the normalization of C0 plus the singularity degree. (And the singularitydegree is larger or equal the number of singularities.) Thus if C0 had singularitiesoutside (0; 0), it would be a rational urve. But on the other hand, C is birationalto a urve on the abelian variety N . Thus it annot be a rational urve sine thereare no suh urves on abelian varieties.Thus the only possible singularity of C0 is (x1; x2) = (0; 0).Speializing the de�ning equation to this point, we get:(3x20 +A)2 = 12x0(x30 +Ax0 +B);i.e. 3x40 + 6Ax20 + 12Bx0 �A2 = 0This is the 3rd division polynomial of E; see [Si, III,10,Exerise 3.7℄. Thus (0; 0)is a point on C i� x0 is the x-oordinate of a 3-torsion point. We now hek if(0; 0) is a singularity: The derivatives of the de�ning equation of C with respetto x1 and x2 to the point (0; 0) are both 0. Thus if (0; 0) is a point on C0, it is asingularity.Assume that this is the ase and furthermore that �3 =2 Endk(Ek). Then byTheorem 5, N 
k k(p12x0) is simple and the genus of the normalization of C is 2.If x0 is not the x-oordinate of a 3-torsion point, C0 is non-singular. Being aquadri urve in P2k(p12x0), it is a so-alled anonial urve; see [Ha, IV, Example5.2.1.℄.We get the following result:For any x0 6= 0, there are two urves on N 
k k(p12x0) whih are birational tothe urve C (whih depends on x0). If x0 6= 0 is not the x-oordinate of a 3-torsionpoint, C is a non-singular urve whih is a so-alled anonial urve of genus 3.However, if x0 is the x-oordinate of a 3-torsion point, C is singular, and underthe assumption �3 =2 Endk(Ek), the genus of the normalization of C is 2.



66 Chapter 2. Weil-restritions of old abelian varietiesNow let x0 = 0.Then the seond equation of (2.20) beomes3ax1x2 +A = 0:Let A 6= 0. Substituting x2 = � A3ax�11 into the �rst equation of (2.20), we get(with x0 = 0) y20 = ax31 � A327a2x�31 +B:Multipliation by x41 and substitution y = y0x21 givesy2 = ax71 +Bx41 � A327ax1: (2.21)Let C be the projetive losure of C0 in P2k. Then C is either a rational urve or ahyperellipti urve whose normalization has genus � 3. The �rst ase is impossiblesine it is a urve on an abelian surfae.So, if the disriminant of the polynomial on the right-hand side is non-zero, thenormalization of C has genus 3, and in general it is a hyperellipti urve whosenormalization has genus � 3. If N is simple, then the normalization of C hasgenus 2 or 3.If N is simple, this urve is de�ned even without the assumption �3 2 k.One takes the intersetion of N with the surfae de�ned by \expanding out"�(Y ) = Y . The normalization of the resulting urve is still hyperellipti, sineevery non-singular urve with genus � 2 whih is hyperellipti over some �eld ishyperellipti wherever it is de�ned. (This holds sine its funtion �eld ontains aunique rational sub�eld of index 2.)For A = 0 i.e. j = 0, we get two ellipti urves. Note that in this ase �3 2End0k(E) and thus this is onsistent with the deomposition of W in Subsetion2.1.3.By (2.16), ondition x0 = 0 is { outside of H { equivalent to Y = �(Y ). Thuswe get the following result:Under the ondition j 6= 0, the intersetion of N with the subvariety of Wde�ned by Y = �(Y ) is a hyperellipti urve C whose normalization has genus �3. (3 is the \generi" ase.)We now translate the idea of interseting N0 with the variety de�ned by \ex-panding out" �(Y ) = Y to harateristi 2 and 3.The urves onstruted in this way will also be used as examples in the nexthapter (Setion 3.3) where we outline attaks on the DL-problem in E(K).2.4.2 The urve de�ned by �(Y ) = YWe explain the idea �rst independently of the harateristi.Let E be given by the following aÆne Weierstra�-equation:Y 2 +A1XY +A3Y = X3 +A2X2 +A4XA6; (2.22)



Curves on the trae-zero-hypersurfae for degree 3 67where all Ai lie in k.We now interset the subvariety of W0 whih is given by the expansion of theequation Y = �(Y ) (2.23)with N0, the open, aÆne part of the trae-zero-hypersurfae N .We restrit ourselves to the aÆne parts W0nH and N0nH of W and N de�nedas above.To de�ne N0, we an just as for har(k) > 3 restrit ourselves to the equationfor the X-oordinate. Under (2.23), we haveX(P � �(P )) = �A2 �X � �(X):Thus under (2.23), we get the following easy de�ning equation for N0.X + �(X) + �2(X) = �A2 (2.24)Let C0 be the subsheme of W0 whih is de�ned by (2.23) and (2.24). It will turnout to be a urve.har(k) > 3This ase was treated above. Stating with an ellipti urve with j-invariant 6= 0de�ned by equation (2.8), we obtain a urve whih is (possibly after a base-hangek(�3)jk) birational to the urve given by (2.21).har (k) = 2Again assume that �3 2 k and assume that j 6= 0. (If �3 is not ontained in k,the urve C0 is after the base-hange k(�3)jk given by the equations whih nowfollow.)Let �; a and � be de�ned as above. Let E be given by an aÆne equationY 2 +XY = X3 +A2X2 +B; (2.25)where A2; B 2 k; B 6= 0; see [Si, Appendix A, Proposition 1.1. ()℄.Again we make the substitutions (2.9). Then the subsheme C0 is given byy1 = y2 = 0; x0 = �A2 = A2;and (2.25) beomes(1
 y0)2 + (1
A2 + �
 x1 + �2 
 x2)(1 
 y0) =(1
A2 + �
 x1 + �2 
 x2)3 +A2(1
A2 + �
 x1 + �2 
 x2)2 +B: (2.26)This expands to the following three equations, whih desribe C0 in A 4k .y20 +A2y0 = A32 + ax31 + a2x32 +A22 +Bx1y0 = A22x1 + aA2x22 + ax21x2 + aA2x22x2y0 = A22x2 +A2x21 + ax1x22 +A2x21 (2.27)



68 Chapter 2. Weil-restritions of old abelian varietiesThe seond and third equation an be simpli�ed tox1y0 = A22x1 + ax21x2x2y0 = A22x2 + ax1x22; (2.28)and for (x1; x2) 6= (0; 0), this is equivalent toy0 = A22 + ax1x2:Substituting this into the �rst equation of (2.27), we get the following equationfor C0 A42 + a2x21x22 +A32 + aA2x1x2 = A32 + ax31 + a2x32 +A22 +B:The sheme C0 is a geometrially irreduible, geometrially redued urve.The proof of this fat is analogous to the one on page 64.The urve C0 is an open aÆne part of the projetive urve C de�ned by theorresponding homogeneous equationa2x21x22 + aA2x1x2z2 + ax31z + a2x32z + (A22 +A42 +B)z4 = 0: (2.29)As this equation has degree 4, C has arithmeti genus 3. Just as in the aseof har(k) > 3 disussed above, singularities outside in�nity and (0; 0) have toour in triples. So again, if the urve had suh singularities, the genus of itsnormalization would be 0, what is impossible. Thus the only possible singularitiesare (0; 0) and the points at in�nity.We examine the singularities at in�nity. The urve C has the in�nite points[1 : 0 : 0℄ and [0 : 1 : 0℄. Taking the derivative of (2.29) with respet to z (notethat har(k) = 2) gives ax31 + a2x32:This is 6= 0 for both in�nite points 6= 0. Thus C has no singularities at in�nity.We now look at the possible singularity at (0; 0). Firstly, (0; 0) would have tolie on C0. Thus A22 +A42 +B = 0:Seondly, the derivatives with respet to x1 and x2 at (0; 0) would both have to be0. This implies A2 = 0 and thus also B = 0. This is impossible beause it wouldmean that E is singular.We arrive at the following haraterization of the urve C:C is a anonial urve of degree 4 and genus 3 whih is the normalization of aurve on N .



Curves on the trae-zero-hypersurfae for degree 3 69har(k) = 3Now let k be a �eld with harateristi 3. Aording to Artin-Shreier theory, Kjkis generated by some � with �3 � � = a 2 k. The Galois group is generated by �with �(�) = �+ 1.For later use, we alulate�(�2) = (�+ 1)2 = �2 � �+ 1�2(�2) = (�2(�))2 = (�� 1)2 = �2 + �+ 1 (2.30)and �3 = �+ a�4 = �2 + �a�5 = �2a+ �+ a�6 = �2 � �a+ a2: (2.31)Let E be given by the equationY 2 = X3 +A2X2 +B; (2.32)where aording to the assumptions A2; B 2 k and are both non-zero; see [Si,Appendix A, Proposition 1.1. ()℄.Again under the substitutions (2.9), (2.24) beomesx2 = A2; y1 = y2 = 0;and (2.32) gives1
 y20 = 1
 x30 + (�
 x31 + 1
 ax31) + (�2A32 � �
 aA32 + 1
 a2A32)+A2[1
 x20 + �2 
 x21 + �2A22 + �
 aA22��
 x0x1 � �2 
A2x0 � �
A2x1 � 1
 aA2x1℄ +BThus C0 is given by the following three equation in A 4k .y20 = x30 + ax31 + a2A32 +A2x20 � aA22x1 +B0 = x31 � aA32 + aA32 �A2x0x1 �A22x10 = A32 +A2x21 +A32 �A22x0: (2.33)The third equation an be divided by A2 6= 0 and is equivalent to0 = x21 �A22 �A2x0:This equation also implies the seond equation of (2.33) and is equivalent tox0 = A�12 x21 �A2: (2.34)This implies x20 = A�22 x41 + x21 +A22: (2.35)



70 Chapter 2. Weil-restritions of old abelian varietiesIf we insert (2.34) and (2.35) in the �rst equation of (2.33), we are given the urveC0, desribed byy20 = A�32 x61 �A32 + ax31 + a2A32 +A�12 x41 +A2x21 +A32 � aA22x1 +B;i.e. y20 = A�32 x61 +A�12 x41 + ax31 +A2x21 � aA22x1 + a2A32 +B: (2.36)This is a hyperellipti urve of degree 6.Let C be the projetive losure of C0 in P2k. We obtain the following hara-terization of C:The normalization of C is a hyperellipti urve of genus 1 or 2. (If N is simple,the genus is 2.) In partiular, if N is simple, it is isogenous to the Jaobian varietyof the normalization of C.



Chapter 3Coverings of urves and thedisrete-logarithm problem
Introdution and resultsThis hapter is devoted to ryptoanalyti appliations.Let k be a �nite �eld,Kjk a �eld extension of prime degree n. Let X 0 be a non-singular, geometrially irreduible (i.e. geometrially integral), proper urve overK. 1 Assume that X 0 has \ryptographially good" properties. Espeially, thegroup Pi0(X 0) �=Cl0(K(X 0)) should have a large prime fator. We try to trans-form the disrete-logarithm problem in Cl0(K(X 0)) into the disrete-logarithmproblem in Cl0(k(C)) for a suitable non-singular, geometrially irreduible, properk-urve C.The idea is that if the genus of C is not \too large", perhaps the disrete-logarithm problem in the group Cl0(k(C)) is \easier" than the disrete-logarithmproblem in the original group Cl0(K(X 0)). This is suggested by [En℄, [EG℄ and[Gau℄.In [GHS℄, the following approah was introdued:Let CK �! X 0 be a overing. Then K(X 0) is inluded in K(CK). Considerthe group-homomorphismnormK(CK)jk(C) Æ onK(CK)jK(X0) : Cl0(K(X 0)) �! Cl0(k(C)): (3.1)Two onditions should be ful�lled:1. The large prime fator of Cl0(K(X 0)) is preserved.2. The urve C has \reasonably nie" ryptographi properties. Espeially thegenus of C should not be \too large" in relation to n and the genus of X 0.For example, if we onsider a family of urves X 0 for di�erent extensiondegree n, by the state of the art of ryptoanalysis in lass groups of high1In this hapter, X 0 or X always denotes a urve and never a variable.71



72 Chapter 3. Coverings of urves and the DL-problemgenus urves, the genus of C should be at most quadrati in n; see [En℄.Other interesting properties of C are hyperelliptiity or automorphisms.For 1., no \theoretial result" is known to the author. 2 However, using theWeil-restrition of J(X 0) with respet to Kjk, we motivate very strongly thatthe kernel of (3.1) is small in ertain situations; see Subsetions 3.1.1 and 3.1.2,espeially Theorem 9, p. 77.Then we show how to use Galois theory to onstrut appropriate overings ofurves (or equivalently �nite extensions of funtion �elds of transendene degree1). In the ase that the Jaobian J(X 0) is a new abelian variety (for de�nition seeforeword), we give the onstrution of [GHS℄ as an example. For the ase that X 0is already de�ned over k, we �rst proof a theoretial result (Theorem 9, p. 77),then we give examples based this result (see Subsetion 3.3).
3.1 Coverings as urves on the Weil-restritionLet k be a �nite �eld of harateristi p, Kjk be an extension of �nite �eldsof prime degree n. Identify Gal(Kjk) with its opposite group and denote theFrobenius automorphism of Kjk by �Kk .Let X 0 be a geometrially integral, proper, non-singular urve over K with aK-rational point P0. Let W be the Weil-restrition of X 0 with respet to Kjk.Let C be a non-singular, irreduible proper urve over k. (We do not assumethat C is geometrially irreduible.) Then by the de�nition of the Weil-restrition,k-morphisms C �! W are in bijetion to K-morphisms CK := C 
k K �! X 0:If  : CK �! X 0 is a K-morphism, then there is a unique b : C �! W suh that = u Æ (b
 idK).Again let  : CK �! X 0 be a K-morphism, and let b : C �! W be theunique morphism with  = u Æ (b 
k idK). Then the image of  is a point i� fators through the struture morphism CK �! Spe(K) i� b fators through thestruture morphism C �! Spe(k) i� the image of b on W is a point. 3 Thus:Lemma 3.1  is dominant i� the image of b on W is a urve.From now on, let  be a dominant, �nite morphism. We all suh a morphisma overing of non-singular, proper, irreduible urves.2Of ourse, it is possible to hek that the large prime fator is preserved in spei� ases, forexample with the help of a omputer.3More generally, let D be some k-sheme. Then by funtoriality, b : C �! W has the formb = ed for some d : C �! D and e : D �! W i�  has the form  = f Æ (d 
 idK) for somed : C �! D; f : D 
k K �! X 0. (In fat, f = u Æ (e
k idK).)



Coverings as urves on the Weil-restrition 73We have a ommutative diagramCK 
((b
k idK //

��

WK u //

��

X 0
C b // W:This indues a ommutative diagramPi0(CK)N

��

Pi0(WK)(b
k idK)�oo N
��

Pi0(X 0)�
tt u�oo

Pi0(C) Pi0(W ):b�ooWe have already seen that the group-homomorphism NÆu� : Pi0(X 0) �!Pi0(W )is bijetive; see Corollary 1.19. In the ase that X 0 is an ellipti urve E0, thishomomorphism is { under the identi�ations of E0 and W with its duals viatheir anonial prinipal polarizations { nothing but the anonial isomorphismE0(K) ~�!W (k).If k(C), K(CK) and K(X 0) are the funtion �elds of C, CK and X 0 respetively,then N Æ � orresponds tonormK(CK)jk(C) Æ onK(CK)jK(X0) : Cl0(K(X 0)) �! Cl0(k(C)): (3.2)We want to study the kernel of (3.2) or { equivalently { the kernel of NÆ� :Pi0(X 0) �!Pi0(C).We note �rst that in pratie we an restrit ourselves to the ase that C isgeometrially irreduible. For, let that not be the ase. Let � := k(C) \ k, wherek is the algebrai losure of k (intersetion in some ommon over�eld). We nowmake the assumption that n does not divide [� : k℄. (To use this onstrution foran attak on the DLP in Cl0(K(X 0)), [� : k℄ should be muh smaller than n.) The�elds K and � are linearly disjoint over k, i.e. K 
k � is a �eld, denoted K�. Ifwe onsider C as a �-urve, it is geometrially irreduible and CK = C 
k K 'C 
� (K 
k �) ' C 
� K�. 4 AsnormK(CK)jk(C) Æ onK(CK)jK(X0) =normK�(CK)j�(C) Æ onK�(CK)jK�(X�) Æ onK�(X0�)jK(X0) :Cl0(K(X 0)) �! Cl0(k(C));4For de�nition of \linear disjoint" see Subsetion A.3.1 in the appendix.



74 Chapter 3. Coverings of urves and the DL-problemwe only have to onsider the kernel of (3.2) for geometrially irreduible urves.Let C be a geometrially irreduible (i.e. geometrially integral) k-urve.The kernel of NÆ� : Pi0(X 0) �! Pi0(C) is isomorphi to the kernel ofb� : Pi0(W ) �! Pi0(C). Let J(C) be the Jaobian variety of C. Then this kernelis isomorphi to the kernel of b� : Pi0(W )(k) �! J(C)(k). (This holds even ifC has no k-rational points. In this ase, we still have an injetive homomorphismPi0(C) �! J(C)(k); see [Mi-J, Remark 1.5.℄.)By Corollary 1.18, Pi0(W ) is an abelian variety whih is anonially isomor-phiResKk (J(X)), the Weil-restrition of the Jaobian variety of X 0. To study thekernel of b� : Pi0(W )(k) �! J(C)(k), we ask if the morphism b� : Pi0(W ) �!J(C) is an isogeny on large isogeny fators of Pi0(W ). If this is the ase andPi0(X 0) ' Pi0(W ) has a large prime fator, then we expet that this prime fatoris preserved under b� and thus under N Æ �, i.e. under (3.2).We make the following general assumption:The Jaobian variety of X 0 is simple and its endomorphism ring is ommutative.The assumption that the Jaobian variety is simple is natural in the ase of aryptographi appliation sine Pi0(X 0) should have a large prime fator.The seond ondition is for example ful�lled if X 0 is a non-super-singularellipti urve.3.1.1 Curves with Jaobians whih are new abelian varietiesLet X 0 be a urve whih is not de�ned over k suh that its Jaobian J(X 0) is anew abelian variety, i.e. J(X 0) is not isogenous to an abelian variety de�ned overk. For example, X 0 ould be an ellipti urve whih is not isogenous to an elliptiurve de�ned over k.In this ase, Pi0(W ) ' ResKk (J(X 0)) is simple; see Corollary 1.18 and The-orem 3.So in this ase, the kernel of (3.2) is bounded by the separability degree of themorphism from Pi0(W ) onto its image in J(C 0). Thus we expet the kernel of� to be small. In partiular, if Pi0(X 0) ontains a large prime fator, as is thease in ryptographi appliations, then we expet this fator to be preserved.3.1.2 Curves whih are de�ned over the small �eldLet X be a urve over k, X 0 := X 
k K. We assumed that X 0 has a K-rationalpoint P0. Let � : X 0 �! J(X 0) be the embedding de�ned by P0 7! 0.



Coverings as urves on the Weil-restrition 75Diagram (3.1) extends to the following diagramCK  //b
kidK
!!CC

CC
CC

CC

��

XK � // J(XK)XnK
��

u =={{{{{{{{
// J(XK)n

��

66mmmmmmmmmmmmmC b
!!DD

DD
DD

DD
D W j:=ResKk (�)

// V := ResKk (J(XK)):Lemma 3.2 j� := ResKk (�)� : bV = \ResKk (J(XK)) �! Pi0(W ) is an isomor-phism of abelian varieties.Proof This follows from the diagramResKk (J(XK))T
��

ResKk (\J(XK))ResKk (��)�oo T
��Pi0(W ) \ResKk (J(XK))j�oo

:
Here, the down-arrows are the morphisms de�ned in Subsetion 1.2.3. They areisomorphism sine XK is a urve and J(XK) an abelian variety; see Corollary 1.18and Proposition 1.20. 2Instead of asking whih isogeny fators of Pi0(W ) are preserved under b� :W �! J(C), we now ask whih isogeny fators of ResKk (J(XK)) are preservedunder b� Æ j� : bV �! J(C). This approah is more onvenient sine V =ResKk (J(XK)) is itself an abelian variety.We already assumed that J(XK) is simple and that the endomorphism ringof J(XK) is ommutative. We now assume furthermore that { after an inlusionof End0k(J(X)) into Q { End0k(J(X)) \ Q(�n) = Q . Then we know by Theorem 5that V has exatly two simple isogeny fators, J(X) itself and the trae-zero-hypersurfae N . We expet the kernel of b� to be small if the image of N underb� Æ j� is non-trivial.There exists an extension �jk of degree prime to n = [K : k℄ suh that C�has a �-rational point P and suh that End�K(J(X 0)�K) is still ommutative (i.e.End�K(J(X 0)�K) = EndK(J(X 0))).[Proof If �jk has degreem and there exists no two roots x1, x2 of the harater-isti polynomial of the Frobenius of J(X 0) (in Q ) and no l suh that � lmx1 = x2,then the roots of the harateristi polynomial of the Frobenius of J(X 0�K) aredistint. Choose suh an extension �jk whose degree is high enough (and primeto n) suh that by the \Riemann-hypothesis", C� has a �-rational point.℄



76 Chapter 3. Coverings of urves and the DL-problemNow Kjk and �jk are linearly disjoint, so if K� is some omposite of Kjk and�jk, then K� ' K 
k � and K�j� is again a �eld extension of degree n.Sine \base-restrition" ommutes with \base-extension" (see Lemma 1.1), V�is again isogenous to J(XK)� �N� and N� is again simple.Let � := j Æb. The morphism �P := T(��
kid�)ÆP Æ(�
k id�) : C� �! V� mapsthe �-rational point P of C� to 0. Let fP : C� �! J(C)� be the immersion de�nedby P 7! 0. By the universal property of the Jaobian (see [Mi-J, Proposition 6.1℄),there exists a unique morphism of abelian varieties P : J(C�) �! V� suh thatJ(C)� P
##FFFFFFFFC�fPOO �P // V�:After dualizing, we obtain [J(C)�fP�

��J(C)� bV�;��oo

P�bbDDDDDDDDwhere fP� : \J(C)� �! J(C)� is the anonial isomorphism. In the last line wean write �� instead of �P� sine T ���ÆP : Pi0(V�) �! Pi0(V�) is the identity bythe de�nition of Pi0(V�).In partiular, ker(��) = ker(P�). Under the identi�ation of V� with bV� via theprinipal polarization indued by the anonial prinipal polarization of J(X 0), theredued onneted omponent of the zero of ker(��) is the orthogonal omplementof the image of P ; see Subsetion A.2.4 in the appendix, in partiular LemmaA.22, i.e. �P � indues an isogeny of P (J(C))� with its image and is trivial onthe orthogonal omplement of this abelian subvariety.We are mainly interested in the question whether �� indues an isogeny of N�with its image, i.e. if the image of P ontains N�.Now, the image of P is the smallest abelian subvariety of N� whih ontains�P (C). Thus N� is not ontained in the image of P i� �P (C) is ontained inJ(X)�.We identi�ed Gal(Kjk) with its opposed group and denote the Frobenius au-tomorphism of Kjk by �Kk 2 Gal(Kjk). The automorphism �Kk of K indues anautomorphism of Spe(K), and this indues the \arithmeti Frobenius automor-phism" of J(XK) whih we also denote by �Kk ; f. Subsetion A.3.4.Let a = a�Kk be the k-automorphism of V orresponding to the automorphism�Kk on J(X 0); see subsetion 1.1.5. Then �P (C) is ontained in J(X)� i� ((a 
kid�)� id) Æ �P (C�) is a point, i.e. i� (((a � id) Æ �)
k id�)(C�) is a point, i.e. i�(a� id) Æ �(C) is a point.Let pk : C �! Spe(k); pK : CK �! Spe(K) be the struture morphisms.



Coverings as urves on the Weil-restrition 77Then (a� id)Æ�(C) is a point ! (a� id)Æ� fators through pk  ! there existsa q 2 V (k) with a Æ � � � = q Æ pk.For q 2 V (k), let Q := uÆ(q
k idK) be the orresponding element in J(X)(K).Then the last equation is equivalent to �Kk (�)� � = Q Æ pK , i.e. �Kk (�) = TQ Æ �by the de�nition of TQ.Similar arguments for J(X) instead of N lead toProposition 3.3 Let  : C �! X 0 be a morphism where C is a urve. Then�� : V �! J(C) indues an isogeny of� N with its image i� there does not exist a Q 2 J(X)(K) with �Kk (�)� � =Q Æ pK, i.e. �Kk (�) = TQ Æ �,� J(X) with its image i� there does not exist a Q 2 J(X)(K) with �+ � � � +�Kk n�1(�) = Q Æ pK.So if there does not exist a Q 2 J(X)(K) with �Kk (�) = TQ Æ �, then the kernelof normK(CK)jk(C) Æ onK(CK)jK(XK) : Cl0(K(XK)) �! Cl0(k(C))is bounded by the separability degree of the isogeny �� between N and its imagetimes Pi0(X). So we expet the kernel to be small.In partiular, if Pi0(XK) ontains a large prime fator, as is the ase inryptographi appliations, then we expet that this prime fator is preserved.Theorem 9 Let Kjk be an extension of �nite �elds of prime degree n. Let �Kk bethe Frobenius automorphism of Kjk. Let X be a non-singular, proper, geometri-ally irreduible urve over k of genus g with a k-rational point P0. Assume thatthe Jaobian J(XK) of XK is simple, and the endomorphism ring of J(XK) isommutative. Assume further that { after an inlusion of End0k(J(X)) into Q {Endk(J(X)) \ Q(�n) = Q.Let W be the Weil-restrition of XK with respet to Kjk. Then Pi0(W ) isan n � g-dimensional abelian variety whih is anonially isogenous to J(X)�kN ,where N is a simple (n� 1) � g-dimensional abelian variety.Let C be a non-singular, proper, geometrially irreduible urve over k, andlet  : C �! X be a overing.Assume that C has an automorphism t of degree n whih is not an -automor-phism, i.e. suh that  Æ t 6=  and that there does not exist a Q 2 J(X)(K) suhthat �t
k idK = TQ Æ (�
k idK).Let Ct be the twist of C with respet to Kjk and t, i.e. Ct = CK= < �Kk t >.Then Ct is a non-singular, geometrially irreduible urve, and t de�nes an auto-morphism on Ct of order n.Then the morphism  
k idK : CtK ' CK �! XK indues a morphism



78 Chapter 3. Coverings of urves and the DL-problembt : Ct �!W . CtK 
((bt
kidK //

��

WK u //

��

XK
Ct bt // WNow, the morphism bt� : Pi0(W ) �! J(Ct) indues an isogeny of N with itsimage. 5Proof We only have to hek the last statement. By Proposition 3.3, we have toshow that there does not exist a Q 2 J(X)(K) with�Kk (�
k idK)(t�1 
k idK)�Kk �1 = TQ Æ (�
k idK): (*)Now, �Kk (� 
k idK)(t�1 
k idK)�Kk �1 = �t�1 
k idK . Thus (*) is equivalent toT�Q Æ (� 
k idK) = (�t
k idK). This is impossible by assumption. 2Remark Under the assumption that t 6= , the ondition that there does notexist a Q 2 J(X)(K) with �t
k idK = TQ Æ(�
k idK) is espeially ful�lled underone of the following two onditions:� t has a geometri �xed point� J(X)(K) does not have an element of order nProof Firstly, if t has a geometri �xed point, and the equation is satis�ed forsome Q, then Q = 0 thus � = �t. Sine � is an immersion,  = t, ontraditingthe assumption.Seondly, if a Q exists then it follows that � 
k idK = �Kk n(� 
k idK) =TnQ Æ (�
k idK). Let P 2 C(k). Then (�
k idk) ÆP = nQ+ (�
k idk) ÆP thusnQ = 0. 23.2 Coverings of urves whose Jaobian variety is asimple new abelian variety3.2.1 Constrution of overingsLet Kjk be an extension of �nite �elds of prime degree n, let X 0 be a geometriallyirreduible urve over K with a K-rational point.5In partiular, in the ontext of the theorem, if Pi0(XK) has a large prime fator, then weexpet this prime fator to be preserved under NÆ� : Pi0(XK) �! Pi0(C).



Coverings of urves whose Jaobian variety is simple and new 79General assumptions for this setion Assume that J(X 0) is a simple newabelian variety, i.e. that it is not isogenous to an abelian variety de�ned over k.(This implies that X 0 is not de�ned over k, i.e. there exists no k-urve X withXK � X 0.) Assume that the endomorphism ring of J(X 0) is ommutative.Let K(X 0) be the funtion �eld of X 0. Suppose that K(X 0)jK(x) is an abelianextension, inluded in K(x)sepjK(x), and the degree [K(X 0) : K(x)℄ is prime ton. As above, we denote the Frobenius automorphism of Kjk by �Kk .Let L0 = K(X 0)�Kk (K(X 0)) � � � �Kk n�1(K(X 0)) be the Galois losure of K(X 0)over k(x) in K(x)sep.Then by Galois theory, we get the exat sequene1 �! Gal(L0jK(x)) �! Gal(L0jk(x)) �! Gal(Kjk) �! 1: (3.3)Lemma 3.4 Sequene (3.3) splits.Proof Note that Gal(L0jK(x)) is isomorphi to (Gal(K(X 0)jK(x)))m for somem � n. The order of this group is prime to n, sine by assumption [K(X 0) : K(x)℄is prime to n. Thus the lemma follows from the following group-theoreti lemma.2Lemma 3.5 Let 1 �! A �! E �! G �! 1 be an exat sequene of �nite groupswhere A is abelian, G is yli and the order of A is prime to the order of G. Thenthis sequene splits.Proof First let A be a general abelian group. Then if an extension E of G by Ais given, G operates on A by taking preimages and onjugation inside E. Suhan operation given, the extensions E of G by A are lassi�ed by the elementsof H2(G;A), the trivial element in this group orresponding to the semi-diretprodut de�ned by the given operation of G on A; see [Se, VII,par. 3℄.We now show that under the assumption that the orders of G and A areoprime, H2(G;A) is trivial. Thus every extension of G by A is a semi-diretprodut.Firstly, H2(G;A) is annihilated by the order of G; see [Se, VIII, par. 2, p.130,Corollary 1℄. Seondly, H2(G;A) ' bH0(G;A) = AG=N(A) (see [Se, VIII, par.4, p.133, Corollary℄), and this group being the quotient of a subgroup of A isannihilated by the exponent of A.Sine the orders of A and G where assumed to be oprime, H2(G;A) = 1. 2Assume that L0jK(x) is regular over K. 66For de�nition of \regular" see Subsetion A.3.1 in the appendix.



80 Chapter 3. Coverings of urves and the DL-problemFix a setion of (3.3). Let L be the �xed �eld of the subgroup of Gal(L0jk(x))de�ned by this setion. Then by onstrution, L and K(x) are linearly disjointover k(x) and LK = L0. Thus L0jK(x) is de�ned over k.Note however, that L0jK(x) is not de�ned over k with its Galois group. Forif this was the ase, every subextension of L0jK(x) would be de�ned over k thusK(X 0)jk(x) would be de�ned over k whih is by assumption not the ase.Beause of the simpliity of the Weil-restrition the mapnormKLjL Æ onKLjK(X0) : Cl0(K(X 0)) �! Cl0(L)is expeted to have small kernel.Now assume that L0jK(x) is not regular. The argumentation is now similar tothe one on page 73: Assume further that [L0 \ k : K℄ is prime to n. (In fat,to use this onstrution as an attak on the DLP in Cl0(K(X 0)), [L0 \ k : K℄should be muh smaller than n.) Then there exists an extension of �nite �elds �jksuh that K 
k � ' �K = L0 \ k. Now L0jK� is regular, and L0j�(x) is Galois.By the same arguments as above, there exists a regular subextension Lj� withL
� K� ' KL = L0. Therefore L
k K ' L
� (K 
k �) ' L0.Beause of the simpliity of the Weil-restrition of X 0�, with respet to K�j�,we still expet the kernel ofnormKLjL Æ onKLjK(X0) = normKLjL Æ onK�KLjK�(X0) Æ onK�(X0)jK(X0) :Cl0(X 0) �! Cl0(L)to be small.Geometri interpretation of the onstrutionLet L0 still be the Galois losure of K(X 0)jk(x). Assume that [L0 \ k : K℄ isprime to n. We have seen that in this ase there exists a funtion �eld Ljk withL
k K ' LK = L0. The diagramL
k K
JJJJJJJJJK(X 0) LK(x)

IIIIIII k(x)



Coverings of urves whose Jaobian variety is simple and new 81orresponds to a diagram CK := C 
k K
�� ''OOOOOOOOOOX 0
��

C
��

P1K
&&MMMMMMMMMMM P1k

(3.4)
of overings of irreduible non-singular proper urves. (C is geometrially irre-duible i� Ljk is regular, that is, if L0jK is regular.)Let W be the Weil-restrition of X 0 with respet to Kjk, b : C �! W themorphism orresponding to  : CK �! X 0.If we onsider C as a overing of P1k, then  2 ResP1KP1k (X 0). By Lemma 1.2, this isequal to ResKk (X 0)�ResP1KP1k (X0)P1k. So b : C �! W fators throughW�ResKk (P1)P1k 'ResP1KP1k (X 0).We get the following diagram of overingsC 
k K

��
++WWWWWWWWWWWWWWWWWWWWWWWWWX 0 �P1K �Kk (X 0)�P1K � � � �P1K �Kk n�1(X 0)pid

�� **VVVVVVVVVVVVVVVVV
C
��X 0

��

ResP1KP1k (X 0)
��

P1K
++WWWWWWWWWWWWWWWWWWWWWWWWWWW P1k;where C 
k K �! X 0 �P1K �Kk (X 0) �P1K � � � �P1K �Kk n�1(X 0) is given by(�Kk i(a))i=0;:::;n�1. By onstrution, this morphism identi�es an open part of CKwith the open part of one omponent of X 0 �P1K �Kk (X 0)�P1K � � � �P1K �Kk n�1(X 0)(sine K(X 0) 
K(x) �Kk (K(X 0)) 
K(x) � � � 
K(x) �Kk n�1(K(X 0)) �! K(C) is sur-jetive) and the same is true for C and ResP1KP1k (X 0).In partiular, C �! ResP1KP1k (X 0) indues a losed immersion of an open partof C. So is also ResP1KP1k (X 0) ' W �ResKk (P1) P1k �! ResKk (X 0), sine P1k �!



82 Chapter 3. Coverings of urves and the DL-problemResKk (P1K) is (see Lemma 1.5) and \losed immersion" is stable under base-hange(see [Ha, II,ex. 3.11.℄). Thus:Proposition 3.6 b : C �!W indues a losed immersion of an open part of C.3.2.2 An appliationLet n be odd. Let H 0 be a hyperellipti urve as above. A Weierstra�-equationof H 0 de�nes a overing H 0 �! P1K of degree 2. Let L0 be the Galois losure ofK(H 0)jK(x). Then if L0jK(x) is regular, by the general theory presented above,it an be de�ned over k. 7har(k) = 2Let the ellipti K-urve E0 be given by the Weierstra�-equationy2 + xy = x3 + �x2 + �; �; � 2 KSo K(E0)jk(x) is a (Galois) extension of degree 2, and via this extension we re-gard K(E0) as a intermediate �eld of K(x)sepjK(x). After division by x2 andsubstitution s := y=x+ � 12 =x, the extension K(E0)jK(x) is given bys2 + s+ � 12x�1 + �+ x = 0:(Note that sine K is perfet, � 12 2 K.) Thus the Galois losure L0 of K(E0)jK(x)is given by the Artin-Shreier equations20 + s0 + � 12x�1 + �+ x = 0s21 + s1 + �Kk 1(�) 12x�1 + �Kk 1(�) + x = 0...s2n�1 + sn�1 + �Kk n�1(�) 12x�1 + �Kk n�1(�) + x = 0with s0 = s. It is shown in [GHS℄ that L0 is a regular �eld extension of K(z) ofdegree � 2n, and furthermore that it is hyperellipti and that its genus is boundedby 2n�1.More preisely, letU := spanF2 (f�Kk i(�) 12x�1 + �Kk i(�) + xgi=0;:::;n�1);U 0 := spanF2 (f(�Kk i(�) 12 ; �Kk i(�); 1)gi=0;:::;n�1):Let m :=dimF2 (U=P(K(x))\U) =dimF2 (U 0=U 0 \ f(0;P(�); 0); � 2 Kg), whereP(�) := �2 + �. Then it follows from Artin-Shreier theory that 2m = [L0 : K(x)℄;see [Ne, IV, (3.3) with (3.4)℄ for the statement of the Artin-Shreier theory we usehere. Calulations show that g(L) = g(L0) = 2m�1 or g(L) = g(L0) = 2m�1 � 1.7This onstrution was introdued by Galbraith and Smart and analyzed in detail by Gaudry,Hess and Smart in harateristi 2; f. [GHS℄. Additional remarks were made by Menezes andQu; f. [MQ℄. It was generalized to ertain hyperellipti urves of harateristi 2 by Galbraith;f. [Gal℄. The analysis in the odd-harateristi ase is due to the author.



Coverings of urves whose Jaobian variety is simple and new 83For n prime to 2, let '2(n) := ord(2) for 2 2 (Z=nZ)�.Then for k = F2 , m an only assume the values '2(n)i + 1 for i � 1, thusg(L) = 2'2(n)i or g(L) = 2'2(n)i � 1; see [MQ℄.Let n = 127. Then '2(n) = 7, and for this value of n, an expliit extensionK(E0)jK(x) an be onstruted for whih L has genus 27 � 1 = 127; see [GHS℄.har(k) 6= 2Let n still be odd. Let H 0 be a hyperellipti urve of genus g whih satis�es the\general assumptions". Let H 0 be given by the Weierstra�-equationy2 = f(x);where f is a polynomial of degree 2g + 1 or 2g + 2. Again regard K(H 0) as anintermediate �eld of K(x)sepjk(x), let L0 be the Galois losure of K(H 0)jK(x)inside K(x)sep.We identify the plaes of K(x)jK with K [ f1g (via x). Let e1; e2; : : : 2 Kand possibly1 be the rami�ed plaes of the extension KL0jK(x). (The plae 1is rami�ed i� deg(f) = 2g + 1.)The absolute Galois-group Gal(KjK) operates on the overing and thus alsoon the rami�ed plaes. It �xes 1 and operates on the ei.On the other hand, the set S := fe1; e2; : : :g is not invariant under Gal(Kjk).For if it was, f(x) = (x� e1)(x� e2) � � � would have oeÆients in k, and thus H 0would be de�ned over k.Assume that �k(e1); : : : ; �k(el) =2 S and �k(el+1); : : : 2 S. Then all elements�ik(ej); i = 0; : : : ; n� 1; j = 1; : : : ; l are distint and for i � 1, they do not lie inS.Lemma 3.7 L0jK(x) is regular over K and has degree 2n.proof (by indution) Let i = 2; : : : ; n. Assume that L0 � � � �Kk i�1(L0)jK(x) is regularover K and has degree 2i�1. This is equivalent to [KL0 � � � �i�1k (KL0) : K(x)℄ =2i�1. Now �ki(e1) is in the rami�ation lous of �ki(KL0)jK(x) but not in therami�ation lous ofKL0 � � � �ki�1(KL0)jK(x). Thus �ik(KL0) annot be ontainedin KL0 � � � �ik(KL0), and thus they are linearly disjoint over K(x), de�ning anextension of degree 2i. This implies that L0 � � � �Kk i�1(L0) is regular of degree 2i.2. By the general theory, there exists a regular extension Ljk(x) suh thatK
L 'KL = L0. The rami�ation of Ljk(x) or { what is the same { the rami�ation ofL0jK(X) an be alulated using Abhyankar's Lemma; see [Po, Lemma (2.14)℄.Lemma 3.8 (Abhyankar) Let F be a �eld, F a Galois losure of F , v a disretevaluation of F of rank 1. Let F1, F2 be �nite Galois extension �elds of F in F .Let v1, v2 be extensions of v in F1, F2, e1 = e(v1jv); e2 = e(v2jv) the orresponding



84 Chapter 3. Coverings of urves and the DL-problemrami�ation indies. Assume that v is tamely rami�ed in F1jF and in F2jF andthat e1 divides e2.Then: If F 0 is the omposite of F1 and F2 in F and v0 is an extension of v inF 0, then v0 is unrami�ed in the extension F 0jF2.With this lemma, we onlude that all rami�ation indies of the rami�edplaes of KL0jK(X) are 2.Let r be the number of rami�ed plaes ofKL0jK(x). Then r equals the numberof elements in the set f�Kk i(ej)j i = 0; : : : ; n � 1; j = 1; 2; : : :g([f1g). So by theremarks before Lemma 3.7,2g + n+ 1 � r � (2g + 2)n:The lower bound is obtained if the degree of f is 2g + 1 and all ei lie in k expetone (whih lies in K), the upper bound is obtained if the degree of f is 2g+2 andno ei lies in k.With the Riemann-Hurwitz-formula we alulateg(L) = g(L0) = 2n(0�1)+ 12re� 1e 2n+1 = �2n+r2n�2 = 2n�2(r�4)+1: (3.5)So 2n�2(2g + n� 3) + 1 � g(L) � 2n�1((g + 1)n� 2) + 1:In partiular, let H 0 be an ellipti urve. Then there always exists a Weierstra�-equation suh that f has degree 3. So 3 + n � r � 3n+ 1 and2n�2(n� 1) + 1 � g(L) � 3 � 2n�2(n� 1) + 1:
3.3 Coverings of urves de�ned over the small �eld3.3.1 Constrution of overingsLet still Kjk be a prime extension of �nite �elds of harateristi p, n := [K : k℄,X a non-singular, proper, geometrially irreduible urve over k with a k-rationalpoint. Assume that EndK(J(XK)) is ommutative and { after an inlusion ofEnd0k(J(X)) into Q { End0k(J(X)) \ Q(�n) = Q . As proven in Theorem 5, underthese assumptions, the trae-zero-hypersurfae of the Weil-restrition of J(XK)with respet to Kjk is simple.We want to onstrut overings of X whih ful�ll the onditions of Theorem 9,i.e. we want to onstrut overings  : C �! X suh that C has an automorphismt with  Æ t 6= . Furthermore we want that t has a geometri �xed point. (IfCl0(XK) has no element of order n, this assumption is not needed.)



Coverings of urves defined over the small field 85Analogously to Subsetion 3.2.1, let k(X) be the funtion �eld of X, k(X)jk(x)an extension, inluded in k(x)sepjk(x), suh that n divides [k(X) : k(x)℄. Let L bethe Galois losure of k(X)jk(x) in k(x)sep.Assume that n does not divide [L : k(X)℄. Then Ljk(x) has an automorphismof order n whih does not �x K(X) whih we denote by t#. Assume that thisautomorphism is ontained in some inertia group of Ljk(x) or that Cl0(XK) has noelement of order n. Let C be a proper, non-singular model of k(X),  : C �! X theovering orresponding to the extension k(C)jk(X). Let t be the automorphismof C orresponding to t#.Now, if Ljk is regular, we an apply Theorem 9. (If Ljk is not regular but L isregular over some extension �jk suh that n does not divide [� : k℄, we an workover � instead of k and then still apply the theorem.)A �rst exampleLet  : E �! E be the identity and let t : E �! E be the ellipti involution, i.e.t Æ P = �P . Now if Kjk is a �eld extension of degree 2 (not neessarily of �nite�elds) then by the theorem, the twist of E by the involution is mapped into theWeil-restrition. By onstrution, this morphism is given by the losed immersion(id;�id) : EK �! E2K ' WK . This orresponds to the well-known fat that thetrae-zero-hypersurfae is isomorphi to Et, and W is isogenous to E �k Et.Geometri interpretation of the onstrutionLet  : C �! X be the overing de�ned by Ljk(X). The �eld extension k(X)jk(x)de�nes a overing X �! P1k. Let W be the Weil-restrition of XK with respetto Kjk, b : C �! W the morphism orresponding to  
k idk : CK �! XK .Let bt : Ct �! W be the morphism orresponding to CtK ' CK �! XK as inTheorem 9.Then both b and bt fator through the losed immersion ResP1KP1k (XK) �!ResKk (XK).We want to give onditions under whih bt indues a losed immersion of anopen part of Ct. This is the ase i� bt 
k idK = (ti�1 
k idK)n�1i=0 : CtK 'CK �! ResP1KP1k (XK) 
k K ' n foldz }| {XK �P1K � � � �P1K XK indues a losed immersionof an open part of CtK . This in turn is the ase i� the ring-homomorphismn foldz }| {K(XK)
K(x) � � � 
K(x) K(XK) �! KL indued by t#i�# for i = 0; : : : ; n � 1is surjetive (where �# : k(x) ,! k(X) is the inlusion).Proposition 3.9 Let [k(X) : k(x)℄ = n. Then bt : Ct �! ResKk (XK) indues alosed immersion of an open part of Ct.Proof Let �#i ; i = 1; : : : ; n : k(x) �! k(X) be the inlusions. We know that t



86 Chapter 3. Coverings of urves and the DL-problemoperates non-trivially on the set of �#i . Thus by assumption, it operates by ylipermutation, i.e. the set of t#i�# for i = 0; : : : ; n � 1 equals the set of �#i fori = 1; : : : ; n.Thus the ring-homomorphism n foldz }| {k(X)
k(x) � � � 
k(x) k(X) �! L indued byt#i�# for i = 0; : : : ; n � 1 equals (up to permutation of the fators) the ring-homomorphism indued by the injetions �#i . We know that this homomorphismis surjetive. (L is generated by the roots of a primitive element of k(X)jk(x).) 2A seond exampleLet E be a non-super-singular ellipti urve whih is not isogenous to an elliptiurve with j-invariant 6= 0. A Weierstra�-equation of E de�nes a �eld extensionk(E)jk(y) of degree 3. Sine by assumption k(E) does not have an automorphismof order 3, this extension is non-Galois.Let L be a Galois losure of this extension. Then Ljk(E) is an extension ofdegree 2, the Galois group of K(E)jk(y) is isomorphi to the symmetri group onthree elements.There are two possibilities: 1. L = �(E�), where �jk is the unique extensionof degree 2, 2. L is regular over k. Sine L has an automorphism of order 3 andwe assumed that E does not have j-invariant 0, the �rst ase is impossible. ThusLjk(E) is regular.Let  : C �! E be the overing of non-singular, proper, irreduible urveswhih orresponds to the extension Ljk(E). Sine we assumed that E is notisogenous to a urve with j-invariant 0, the genus of C is at least 2.Let Kjk be the �eld extension of degree 3 and let �Kk be the Frobenius auto-morphism of Kjk. Let t 2 Gal(Ljk(x)) be of of the two elements of exat order3. Let Ct be the twisted urve de�ned by �Kk 7! t�Kk . By onstrution, just as C,Ct is a overing of P1k.If we substitute t be t2, the other element of exat order 3 in Gal(Ljk(x)), weobtain another overing Ct2 �! P1k. However, the elements t and t2 are onjugatedin Gal(Ljk(x)), st = t2s for some element s of order 2 in Gal(Ljk(x)) and suh an sde�nes an isomorphism from CtK �! P1K to Ct2K �! P1K whih is ompatible withthe Galois-operation. Therefore the two P1k-overings Ct and Ct2 are isomorphi.[This orresponds to the fat that there are exatly two elements in the pointedset H1(Gal(Kjk);Aut(CK �! P1K).℄The overing Ct �! P1k orresponds to a morphism bt : Ct �! ResP1KP1k (EK).(Where EK �! P1K is the overing indued by the extension K(EK)jK(y).) ByProposition 3.9, this morphism indues a losed immersion of an open part of Ct.All in all, the reduible K-urve ResP1KP1k (EK)K ' EK �P1KEK �P1KEK has �veirreduibility omponents: EK itself, and four omponents whih are birational toCK . [The ring K(EK)�K(x)K(EK)�K(x)K(EK) is isomorphi to K(EK)�L3.℄



Coverings of urves defined over the small field 87One of the omponents of ResP1KP1k (EK)K ' EK �P1K EK �P1K EK is the image ofCtK ' CK under bt 
k idK = (; t; t2). The other omponents whih are isomor-phi to CK are the images of CK under (t; ; ), (; t; ), (; ; t) respetively.These omponents are permuted under the Galois-operation on ResP1KP1k (EK)K .They desend to an irreduible k-urve on ResP1KP1k (EK) whih is birational to CKonsidered as k-urve. Thus apart from E itself, the image of Ct is the onlygeometrially irreduible k-urve on ResP1KP1k (EK).Let E be given by a \nie" Weierstra�-equation as in [Si, Appendix A, Proposi-tion 1.1℄. Then Ct is birational to the geometrially irreduible urves onstrutedin Subsetion 2.4.2, the last subsetion of the previous hapter. (In partiular, theimage of Ct in ResKk (EK) under bt lies on the trae-zero-hypersurfae of E.) Ifhar(k) = 3, it is birational to the urve given by (2:36). If har(k) > 3 andthe third roots of unity are ontained in k, it is birational to the urve given by(2:21). If har(k) = 2, again under the assumption that the third roots of unityare ontained in k, it is birational to the urve given by (2:29).In partiular:� If har(k) 6= 2; 3, Ct is a hyperellipti urve of genus � 3.� If har(k) = 2, Ct is a \anonial urve" of genus 3.� If har(k) = 3, Ct is a urve of genus 2.3.3.2 An appliationDe�nition For n prime to p, let 'p(n) := ord(p) for p 2 (Z=nZ)�. We mightall 'p the loal Euler-funtion for p.Lemma 3.10 Fp(�m) = Fp'p (m) .Let  : Gal(Fp(�m)jFp) �! (Z=mZ)� be the m-th ylotomi harater, i.e.�(�m) = �(�)m . Then  indues a bijetion of Gal(Fp(�m)jFp) with the subgroupgenerated by p in (Z=mZ)�. 2For the following onstrution, let n be an odd prime and assume that the n-throots of unity are ontained in k, i.e. k ontains Fp'p (n) .Let H be a hyperellipti k-urve and let g(x; y) be some Weierstra�-\equation"(i.e. polynomial) de�ning H. Let L be a Galois losure of the extension of k(x)



88 Chapter 3. Coverings of urves and the DL-problemgiven by zn = x; g(z; y) = 0. Lk(H)2k(z)nk(x)Let � = �n be an n-th root of unity in k. Then the �eld L is given by the equationszn = x; g(z; y0) = 0; g(�z; y1) = 0; : : : ; g(�n�1z; yn�1) = 0 (with y0 = y):So Ljk(H) is a omposite of extensions of degree 2, and [L : k(H)℄ = 2a for somea � n� 1.The plae p0 is rami�ed in Ljk(x), its rami�ation index equals n. Let t# bean element of the inertia group of Ljk(x) of order n. Now t# does not �x k(H)beause [L : k(H)℄ = 2a and n is odd, and t# has a �xed point.Let � := L\k (intersetion in some ommon over�eld) be the Galois losure of kin L. Then the extension Lj�(H�) and the automorphism t ful�ll the requirementsof the theorem.Let �# : k(H) �! L be the inlusion. Then the set t#�#(k(H)) equals the setof images of k(H) under all inlusions into L (over k(x)). Thus the homomorphismn foldz }| {k(H)
k(x) � � � 
k(z) k(H) �! L indued by t#i�# is surjetive, and as in the aseof Proposition 3.9, bt : Ct �! ResKk (XK) indues a losed immersion of an openpart of Ct.It is a priori not lear whether Ljk is regular. However, sine Gal(Ljk(z)) hasexponent 2, if Ljk is not regular, it is regular over the unique extension of k ofdegree 2.As above, let � be the Galois losure of k in L. Then L and �(z) are linearlydisjoint over �(x). Thus [L : k(x)℄ = [L : �(z)℄ � [�(x) : k(z)℄ = [kL : k(z)℄ � [� : k℄and [� : k℄ = [kL:k(z)℄[L:k(z)℄ .We now address the extension-degrees in question for speial Weierstra�-equations. Then we alulate the genus of L (whih equals the genera of C andCt).har(k) = 2We still assume that the n-th roots of unity are ontained in k.Let E be an ellipti urve, given by the Weierstra�-equationy2 + xy = x3 + �x2 + �; �; � 2 k



Coverings of urves defined over the small field 89After division by x2 and substitution s := y=x+ � 12 =x, the extension k(E)jk(x) isgiven by the Artin-Shreier equations2 + s+ � 12x�1 + �+ x = 0:Now substitute x by z. Then the extension Ljk(x) de�ned above is given byzn = xs20 + s0 + � 12 z�1 + �+ z = 0s21 + s1 + � 12 (�z)�1 + �+ �z = 0...s2n�1 + sn�1 + � 12 (�n�1z)�1 + �+ �n�1z = 0with s0 = s.Let U 0 be the F2 -vetor spaeU 0 := spanF2 (f� 12 ��i; �; �i)gi=0;:::;n�1) � F2 3:Let P(�) := �2 + �. By Artin-Shreier theory in the form of [Ne, IV, (3.3) with(3.4)℄, [L : k(z)℄ = 2d with d = dimF2 (U 0=U 0 \ f(0;P(�); 0)j� 2 kg), [Lk : k℄ = 2mwith m = dimF2 (U 0=U 0 \ f(0; �; 0)j� 2 kg). LetV 0 := spanF2 (f� 12 ��i; �i)gi=0;:::;n�1):Then m = dimF2 (V 0). '2(n) � m � 2'2(n) (3.6)The seond inequality follows from the inlusion V 0 � � 12 F2 (�) � F2 (�). The�rst inequality follows from projetion of V 0 onto F2 (�) (projetion to the seondoordinate).Of ourse, sine we only have n generating vetors, we also have the inequalitydimF2 (U 0) � n whih is for example a better bound if '2(n) = n� 1.We now study over whih onstant �eld L is regular. We have the followingases:ase 1: � = 0. In this ase, [L : k(x)℄ = [kL : k(x)℄ = dim(V 0) = m and theextension Ljk is regular.ase 2: � 6= 0. Sine the sum over all n-th roots of unity is 0, (0; �; 0) 2 U 0.Now the extension Ljk is regular i� � 2 P(k), and it is regular over the onstant�eld extension of degree 2 otherwise.We alulate the genus of L. We use the following lemma. 88This idea was pointed out to the author by H. Stihtenoth.



90 Chapter 3. Coverings of urves and the DL-problemLemma 3.11 (Aola; Kani; Garia, Stihtenoth) Let � be a �eld, l a primenumber, m a natural number and Lj�(z) a Galois extension, regular over �, withGalois group isomorphi to (Z=lZ)m. Then Lj�(z) has exatly e := (lm�1)=(l�1)sub�elds Lij�(z) with [Li : k(z)℄ = l. We haveg(L) = eXi=1 g(Li):Proof See [GS, Theorem 2.1℄ with [Kan, Theorem 1℄. (The onditions on � statedin [GS℄ are not neessary.) 2We apply this lemma with l = 2, L, m as above and � the Galois losure of kin L.Then e = 2m � 1 and all Lij�(z) are Artin-Shreier extensions. { They orre-spond bijetively to yli subgroups of V 0, i.e. to non-trivial elements of V 0. Suhan element (� 12 i; di) 2 V 0 de�nes an extension Lij�(z) given by the Artin-Shreierequation t2 + t+ � 12 iz�1 + diz = 0:Thus g(Li) � 1 and we get the following proposition.Proposition 3.12 Either Ljk is regular or it is regular over the onstant �eldextension of degree 2. Let m := dimF2 (V 0). Then [Lk : k(x)℄ = 2m, and L hasgenus � 2m � 1 � 22'2(n) � 1.We an now apply Theorem 9. We have motivated: 9Proposition 3.13 Let n be an odd prime number. Let E be an ellipti urve overF2'2 (n) suh that E(F2'2 (n)n) ontains a prime fator of order � 2'2(n)n�'2(n).Then a geometrially irreduible urve Ct of genus � 22'2(n) � 1 de�ned overF22'2 (n) with an automorphism of order n an be onstruted suh that via thehomomorphism (3.2), we expet the DL-problem in E(F2'2 (n)n) to be transformedinto the DL-problem of Cl0(Ct).An interesting speial ase is the following: Let n = 2�1 be a prime number.Then '2(n) =  sine 2 = n+ 1 � 1 mod n. So:Let n = 2 � 1, be a prime number, e.g. n = 3; 7; 31; 127. Let E be an elliptiurve over F2 suh that E(F2n ) ontains a prime fator of order � 2n�. Thena geometrially irreduible urve Ct of genus � 22 � 1 de�ned over F22 withan automorphism of order n an be onstruted suh that via the homomorphism(3.2), we expet the DL-problem in E(F2n ) to be transformed into the DL-problemof Cl0(Ct).9We write \motivated" instead of \proven" beause the result relies on the fat that we expetthe large prime fator in E(K) to be preserved; see Theorem 9 for details.



Coverings of urves defined over the small field 91In partiular, let E be a urve de�ned over F25 suh that E(F2155 ) ontains aprime fator of order 2150. Then we have assoiated to E a geometrially irre-duible urve Ct of genus � 210 � 1, de�ned over F210 with an automorphism oforder 31, suh that via the homomorphism (3.2), the DL-problem in E(F2155 ) isexpeted to be transformed into the DL-problem of Cl0(Ct).har(k) 6= 2Let k(H) be a hyperellipti funtion �eld of genus g and let k(H)jk(z) be a degree-2 extension de�ned by a Weierstra�-equation of degree d := 2g + 1 or d := 2g + 2(in z). We identify the plaes of k(z)jk with k [ f1g (via z).Then k(E)jk(z) is rami�ed over d plaes e1; e2; : : : ; ed 2 k and additionallyover 1 if d is odd.There are several di�erent ases depending on whether some rami�ationpoints lie in the same orbit under of the ation of the Galois group of k(z)jk(x).The most generi one is the following:All ei lie in di�erent orbits of the Galois group of k(z)jk(x).There are two sub-ases:ase 1: ei 6= 0 for all i. Then kLjk(z) is rami�ed at (2g+1)n+1 or (2g+2)nplaes (depending on whether the Weierstra�-\equation" (i.e. polynomial) hasodd or even order).ase 2: ei = 0 for some ei. Then kLjk(z) is rami�ed at 2gn+2 or (2g+1)n+1plaes.In both ases, exatly as in the proof of Lemma 3.7, one sees that Ljk(z) isregular and has degree 2n.Using Abhyankar's Lemma (Lemma 3.8), we onlude that the rami�ationorder at the rami�ed plaes is always 2. We an alulate the genus of L (whihequals the genera of C and Ct) using formula (3.5):g(L) = 2n�2(r � 4) + 1;where r is the number of rami�ed plaes in Ljk(z). Thus 2gn+2 � r � (2g+2)nand 2n�1(gn� 1) + 1 � g(L) � 2n�1((g + 1)n� 2):



92 Chapter 3. Coverings of urves and the DL-problem



Appendix ASome auxiliary results
A.1 Some results about the Piard shemeThe funtor Pi(X) of a non-singular, projetive, integral k-variety X with ak-rational point as well as the group-shemes Pi(X) and Pi0(X), the Piardsheme, where already introdued in Subsetion 1.2.2. Here we give some addi-tional properties. We are only interested in \geometri" questions like the dimen-sion of Pi0(X), so we work over an algebraially losed �eld only.A.1.1 The dimension of the Piard shemeLet k be an algebraially losed �eld, X a non-singular, projetive, integral k-variety.The dimension of the Piard sheme Pi0(X) an be alulated via �etale o-homology or via the �etale fundamental group.Lemma A.1 For any prime l 6= har(k): 1dim(Pi0(X)) = 12dimQl (H1(X�et;Zl)
Zl Q l ) =12dimQl (Homont(�1(X);Zl)
Zl Q l )Proof of the �rst equation Let n 2 N with har(k) - n. The Kummer exat sequene(in the �etale topology) 0 �! �n �! Gm �n�! G m �! 01We should write the fundamental group relative to some base point. However the fundamentalgroups relative to di�erent base points are (non-anonially) isomorphi.93



94 Appendix A. Some Auxiliary Resultsgives rise to a long exat sequene0 �! �n(X) �! �(X;OX )� �n�! �(X;OX)� �!H1(X�et; �n) �! H1(X�et; G m) �! H1(X�et; G m ) �! � � �k� k�Pi(X) �n�! Pi(X)Sine X is projetive, �n : �(X;OX)� �! �(X;OX )� ' k� is an isomorphism. Wethus have an isomorphism H1(X�et; �n) ~�!Pi(X)n2Choosing an isomorphism �n �! Z=nZ we get a non-anonial isomorphismH1(X�et;Z=nZ)� Pi(X)n:Now let l 6=har(k) be a prime. We an hoose isomorphism �li ~�!Z=liZ in a waythat is ompatible with the projetive systems. Taking the limit, we obtain anisomorphism H1(X�et;Zl) ~�!Tl(Pi(X)):3It followsH1(X�et;Zl)
Zl Q l � Tl(Pi(X)) 
Zl Q l ' Tl(Pi0(X)) 
Zl Q l 'Tl(Pi0(X)red)
Zl Q lOn the other hand, Pi0(X)red is an abelian variety and with [Mi-A, Theorem15.1℄, we an onlude thatdim(Pi0(X)) = dim(Pi0(X)red)12dimQlTl(Pi(X)) 
Zl Q l = 12dimQlH1(X�et;Zl)
Zl Q lProof of the seond equation (outline) There is a anonial isomorphismHomont(�1(X);Zl) ' H1(X�et;Zl)This follows from the following fats:- H1(X�et;Z=nZ)' _H1 (X�et;Z=nZ). 4 [Mi-�E, III.2, Theorem 2.17.℄2For some abelian groupG, we denote the kernel of the multipliation of n byGn. In partiular,if A is an abelian variety over the algebraially losed �eld k, then A[n℄(k) ' A(k)n.3For an abelian group G and some prime l, we denote lim �iGli by Tl(G). In partiular, ifA is an abelian variety over the algebraially losed �eld k, then Tl(A) = Tl(A(k)).4We use the same notation for a �nite group, the orresponding group sheme and the orre-sponding �etale/at sheaf over some sheme.



Some results about the Piard sheme 95- The set of isomorphism lasses of prinipal homogeneous spaes for Z=nZover X is in bijetion with _H1(Xet;Z=nZ). [Mi-�E, III.4, Corollary 4.7., Remark4.8.℄- Prinipal homogeneous spaes for Z=nZ over X orrespond to Galois ov-erings of X with given Galois ation of Z=nZ and vie versa, and the set ofisomorphism lasses of these is in bijetion with Homont(�1(X);Z=nZ). ([SGA I,V.2℄ and de�nition of the �etale fundamental group) 2If Pi(X) is redued (smooth) { thus an abelian variety { an also be read offrom ohomology:Lemma A.2 dim(Pi0(X)) � dimkH1(X;OX )Equality holds i� Pi0(X) is redued. In partiular, this is the ase if har(k) = 0.Proof See [BLR, 8.4, Theorem 1℄. The last statement follows from the fat thatall projetive group shemes over �elds in harateristi zero are redued. 2For the following proposition we need the de�nition:De�nition Let har(k) > 0, let X be a projetive k-variety. A smooth properglobal lifting is a separated sheme X de�ned over the spetrum of a disretevaluation ring R suh that� The funtion �eld of R has harateristi zero and the residue �eld is k� The \geometri �ber" X0 := X
R k is isomorphi to X� X is smooth and proper over SpeR.Let X� := X 
R Quot(R) be the \generi �ber" of X. Then in partiular, X� isa non-singular, proper, integral Quot(R)-variety. We denote X� 
Quot(R)Quot(R)be X�.Remark We will use that the Piard-sheme of X� exists and is proper. Sine upto now we have only talked about the Piard-sheme of a projetive non-singularintegral variety, we assume furthermore that the generi �ber of X� is projetive.However, the Piard-sheme also exists in the proper ase and is proper; see [BLR,8.2. Theorem 3 ,8.4, Theorem 3℄.Lemma A.3 Let k be a �eld with positive harateristi. Let X have a smoothproper global lifting. Then Pi0(X) is redued.Proof By Lemma A.2 we have to show that dim(Pi0(X)) = dimH1(X;OX ).Let X be a global lifting for k over the spetrum of the disrete valuation ringR.



96 Appendix A. Some Auxiliary ResultsLet l 6=har(k) be a prime. By the above lemmata,12dimQlH1(X��et;Zl)
Zl Q l = dimQuot(R)H1(X�;OX� ):We now use the theorems of ohomology and base hange to \transfer" this equa-tion to X0 � X.dimQuot(R)H1(X� ;OX� ) = dimQuot(R)H1(X� ;OX� ) = dimkH1(X0;OX�)The �rst equation is a speial ase of [Ha, III, Proposition 9.3℄, and the seondequation follows from [Ha, III, Corollary 12.9℄.By [Mi-�E, VI, Corollary 4.2℄,H1(X��et;Z=nZ)�= H1(X0�et;Z=nZ):These equations implydim(Pi0(X)) = 12dimQl (H1(X�et;Zl)
Zl Q l ) = dimkH1(X;OX ):Thus by Lemma A.2, X is redued. 2A.1.2 The Piard sheme of a produtLet k be an algebraially losed �eld and let X1;X2 be two non-singular projetiveintegral k-varieties. Let P1 and P2 be k-rational points of X1, X2 respetively.Let qi : X1 �k X2 �! Xi (i = 1; 2) be the projetions.Let Z be a k-sheme. By bull-bak, we have morphismsPi(X1 �k Z)=Pi(Z)� Pi(X1 �k Z)=Pi(Z) �! Pi(X1 �k X2 �k Z)=Pi(Z)(M1;M2) 7! q�1(M1)
 q�2(M2):By applying (Pi �k idZ)� we see that these morphism are injetive.Thus we get an injetive natural transformationU : Pi(X1)� Pi(X1) �! Pi(X1 �k X2):This indues a morphismU : Pi0(X1)�Pi0(X1) �! Pi0(X1 �k X2):Proposition A.4 If k has harateristi zero or if X1 and X2 have smooth properglobal liftings, then U is an isomorphism between abelian varieties.In general, U indues an isomorphism between the orresponding redued ob-jets, whih are abelian varieties.



Some results about abelian varieties 97Proof By Lemma A.1,dim(Pi0(X1 �k X2)) = 12dimQl (Homont(�1(X1 �k X2);Zl)
Zl Q l ) =12dimQl (Homont(�1(X1)� �1(X2);Zl)
Zl Q l ) =12dimQl (Homont(�1(X1);Zl)�Homont(�1(X2);Zl))
Zl Q l ) =dim(Pi0(X1)) � dim(Pi0(X2)): (A.1)Here we use�1(Pi0(X1)�k Pi0(X2)) �= �1(Pi0(X1))� �1(Pi0(X2))(relative so some base points); see [SGA I, X, Corollaire 1.7℄.Alternatively, we ould also use the K�unneth-formula of �etale ohomology toderive (A:1).Sine k is an algebraially losed �eld, the orresponding redued objets onboth sides are abelian varieties. U has trivial kernel, thus indues an isomorphismof abelian varieties.If X1 and X2 have global liftings, so has the produt and by Lemma A.3, bothsides are redued, thus U is an isomorphism. 2Remark If X1 and X2 are irreduible non-singular urves, then a smooth globallifting exists; see [Po, Satz 10.1℄. Thus in this ase, U is an isomorphism of abelianvarieties.A.2 Some results about abelian varietiesThe results is this setion are mostly well-known. Some of the results are disussedin [Mu℄ over algebraially losed �elds at least impliitly. However, for most ofthe results we lak a suitable referene and beause of that we inlude them withproofs.A.2.1 IsogeniesLet K be a �eld, A, B and C three abelian K-varieties.Lemma A.5 Let �; � : B �! C be some morphisms, � : A �! B an isogeny.Assume that �� = ��. Then � = �.Proof � is surjetive on K-valued points, and thus � = � : B(K) �! C(K). Thisimplies � = � : B �! C. 2We also have the following analogous result:Lemma A.6 Let �; � : A �! B be some morphisms, � : B �! C an isogeny.Assume that �� = ��. Then � = �.



98 Appendix A. Some Auxiliary ResultsProof Sine � : b �! C is an isogeny, ker(�) is a losed subsheme of ker([n℄)for some n 2 N. Thus there exists a � : C �! B suh that �� = n idC . Thus[n℄� = [n℄�, so �[n℄ = �[n℄. Sine [n℄ is an isogeny, we get � = � by the preedinglemma. 2For any two abelian varieties A and B, let as usual Hom0K(A;B) :=HomK(A;B) 
Z Q . HomK(A;B) is a free abelian group (sine [n℄ = n id is anisogeny), thus HomK(A;B) �! Hom0K(A;B) is an inlusion.If � : A �! B, q 2 Q , we write q � for �
 q.The lass of abelian varieties with morphisms between two abelian varietiesA and B being Hom0K(A;B) forms a ategory whih is alled the \ategory ofabelian varieties up to isogeny"; f. [Mu, par. 19℄.Lemma A.7 Let � : A �! B be an isogeny. We want to show that � hasa unique inverse in the ategory of abelian varieties up to isogeny. By this wemean the following: There exists a � 2 Hom0K(B;A) with �� = idA; �� = idB.Moreover, � is uniquely determined by �� = idA or �� = idB.Proof There exists some isogeny � : B �! A and some n 2 N with �� = n idA.Thus 1n�� = idA, i.e. 1n� is the left inverse of � in the ategory of abelian varietiesup to isogeny. Now, 1n� is also the right inverse for �. In fat, ��� = n�, andby Lemma A.5, �� = n idB . Again by the preeding lemmata, the left and rightinverses of � in the ategory of abelian varieties up to isogeny are unique. Thus �is the unique inverse of � in the ategory of abelian varieties up to isogeny. 2We will denote the inverse of the isogeny � by ��1.The next lemma is now obvious.Lemma A.8 Let � : A �! B be an isogeny of abelian varieties. Then End0K(A)�! End0K(B) � 7! ����1 is an isomorphism.2Remark Let the kernel of � : A �! B be ontained in ker([n℄) for some n 2 N.For example, A and B might be ellipti urves and � an isogeny of degree n.Then the above lemma may be strengthened in the following way: For somering � and an element f 2 �, let �(f) be the loalization of � at the multipliativeset ff iji � 0g. Then � indues an isomorphism End(A)(f) �! End(B)(f).A.2.2 The N�eron-Severi group and polarizationsLet k be a �eld and let A be an abelian k-variety, bA the dual variety. Let L bean invertible sheaf on A. Let �L : A �! bA be the morphism whih is assoiatedto the natural transformation Hom(�; A) �! Pi0(A), given for Z-valued pointsP by P 7! T �P q�Z(L) 
 q�Z(L)�1, where qZ : A �k Z �! A is the projetion. The



Some results about abelian varieties 99map � : Pi(A) �! HomK(A; bA) itself is a group homomorphism. The kernel of� is Pi0(A), the group of lasses of invertible sheaves on A being algebraiallyequivalent to OA.The group Pi(A)=Pi0(A) is alled the N�eron-Severi group of A, denotedNS(A). As usual, we denote NS(A) 
Z Q by NS0(A). If x 2 NS(A) is givenby some sheaf M on A, we denote �M also by �x. By onstrution, the map� : NS(A) �! Homk(A; bA) is an injetive group homomorphism. It extends to aninjetive group homomorphism � : NS0(A) �! Hom0k(A; bA).Let Kjk be an algebrai �eld extension. Let A0 be an abelian K-variety. Asusual, any k-morphism � : Spe(K) �! Spe(K) indues an isomorphism �� :Pi(A0) �! Pi(��1(A0)). This isomorphism orresponds to the isomorphism��1(: : :) = (: : :)� : Pi(A0) �! Pi(��1(A0)). (For Kjk Galois and A0 = AK thisis a speial ase of Lemma 1.16, if one forgets the last equality of the proof ofLemma 1.16, this proof also implies the general ase.)Lemma A.9 Let � be a k-automorphism of Spe(K), let L be an invertible sheafon A0. Then���(L) = ��1�L� = ��1(�L) = ��L : ��1(A0) �! ��1(A0):Proof Let �0# be a k-automorphism with �0#jK = �#. This de�nes a K-automorphism �0 of Spe(K). Denote the pull-bak of L to A0K again by L.Applying the base hange KjK to the above equality, we get the following equal-ity of morphisms of abelian K-varieties, whih is equivalent to the equality in thestatement of the lemma. ��0�(L) = �0�1�L�0 = �0�1(�L):We show that this equality holds for K-valued points. This implies the equalityin the statement of the lemma.Let P be a K-valued point of ��1(A0K) ' �0�1(A0)K . We use that �0TP�0�1 =�0(TP ) = T�0(P ) : A0K �! A0K .Now, ��0�(L) Æ P (whih is a K-valued point of �0�1(A0K)) orresponds to thelass of sheaves T �P (�0�(L))
�0�(L)�1 = (�0TP )�(L)
�0�(L)�1 = (T�0(P )�0)�(L)
�0�(L)�1 = �0�(T ��0(P )(L) 
 L�1). This sheaf in turn orresponds to �0�1(�L Æ�0(P )) = �0�1 Æ �L Æ �0 Æ P Æ �0�1 Æ �0 = �0�1(�L) Æ P . 2Galois extensionsNow let Kjk be Galois. Let A be an abelian k-variety, A0 = AK .Then the last lemma implies in partiular that Pi0(AK) is invariant underpull-bak by �. (This follows for example also from the fat that the operation ofG on Pi(AK)(K) restrits to an operation on Pi0(AK)(K) = bA(K).)



100 Appendix A. Some Auxiliary ResultsSine Pi0(A) = Pi0(AK)\Pi(A), NS(A) is naturally a subgroup of NS(AK).Beause Pi0(A) is invariant under the Galois-operation, G operates on NS(AK).With the notations as in the lemma, L de�nes an element in NS(AK)G i� �Lis invariant under G, i.e. i� it is de�ned over k.We want to study the okernel of the injetive group homomorphismNS(A) ,! NS(AK)G: (A.2)Lemma A.10 The okernel of (A.2) has exponent 2.Proof This is a speial ase of [Mu, 20, p.188, Theorem 2℄:Let x 2 NS(AK)G. This indues the morphism �x : A �! bA.Choose a prime l 6=har(k). The bilinear form el(:; �x(:)) on Tl(AK) is skew-symmetri sine �x 
k idK = �L on AK . Let P be a universal divisional or-respondene on A � bA, and let M := (id; �x)�(P). Then one alulates that2el(:; �x(:)) = el(:; �M(:)). It follows that 2�x = �M beause of the non-degenerayof el.This implies that M is lass of 2x in NS(AK)G. 2Warning The proof of the remark following [Mu, par. 20, p.188, Theorem 2℄(i.e. [Mu, par. 23, p.231, Theorem 3℄) does not hold sine it is assumed thatPi(A) is divisible. Thus one annot onlude that the okernel of (A.2) is trivial.Now we study the okernel of (A.2) with a ohomologial approah.By de�nition of the N�eron-Severi group we have a short exat sequene1 �! Pi0(AK) �! Pi(AK) �! NS(AK) �! 1:Taking invariants under the ation by the Galois group G, we get a long exatsequene 1 �! Pi0(A) �! Pi(A) �! NS(AK)G �!H1(G;Pi0(AK)) �! H1(G;Pi(AK)) �! � � �Thus oker(Pi(A) �! NS(AK)G) = ker(H1(G;Pi0(AK)) �! H1(G;Pi(AK))).Lemma A.11 If the order of G is �nite and odd then NS(A) �! NS(AK)G is anisomorphism.Proof We already know that the okernel has exponent 2. On the other hand,sine G is a �nite group and the order of G odd, so are the orders of its Tate-ohomology groups; see [Se, VIII, 2, p.130, Corollary 1℄. Thus the okernel has tobe trivial. 2



Some results about abelian varieties 101Lemma A.12 Let k be �nite. Then H1(Gal(kjk); A(k)) = 0 and thus NS(A) �!NS(Ak)Gal(kjk) is an isomorphism.Proof We only have to show the result for all �nite subextensions. Let Kjk besuh a subextension with Galois group G.Every 1-oyle (P�)�2G de�nes by � 7! TP� (= translation by P�) a twist ofAK . Suh a twist is isomorphi to A i� (P�)�2G is a 1-oboundary, i.e. if thereexists a Q 2 A(K) with ��1(Q)�Q = P� for all � 2 G, i.e. i� ��1(Q) = TP� ÆQ,i.e. i� Q = � Æ TP� Æ Q Æ ��1. And this means that Q is invariant under theGalois-operation of G on AK and thus is a k-rational point of A.Now, a theorem by S.Lang says that over a �nite �eld k, all k-shemes whih are\geometrially" abelian varieties have a rational point; see [Mu, p.205, Theorem3℄. So (P�)�2G is a 1-oboundary and thus H1(G;AK) is trivial.Note: The argument an be reformulated by saying that all prinipal homoge-neous spaes of AK are equivalent, or { what is the same { that the Weil-Châtelet-group of A is trivial; see [Si, X, 3℄ for details, the results formulated there hold forgeneral abelian varieties. 2The N�eron-Severi group as funtorLemma A.13 Let  : A �! B be a morphism of abelian k-varieties, x 2NS0(Bksep)Gal(ksepjk), given by some L 2 Pi(Bksep). Then� �(L) = b 
k idksep Æ �L Æ  
k idksep : Aksep �! bAksep :The proof is analogous to the one of Lemma A.9.We an assume that k = k.Let P be a k = k-valued point of A. We use that  TP = T ÆP  .Now, � �(L) Æ P (whih is a k-valued point of bA) orresponds to the lass ofsheaves T �P ( �(L))
 �(L)�1 = ( TP )�(L)
 �(L)�1 = (T ÆP )�(L)
 �(L)�1 = �(T � ÆP (L)
 L�1). This sheaf in turn orresponds to b �L Æ P . 2In partiular, Pi0(A) is invariant under  �. Thus NS is a ontravariant funtorfrom the ategory of abelian k-varieties to the ategory of abelian groups. (Andso are NS0, NS((:)ksep)Gal(ksepjk) and NS0((:)ksep)Gal(ksepjk).)If  : A �! B, the orresponding homomorphism between N�eron-Severigroups will also be denoted by  �.Polarizations and the ategory of polarized abelian varietiesDe�nition [Mi-A, 13℄ A polarization of A is a morphism ' : A �! bA suh that'
k idk = �L : Ak �! Ak for some ample sheaf L on Ak. A prinipal polarizationis a polarization with trivial kernel.



102 Appendix A. Some Auxiliary ResultsBy Lemma A.9, � indues a bijetion between the subset of element ofNS(Aksep)Gal(ksepjk) de�ned by ample sheaves and the set of polarizations on A.De�nition The ategory of polarized abelian varieties over k onsists of thefollowing:Objets are abelian varieties A with some element x 2 NS(Ak) where x isde�ned by an ample sheaf and { after the hoie of a dual abelian variety bA {�x : Ak �! Âk is de�ned over k. (If k is perfet, this is the same as saying thatx 2 NS(Ak)Gal(kjk).)The morphisms between two objets (A; x) and (B; y) are morphisms � : A �!B with ��(x) = y. 5Analogously, one de�nes the ategory of polarized abelian varieties with polar-izations de�ned by sheaves over k. Here, the objets are abelian varieties A withsome x 2 NS(A). The morphisms are de�ned as above.There is a forget-funtor from the ategory of polarized abelian varieties withpolarizations de�ned by sheaves over k to the ategory of polarized abelian vari-eties varieties. This funtor is fully faithful.And there is a forget-funtor from the ategory of polarized abelian varietiesto the ategory of abelian varieties. This funtor is also faithful and for a �xedabelian variety A, the preimages under this funtor orrespond in a natural wayto the polarizations on A.The results about the N�eron-Severi group translate to results of polarizations.For example, if ' : A �! bA is a polarization, then 2' is de�ned by a sheaf on A.And if k is �nite, every polarization is de�ned by a sheaf on A.The proof is [Mu, 20, p.188, Theorem 2℄ again plus the fat that \ample" is ageometri property and depends only on the lass of a sheaf in the N�eron-Severigroup.For the next two lemmata, let k be perfet.Lemma A.14 Let ' : A �! bA be a polarization. This polarization induesan injetive group homomorphism NS0(Ak)Gal(kjk) �! End0k(A). The image ofthis inlusion onsists of the elements of End0k(A) whih are �xed by the Rosatiinvolution (with respet to ').Now let ' be a prinipal polarization. Then we have an injetive group homo-morphism NS(Ak)Gal(kjk) �! Endk(A). Again, the image of this inlusion onsistsof the elements whih are �xed by the Rosati involution (with respet to ').Proof Both statements follow from the orresponding statements over algebraiallylosed �elds by taking Galois-invariants. Thus we restrit ourselves to algebraiallylosed �elds.5With this de�nition for the ategory of polarized abelian varieties we avoid the (simultaneous)hoosing of a dual abelian variety for every abelian variety.



Some results about abelian varieties 103Let k be algebraially losed. The �rst statement is well-known; see [Mu,p.190 (3)℄. For the seond statement, let � 2 End(A). By the �rst statement,there exists an n 2 N and sheaf M on A suh that '�1�M = n�, i.e. �M = n'�.Sine ' is an isomorphism, ker(�M) ontains A[n℄, the group sheme of n-torsionpoints of A. Sine we assumed k to be algebraially losed, by [Mu, par. 23, p.231,Theorem 3℄, there exists a sheaf N on A suh that Nn =M, and the lass of thissheaf in the N�eron-Severi group is mapped to �. 2Lemma A.15 Let ' be a polarization on A. With respet to this polarization, let(: : :)0 denote the Rosati involution.Let x 2 NS(Ak)Gal(kjk) orresponding under the polarization ' to the endomor-phism m on A. Let  be an endomorphism on A. Then  �(x) orresponds { againunder ' { to  0m 2 End0k(A).Proof The element in End0k(A) we are looking for is '�1� �(x), and this equals'�1 b �x = '�1 b ''�1�x =  0m . 2A.2.3 Produts and the Rosati involutionLet k be a �eld, let Bi for i = 1; : : : ; n and Aj for j = 1; : : : ;m be abelian k-varieties. Let A := Qj=1;:::;mAj ; B := Qi=1;:::;nBi. Let �Aj : Aj �! A be theinlusions and let pAj : A �! Aj be the projetions. (Similar de�nitions for B.)Then, sine a �nite produt of abelian varieties is also the sum of the these abelianvarieties in the ategory of abelian varieties,Homk(A;B) �! Li;j Homk(Aj ; Bi) 7! (pBi  �Aj )i=1;:::;n; j=1;:::;m (A.3)is an isomorphism. (The same is true for the orresponding groups Hom0k(: : : ; : : :)of both sides.)Thus every morphism from A to B is uniquely determined by its \matrix",and onversely, every \matrix" determines a morphism. Further, the ompositionof morphisms orresponds to the usual omposition of matries.In partiular, under (A.3), Endk(A) is isomorphi to the \matrix ring"Li;j Homk(Aj ; Ai).There is a notational diÆulty: For j = 1, a morphism  = ( 1; : : : ;  n) :A �! B =Qi=1;:::;nBi is represented by the olumn vetor0BBB�  1 2... n 1CCCA :We now want to study how the Rosati involution with respet to a produtpolarization operates on the \matries". It is onvenient to generalize the oneptof a \Rosati involution" �rst.



104 Appendix A. Some Auxiliary ResultsLet X and Y be abelian k-varieties with �xed polarizations 'X : X �!bX; 'Y : Y �! bY . Then for every  2 Hom0k(X;Y ), we denote '�1X b 'Y 2Hom0k(Y;X) by  0 and all it the Rosati involution with respet to the polariza-tions 'X and 'Y .Now for i = 1; : : : ; n; j = 1; : : : ;m, let 'Bi : Bi �! Bi and 'Aj : Aj �! Aj bepolarizations. Let 'A : A �! bA and 'B : B �! bB be the orresponding produtpolarizations.Lemma A.16 Let  2 Hom0k(A;B) be by the \matrix" ( i;j)i=1;:::;n; j=1;:::;m; i;j 2 Hom0k(Aj ; Bi). Then with respet to 'A and 'B, the Rosati involutionof  is given by the \matrix" ( 0j;i)i=1;:::;m; j=1;:::;n with  0j;i 2 Hom0k(Bj ; Ai).Proof Under the identi�ation of bA with Qj=1;:::;n bAj , pAj equals (by de�nition)� bAj . Analogously, p bAj = �bbAj = �Aj and thus p bAj = b�Aj . Further, '�Bj = � bBj 'Bj and'AipAi = p bAi ', i.e. pAi '�1A = '�1Ai p bAi .We have to show that pAi  0�Bj =  0j;i. Now,pAi  0�Bj = pAi '�1A b 'B�Bj = '�1Ai p bAi b � bBj 'Bj = '�1Ai b�Ai b pBj 'Bj ='�1Ai \(pBj  �Ai )'Bj = '�1Aid j;i'Bj =  0j;i2A.2.4 Orthogonal omplements and the Complete ReduibilityTheoremIn this subsetion, let k be a perfet �eld. Let X be an abelian variety over k.Let �jk be a sub�eld of kjk, L an an ample sheaf on X� de�ning a polarization' : X �! bX. Let Y be an abelian subvariety of X, let �Y : Y ,! X be theinlusion, and let �Y : bX �! bY be the orresponding dual morphism.The sheaf ��Y (L) is again ample (this is true for any pull-bak of an amplesheaf), and by Lemma A.13, the polarization de�ned by ��Y (L) an be alulatedas follows:Lemma A.17 �Y '�Y 
k id� = ���Y (L). In partiular, K(L) = ker(�Y '�Y )
k id�.De�nition Let Z be the redued onneted omponent of the zero of'�1(ker(�Y )) = ker(�Y '). With other words, it is redued indued losed sub-sheme assoiated to the onneted omponent of the zero of ker(�Y '). (Thusthere exists a natural losed immersion Z ,! ker(�Y ').) We all Z the orthogonalomplement of Y in X with respet to L. The redued and irreduible sub-groupsheme Z of X is geometrially irreduible by lemma A.28 and geometrially re-dued beause we assumed k to be perfet, thus Z is an abelian variety. From



Some results about abelian varieties 105this it also follows that \orthogonal omplement" ommutes with base extension(of �elds). Sine ���Y is surjetive, �Y is surjetive.Let l 6=har(k) be a prime. Let EL be the Riemann form assoiated with Land l; f. [Mu, p.186℄. The term \orthogonal omplement" is justi�ed by thefollowing lemma.Lemma A.18 Zk is the largest abelian subvariety Z 0k of Xk with the property thatEL(Yk; Z 0k) = 1.Proof Let P 2 Tl(Xk); Q 2 Tl(Yk). ThenELXk(Tl(�Y )(Q); P ) = elXk(Tl(�Y )(Q); Tl(�L)(P )) = elYk(Q;Tl(�Y )Tl(�L)(P )):So,ELXk(Tl(�Y Yk); P ) = 1 ! elYk(Tl(Yk); Tl(b��L)(P )) = 1 ! Tl(b��L)(P ) = 1:Espeially, the orthogonal omplement Zk of Yk has the desired property. On theother hand, if Z 0k is any abelian subvariety with EL(Yk; Z 0k) = 1, then Tl(Z 0k) �Tl(��1L (ker(b�))). This implies Tl(Z 0k) � Tl(Zk).[Assume P 2 Tl(Z 0k); P =2 Tl(Zk). Let i > 0 suh that liP = 0. For all m 2 N,letQm 2 Tl(Z 0k) with limQm = P . Then form1 < m2; Qm2�Qm1 =2 Tl(Zk) beauseotherwise P = lim2(Qm2 �Qm1) 2 Tl(Zk). So all sets Qm1 + Tl(Zk); Qm2 + Tl(Zk)are disjoint. By onstrution they are also ontained in Tl(��1L (ker(b�))), thus thisset has in�nitely many elements, a ontradition.℄Now the result follows by the injetivity of the l-adi representation. 2Lemma A.19 Y \Z := Y �X Z =: ��1Y (Z) is a losed subsheme of ker(�Y '�Y ).Proof The losed immersion Z ,! ker(�Y ') indues a losed immersion��1Y (Z) ,! ��1Y (ker(�Y ')) = ker(�Y '�Y ). (\Closed immersion" is \stable underbase extension".) 2Sine ��Y�(L) is ample, so K(��Yl(L)) is �nite, and so is Y �X Z. This impliesthe \Complete Reduibility Theorem".Proposition A.20 [Mu, p.173℄ Let (X;') be a polarized abelian k-variety and Yan abelian subvariety, Z the orthogonal omplement of Z with respet to L. Thendim(X) = dim(Y ) + dim(Z) and X is isogenous to Y �k Z.Remark Let � : Y �kZ �! X be the isogeny, de�ned by �X and �Y . Then underthis isogeny, ' beomes a produt polarization, i.e. b�'� is a produt polarization.This is obvious sine by de�nition of Z, b�Z'�Y = 0 and similarly with Y andZ interhanged, sine the de�nition is \orthogonal omplement" is symmetri byLemma A.18 for example.



106 Appendix A. Some Auxiliary ResultsAlready assuming the Complete Reduibility Theorem, one an easily proofLemma A.21 Let X and Z be abelian k-varieties, p : X �! Z a surjetivemorphism. Then bp : bX �! bZ has �nite kernel.Proof Let Y be the redued onneted omponent of the zero of the kernel ofp : X �! Z, �Z0 : Z 0 ,! X the orthogonal omplement of Y with respet tosome polarization. Then the kernel of p�Z0 : Z 0 �! Z is immersed in Z 0 \ ker(p)whih is �nite sine Z 0 \ Y is �nite. So p�Z0 : Z 0 �! Z is an isogeny, and so is�Z0bp : Z �! Z 0. Thus bp has �nite kernel. 2This implies:Lemma A.22 Let (X;'); ( eX; e') be a prinipally polarized abelian k-varieties, letf : eX �! X and f 0 := e'�1 bf' the \Rosati involution" of f with respet to ' ande', Y := im(f). Then the orthogonal omplement of Y is the redued onnetedomponent of the zero of ker(f 0).Proof Let f = �Y g, where g : X �! Y is surjetive. The orthogonal omplementis given as the redued onneted omponent of the kernel of �Y ', whih by thelast lemma is the same as the redued onneted omponent of the zero of thekernel of '�1bg�Y ' = '�1d�Y g' = f 0. 2Lemma A.23 Let (X;') be a prinipally polarized abelian k-variety, f an en-domorphism, f 0 the Rosati involution with respet to '. Assume that ker(f 0) isredued and irreduible. Let Y = im(f) and Z = ker(f 0). Then Y \Z := Y �kZ =ker(�Y '�Y ).Proof As above, let f = �Y g. Sine by assumption ker(f 0) = ker('�1bg�Y ') isredued and irreduible, so is ker(�Y '). Thus Z = ker(�Y ') and Y \Z = ��1Y (Z) =��1Y (ker(�Y ') = ker(�Y '�Y ). 2A.2.5 The deomposition of the endomorphism ring of an abelianvarietyLet A be an abelian variety over a perfet �eld k.Let A(i) ,! A, i = 1; : : : be abelian subvarieties suh that the indued mor-phism QiA(i) �! A is an isogeny. Let e(i); i = 1; : : : be the elements of Endk(A)whih orrespond under the isogeny to the projetions on the left hand side. Then1 = Pi e(i) and the e(i) are idempotent. Now if a(i) 2 N suh that aie(i) aremorphisms, then A(i) = a(i)e(i)(A) and A(i) is the redued onneted omponentof the zero of the kernel of a(i)(1� e(i)).Conversely, if a deomposition of the unity 1 =Pi e(i) where the ei are idem-potent is given, de�ne A(i) := a(i)e(i)(A) for suitable a(i) 2 N. Then againQiA(i) � A and the e(i) orrespond to the projetions on the left hand side.



Some results about abelian varieties 107Now �x a polarization ' on A. With the help of the Complete ReduibilityTheorem, A an be deomposed into a produt of simple abelian varieties.There exist simple abelian subvarieties �i;j : Ai;j ,! A with Ai;j � Ai0;j0 i�i = i0 suh that the �i;j indue an isogenysYi=1 kiYj=1Ai;j � A (A.4)and suh that A0i;j :=( abelian variety generated by Ai0;j0 for (i; j) 6= (i0; j0)) isorthogonal of Ai;j with respet to '. Under this isogeny, ' beomes a produtpolarization on the left-hand side. In partiular, the projetions on the left-handside are invariant under the Rosati involution. As above, let ei;j be the idempo-tents in EndK(AK) whih orrespond to these projetions. Then also the ei;j areinvariant under the Rosati involution, e0i;j = ei;j , and thus by Lemma A.22, A0i;jis the orthogonal omplement of Ai;j.Let Ai be the abelian subvariety generated by the Ai;1; : : : ; Ai;ki . Then theAis are independent of the partiular deomposition hosen. We all them theisotypi omponents of the abelian variety A (over k).A � sYi=1Ai (A.5)Let A0i := abelian subvariety in A generated by the Aj ; j 6= i.Deomposition (A.4) indues an isomorphismEnd0k(A) ' sYi=1End0k(Ai): (A.6)The End0k(Ai) are simple rings (simple meaning that they do not have a propertwo sided ideal) with End0(Ai) � Mki(Di), where Di � End0k(AAi;j ) is a divisionring.It is a fat from the theory of semisimple rings that (A.6) is the unique way todeompose End0K(AK) into a produt of simple rings (i.e. the if a deompositionEnd0K(AK) ' QiRi is given, the Ri are uniquely determined inside End0k(A) upto a permutation); see [FD, Theorem 1,13℄.Now let ei be the image of the unity of End0k(Ai) in End0k(A) under the aboveisomorphism. Then the ei are entral and idempotent and 1 =Ps1=1 ei, and againe0i = ei and Ai is orthogonal to A0i.Now all polarizations of Qsi=1Ai are multiples of produt polarizations and, inpartiular, ei = e0i and the Ai are orthogonal with respet to any polarization.Proof End0k(Qsi=1Ai) 'Qsi=1 End0k(Ai). This implies NS0(Qsi=1Aik)Gal(kjk) 'Qsi=1NS0k(Aik)Gal(kjk). (Use the haraterization [Mu, p.208, appliation III℄ withthe produt polarization ' on the left-hand side and the 'i on the right-hand side;see also Proposition A.9.)



108 Appendix A. Some Auxiliary ResultsNow, lasses of ample sheaves on the left hand side orrespond to tuples oflasses of ample sheaves on the right hand side. These lasses on the left handside de�ne multiples of polarizations, and on the right hand side, they de�nemultiples of produt polarizations. 2A.2.6 Ample sheavesLet K be a �eld and let A be an abelian K-variety of dimension n with an amplesheaf L.Reall the Vanishing Theorem:Proposition A.24 [Mu, par. 16, p.150℄ Let M be a non-degenerate invertiblesheaf on A, i.e. K(M) is �nite.Then there exists a unique integer i(M); 0 � i(M) � n, alled the index of M,suh that Hp(X;M) = 0 for p 6= i(M) and Hi(M)(X;M) 6= 0.The index an be alulated as follows:Proposition A.25 [Mu, par. 16, p.155℄ With L and M as above, the funtionz 7! �(Lz 
M) is a polynomial funtion of degree n whose roots are all real andnon-zero. The index i(M) is the number of positive roots.This implies:Lemma A.26 Let M be a non-degenerate invertible sheaf on A. The followingare equivalent:1. M is ample, i.e. a power of M is very ample.2. M is de�ned by an e�etive divisor.3. The index i(M) is 0, i.e. H0(X;M) 6= 0 and Hp(X;M) = 0 for p 6= 0.4. The polynomial �(Lz 
M) has only negative roots.Proof 2: ! 3: ! 4: follows from the Vanishing Theorem.1: �! 3:: By the Vanishing Theorem applied to the ample sheafM (!) and thenon-degenerate sheafM, the index i(M) is equal to the number of positive roots ofthe polynomial de�ned by z 7! �(Mz 
M) = �(Mz+1) Riemann-Roh= (z+1)n�(M).The roots of this polynomial are all at �1 < 0, so the index is zero.2: �! 1:: see [Mu, p. 60, appliation 1℄. 2A.2.7 Prinipally polarized abelian surfaesThe following proposition is due to A.Weil. Beause Weil uses in his proof his ownlanguage whih is out of fashion today, we inlude a proof.



Some results about abelian varieties 109Proposition A.27 (A.Weil) [We-T, Satz 2℄ Let A be an abelian surfae overan algebraially losed �eld k. Let L be an ample sheaf on A whih de�nes aprinipal polarization. Then L is de�ned by an e�etive divisor D whih is uniqueup to translation.Either D is a non-singular geometrially irreduible proper urve of genus 2,and if � : D �! A is the inlusion, �� : A �! J(D) is an isomorphism.Or A is isomorphi to the produt E �k E0 of ellipti urves, and via thisisomorphism, D has the form E�k a+a0�k a0 where a; a0 are two points on E;E0respetively.Before we ome to the proof of this proposition, we show how the arithmetigenus of a urve on an abelian surfae A an be alulated from the Euler-harateristi of the sheaf it de�nes on A.Let D be a (not neessarily irreduible) urve on A. Then we have the exatsequene 0 �! L(�D) �! L(A) �! OD �! 0:Here, we make the usual identi�ation of OD with ��(OD) where � : D �! A isthe inlusion. [Ha, Remark 2.10.1℄ This identi�ation is justi�ed by the fat thatHi(D;OD) = Hi(A; ��OD). [Ha, III,Lemma 2.10℄By the additivity of the Euler-harateristi we get�(L(�D)) + �(OD) = �(OA) = 0:Beause of the Riemann-Roh Theorem, �(L(�D)) = 12(D;D) = �(L(D)) andthus �(OD) = ��(L(D)):In partiular, if D is onneted, H1(D;OD) = �(L(D)) + 1.proof of the proposition Let D be an e�etive divisor de�ning L, unique up totranslation on A. Let D = Pli=1 niDi, where ni > 1 and Di, i = 1; : : : ; l areirreduible proper urves. Then by the Riemann-Roh Theorem2 = (D;D) =Xi;j ninj(Di;Dj):We laim that there are only two ases:l = 1; n1 = 1, (D1;D1) = 2, and D1 is a non-singular geometrially irreduibleproper urves of genus 2l = 2; n1 = n2 = 1, (D1;D1) = 0; (D2;D2) = 0; (D1;D2) = 1, and D1;D2 areellipti urvesWithout loss of generality, we an assume that (D1;D1) 6= 0 or (D1;D2) 6= 0.Assume that (D1;D1) 6= 0. Sine again by the Riemann-Roh Theorem, theself-intersetion of any divisor on an abelian surfae is divisible by 2, (D1;D1) = 2,



110 Appendix A. Some Auxiliary Resultsthus n1 = 1 and (D1;Di) = 0 for i > 1. Now D1 is an ample divisor, and by theriterion of Nakai-Moishezon [Ha, V,Theorem 1.10℄, k = 1. By the remarks beforethe proof of the proposition, the arithmeti genus of D is 2. The geometri genusof the normalization of D is also 2, and so D itself is non-singular. For assumethat the genus of the normalization would be 0 or 1. It annot be zero beausethere exist no rational urves on abelian varieties, and it annot be 1 beausethen than the map from the normalization of D to A would be the inlusion ofan ellipti urve ombined with a translation in A. In partiular, D would be anellipti urve and its arithmeti genus would be 1, not 2.Now assume that (D1;D2) 6= 0. Then (D1;D2) = 1; n1 = n2 = 1 and D1 +D2is ample. Now (D1 + D2;Di) = 0 for any i > 2 and by the riterion of Nakai-Moishezon, k = 2. By the remarks before the proof, the arithmeti genera ofD1;D2 are 1. The geometri genera an again not be 0, so D1 and D2 are elliptiurves.In the ase l = 2, D1 and D2 interset in one point and A has the universalproperty of the sum of D1 and D2 in the ategory of abelian varieties.We ome bak to the ase k = 1. We want to proof that �� : A �! J(D) isan isomorphism. Let P 2 D(k); fP : D �! J(D) be the anonial immersionde�ned by P 7! 0. By a translation of A, we an assume that �(P ) = 0 on A. Bythe universal property of the Jaobian, there exists a morphism �P : J(D) �! Awith �P Æ fP = �.We already know that �P is an isogeny and laim that it is in fat an isomor-phism. Then b� and also �� are isomorphisms.fP indues a morphism � : D �k D �! J(D), given on .-valued points by(Q;R) 7! P + Q. This fators through D �Sk D, the symmetri produt. Theindued morphism D �Sk D �! J(D) is birational, thus the degree of � is 2.The omposition �P Æ � is given by (Q;R) �! � Æ Q + � Æ R. We laim thatthe degree of �P Æ � is 2, thus the degree of �P is 1.The divisor D is algebraially equivalent to (�idA)�1(D) (see [Mu, par. 8,p.75, (iv)℄), and this divisor is algebraially equivalent to (�idA)�1(D) + T for allT 2 A(k).Thus the equation (D;D) = 2 implies (D; (�idA)�1(D) + T ) = 2 for anyT 2 A(k). There exists an open subset U � A suh that for T 2 U(k), D and(�idA)�1(D) + T interset transversely. Thus for T 2 U(k), there exist exatly 2points (P;Q) 2 (D �k D)(k) with � Æ (P;Q) = � Æ P + � ÆQ = T .Sine U is dense in A, the degree of the morphism � : D �k D �! A is 2. 2Remark Let the onditions be as in the proposition but let k be an arbitrary�eld. Then again L is de�ned by an e�etive divisor D, unique up to translation.Now, D is a geometrially redued proper urve. There are two ases: EitherD is geometrially irreduible, non-singular and has genus 2 or it is geometrially



Some results about shemes and varieties 111the pointed union of two ellipti urves. In the �rst ase, A is again isomorphito J(D) (over k).A.3 Some results about shemes and varietiesIn this setion we present some results from various soures as well as some otherrather tehnial results.A.3.1 Regular funtion �elds and geometrially irreduiblevarietiesDe�nition Let Kjk be an algebrai extension, let Ljk be any extension. ThenK and L are linearly disjoint over k i� K 
k L is a �eld.Assume that this is the ase and let K and L be inluded in some ommonover�eld. Then the ompositum KL of K and L in this over�eld together withthe inlusions K �! KL and L �! KL is (anonially isomorphi to) the tensorprodut of K and L over k, K 
k L ' KL.Again let K and L be inluded in some ommon over�eld and assume thatKjk is Galois. Then K and L are linearly disjoint i� K \L = k; see [La, VII, par.3,4℄. 6An funtion �eld Ljk is alled regular over k, if L and k are linearly disjointover k. An extension Ljk(x) is alled regular i� Ljk is regular or { what is thesame { if L and k(x) are linearly disjoint over k(x).Let Kjk be an algebrai �eld extension. A regular extension L0jK(x) is said tobe de�ned over k, if there exists a subextension Ljk(x) of L0jk(x) whih is linearlydisjoint from K(x)jk(x) with LK = L0. (This implies that Ljk(x) is regular.)A regular extension L0jK(x) is said to be de�ned over k with its Galois group,if there exists suh a subextension Ljk(x) whih is Galois.All the above statements an easily be translated into statements about vari-eties. For example, Let X 0 be an irreduible k-variety. Then X is geometriallyintegral i� the funtion �eld k(X)jk is regular.Lemma A.28 Let X be a onneted k-sheme with a k-rational point. Then Xis geometrially onneted. If additionally X is smooth (and thus irreduible) it isgeometrially irreduible.Proof We have to show that X 
k ksep is irreduible.Let Kjk be some �nite Galois extension with Galois group G. Then so isX 
k K �! X. (Galois is stable under base extension.) So (X 
k K)=G ' X.6Caution! The notation KL does not mean that K and L are neessarily linearly disjoint.It an also just be the ompositum in a ommon over�eld. We write KL ' K 
k L if K and Lare linearly disjoint.



112 Appendix A. Some Auxiliary ResultsThis means in partiular that the underlying topologial spae of X is the quotientof the underlying topologial spae of X
kK by G. Thus G operates transitivelyon the omponents of X 
k K.Let P : Spek �! X be a k-rational point. By base hange, P de�nes a K-rational point of X 
k K whih we also denote by P . Let X 00 be the omponentof the image of P in X 
k K.Now assume that X 
k K has more than one omponent.Let � 2 Gopp suh that � moves X0 to another omponent. Then the imageof �P is not in X0, and so is the image of � Æ P = �P��1, a ontradition, sinealso P = �(P ).Sine Kjk was arbitrary �nite Galois, X 
k ksep is onneted.If X is smooth, so is X 
k ksep, and thus is is onneted. 2A.3.2 Pull-bak of e�etive divisorsLet k be a �eld and let X be a non-singular onneted (irreduible) k-variety.Then the group of Weil-divisors and Cartier-divisors on X are isomorphi. [Ha,Proposition 6.11.℄ Under this isomorphism, e�etive Weil-divisors orrespond toe�etive Cartier-divisors, and they orrespond to losed subshemes of X of pureodimension 1.We will now disuss the last isomorphism in greater detail.Let D be a losed subsheme of pure odimension 1. Then there exists anopen overing Ui of X suh that on every Ui, D is de�ned by a single elementfi 2 �(Ui;O�Ui). Let 0 denote the k-rational point of A 1k orresponding to k[x℄ �!k; x 7! 0. Then fi de�nes a morphism Ui �! A 1k and DjUi = f�1i (0). 7 Nowthe overing (Ui)i and the (fi)i de�ne the orresponding Cartier-divisor whih wedenote by DC .Now let Y be another non-singular onneted k-variety and let a : Y �! X bea morphism. Then a�1(D)ja�1(Ui) = a�1f�1i (0) = (fia)�1(0). (The last equalityis equivalent to a�1(Ui)�Ui (Ui �A 1k 0) = a�1(Ui)�A 1k 0:)Assume that a(Y ) * D as sets. (Sine we assumed that Y is irreduible thisis equivalent to that the inverse image of D in Y is not the whole spae.) Thisondition is espeially ful�lled if a is an immersion and the support of D (i.e. theorresponding redued subsheme) does not ontain Y or if a is surjetive.Then fia 6= 0 and a�1(D) is again a subsheme of pure odimension 1, and theorresponding Cartier-divisor is de�ned by the open overing a�1(Ui) of Y and theset (fia)i. This divisor is usually denoted by a�(DC). Thus a�1(D)C = a�(DC).The groups of Weil-divisor lasses, Cartier divisor lasses and lasses invertiblesheaves are also naturally isomorphi.7Reall that for a losed immersion of shemes � : X ,! Y , and some morphism a : Z �! Y ,by a�1(X) we always mean the sheme-theoreti preimage, i.e. ��1(X) := X �Y Z where theprodut is taken relative to � and �.



Some results about shemes and varieties 113Furthermore, again under the ondition a(Y ) * D, we have a�(L(DC)) 'L(a�(DC)). ThusLemma A.29 Let X, Y be nonsingular onneted varieties, a : Y �! X a mor-phism. Let D be a subsheme on X, purely of odimension 1, let DC be theassoiated Cartier divisor. Assume that the support of D does not ontain the seta(Y ).Then a�1(D)C = a�(DC) and a�(L(DC)) ' L(a�1(D)C).Remark If X is an abelian variety and Y �! X is a losed immersion, thenthe ondition of the proposition an always be ful�lled by translating D.A.3.3 Galois-operation and desentLet X and Y be shemes and let � : X �! Y be a Galois overing with Galoisgroup G. For any quasi-oherent OX -sheaf L and � 2 G, hoose a pull-bak via� : Y �! X. As usual, denote this sheaf by ��(L).Now let L be a quasi-oherent OX-module on X.For any �; � 2 G and any morphism a : L �! ��1�(L), denote by �(a) theomposition ��1�(L) �! ��1�(��1�(L)) ' (��)�1�(L), where the �rst morphismis de�ned by base-hange.Then a 1-oyle datum of L is a map G 2 � 7! a� , where a� is an OX-morphism L �! (��1)�(L) suh that for all �; � 2 G, a�� = �(a� ) Æ a� : L �!(��)�1�(L).A quasi-oherent OX -module L on X with a 1-oyle datum is alled a quasi-oherent G-sheaf.Proposition A.30 The funtor F 7! ��(F) is an equivalene of ategories ofquasi-oherent OY -modules and that of quasi-oherent G-sheaves on X. Coherentsheaves orrespond to oherent sheaves and loally free sheaves orrespond to loallyfree sheaves of the same rank.Proof This is a speial ase of the \faithfully at desent" of OX-modules; see[BLR, par. 6.1℄. 2Caution! The proposition would be wrong if one would all an OX-module aG-sheaf if its lass is invariant under pull-bak by elements of G. Note howeverthat the following proposition is a speial ase of formula (1.16):Proposition A.31 Let Kjk be a Galois �eld extension. Let Y be a projetive k-variety with a k-rational point. Let L be an invertible free sheaf on Y 
k K, suhthat for every � 2 Gal(Kjk), ��(L) � L. Then L is isomorphi to the inverseimage of a sheaf on Y .



114 Appendix A. Some Auxiliary ResultsRemark A 1-oyle-datum on a OX-sheaf an be interpreted as follows:By de�nition, (��1)�(L) = (��1)�1(L)
(��1)�1(OX)OX . Now, (��1)�1(OX) isanonially isomorphi to ��(OX), and the same is true for L. Thus (��1)�(L) '��(L)
��(OX) OX , where ��(OX) �! OX is given by �#�1. This means that L isanonially isomorphi to ��(L) regarded as OX module via �# : OX �! ��(OX).Under this identi�ation, the OX -morphism a� : L �! ��1�(L) orresponds toa morphism a� : L �! ��(L) with a�(�x) = �#(�)a�(x) for � 2 OX(U); x 2L(U); U open in X.Now, ��(L) = ����(L) and a� beomes an automorphism of ��(L), whihwe denote by �#. This morphism satis�es �#(�x) = �#(�)�#(x), where � 2��(OY )(U); x 2 ��(L)(U); U open in Y . We thus have a G-operation on ��(L)whih \overs" the G-operation on ��(OX). Taking invariants, we get a presheaf��(L)G whih is in fat a sheaf beause �#(x) = x is a loal property.If M is a OX -sheaf on X, (��(��(M)))G ' M. If L is a OY -sheaf on Ywith a 1-oyle datum, and M is a OX -sheaf on X suh that ��(M) � L suhthat under the isomorphi the oyle-data of the two sheaves agree, then M '(��(��(M)))G � ��(L)G. Thus L = ��(M) � ��(��(L)G).A.3.4 Shemes over �nite �eldsDe�nitions Let q be the power of a prime number p, k the �nite �eld withq elements, Kjk an algebrai extension of �elds. We identify the Galois groupGal(Kjk) with its dual and denote its elements with usual letters. The Frobeniusautomorphism of Kjk is denoted by �Kk .There exist two (or even three) di�erent onepts of Frobenius morphisms forK-shemes. We want to distinguish between them arefully.Let X 0 be a K-sheme.The k-automorphism �Kk of K indues an automorphism of Spe(K) whihwe again denote by �Kk . We all the automorphism �Kk : �Kk �1(X 0) �! X 0 thearithmeti Frobenius isomorphism.Let FKk be the automorphism of X 0 whih is de�ned as follows: FKk is theidentity on the underlying topologial spae and it is given by f 7! f q on OX0 .By de�nition, we have a ommutative diagramX 0 FKk //

��

X 0
��Spe(K) �Kk // Spe(K):In partiular, if the extension Kjk is non-trivial, FKk is not a Spe(K)-morphism.Now de�ne the geometri Frobenius morphism by �k := �Kk �1 Æ FKk : X 0 �!�Kk �1(X 0) { this is a K-morphism.



Some results about shemes and varieties 115Let X 0 be aÆne and of �nite type, K[x1; : : : ; xm℄=(f1; : : : ; fl) a presentationof the oordinate ring of X 0. Then the oordinate ring of ��1(X 0) is given byK[x1; : : : ; xm℄=(�Kk #(f1); : : : ; �Kk #(fl)), and �k is given by the identity on K andxi 7! xqi . For a general K-sheme X 0 of �nite type, �k is de�ned like this loally.The de�nition of �k behaves well with respet to base-hange: If LjK issome algebrai �eld extension, then (�Kk �1 Æ FKk ) 
K idL = �Lk �1 Æ FLk : X 0 �!�Kk �1(X 0)
K L ' �Lk �1(X 0 
K L).Note In [Ha℄, the morphism FKk is alled \Frobenius morphism" and the geo-metri Frobenius morphism �k is alled \K-linear Frobenius morphism"; see [Ha,IV, 2, p. 301℄.In [Mi-A℄, the \Frobenius morphism" is only de�ned for the ase that k = K,and under this assumption, �Kk is trivial and FKk and �k agree; see [Mi-A, par.20℄.In [Mu℄, the \Frobenius morphism" is �rst de�ned for k = K and then gen-eralized to k-shemes whih are de�ned over k. Again it equals the geometriFrobenius morphism �k.From now on, we restrit ourselves to the ase K = k. We write �k for thearithmeti Frobenius automorphism �kk and denote F kk by Fk.Let P be a k-valued point of X 0. Then Fk ÆP Æ��1k = P . In fat, the left-handside is also a k-valued point of X 0 and its image oinides with the one of P .The equation Fk Æ P = P Æ �k implies �k Æ P = ��1k Æ Fk Æ P = ��1k Æ P Æ �k =��1k (P ) = P �k .Lemma A.32 Let X 0 be a k-sheme. Then for all k-valued points P of X 0,�k Æ P = ��1k (P ) = P �k 2 ��1k (X 0):If X 0 is an irreduible variety, the �eld extension k(�k(X 0))jk(X 0) is purelyinseparable. If X 0 is an abelian variety, then �k is an isogeny of p-power degreewhose kernel is onneted (loal in the language of [Mu℄).2Lemma A.33 Let V 0 and W 0 be k-varieties, � : V 0 �! W 0 a k-morphism. Then��k �k = �k � : V 0 �! ��1k (W 0).Proof We only have to show this for k-rational points. Let P 2 V 0(k). Then��k Æ � Æ P = ��k Æ P �k = (� Æ P )�k = �k Æ � Æ P:2 This implies:



116 Appendix A. Some Auxiliary ResultsLemma A.34 Let V;W be k-varieties, � : Vk �! Wk a morphism. Then � isde�ned over k i� �k � = ��k.2 Using Lemma A.8, we also getLemma A.35 Let A0 be an abelian k-variety, � 2 End0k(A0). Then ��k =� ���1 2 End0k(��1k (A0)).2Remark A onsequene of Lemma A.32 is that for an abelian k-variety A, theoperation of the two Frobenius morphisms �k and �k on the Tate-module (for someprime l) are equal (where �k operates by (: : :)�k). Beause of this, we speak of theoperation of the Frobenius on the Tate-module and the harateristi polynomialof this operation.
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