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1 Introduction

In this report, we give an overview of a certain class of attacks on elliptic

and hyperelliptic curve cryptography. The attacks we will discuss are only

applicable if one considers discrete logarithms in class groups of elliptic or

hyperelliptic curves over finite non-prime fields.

Let us state the general idea of the class of attacks we will consider:

Let H/K be a elliptic or hyperelliptic curve (or even a more general

curve) defined over a finite non-prime field K. Assume that the DLP in the

divisor class group Cl0(H/K) = Jac(H)(K) of H/K (of degree 0) is used

as a cryptographic primitive. (Note that if E is an elliptic curve, one has

a canonical isomorphism E(K) ≃ Cl0(E/K), thus we consider in particular

the DLP in elliptic curves.)

The assumption that the DLP is used as a cryptographic primitive means

in particular that Cl0(H/K) contains a large subgroup of prime order. We

will use this fact in the following.

If the genus of H would be ≥ 4 (and maybe ≥ 3), index calculus attacks

on Cl0(H/K) would be more efficient than “generic attacks” like Pollard ρ.

If however the genus of H is 1 or 2, generic attacks are more efficient than

index calculus attacks; c.f. [4], [7], [17].

The idea is now to transfer the DLP in Cl0(H/K) in a DLP in the class

group of a curve of higher genus over a smaller field.

Let us assume that K is an extension of another finite field k. (The field

k need not be a prime field.) Let us fix explicitly that char(k) = p, k = Fq

and K = Fqn , i.e. [K : k] = n. Assume that we have an explicitely given

curve C/k defined over k and an explicitely given cover c : C −→ H defined

over K. (A non-constant morphism between two curves is called a cover.)

Then we have the conorm or pull-back map c∗ : Cl0(H/K) −→ Cl0(C/K),

and we also have the norm map N : Cl0(C/K) −→ Cl0(C/k). By composing
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these two maps, we obtain a map

N ◦ c∗ : Cl0(H/K) −→ Cl0(C/k). (1)

Let us assume that the subgroup of large prime order of Cl0(H/K) is pre-

served under this map, i.e. it does not lie in the kernel. Then one might

try to map the DLP from Cl0(H/K) to Cl0(C/k) and solve it in the latter

group via index calculus. We will call such an attack on the DLP in a curve

H/K a cover attack.

If the group order of Cl0(H/K) is nearly prime (i.e. prime up to a small

factor 2,3,4,5 say), the genus of C is at least equal to the g(H)n, where g(H)

is the genus of H.

Here is an intuitive argument for this:

By assumption the kernel of the map N ◦c∗ is very small – let us assume

that it is trivial. Then logq(Cl
0(C/k)) ≥ logq(#Cl0(H/K)). Now by the

bounds of Hasse-Weil, logq(#Cl0(C/k)) is roughly g(C), and logq(#Cl0(H/K))

is roughly ng(H). We thus get

g(C) ≥ g(H)n. (2)

Sometimes in the cryptological applications, one considers the following ap-

plications:

Let the curve H be defined over k, but consider it over K. Then

Cl0(H/K) contains Cl0(H/k). On the other hand, Cl0(H/K) contains an-

other group, called trace-zero group (see Section 4) which most of the time

in the applications has trivial intersection with Cl0(H/k) inside Cl0(H/K).

If one now assumes that the order of the trace-zero group is nearly prime,

one can use the DLP in this group as a cryptographic primitive.

Now in order to be able to transfer this DLP into the DLP in Cl0(C/k),

one has to assume that the large prime factor of the trace-zero group is

preserved under the above map. Under this condition, one obtains with the

same arguments as above

g(C) ≥ g(H)(n− 1). (3)

From a practical point of view, this inequality only makes a difference to

equality (2) if n is small, say 3 or 5.

Note that attacks on the DLP in Cl0(C/k) become less efficient if – given

the size of the ground field – the genus of C grows. For this reason it is of

greatest importance for the practicability of the attack that g(C) is “as small

as possible”.

Let us repeat what we need to make the attack work. We need an

explicitely given curve C/k and a morphism c from C to H defined over K

such that
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• the kernel of N ◦c∗ does not contain the large subgroup of prime order

of Cl0(H/K)

• the genus of C is “not too large”.

Furthermore, it would be best if the curve C would be hyperelliptic or

given by another “easy” equation, for example if it would be superelliptic.

Automorphisms of C would lead to a further speed up.

The formulation that the genus of C should “not be too large” is of course

very vague. What is “too large” depends of course on the state of the art

in index calculus attacks. For large n, by the results of Enge and Gaudry

([4]), one might say that g(C) is “small enough” if g(C) is ≤ (g(H)n)2.

For very small numbers (like n = 5, 7 and g(H) = 1), it would be best

if g(C) is equal to g(H)n (or g(H)(n − 1) in the “trace-zero” case) or only

slightly bigger.

In Sections 3 to 5, we will give three (potential) methods to construct

a curve C/k and a homomorphism as in (1). The first method is the GHS-

attack and several generalizations of it, the second one is an attack developed

by the authors to specificly attack DLPs in trace-zero groups, the third one

is another potential new attack developed by the authors.

2 Cover attacks and the Weil restriction

The Weil restriction is an important mathematical tool to study cover at-

tacks.

As above, let K/k be an extension of finite fields of degree n.

Let V be a (affine or projective) variety defined over K (for example a

curve). Then there exists an n-dimensional (affine resp. projective) variety

W/k and a morphism u : W −→ V defined over K which has the following

universal property :

For every variety X defined over k and every morphism c : X −→ V

defined over k, there exists a unique morphism a : X −→ W defined over K

with c = u ◦ a.
Note that this means in particular that we have a bijection between

MorK(X,V ) and Mork(X,W ), where MorK(X,V ) denotes the set of mor-

phisms from X to V defined over K and Mork(X,W ) denotes the set of

morphisms from X to W defined over k.

The above variety W/k is “essentially unique”, it is called the Weil

restriction of V with respect to K/k.

In particular, the universal property of the Weil restriction can be applied

to the case that the variety X consists of just one point (a point is also a

variety). So let X be a point. Then the morphisms from X to V defined
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over K are just the points of V whose coordinates all lie in K. Such points

are called K-rational, and the set of K-rational points is denoted by V (K).

Explicitely, if one is given a morphism from the point X to V , one assigns

to it the image of X in V which is a K-rational point. On the other hand,

to a K-rational point P on V one assigns the morphism X −→ V which

maps the point X to P .

These considerations can also be made for morphisms from X to W

defined over k and k-rational points of W . We thus have canonical bijections

V (K) ≃ MorK(X,V ) and W (k) ≃ Mork(X,W ). Together with the above

bijection MorK(X,V ) ≃ Mork(X,W ), we obtain the bijection

V (K) ≃ W (k). (4)

Sometimes one can define an algebraic group law on a variety: An algebraic

group law on V is by definition a morphism m : V × V −→ V such that

for all field extensions λ/k, V (λ) with the composition P + Q := m(P,Q)

is a group. A variety defined over K with an algebraic group law which is

also defined over K is called group variety defined over K. Projective group

varieties are called abelian varieties. One can show that the group law of

an abelian variety is always commutative. A very important special case of

abelian varieties are the elliptic curves which are by definition nothing but

1-dimensional abelian varieties.

If V is a group variety, then there also exists a canonical algebraic group

law on the Weil restriction W defined over k. With this group law, W

becomes a group variety defined over k. Now both sets V (K) and W (k)

are groups, and in fact (4) is a group isomorphism. In particular, if E is

an elliptic curve defined over K and W/K is the Weil restriction of E with

respect to K/k, we obtain an isomorphism

E(K) ≃ W (k). (5)

The importance of the Weil restriction in the context of cover attacks is

derived from the universal property:

If H/K is a hyperelliptic curve and C/k is another curve and we have

a morphism c : C −→ H defined over K, then we have a unique morphism

a : C −→ W defined over k. The converse is also true.

If one has such an a : C −→ W , one can study its image on W , and in

this sense, the search for curves on W/k amounts to the same as the search

curves C/k and morphisms C −→ H defined over K. Thus the search for

curves on W/k is an approach to the problem of making the general idea of

cover attacks explicit.
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3 The GHS-attack and its variants

We will use the theory of function fields (in one variable) instead of the

theory of curves.

Let us recall the connection between these two theories. For further

information on function fields, see [16].

Let K be a finite field. Then for every curve C/K, one can define an

addition and a multiplication on the set of rational functions C −→ P1/K

defined over K. With these operations, this set becomes a field, called the

function field of C/K and denoted K(C). This field is a finitely generated

extension of K of transcendence degree 1, i.e. it is an (abstract) function

field over K. Moreover, K is the exact constant field of K(C), which means

that K is algebraically closed in K(C).

Now, if α : C −→ D is a cover of two curves defined over K, we have

a corresponding homomorphism α# : K(D) −→ K(C) which is defined by

β 7→ β ◦ α.
Conversely, to every function field with exact constant field K, one can

assign in an essentially unique way a curve defined over K. If a : L →֒ M

is a homomorphism of such function fields, C is the curve corresponding to

M and D is the curve corresponding to L, there exists a unique curve cover

α : C −→ D with α# = a.

Let C/K be a curve with function field L/K, let K be the algebraic

closure of K. To every K-rational point of C, one can associate a so-called

place of L/K. IfK is itself algebraically closed, this assignment is a bijection,

in the general case, places correspond to Galois-orbits of K-rational points

on C.

Now just as for curves one can define a divisor class group for function

fields, and for a curve C defined over K, the groups Cl0(C) and Cl0(K(C))

are equal.

The GHS-attack is originally an attack on elliptic curves defined over

non-prime finite fields of characteristic 2; see [8]. Here we give a generaliza-

tion of the attack to arbitrary (hyper-)elliptic curves over non-prime finite

fields; see [3].

Let K/k be an extension of finite fields of characteristic n > 1. Let H/K

be a (hyper)-elliptic curve.

Let K(x) be the rational function field, K(H) the function field of H/K,

and fix an extension K(H)/K(x) of degree 2. For σ ∈ Gal(K/k), let K(H)σ

be the corresponding “Galois twisted” function field. This is defined as

follows:

The automorphism σ of K/k can in a unique way be extended to an
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automorphism of K(x)/k(x), let us denote this automorphism again by σ. If

K(H) ≃ K(X)[T ]/(f) where f ∈ K(X)[T ], then K(H)σ ≃ K(X)[T ]/(fσ).

Here, fσ is obtained by applying σ to the coefficients of f (which lie in

K(x)).

Just as K(H) ≃ K(x)[T ]/(f) is an extension of degree 2 of k(x), so is

K(H)σ ≃ K(x)[T ]/(fσ).

Let F ′ be a compositum of K(H),K(H)σ, . . . ,K(H)σ
n−1

over K(x). It

is easy to see that either K is the exact constant field of F ′ or the unique

quadratic extension of K is the exact constant field of F ′. For the applica-

tions, we can always assume that we are in the first case. Now under certain

conditions, for example if n = 2 or n is odd, there exists a subfield F of F ′

which has k as its exact constant field such that F ′ = KF .
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We have a homomorphism

NF ′/F ◦ ConF ′/K(H) : Cl
0(K(H)) −→ Cl0(F ), (6)

where ConF ′/K(H) is the conorm homomorphism and NF ′/F is the norm ho-

momorphism. If one sets C/k to be the curve corresponding to the function

field F/k, this homomorphism becomes a special case of homomorphism (1).

Recall that the first condition for the feasibility of a cover attacks is that

the kernel of homomorphism (1), i.e. (6) in the special case we consider, is

small.

One can show that under obviously necessary conditions in order that

this is the case, the homomorphisms contains only elements of order a power

of 2. If for example n is a prime number and F ′ ) K(H), this is the case;

see [3, Theorem 1].

From a theoretical point of view, the study of the GHS-attack is quite

different for even and odd characteristic. Besides the original paper ([8]),

the even characteristic case is discussed in [13], [5], [11], [12], [6] and [9].

The odd characteristic case is discussed in [3] and [18].

Will will now address the following question: Given a field extension

K/k of degree n and a natural number g, what is the minimal genus one
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can obtain for a curve C/k one obtains by applying the GHS-attack to a

(hyper-)elliptic curve of genus g over K?

Additionally, we are interested if the extension F ′/K(x) has a subfield

of index 2 which is rational. If this is so, the curve C/K corresponding to

F ′/K will be hyperelliptic, if not, we cannot rule out that it is hyperelliptic

but one might expect that “in general” it is not.

By construction of F ′, there exists a number m ∈ N such that [F ′ :

K(x)] = 2m. In a certain sense one can say that this “magic number”

controls the genus of F ′ (or F ). Let us note that our assumption that K is

the exact constant field of F ′ is equivalent to [F ′ : K(H)] = [F ′K : K(x)].

We now discuss the attack separately for even and odd characteristic.

In even characteristic, one can use Artin-Schreier Theory to study the field

F ′, and in odd characteristic one can use Kummer Theory.

3.1 Even characteristic

The extension K(H)/K(x) is an Artin-Schreier extension. From this and

general facts on the genera of comosita of function fields, we have the fol-

lowing relation between the genus of F and m:

g(F ) ≤ 2mg(H) (7)

In certain cases, one can prove that g(F ) = g(H)2m−1 or g(F ) = g(H)2m−1−
1 and F is hyperelliptic; see [19]. In general, we are convinced that the genus

cannot become “much smaller” than g(F )2m−1. (For example, if H is an

elliptic curve, it can be proved that g(F ) ≥ 2m−1 − 1.)

Let y2 + y = f(x) be a defining equation with f ∈ K(x). By Artin-

Schreier theory, the extension F ′/K(x) corresponds to a vector subspace U

of the F2-vector space K(x)/P(K(x)), where P is the Artin-Schreier opera-

tor. The “magic number” m is equal to dimF2
(U). Now Gal(K/k) operates

on this space in a canonical way, and by construction, U is generated by f as

a F2[Gal(K/k)]-module, where f is the residue class of f in K(x)/P(K(x)).

The fact that U is a F2[Z/nZ] ≃ F2F2[Gal(K/k)]-module imposes strong

conditions on the values m can obtain.

For some prime number p, let ϕp(n) be the order of p in (Z/nZ)∗, so

that [Fp(ζn) : Fp] = ϕp(n).

Let us now make the assumption that n is prime. (This does not nec-

essarily mean that the absolute extension degree [K : Fp] is prime.) Then

F2[Z/nZ] ≃ F2⊕F2(ζn)
(n−1)/ϕ2(n). The fact that U is a non-trivial F2[Z/nZ]-

module implies that

m = κϕ2(n) or m = κϕ2(n) + 1 (8)
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with some natural number κ = 1, . . . , n−1
ϕ2(n)

. As the genus of F is roughly

g(H)2m−1, this means that one can expect the genus of F to be in the

magnitude of

g(H)2κϕ2(n).

It is not difficult to show that for a given extension K/k there exist ordinary

(hyper)-elliptic curves of a given genus such that κ = 1. (An elliptic curve

is ordinary if and only if it is non super-singular.) Now, the attack in most

feasible if 2ϕ2(n) is not much larger than n. This is the case for Mersenne

primes. These are primes n of the form 2a − 1. For these primes, ϕ2(n) = a

and thus 2ϕ2(n) = n + 1. The Mersenne primes in the cryptographically

important range are

3, 7, 31, 127.

For the primes 7, 31, 127, some curves in cryptographically important range

(i.e. 160 bit) can efficiently be attacked. For more information, we refer to

[11].

The next best class of primes (best from the point of view of this attack)

are the Fermat primes. In the cryptographically important range they are

3, 5, 17, 257.

Explicitely, if n = 5 and g(H) = 1, the minimal genus one can obtain is 7,

if n = 17, the minimal genus is 127, and for n = 257, it is 32768. For the

latter two cases, g(F ) is already quite high in relation to n. In these cases, it

might be that the index-calculus attack by Enge-Gaudry is faster than the

generic attacks on the original curves, but it will probably not be a major

improvement.

Finally, let us mention that if E is an ordinary elliptic curve, one can

always choose an extension K(E)/K(x) such that F is hyperelliptic. In [8],

explicit equations for F are given.

For more information on the GHS attack applied to composite field ex-

tensions, we refer to [12].

3.2 Odd characteristic

As above, the “magic” number m is of greatest importance when one tries

to determine the genus of F .

Let r be the number of branched places of KF/K(x). Then

g(F ) = 2m−2(r − 4) + 1; (9)

see [3, Equation (7)]. For prime n and elliptic curves H it is shown in [3]:
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• If n = 2, 3, 5, 7 there exists an elliptic curve E over K such that

g(F ) = n. If n = 2 or 3, E can additionally be chosen such that

F is hyperelliptic.

• If n ≥ 11 and #K ≥ 2160, then #Cl0(F ) ≈ #kg(F ) ≥ 25000.

It follows that the GHS attack in odd characteristic is not a threat to the

DLP in elliptic curves if the absolute extension degree [K : Fp] is prime and

not 3, 5 or 7. As index calculus attacks for genus 3 curves are not much

more efficient than generic attacks, for n = 3, the attack only gives at most

a minor improvement on the generic attacks. However by the results of

N. Thériault on index calculus with “large primes” ([17]), the attack will

probably give a small improvement (in the order of 1/20 of the key size).

The results for n = 2 and n = 3 can be generalized to some (hyper-

)elliptic curves H. For n = 2, there exist (hyper-)elliptic curves H of any

genus over K such that g(F ) = 2g(H). For n = 3, there exist (hyper-

)elliptic curves H of any genus over K such that g(F ) = 4g(F ) − 1 and

F is hyperelliptic. Moreover, there is an algorithm to determine – given a

hyperelliptic equation of H – an equation of F ; see [18] for details.

For n = 3, one can with the methods of [3] also obtain hyperelliptic

curves H/K of a given genus such that g(F ) = 3g(H). For this, let g ∈ N,

[K : k] = 3, a1, . . . , gg+1 ∈ K\k such that a1, a
q
1, . . . , ag+1, a

q
g+1 are pairwise

distinct. (Here q = #k.) Then the curve given by an equation of the form

y2 = (x− a1)(x− aq1)(x− a2)(x− aq2) · · · (x− ag+1)(x− aqg+1) (10)

is a hyperelliptic curve of genus g such that g(F ) = 3g(H). However, the

extension F ′/K(x) does not posses a subfield of index 2 which is rational.

Note however that the extension F/k(x) has degree 4 which is rather small.

In the following table, we give for certain small n the smallest genera

one can with the GHS attack obtain for the resulting function field F .

n
2 3 4 5 7 11

g(H) 1 2 3 5 5 7 ≥ 1793
2 4 6 9∗ 25 49 ≥ 1793
3 6 9 21 25 21 ≥ 1793

(11)

(∗) Note: We do not know that for n = 4 and g(H) = 2, the function field

F exists. The problem is that we do not know whether one can prolong the

Frobenius from K(x)/k(x) to F ′. The other cases do not cause problems as

always n is odd or m = n (see also next table).

Let us describe how one can obtain curves H/K corresponding to the

entries in the table.
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The Galois group Gal(K/k) operates on the branched places ofKF ′/K(x)

cyclicly. (If all branched places of F ′/K(x) have degree 1, then Gal(K/k)

operates on the branched places of F ′/K(x).) We fix the following notation:

If (p1, . . . , pd) is a cycle under this operation (where d|n if the branched

places of F ′/K(x) have degree 1), then we define a vector in Fd
2 whose en-

tries are 1 at entry i if and only if F ′/K(x) is also branched at pi. Then to

each K(H)/K(x) we assign the tuple of these vectors in Fd
2 representing all

cycles (the tuples should be ordered by length).

Let us for example consider the above curve given by (10). In this case,

the corresponding tuple is

(110)(110) · · · (110).

From this tuple, the number of branched places r and the “magic number”

m can be calculated. In the following table, we give tuples with the corre-

sponding r and m which lead to the above table (11). (The last colum of

the table follows with (9).)

g(H) n tuple r m g(F )

1 2 (1)(1)(1)(10) 5 2 2
3 (110)(110) 6 2 3
4 (1)(1110) 5 4 5
5 (11110) 5 4 5
7 (1110100) 7 3 7

2 2 (1)(1)(1)(1)(1)(10) 7 2 4
3 (110)(110)(110) 9 2 6
4 (1110)(1110) 8 3 9
5 (1)(111110) 7 5 25
7 (1111110) 7 6 49

3 2 (1)(1)(1)(1)(1)(1)(1)(10) 9 2 6
3 (110)(110)(110)(110) 12 2 9
4 (1)(1)(1)(1)(1) (1110) 9 4 21
5 (11110)(11110) 10 4 25
7 (1110100) (1110100) 14 3 21

3.3 Extensions of the GHS attack and conclusion

Additionally to the generalizations of the original GHS attack described

here, there are some further extensions of the attack.

The first one is not to restrict oneself to extensionsK(H)/K(x) of degree

2. Indeed, whenever H has an automorphism which induces a (cyclic) Galois

cover H −→ P1, one can use this automorphism to fix a Galois extension

K(H)/K(x). Then one can define F ′ and F as above. This approach in

described in [9], [19] and [18].
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Further, if E is an elliptic curve, one can try to first apply an isogeny

and then use the GHS attack with respect to the isogenous curve. For

characteristic 2, this approach is discussed in [6]. Because of this possibility,

one should – if one uses elliptic curves – avoid all fields over which there

exists some elliptic curve which can by the GHS attack be attacked in such

a way that the number of bit operations required for the index calculus is

less than the prescribed security level.

All in all, we give – with respect to the GHS-attack – the following advice

for the use of (hyper-)elliptic curves over non-prime finite fields.

• Composite field extensions should be avoided unless one has checked

that over the field in question there does not exist a single “weak

curve”.

• For characteristic 2, the usage of curves over fields whose absolute

extension degree (i.e. the extension degree over their prime field) is

divisible by 4, 5, 6, 7, 31, 127 is dangerous. If one uses hyperelliptic

curves, the same applies if the absolute extension degree is divisible

by these numbers or 2 or 3.

• For odd characteristic, the usage of curves over fields whose absolute

extension degree is divisible by 4, 5 or 7 is dangerous. If one uses hy-

perelliptic curves of genus 2, the same applies if the absolute extension

degree is divisible by 2, 3, and if one uses hyperelliptic curves of genus

3, the same applies if the absolute extension degree is divisible by 2,

3, 5 or 7. On the other hand, the GHS attack does not pose a thread

to the DLP in elliptic curves over fields of odd characteristic whose

absolute extension degree is prime and ≥ 11.

4 Cover attacks on trace-zero groups

In this section we discuss another construction, developed by the authors,

of curves that admit a cover attack.

Let H be a genus g hyperelliptic curve defined over k. Let K/k be

an extension of degree n, and let M(k) be the kernel of the norm map

Cl0(H/K) −→ Cl(H/k); this is called the trace-zero group of Cl0(H/K)

(with respect to K/k). In certain cases (e.g. if n = 3 and g(H) = 1 or

2, the arithmetic on M(k) can be implemented more efficiently than the

arithmetic in the whole group Cl0(H/K). On the other hand, if #k is small

and n is large (the case of “Koblitz curves”), the difference between the

bit-size of #M(k) and the bit-size of #Cl0(H/K) is negligible. In all cases,

one can use the Frobenius automorphism to speed up the addition of two

points and the multiplication of a point by a scalar. Therefore, these groups
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are particularly useful for cryptographic applications. On the other hand,

at least for small n, certain groups of this type are subject to a cover attack.

Let φ : C → H be a cover defined over k, and suppose that C has an

automorphism τ of order n, such that φ ◦ τ 6= φ. Let Cτ denote the twist

of C over the extension K/k with respect to τ . (Note that C/K ≃ Cτ/K.)

In [2, Theorem 9] it is made plausible that under some mild condition, one

can expect that the kernel of the map

M(k) →֒ Cl0(H/K)
c∗−→ Cl0(C/K)

N−→ Cl0(Cτ/k)

does not contain the large subgroup of prime order. (The proof involves

that there is a canonical non-trivial map from Jac(Cτ/k) to the so-called

trace-zero subvariety of the Weil restriction of Jac(H/K) with respect to

K/k.) If the genus of C is not much bigger than (n − 1)g(H) then index

calculus on Cl0(Cτ ) is more efficient than square-root attacks on M(k) for

solving the discrete logarithm problem.

Here we present a method for finding curves C in certain situations that

make this attack possible. The idea is to find a rational function f on H of

degree n whose induced cover f : H → P1 has suitable ramification. Then

one considers the Galois closure φ : C → H of the cover f . (By the Galois

closure of a cover of curves, we mean a curve associated to the Galois closure

of the corresponding function fields.) The Galois group of f ◦φ is a subgroup

of Aut(C), and its order is a multiple of n. So for example, if n is prime,

then C has an automorphism τ of order n which satisfies τ ◦ φ 6= φ, as

required.

In order to describe how to find suitable covers f : H −→ P1, we first

consider the case that both H and f are defined over k, the algebraic closure

of k. Further, we assume that we only have tame ramification. Then the

question of what ramification may occur, and what the genus of C is can

be answered by certain group theoretic considerations. Let σ1, . . . , σr be r

elements of Sn that generate a transitive subgroup, such that σ1 · . . . · σr =
1. Let σi have cycle lengths ei,j . Then, by Galois theory, there exists a

(connected) cover f : H → P1 of degree n with r ramification points Pi in P1,

and with ramification indices ei,j above Pi. The Galois closure f ◦φ : C → P1

has Galois group 〈σi|i = 1, . . . , r〉 and ramification indices #〈ei,j |j〉. Both

the genus of H and C are determined by the Hurwitz formula.

This allows one to study whether geometrically, certain good covers f :

H → P1 exist. The next task is then to study the precise fields over which

such covers can be defined, and to construct them explicitely.

We now give some examples of (hyper-)elliptic curves which are subject

to the attack described here. The most important examples are arguably 4.1.

and 4.2. They show that the DLP in the trace-zero group M(k) of a genus

2 curve with respect to an extension degree 3 K/k (with char(k) 6= 2, 3) can
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always be transfered into a DLP of a genus 6 curve C/k. Moreover, for a very

large percentage of such curves, the DLP in M(k) can even be transfered

into a DLP in a hyperelliptic genus 5 curve defined over the ground field k.

Together with the results of [17] this second result means that a very

large percentage of discrete logarithm problems in these trace-zero groups

M(k) of cryptographically relevant size are breakable.

It is interesting to note that there is a certain converse to this statement,

namely:

If K/k is an extension of finite fields of degree 3 and H/k is a genus

2 curve such that 3 does not divide Cl0(H/L), where L/K is the unique

extension of degree 2, then via a cover attack, the DLP in the trace-zero

group M(k) can – with a very high probability – only be transfered to DLPs

of curves of genus at least 6.

This statement follows from some theory on the trace-zero variety, in

particular [10, Theorem 3.3].

4.1 The case n = 3, g(H) = 2, g(C) = 6.

Let n = 3. Let σ1 = (1 2 3), σ2 = (3 2), σ3 = . . . = σ7 = (1 2). With these

data we have g(H) = 2 and g(C) = 6. For every curve H of genus 2 there

exists a map with the desired property: one can take a point P ∈ H(k), and

take f in the Riemann-Roch space L(3P ) \ L(2P ).

4.2 The case n = 3, g(H) = 2, g(C) = 5.

Let σ1 = σ4 = (1 2 3), σ2 = σ5 = (3 2) and σ3 = σ6 = (2 1). This yields

n = 3, g(H) = 2 and g(C) = 5. Let ι : H → H denote the hyperelliptic

involution. If Cl0(H/k) has a 3-torsion point of the form P1+P2−O− ι(O)

with P1 and P2 in H(k), then P1 − ι(P2) has order 3 in Cl0(H), hence there

is a function f with divisor 3P1−3ι(P2). Generically, this f has the required

ramification.

If Cl0(H/k) does not have a 3 torsion point of the above form, but the

class group of a quadratic twist of H/k does, then the above construction

can be applied as well. This yields that about one third of the genus 2 curves

H admit a genus 5 cover in this way.

One can construct an explicit family of curves H for which the covering

genus 5 curve C is hyperelliptic. For this, first construct a degree 3 cover

P1 → P1 associated to the ramification data given by σ1, σ2 and σ3. The

Galois closure is also a P1. A quadratic base-change ramified outside the

ramification points already there yields the Galois cover C → H → P1 with

every curve hyperelliptic.

13



4.3 The case n = 3, g(H) = 2, g(C) = 4.

Let σ1 = σ2 = σ3 = (1 2 3) and σ4 = σ5 = (1 2). This yields n = 3,

g(H) = 2 and g(C) = 4. One can construct an explicit family of such curves

using Kummer theory.

4.4 The case n = 5, g(H) = 1, g(C) = 4.

Let σ1 = (1 2 3 4 5), σ2 = (1 2 3 5 4) and σ3 = (1 3)(2 4). This yields n = 5,

g(H) = 1, g(C) = 4. There is only 1 curve in this case, which is defined by

the equation y2 = x3 + 3165x− 31070.

4.5 The case n = 7, g(H) = 1, g(C) = 8.

Let σ1 = (1 6)(2 5)(3 4), σ2 = (1 7)(2 6)(3 5), σ3 = (1 2 4)(3 6 5) and

σ4 = (2 5 3)(4 6 7). This yields n = 7, g(H) = 1, g(C) = 8. One can

show that if char(k) 6∈ {2, 3} then, geometrically, every elliptic curve H has

a map f : H → P1 corresponding to this data. So such f also exists over

many finite fields. So far, we only know the existence of f , but we have no

examples with such f given explicitely.

5 The L-Polynomial Approach

In the previous section, we showed that the DLP in class groups Cl0(H/K)

of certain curves defined over a field k ( K can be attacked via cover

attacks. Earlier, we saw that the GHS attack and generalizations provide

several explicit constructions of curves H/K not necessarily defined over

k subject to cover attacks. But the number of curves obtained via these

methods is limited, and it is conceivable that there exist other curves that

are vulnerable to cover attacks.

In this section we discuss a method developed by the authors to con-

struct, for a given non-trivial field extension K/k, many hyperelliptic curves

C over k that admit maps to elliptic curves E/K (where most of the time,

E/K cannot be defined over k); see [1]. The main idea of this construction

is that one constructs curves with suitable L-polynomial. The existence of

maps to E then follows from some theory. Disadvantage of this approach is

that although the maps to E are known to exists, it is not easy to give them

explicitely. Work to make these maps explicit is still in progress.

The main theorem is the following

Theorem 1 Let ℓ be a prime, and q a prime power such that q2 generates
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the squares in (Z/ℓZ)∗. Let a ∈ F∗

q and let

Dℓ(x, a) :=

(

x+
√
x2 − 4a

2

)ℓ

+

(

x−
√
x2 − 4a

2

)ℓ

be the ℓ-th Dickson polynomial. For t ∈ Fq define the curve Ct : y2 =

Dℓ(x, a) + t of genus n = 1
2(ℓ − 1). Then for most choices of t (for all t

for which Ct is ordinary), the curve Ct admits a map to an ordinary elliptic

curve E defined over Fqn.

As remarked in [1], we believe that this construction can be generalized

to a wider class of curves. Instead of using Dickson polynomials one could

use the following functions, considered by Mestre in [14]: Let E1 and E2

be elliptic curves defined over k, and let φ : E1 → E2 be an isogeny of odd

prime degree ℓ. Denote the map induced by φ on the x-coordinates by φx.

So φx is a rational function of degree ℓ, and the theorem above is likely to

be true for the curves y2 = φx(x) + t as well.

If one would be able to find maps explicitely, then that would imply

the existence of weak curves over Fqn where q2 generates the squares in

(Z/(2n+ 1)Z)∗.

Although we do not have explicit maps Ct → E, one can give an upper-

bound for the minimal degree of such maps. This upperbound follows from a

special case of the geometric analogue of the Birch and Swinnerton-Dyer con-

jecture proved by Milne [15], combined with a classic geometry-of-numbers-

argument. Suppose that there exists a non-constant map φ : Ct → E. Let

F be the qn-Frobenius endomorphism on E, and let ∆ be the discriminant

of the subring Z[F ] of End(E). Then φ can be chosen of degree bounded by

2n
√
∆.

From the Hasse bound, it follows that ∆ can be expected to be of size

of the same order of magnitude as qn. It follows that the upperbound on

deg φ will be very high in cryptographic applications, and maps with such

high degree cannot be written down. But it should be noted this bound is

valid for every curve in a certain isogeny class. It is conceivable that for a

suitable curve, the actual degree can be much smaller.

Even though this approach has not let to any examples yet of curves that

in practice can be attacked, we do recommend not to use elliptic curves E

defined over fields of the form Fqnm , where q and n are small and E/Fqnm can

be defined over Fqn provided that q and n are numbers such that there exist

elliptic curves that are possibly weak to the attack. The problem of finding

explicit maps C → E could be very difficult, but it is not well scrutinized.

The recommendation supports the first recommendation in the conclu-

sions of the GHS attack: We thus conclude.

Be suspicious about curves over composite fields!
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