
Abstract algorithms

Claus Diem

September 17, 2014

Abstract

We give a framework to argue formally about algorithms with ar-
bitrary data types. The framework is based on category theory, and
types are based on collections of categories whose only morphisms are
isomorphisms. The framework includes definitions for representations
of data types and of specifications of commands in algorithms by other
algorithms. The framework is well suited to establish the correctness
of algorithms and to analyze their time complexity.

1 Introduction

The notion of algorithm is arguably the central notion of computer science

and algorithmic mathematics. However, the word “algorithm” is used in a

remarkably diverse manner. In some contexts, the word “algorithm” is a

synonym for a formally defined object like a Turing machine or a random

access machine or some other mathematical object related to computation.

However, often the word “algorithm” is used in an informal way. Here,

usually, using so-called pseudo-code some computation is outlined.

Of course, in order to prove mathematical statements, including such

related to algorithms, one first needs mathematical objects one can argue

about. For this, the gap between algorithms in the informal and the formal

sense is often bridged by fixing representations of the mathematical objects

involved in the description of the algorithm by “easier” objects. Most of the

time, the representations are via bit-strings, but occasionally some other

objects, like for example real numbers, are also considered.

An interesting aspect of the informal use of the notion of algorithm is

however that often it does not seem to be necessary to fix such representa-

tions at all: One can just argue about the “algorithms” as is by assuming

that variables can store the indicated objects and that via the commands

the indicated “computations” are performed – no matter how complex these

are. For example, one can often argue about the termination and the cor-

rectness of an “algorithm” which is given without any reference to a formal

1

model. Also, one can often argue about its complexity, provided one uses

an appropriate complexity measure related to the operations present.

There are however obvious problems related to the approach just taken

which are related to the lack of rigorous foundations of argumentations about

what we just called “algorithms”. This motivates to search for a formal

model or a formal framework in which one can argue rigorously about al-

gorithms operating with a very wide range of data types and using a very

wide range of commands. Such a framework is presented in this work: the

framework of abstract algorithms.

1.1 The framework of abstract algorithms

An abstract algorithm as defined in the following is a mathematical object, so

one can argue about it in just the same way as one can argue about a Turing

machine or a random access machine. On the other hand, the framework of

abstract algorithms is so flexible that it can handle data of any “type”. We

describe now the main ideas which are behind the framework and which are

realized by it.

The framework is based on ideas from category theory. The first idea

which has been realized is:

• Every object considered is by definition an object from a particular

category, and it is this category which is the type of the object.

Further ideas which have been realized in the model are:

• The application of a computation to isomorphic objects should lead to

comparable results. However, morphisms different from isomorphisms

should by themselves play no role in the definitions to be given. For

these reasons, we consider in the following objects in categories in

which all morphisms are isomorphisms. Let us recall that such cate-

gories are called large groupoids.

• In computations, often certain data are considered fixed. It should

be possible to define a “computational problem”, which is “relative”

to the fixed data. Let us as an example consider the composition of

elements in groups. Here the underlying group is a priori arbitrary

but in the computation it is fixed. This leads to the idea that types

should be given by labeled directed graphs, where the labeling is given

by categories for the vertices and by functors between these categories

for the edges.

• An object should be something elementary. This leads to the idea that

types of objects should always have exactly one vertex with indegree 0.

2

• We wish to be able to represent the objects of some type by other

objects. Definitions of “representation” and of “specification” / “im-

plementation” should be part of the framework to be developed. Like

this, from a very abstract description, by subsequent specifications, it

should be conveniently possible to arrive at a bit-oriented algorithm.

• A quite technical but important aspect is that tuples of arbitrary

length of objects of the same type are important. For example, vectors

of elements of a fixed field can be represented by tuples of elements of

the field. (Here a vector is a single object, and a tuple is a collection

of objects.) And also tuples of vectors might be used to represent ob-

jects, for example matrices. It is therefore natural to consider tuples

of tuples with an arbitrary iteration. We call the resulting objects

arrays. An array can therefore have an arbitrary (finite) dimension.

• A final important point is complexity: If a computation is possible

in a bit-oriented algorithm (which, as we recall, is a special case of

an abstract algorithm and which can often be obtained by subsequent

specifications) in a time of T , it should be possible to perform the

computation in the addition RAM model with logarithmic time in a

time of Õ(T). At this point the reader might question how this is

possible if, as just stated, the storage in the model proposed here can

have an arbitrary dimension whereas in the RAM model, the storage is

1-dimensional. An answer is that the dimension is of minor importance

in the RAM model. Very briefly, the reason for this is as follows:

Via the Cantor pairing function ([Wik]), N2
0 is bijective to N0. This

function is given by (a, b) 7→ 1
2(a+ b)(a+ b+ 1) + b. The computation

can be performed in a time of Õ(log(a) + log(b))).

1.2 Relationship with related works

The computer algebra system MAGMA. A major guideline for the

framework of “abstract algorithms” was the computer algebra system

MAGMA ([BCFS11]). The MAGMA language is designed in such a way

that the code highlights the role of mathematical objects one wishes to per-

form computations with. An important feature of MAGMA is that the

internal representation of objects is often hidden from the user of the lan-

guage. Also, the MAGMA programs are often easily humanly readable and

might be used where one might otherwise use pseudo-code to describe algo-

rithms (in the informal sense).

This gives rise to the idea that it should be possible to develop a frame-

work with the following characteristics: It should be possible to argue al-

gorithms which are similar to the ones in MAGMA. Moreover, this should

3

be possible without considering representations of the objects involved by

bit-strings.

Abstract state machines. The task to develop a formal framework in

which one can conveniently and at the same time rigorously describe “ab-

stract” algorithms was already taken up by Yuri Gurevich about 30 years

ago. The framework was first called evolving algebras and then abstract state

machines (ASM) by him and other researchers (see for example [Gur99],

[Gur00], [BS03]). There is now a community of researchers working on this

model, and the model is indeed used for the formal analysis of algorithms.

For example, there is a book in which the concept is used to analyze the

programming language Java and the the Java Virtual Machine ([SSB01]).

So the question arises in which aspects the framework of abstract state ma-

chines and the framework developed here agree and differ. The following

comments might give an indication of the similarities and differences. The

reader should however be aware that the author is not an expert on abstract

state machines.

Upon comparing the two approaches one realizes that even though the

general purpose to develop the ASM framework and this framework seem

to be similar, they do differ on a fundamental level and not only in some

aspects. For this reason it does not seem to be reasonable to make a table-

like comparison between the two approaches. So we contrast them here in

their totality.

We first again highlight some of the most important aspect of the frame-

work of abstract algorithms developed here: The starting point is what

we call complex types; these are based on graphs of categories of large

groupoids. A computational problem is a transformation between types.

The commands of abstract algorithms are themselves based on appropriate

computational problems. We stress that the commands are not interpreted

by computational problems but that the computational problems are a defin-

ing part of the commands. This can be captured by saying that there is no

difference between the syntax and the semantics of the programming lan-

guage. The operation of an abstract algorithm is similar to that of a random

access machine. Furthermore, it includes a framework for representations

of types and for specification or implementation. Care has been taken that

one can naturally obtain bit-oriented algorithms with a complexity with is

similar to the one one can obtain by a direct use of the usual addition RAM

model.

In the ASM framework, there is a clear distinction between syntax and

semantics: The starting point for algorithms in the sense of abstract state

machines is the vocabulary which is a collection of so-called function names.

Each function name has an arity, and the function names of arity 0 can be

4

regarded as variables. A state of the algorithm is then given by an algebra

in the sense of general algebra associated to the system of function names.

By definition, a state can always be defined in terms of first-order logic. An

algorithm consists of a finite system of commands which are expressions in

the vocabulary and if ... then ... else-commands; goto or loop commands

are not present. These commands are executed simultaneously. An algo-

rithm therefore operates on the set of states, associating to each state a new

state. By subsequent operations of an algorithm, one obtains a sequence of

states. This sequence of states, that is, evolution of algebras, describes the

operation of the algorithm.

Generally speaking, one can say that the framework of abstract state ma-

chines is more related to logic and symbolic methods whereas our approach

emphasizes more the underlying mathematical ideas of computations. One

might also say that the framework of abstract state machines gives a logi-

cian’s view on algorithms whereas the framework developed here is inspired

by the categorial point of view on mathematics. It comes with this that the

theory of abstract state machines is more suited to analyze formal questions

in the science of computing, for example questions related to programming

languages or the behavior of programs. In contrast, the framework of ab-

stract algorithms should be more suited to highlight the mathematical ideas

underlying algorithms and to obtain complexity theoretic results.

Possible relationships with other works. The author is not aware of

any substantial relationships with other works or approaches. We mention

that just by the fact that the approach is based on category theory and also

because of the terminology, a reader might expect a relationship with type

theory. We see however no such relationship which is worth discussing.

1.3 What follows

Overview. The next section has two parts: In the first part we introduce

what we call elementary and complex types, and in the second part we

introduce computational problems.

The third section is on the definition and operation of abstract algo-

rithms. After some initial comments on random access machines, we present

some ideas on the storage of objects and complexes of objects as defined in

the first section. Then in the third subsection of the section, we give the

definition of abstract algorithms. From a logical point of view, this definition

is independent on the storage of objects; one just needs to know what the

storage is. We then define the operation of an abstract algorithm on states.

Finally, we briefly discuss complexity theoretic issues.

In the first two subsections of the forth section, first the definition of

5

representations is given and then the relationship between computational

problems and representations is discussed. From a logical point of view,

these two sections depend solely on the second section. Then a definition

for specifications or – what is by definition the same – implementations

is given. Finally specifications to bit-oriented computations are discussed,

and the tight complexity theoretic relationship to computations in addition

RAMs presented.

In Section 5 we give perspectives for expansion of the framework. Finally,

in Section 6 we discuss more in depth what we consider to be relevant

aspects of the dichotomy between the formal and the informal use of the

word “algorithm”.

Throughout the presentation, for simplicity we speak simply of algo-

rithms instead of abstract algorithms (cf. Terminology 59). Thus the word

“algorithm” has a specific technical meaning which we are going to define.

We remark that we do so for simplicity in the context of the presentation.

When referring to the definitions and concepts presented here, the phrase

“abstract algorithms” should be used.

Basic terminology. We use the following terminology.

• The integer 0 is not a natural number. We denote the natural numbers

by N and the non-negative integers by N0.

• Tuples might be empty. We denote the empty tuple by ().

Linguistic guidelines for the definitions. Purely on a linguistic level,

we tried to find names for the concepts which fit well together. In particular,

a guiding principle is to avoid what Daniel Bernstein calls “non-restrictive”

and “content-free” adjectives ([DJB]). This means that when we qualify

a noun referring to a mathematical object with an adjective, the reader

can be assured that the scope is more restricted than that given by the

noun alone. There is only the following classical exception to this rule: The

word “partial” is used in a generalizing way, analogously to the notion of a

“partial function” being more general than the notion of a “function”. In

addition, we introduce “elementary types” and “complex types” but we do

not introduce “types” themselves. So, “elementary” and “complex” at not

attributes to “type”.

The document itself. It is surely difficult to keep track of the great

amount of definitions. In order to facilitate the reading a bit, we inserted

hyperlinks into the document. These hyperlinks can be followed with a usual

reader for PDF-documents. With such a reader one can also view a table of

contents.

6

2 Computational problems and abstract algorithms

We start with a proposal for a definition of (abstract) computational prob-

lems, based on category theory.

2.1 Types

Recall that a category in which all morphisms are isomorphisms is called

a large groupoid. Such categories are fundamental for the following. We

denote them by bold letters, i.e. A,B,

Definition 1 For a large groupoid A we define array1(A) as the large

groupoid given as follows: The objects are tuples of arbitrary positive length

of objects of C. In order that there can be a morphism between two tu-

ples these must be of the same length. A morphism from (a1, . . . , an) to

(b1, . . . , bn) is then a tuple of (iso-)morphisms from ai to bi.

Now, for d ∈ N, we denote the category obtained by d-fold iteration of

this construction by arrayd(A). Moreover, we set array0(A) := A. We call

the objects of arrayd(A) d-dimensional arrays of objects of C and conse-

quently arrayd(A) the category of d-dimensional arrays over A.

Definition 2 Let A and B be large groupoids, and let f be a functor from

A to B. We define a functor from array1(A) to array1(B) as follows: A tuple

(a1, . . . , an) is mapped to (f(a1), . . . , f(an)). A morphism from (a1, . . . , an)

to (b1, . . . , bn) in A, which is by definition given by a tuple of morphisms

(α1, . . . , αn), is mapped to (f(α1), . . . , f(αn)), which is a morphism from

(f(a1), . . . , f(an)) to (f(b1), . . . , f(bn)). We say that the functor just defined

is given by componentwise application of f , and we denote it again by f .

We iterate this definition to arrays of higher dimension. In particular, given

a functor from A to arrayd(B) for some d ∈ N0, we obtain induced functors

from arrayi(A) to arrayd+i(B) for any i ∈ N0.

In the following, we consider labeled directed graphs. We fix the follow-

ing terminology:

Terminology 3 By a path in a directed graph we mean a directed path.

We now describe the labeled directed graphs we consider:

A graph as shall be considered has a vertex set V , where an edge between

two vertices v and w is given by the tuple (v, w) (denoted by vw). The

labeling is given as follows: The vertices are labeled by tuples (A, d), where

A is a large groupoid and d ∈ N0; the interpretation is that such a tuple

defines the category of d-dimensional arrays over A. If a vertex is labeled by

(A, d), we call A the category of the vertex and d the dimension of the array

7

defined at the vertex. (Note that we do not call arrayd(C) the category of

the vertex.)

In order that there can be an edge from a vertex labeled by (A, d) to one

labeled by (A′, d′) it is necessary that d ≤ d′. Such an edge is then labeled

by a functor f from A to arrayd′−d(A′). Here we call the integer d′ − d the

target dimension of the edge. We extend the functor f to a functor from

arrayd(A) to arrayd′(A′) by applying the functor f componentwise. With

this extension we can speak of commutativity of such a graph – which is

defined in the obvious way.

A problem we encounter is that graphs as described with different vertex

sets are by definition different. This is however quite unnatural as can be

seen by considering graphs with just one vertex: Let us fix some category A,

some n ∈ N0 and two different elements ∗ and ◦. Then the labeled graph on

the vertex set {∗} with labeling (A, d) and the labeled graph on the vertex

set {◦} with the same labeling are different. On the other hand, of course

it is natural to identify them.

In general, it is natural to identify objects in a category if there is a cer-

tain unique distinguished isomorphism between them. However, the graphs

we consider do have non-trivial automorphisms. It is therefore reasonable

to consider a more rigid definition. For this reason, we proceed as follows:

We consider graphs as described above. On such a graph we consider

now the following additional structure: First, we fix a total ordering on the

set of vertices with outdegree 0. Second, for each vertex v we fix a total

ordering on the set of edges ending at v – equivalently an ordering at the set

of vertices from which there is an edge which ends at v. Note that a total

ordering on the set of vertices induces an ordering as described.

Notation 4 We denote such structures also by bold letters, for example

by A,B, The vertex set of A is then denoted by VA. If v is a vertex

of A, we denote the corresponding category by Av and the corresponding

dimension by dA,v. For an edge vw, we denote the corresponding target

dimension by dA,vw.

For any two vertices v, w of A such that there is a path from v to w,

we denote the composition of the functors for the corresponding edges by

fAvw. We define the target dimension of the path as the sum of the target

dimensions of the edges in the path, which is equal to the difference between

the end and the starting point of the path. We denote it again by dA,vw.

Remark and Definition 5 Let A and B be two such structures. By a

strong isomorphism between A and B we mean a bijection from VA to VB
which induces an automorphism of directed graphs respecting the labels, the

8

ordering on the vertices with outdegree 0 and for each edge the ordering on

the ending edges.

The crucial feature is now that there is at most one strong isomorphism

from A to B. If there is one, we say that A and B are essentially equal,

and we write A ∼= B.

Definition 6 An elementary type is a commuting graph with the “addi-

tional structure” described above with exactly one vertex with indegree 0

(that is, there are no functors in the graph terminating at the category) for

which moreover the dimension of the array is equal to 0 (that is, the cate-

gory of arrays is equal to the underlying category). This unique vertex is

called the top vertex of the elementary type and the corresponding category

the top category. The top category of an elementary type A is denoted by

Top(A).

Remark 7 The dimensions of the vertices of an elementary type are uniquely

determined by the target dimensions of the edges.

Definition 8 A typed object is a tuple consisting of an elementary type and

an object in the top category of the type. The elementary type is then called

the type of the typed object.

Terminology 9 Instead of typed objects of elementary type A we speak

of objects of type A.

Moreover, instead of saying, for example, that a is an object of the

elementary type of commutative algebras, we say that a is an object of type

commutative algebra.

Remark 10 Let an object of type A be given. Then for every vertex v of

A, via the application of the corresponding functor for the edge from the

top edge to v we obtain an an object of the category Av.

We fix the following notation.

Notation 11 Typed objects and the underlying “plain” objects are usually

denoted in the same way. However, sometimes, it is natural to consider an

object of one type also as an object of another type. In this case, we use

different notations for the different typed objects.

Terminology 12 If A is an elementary type with longest path length d−1,

we say that A is a dth order elementary type. For any natural number i,

the ith layer of A is the set of all vertices v of A for which the longest path

starting at v has length i.

9

By definition, a first order elementary type is the same as a large groupoid.

We give some examples.

Example 13 Any set A gives a type by turning A into a category whose

only morphisms are the identities. This category is then denoted by A (and

similarly by the bold letters corresponding to the notation of the set).

Examples 14 From any category one can obtain a first order elementary

type by deleting the morphisms which are not isomorphisms. We obtain in

this way the elementary types of sets, groups, rings, fields, etc.

Let now A1 be one of the four mentioned categories. We can then

consider “pointed objects”; these are objects of the form (a, P), where a ∈
A1 and P ∈ a. These pointed objects form a class, and if we define the

morphisms from (a, P) to (a′, P ′) as the isomorphisms from a to a′ which

map P to P ′, we obtain another large groupoid which is a category over A1.

Therefore, we have defined a second order elementary type.

A further example of a second order elementary type is given by com-

mutative algebras. Pointed commutative algebras then define a third order

elementary type.

The inputs to the computational problems will not only consist of one

typed object but of several typed objects. These typed objects might be

intertwined, for example, one might consider two pointed groups, where the

groups are the same, or one might consider two commutative algebras over

the same ring. This leads to the next definitions.

Definition 15 An arbitrary structure as described above in Notation 4 is

called a complex type.

Definition 16 Let C be a complex type. Furthermore, let for every vertex

v of C a dv,C-dimensional array over Cv, that is, an object of arraydC,v , be

given such that for every edge vw of C, the selected object in arraydC,v(Cv)

is mapped to the one in arraydC,w(Cw) via the functor fCvw. Then we call

this family of objects an object complex. If we attach to each object in the

complex the respective category, we obtain a typed object complex.

Terminology 17 As for objects of an elementary type, instead of typed

object complexes of complex type C we speak of object complexes of type C.

Remark 18 Every elementary type is a complex type. Moreover, by Re-

mark 10 every object of some type defines in a unique way an object complex

of the same type.

10

Remark 19 The notions of an elementary type of dth order generalizes

immediately to complex types. So does the notion of the ith layer.

Remark 20 In the definition of array1(C) we consider tuples (arrays) of

arbitrary positive length. We do not define here arrays of a fixed length

because this is not really necessary: The definition of complex type has

enough flexibility to include the idea of tuples of a fixed length. Indeed, this

would be the case even if the labels of the edges would be plain categories

and not categories of arrays.

Remark and Definition 21 Let C be a complex type. There is an ob-

vious definition of morphisms between object complexes of type C. Again

every morphism is an isomorphism. Thus, the object complexes of a given

type form a category. We call this category the category of object complexes

of type C and denote it by Cat(C).

Remark 22

a) For an elementary type A we have Top(A) = Cat(A).

b) Any strong isomorphism between complex types C and D induces an

isomorphism between Cat(C) and Cat(D). This implies that if C and

D are essentially equal, then Cat(C) and Cat(D) are canonically iso-

morphic.

c) We do not rule out that the graphs defining a complex type is empty.

We then have the trivial complex type which we denote by ∅. There is

exactly one element of this type, the trivial complex.

Definition 23 Let C be a complex type. We say that a complex type D

is over C or is derived from C if the following holds:

• The graph underlying C is a subgraph of the graph underlying D, and

the orderings are compatible.

• For each vertex v of C, we have Cv = Dv and dC,v ≤ dD,v.

• For each vertex v of C and each edge e = vw of D, the vertex w

appears in C. The target dimensions of the functors in C and in D

as well as the functors themselves are identical. (The condition on the

dimension means that dD,w − dD,v = dC,w − dC,v.)

If we always have an equality dC,v = dD,v, we say that the type D restricts

to the type C. Under this condition every object complex c of D defines in

an obvious way an object complex of C; we call this the restriction of c to

C and denote it by resDC (c).

11

Remark and Definition 24 Let C be a complex type.

a) Let V be a subset of VC . We then have the closure of V under “going

from the beginning of a vertex to its end”. This set is denoted by ↓V .

Note that the set of edges can be seen as defining a relation on the set of

vertices and it is the transitive closure of this set we are talking about.

We call ↓V the closure of V under going down. If V is equal to its

transitive closure, we call V closed under going down.

b) Let now W be a subgraph of VC which is closed under going down. We

have the full-dimensional type defined by W , which is defined in the

obvious way. We denote it by Cfull
|W . If W is the closure of some set V

under under going down we denote it by Cfull
↓W . If moreover V = {v} for

some vertex v, we denote it by Cfull
↓v .

c) If now a is an object of C, we have the restriction to Cfull
|W which we

denote by resCW (b). If W is the closure under going down of V , we denote

it by resC↓V (b), and if V = {v} we denote it by resC↓v(b).

Definition 25 Let now B and C be two complex types which restrict to

the complex type A. Then we define a new type, B ×A C, as follows:

The set of vertices is given by the disjoint union of the sets of vertices of

B and C modulo the identification with respect to the set of vertices given

by A. The graph is labeled by categories and functors in the obvious way

as induced by B and C. The orderings are defined as follows: On the set of

vertices with outdegree 0, first there are all vertices in VB\VA, then there are

all vertices in VA and finally there are the vertices in VC\VA. Inside these

sets, the orderings are the obvious ones. For each vertex v, the ordering on

the set of edges ending in v is also as just described.

Definition 26 Let now C be a complex type and let v be a vertex of C.

Then there is a unique elementary type A such that

• C is derived from A,

• the top-vertex of A is v and this vertex has dimension 0,

• the set of vertices of A is the closure of v under “going along the

edges”.

This type is called the elementary type defined by v in C. We denote it

by C↓v.1

1Note that this need not be equal to Cfull
↓v , which has been defined in Definition 24.

12

Remark 27 If the type B be derived from the type A, then for each vertex

v of A, A↓v = B↓v.

We now illustrate with examples an important principle.

Examples 28 Let us consider the second order type of pointed groups.

Then for each group G, which is an object with a first order type, the

objects of type pointed group over G form a first order type. These objects

are of course exactly the group elements of G. We therefore obtain for every

fixed group G the first order type of elements of G.

Let us consider the second order type of commutative algebras. Then for

each commutative ring A, which is also an object with a first order type, the

objects of type commutative algebra over A form a first order type. These

objects are the A-algebras, and we obtain for every fixed commutative ring

A the first order type of A-algebras.

Let now A be an elementary type.

Remark and Definition 29 By deleting the top vertex and the edges

starting from it, we obtain a complex type which we call the base of A,

Base(A). Note that if A is a first order type then Base(A) is empty. If A

is not a first order type then for an object of type A, we define Base(a) as

the object complex of type Base(A) defined by mapping a along the vertices

starting at Top(A). Note here that as stated in Remark 22 c), if Base(A) is

empty, there still is an object complex of type Base(A), the trivial complex.

Now for every object complex b of type Base(A), we obtain the category

of objects of type A which are mapped to b. This category might be called

the fiber defined by b in A. This is a first order type which we call the

type defined by b in A. Inspired by the usual notation for the fiber, we

denote it by Ab. We can thus say that we have a family (Ab)b of first

order elementary types indexed by the objects b of type Base(A). Based on

these considerations, we introduce the following notation. For fixed b, every

object c of type defined by b in A defines an object of type A. We denote

this object by

(b; c)

Clearly, every object of type A is of this form. For an object a of type

A we have a = (Base(a); c) for a unique object c of type ABase(a).

Examples 30 Coming back to the examples above, we obtain this notation:

A pointed group (G,P) is denoted by (G;P). A commutative algebra A −→
B is denoted by (A;B).

13

If Base(A) is also a non-first order elementary type, we can iterate the

above:

Notation 31 Let a = (b; c) be an object of type A, and let us set d :=

Base(b). We then have b = (d; e) for a unique object e of type Base(A)Base(b).

Therefore a = ((d; e); c). We denote this also by (d; e; c). We might iterative

this now.

Example 32 We consider the third order elementary type of pointed com-

mutative algebras. Following the introduced notation, the objects of this

type are (A;B;P), where A is a commutative ring, B a commutative A-

algebra and P ∈ B.

It might be that all fibers are “identical”. This can be captured as

follows:

Let C be a complex type. Then for each vertex v of C we have a

canonical functor Cat(C) −→ Cv. In particular, for each elementary type

A and each vertex v of A not equal to the top vertex we have a canonical

functor Base(A) −→ Av, and the functor Top(A) = Cat(A) −→ Av factors

in the two functors Top(A) −→ Base(A) and Base(A) −→ Av.

Definition 33 An elementary type A is trivially fibered if Top(A) is of the

form Base(A)×F for some first-order type F and the projection Top(A) −→
Base(A) is given by projection to the first factor. The type F is then the

fiber of every object complex of type Base(A). Correspondingly, it is called

the fiber of the top-trivialization. The objects of A are therefore of the form

(b; a) for a ∈ F .

Remark and Definition 34 If in the above definition there is exactly one

object of type F then A is isomorphic to Base(A) via the canonical projec-

tion. We express this case by saying that the fiber is trivial.

One often encounters the situation that all vertices of a graph of a com-

plex type have outdegree 0 or 1. In this case, one can generalize the notation

just presented in an obvious way:

Under the given condition, if one inverts the edges, one obtains a for-

est (by which we mean a disjoint union of rooted trees). Now forests can

be described by elements of a certain term algebra. We assume that this

representation is quite well known, but we did not find it in the literature

and therefore describe it in the following. As indicated, for an application

to objects of complex types, one first has to invert the edges.

We consider labeled forests whose edges are contained in the set {1, . . . , n},
where to each i a label ai in a set A is attached. We now consider the free

14

monoid on the disjoint union of A with a set consisting of four elements.

These for elements are denoted by the symbols “,”, “;”, “(“, “)”. As usual,

we write the elements in the free monoid as “words” or “strings”. We em-

phasize again that the symbols “,”, “;”, “(“, “)” now represent elements of

a set on which we consider words.

To a forest G as described we associate a word s(G) in the following

recursive way:

• To the empty forest we associate the empty word.

• To a tree with one edge i, we associate the word (ai).

• Let a forest with trees T1, . . . , Tk with roots r1, . . . , rk with rj < rj+1

for all j be given, and let s(Ti) = (ti). Then to the forest we associate

the word (t1, . . . , tk).

• Let a tree T be given, and let ai be its root. Upon removing the root,

we obtain a forest of trees. Let t be the word associated to the forest

(as defined in the previous item). Then to T we associate the word

(ai; t).

Remark 35 It is most natural to apply the above assignment if the edges

are enumerated according to a depth-first search. To demonstrate the re-

sult, let a forest with set of edges exactly {1, . . . , n} be given, where the

enumeration is according to a breadth-first search. Moreover, let the edges

be labeled by themselves. In this case the associated word has the following

feature:

All numbers from 1 to n occur in it exactly once, and from left to right

they occur in the “natural ordering” of 1, . . . , n.

Discussion

One might ask if an elementary object should not be denoted in the same

way as its top object and also addressed in a way which reflects its top

object.

We demonstrate this with the example of pointed groups. There are two

possibilities here: The first possibility is as follows: Instead of a speaking of a

pointed group (G;P) (which might itself be denoted by G∗ or so), one would

speak of a “group element” which is denoted by P . (There are types in the

MAGMA language which are based on this idea.) The second possibility

is: If the pointed group is denoted by G∗, the notation (G;P) should be

changed to (G;G∗).

Our answer is that the general idea presented indeed seems to be nice.

There are however arguments to allow the flexibility to not always proceed

like this.

15

On the first proposal: First, we want that types are based on categories.

But what would for example the “category of group elements” be? In par-

ticular, what would be its isomorphisms? Second, typed objects should be

inputs to algorithms. Thus an input to an algorithm could then be a “group

element”. But here one should remark that this is not how one usually talks

about algorithms. If the group is variable (which it is here because “group

elements” would just be pointed groups by definition) then one would not

say that the input is “a group element” but a group and a group element

in the given group. Or conversely, if one said that the input is a “group

element”, this could cause the impression that the group is fixed.

On the second proposal: It seems a bit unnecessary to have G essentially

twice in the notation. Also, again thinking about inputs to algorithms and

about storage of objects in algorithms: What has to be input and stored

here is really (G,P) and not (G,G∗). So the notation (G;P) better reflects

what we imagine really that happens in an algorithm.

Having said this we remark however that sometimes, the second proposal

is implicitly fulfilled by the usual notation in mathematics. As an example

we consider the second order category of commutative algebras. According

to the notation in Example 30, we denote a commutative algebra A −→ B

by (A;B). According to the standard notation, it is also denoted simply

by B.

2.2 A formalism for computational problems

We pursuit the idea that a computational problem should in a certain sense

be modeled by a transformation between complex types.

Let now two complex types I and T be given. We want to interpret the

objects of I as “input instances” and the objects of T as “target instances”,

and we want to discuss now what an appropriate definition of “computa-

tional problem” from I to T should be.

As pointed out at the end of the previous subsection, the object com-

plexes of a given type form themselves categories. One might therefore

think that one should define a computational problem from I to T as a

functor from the category of object complexes of type I, Cat(I), to the cat-

egory Cat(T). However, often in the intuitive description of computational

problems, there is a certain arbitrariness. Consider for this the following

example.

Example 36 An intuitive description of the “computational problem” we

want to define is: Given a univariate polynomial over a field, output whether

it has a root over the field, and if this is the case, compute one of these.

We define the complex type I as follows: First, we consider the ele-

16

mentary type of fields. Over this category we consider the second order

elementary type of tuples (k, f), where k is a field and f ∈ k[T]. According

to our notation, we have (k, f) = (k; f). A morphism from (k; f) to (k′; f ′)

is an isomorphism from k to k′ such that the induced morphism from k[T]

to k′[T] maps f to f ′.

Moreover, we define the complex type T : This is again a second order

elementary type over the elementary type of fields. The objects are: First,

tuples (k; a), where k is a field and a ∈ k and, second, for each field k an ob-

ject called (k; “no′′). The morphisms from (k; a) to (k′; a′) are isomorphisms

from k to k′ which map a to a′.

So, the two types are defined but up to now, no definition of the problem

within the desired framework of “computation problems” has been given.

We emphasize the important point that there is a certain degree of arbi-

trariness in the intuitively described problem: It does not matter which

root is computed. This arbitrariness should be reflected by the definition of

the “computational problem”.

An obvious idea is to model this arbitrariness as follows: One associates

to an instance (k; f) to (k; “no′′) if there is no root and otherwise to the set

of tuples (k; a) of T , where a is a root of f . We stress here that such a set

of tuples is not itself an object of T ; it is its elements which are objects of

T .

We want that a “computational problem” “applied” to isomorphic ob-

jects leads to isomorphic “results”.

This in mind, we propose the following definition for computations with

from one complex type to outputs of one other complex type.

Definition 37 A computational problem P from a complex type I to a

complex type T is an assignment which assigns to every object complex of

type I a non-empty class of object complexes of T such that the following

holds:

For each two isomorphic object complexes a and a′ of type I and each

b ∈ P(a), there exists an object complex b′ ∈ P(a′) which is isomorphic to b.

We then call the objects in I the input instances and the objects in T

the target instances. The category I itself is called the input type and the

category T the output type of the problem. If b is an object in P(a) for some

object a of I, we say that b is a possible result of P applied to a.

Computational problems can in an obvious way be composed:

Definition 38 Let P : A −→ B and Q : B −→ C be two computational

problems. Then the composition Q ◦ P of the two problems is the compu-

tational problem from A to C which assigns to any object a of A the class

17

consisting of the objects in Q(b) for b in P(a).

One sees easily that Q◦P is a computational problem from A to B: Let

a and a′ be two isomorphic objects of A, and let c be an object in (Q◦P)(a),

(Q◦P)(c). Then c is in Q(b) for some object b in P(a). Now, b is isomorphic

to an object b′ in P(a′), and therefore c = Q(b) is isomorphic to an object

in Q(b′).

We have the following four classes of examples:

Example 39 Let the first order type T be obtained from a set T by defining

only the identities to be morphisms. A computational problem from I to T

is now the same as an assignment from the objects of I to P(T) which maps

isomorphic objects to the same sets. (Here for a set X, P(X) is the power set

of X.) If in addition I is also a first order type which is obtained from a set

I by defining only the identities to be morphisms, a computational problem

from I to T is nothing but a map I −→ P(T). We call a computational

problem defined by a map from the set of bit strings {0, 1}∗ to P({0, 1}∗) a

classical computational problem.

Example 40 Let I and T be complex types. Then every functor P from

Cat(I) to Cat(T) induces in an obvious way a computational problem from

I to T . We call such a computational problem functorial.

Example 41 Let I be an dth order elementary type with top vertex v, let

A be a first order type, and let p : A −→ Iv be a functor. Then we obtain

an (n+ 1)th elementary type T with top category A.

Suppose now that for every object b of Av = Iv there exists an object a

of A with p(a) = b and that for every (iso-)morphism β : b −→ b′ of Cat(I)

and every a in the fiber over b, there exists an object a′ in the fiber over b′

and an (iso-)morphism α : a −→ a′ with β ◦ p = p ◦ α. (Note that A with p

is a special case of a category fibered in groupoids.)

Then by assigning to every object of type I its fiber we obtain a com-

putational problem from I to T .

Example 42 Let A and B be complex types. Then every essentially sur-

jective functor from Cat(A) to Cat(B) defines a computational problem

from B to A: One assigns to every object complex b of type B the class all

object complexes of type A whose image is isomorphic to b in Cat(B).

We can also formally complete Example 36 within the framework of

computational problems:

18

Example 43 As already mentioned, an instance (k; f) is mapped to (k; ′′no′′)

if f has no roots in k and otherwise to the set of (k; a), where a is a root of

f in k.

Remark 44 The above computational problem should be contrasted to a

problem which can intuitively be described as follows: Given a univariate

polynomial over a field, compute all its roots.

An appropriate target type can now be defined as follows: The objects

are tuples (k;S), where k is a field and S is a finite subset of k. The

morphisms from (k;S) to (k′;S′) are the isomorphisms from k to k′.

The computational problem is now given by the functor which assigns

to (k; f) the target instance (k; {a ∈ k |f(a) = 0}).

Example 45 Let F be any category of fields. We define the second order

type I0 just as the type I in Example 36, except that instead of arbitrary

fields we only allow finite fields. Now the computational problem defined in

examples 36 and 43 restricts to a computational problem from I0 to T .

Remark 46 One reason why we took as a first example for a computational

problem the problem to determine if a univariate polynomial over a field has

a root and if so to compute one is to emphasize that one does not need to

formulate any “representation” of the objects concerned, for example via

bit-strings. Of course, a representation of the objects up to isomorphism via

bit-strings would not even be possible simply because there are uncountably

many isomorphism classes of objects.

However, if one considers restricted problems, for example the restricted

problem for polynomials over finite fields or over number fields, one might in-

deed fix a representation of the objects up to isomorphism by bit-strings. In

subsection 4.5 we will discuss this aspect. We will also show how one can in

this way obtain classical computational problems as defined in Example 39.

Often, it is important that a computational problem is formulated rel-

ative to some data given in the input and target types. This means that

these data are not changed during the computation. This is for example the

case in examples 36 / 43 and 44: Here the underlying field is fixed. This

leads to the following definition.

Definition 47 Let I and T be two complex types which restrict to the same

complex type B, and let P be a computational problem from I to T . If now

for each object complex a of type I we have {resIB(a)} = resTB(P(a)), we

say that the problem P is relative to B. (See Definition 23 for the definition

of a restriction of an object.)

19

Example 48 Let B be the category whose objects are fields and whose

morphisms are isomorphisms of fields. As already mentioned, in examples

36 / 43 and 44 computational problems with respect to B are given.

Let us consider another example to illustrate the importance of the no-

tion of relativity of computational problems.

Example 49 An intuitive description of the problem is: Given two rational

points on an elliptic curve over some field, compute their sum.

The definition of the types is: We first consider the first order type of

fields. Over this we consider the type of elliptic curves over fields. The

morphisms from E/k to E′/k′ are: Tuples of an isomorphism of fields k −→
k′ and an isomorphism of abstract group schemes E −→ E′ such that the

diagram

E

��

// E′

��
Spec(k) // Spec(k′) ,

where the rows are given by the isomorphisms, commutes.

The type T is now the type of pointed elliptic curves. The objects are

thus given by (k;E;P) with P ∈ E(k).

The type I is defined similarly. However, here the underlying graph

has a Y-shape: there are two top vertices. The objects are double-pointed

elliptic curves.

Note that according to our general notation, objects of type T are de-

noted by (k;E;P) and objects of type I are denoted by (k;E; (P1, P2)). The

computational problem is then given by (k;E; (P1, P2)) 7→ (k;E;P1 + P2).

3 Abstract algorithms

3.1 Classical RAM models

A classical computational model is the model of the random access machine

(RAM). An intuitive description is: There are registers R0,R1,R2, . . . which

can store non-negative integers and there is a program Π.2 Upon input of

some non-negative integer the program modifies the contents of the registers.

An important feature is hereby indirect addressing. We remark here that the

“registers” are just introduced to fix the intuition. By definition a RAM just

consists of a program. Whereas intuitively, the execution of one command

2In some RAM-models there is in addition an accumulator. Here we take models
without accumulator as a starting point.

20

of a RAM is given by a modification of the contents of “registers”, formally

it is given by an operation on NN0
0 .

There are different RAM models with different sets of commands. In fact,

one might introduce any function from Nn
0 to N0 as a command. Of course,

the introduction of such a function can have dramatic consequences, and

it might even be that in a particular such model functions are computable

which are not computable in the usual sense. There is however no reason

for not studying computations in dramatically different models.

Another aspect concerns complexity. A change of the complexity mea-

sure can have dramatic differences. A telling example is the following one,

which was proven in [Sch79] (see also Theorems 20.12 and 20.35 in [WW86]):

If one considers a RAM with commands for addition and multiplication and

the so-called uniform complexity measure, one obtains a model for which the

set of problems which can be decided in polynomial time is equal to the set

of problems which can be decided in polynomial space on a Turing machine

or on the same RAM machine with logarithmic complexity measure.

3.2 The storage of objects

Taking the RAM model as a starting point, our idea is to allow machines

with registers in which objects of an arbitrary elementary type can be stored.

More precisely, in each register one can either store a first order object or

an object with the help of objects of lower order.

In this subsection we describe how objects are stored. In the subsequent

subsections we then give the definition of abstract algorithms and define

what states are and how an abstract algorithm operates on states.

We fix for the following a complex type C with a fixed vertex v0 which

is at the bottom of VC such that the associated type is N0.

We fix a natural number d which we call the dimension of the storage.

We require that d is at least 2 and that d ≥ dC,v for all vertices v of C.

Furthermore, we fix a so-called input type I, which is a complex type from

which C is derived.

The intuitive idea is now that the machine is initialized with the following

storage: There is a d-dimensional storage; the corresponding registers are

denoted by Ri with i ∈ Nd
0. In these registers, called computation registers,

objects of an arbitrary type from which C is derived can be stored as follows:

First, in each of the registers one can store an object of a first order type

from which C is derived. Second, for each elementary type A of order at

least two from which C is derived and for each b of type Base(A), one can

store in each of the registers an object of type Ab – provided that b is also

stored and there are appropriate pointers to b. This then also leads to the

possibility to store objects of an arbitrary type from which C is derived.

21

Furthermore, for each vertex v of VI , there is a dI,v-dimensional storage

whose registers are denoted by Iv,i with i ∈ NdI,v
0 . These registers are called

input registers. We note here that the storage Iv,• might be 0-dimensional,

that is, contain a single element. Following the notation of () for the empty

tuple, we then denote the unique register by Iv,().

We now describe how one can store objects of any (elementary) type

from which C is derived. For this, we proceed by induction on the order

of the types. For the induction, we need to not only consider objects and

elementary types but also object complexes and complex types.

In the following description, whenever we talk about types, we consider

types up to strong isomorphism. This means that we identify essentially

equal types.

First, in each of the registers Ri one can store a non-negative integer.

Moreover, in any register Ri for which no entry of i is 0, one can store in Ri

any object of a first order elementary type from which C is derived.

This gives the following method to store arrays of such objects: Let B

be a complex first order type from which C is derived with just one edge v

and the corresponding label (Bv, dB,v), where A = Bv. We set dB := dB,v.

An object from B is thus a dB-dimensional array of objects of A. Assume

first that the dimension is 1, and let a 1-dimensional array a of length l of

objects of type A be given. Then for any tuple i0 ∈ Nd−1
0 , one can store a in

the registers Ri01, . . . ,Ri0`
as follows: The length l is stored in the register

Ri00, and in the registers Ri01, . . . ,Ri0`
the entries of the array a are stored.

If now dB is 2 and a tuple i0 ∈ Nd−2
0 is given, we interpret the array as

a 1-dimensional array of arrays and store it analogously. This means that

first, in Ri000 we store the length of the array of arrays. If this is ` then in

the registers Ri01•, . . . ,Ri0`• we store the 1-dimensional arrays. We proceed

like this inductively. We stress that the registers whose index contains a 0

are solely used for the purpose of storing lengths of arrays as described.

We denote registers used to store arrays as described by Ri0•.

The storage of objects in the input registers is more restrictive: We

postulate that for each vertex v at the bottom of the graph VI , in each

of the registers Iv,i one can store an object of type C↓v or of type N0,

depending on whether i does not or does contain 0, where the same rules as

above apply.

The previous obviously also gives a way to store object complexes whose

type is of first order from which C can be derived. After all, such a complex

is nothing but a collection of objects whose type is of first order.

Now, let an integer e ≥ 2 be given, and let first A = C↓v be an eth order

elementary type defined by a vertex v of C. Recall that every object a of

type A is of the form (b; c), where b is an object complex of type Base(A)

22

and c ∈ Ab. Let such an object be given. The object complex b can be

stored in registers Ri and Iv,i. Let us assume that the object complex is

stored in such registers. Then a can be stored by additionally storing in any

register Ri or Iv,i the object c of type Ab as well as a tuple of pointers – one

pointer w for each edge vw starting at the top vertex v of A and heading

to the top registers used to store b. Precisely, let an edge vw be given, and

let us assume that the registers Ri0• contain the data for the corresponding

vertex w. Then the pointer for this edge is i0. Similarly, if the registers for

w are Iw,i0•, the edge defining the pointer is wi0.

In an obvious way one can then also store object complexes whose type is

of eth order and such that C is derived from it. Let such an object complex

a of type C be given. By deleting the vertices in the eth layer, we obtain

the full-dimensional type B of order e − 1 (see Definition 24). The object

complex a restricts to an object complex b of type B. Let us assume that

b has been stored as described. Then for each vertex in the eth layer we

proceed as described in the previous paragraph and in the above description

for the storage of arrays.

As an example to illustrate the storage of elementary types of second

order one can consider Example 28: Here one first has to store a group G.

Given G, the fiber over G is canonically isomorphic to the set of elements of

G. A whole object is then additionally stored by storing the group element

and a reference to the place of storage of the corresponding group.

Note also that if an elementary type A is trivially fibered with fiber F

then one can store an object a by first storing Base(a) and second an element

from F .

We now define what we mean by a possible content of the registers.

Definition 50 A content is a map c from the set of registers (of both kinds)

(or more formally, of the union of the sets of the corresponding addresses)

such that the following holds:

There are finite sets of registers S1, . . . , Sk such that: First, outside the

set
⋃k

i=1 Si the map c has the constant value of 0 as an object of type N0.

Second, the restriction of the map c to each of the sets Si defines the storage

of an object complex as described above. (This means in particular that

any register in Si whose index contains a 0 is used to describe the length of

a tuple in an array – as described above.)

Notation 51 Such a content is denoted by (I,R) = ((Iv,i)v,i, (Ri)i).

We obtain in this way the set of contents of the registers.

23

Discussion

One might define registers of different (elementary) types. Objects should

then only be stored in a register of an appropriate type. Here it would be

reasonable to proceed as follows: Let E be the set classes of elementary

types of C up to strong isomorphism. Now for every class [A] in E we

introduce corresponding registers RA,i. This means that for two elementary

types A and B which are essentially equal, the registers RA,i and RB,i are

by definition equal.

A particular role would then play the registers RN0,i: These would be

the only registers allowed to serve as address registers for indirect addressing

(see below).

We have decided against this possibility for two reasons: First, it makes

no essential difference because whenever an object is stored, the correspond-

ing type is stored anyway because the type is part of the object. Second,

the potential definition would cause some additional technical problems in

the discussion on abstract algorithms and representations in subsection 4.3.

3.3 Algorithms

We continue with the above setting, that is, with a complex type C, some

dimension d ≥ 2 and input type I – with the restrictions outlined in the

beginning of the previous subsection. We now want to define what we mean

by an abstract algorithm for a machine of type C and of dimension d. For

simplicity, we are going to refer to an abstract algorithm as we are going to

define it simply as an algorithm.

For this, we first fix a so-called output type T from which C is derived

and a base type B to which both I and T restrict. As stated above, the

machine then has computation registers Ri for i ∈ Nd
0 and input registers

Iv,i for v ∈ VI and i ∈ NdI,v
0 .

As the name suggests, an object complex a = (av)v∈VI
of type I input

to the algorithm is stored in the input registers: av is stored in registers Iv,•.

The input registers Iv,• with v ∈ VB are read-only.

Concerning the other input registers, there is are two possibilities which

are called preserving and updating which must be specified at the be-

ginning of each algorithm. If the option preserving is set, the input reg-

isters are read-only registers. If the option updating is set, only the input

registers for edges in B are read-only, the other input registers are then

read-and-write registers.

A guiding idea is that just as there is no a priori restriction on types,

there should also no a priori restriction on the commands which modify the

registers. This leads to the radical proposal to allow any relative computa-

24

tional problem itself to serve as the basis of a command – provided that its

input and output types fit to the given types C and B of the algorithm.

Here we employ analogous ideas to the ones described concerning the

input-output structure of an algorithm: For each complex types X and

Y from which C is derived and each complex type Z to which both X

and Y restrict, we have two kinds of commands: preserving and updating

commands: Preserving commands are based on computational problems

from X to Y relative to Z. Updating commands are based on computational

problems from X to X ×Z Y relative to Z. (See Definition 25 for the

definition of X ×Z Y .) A command is then based on such a computational

problem and addresses for the input type X and the output type Y .

We thereby allow indirect addressing, which means that we read the con-

tents of registers, and if these contents are non-negative integer, we interpret

these as addresses of registers whose content we then read.

Preserving commands are called like this because the input is not di-

rectly affected by the application of a command. (It might however be

affected because it is overwritten due to the addresses used.) By contract,

an application of an updating command might modify the input. One as-

pect is of importance here: The output always might override the input,

also for preserving commands. For an updating command it might happen

that the output is modified and also overwritten. We postulate here that

the overriding by the output is dominant. This corresponds to the intuition

that the overriding takes place internally in the command and finally the

commands outputs some data which are then stored.

Furthermore, we have a branching command which relies on the test

whether a particular register for non-negative integers contains 0, and we

have a command for output.

We now describe the commands of an algorithm based on a machine of

type C and dimension d with input type I and output type T .

Definition 52 Let A be any complex type from which C is derived. As

usual, let VA be the set of vertices of A. Furthermore, let {d,i} and {R,I}
be sets with each two elements. Then a register assignment for A consists

of, first of all A itself, second a subset V of VA containing the top vertices

of A such that each vertex of A not in V is the end of exactly one vertex

and third an assignment from V which assigns to each vertex of V one of:

• a tuple (d,R, i), where i is a possibly empty tuple of non-negative

integers of length at most d− dA,v,

• a tuple (i,R, i), where i is a possibly empty tuple of non-negative in-

tegers of length d− 1,

25

• if v is a vertex of I: a tuple (d,I, i), where i is a possibly empty tuple

of non-negative integers of length at most dI,v − dA,v,

• if v is a vertex of I: a tuple (i,I, i), where i is a possibly empty tuple

of non-negative integers of length d− 1.

and the following condition is satisfied:

• Whenever for some path vw the vertex v is assigned to a tuple of the

form (d,I, i) or (i,I, i) then w is also assigned to such a tuple.

• If at a vertex v of V starts an edge which does not end in V and v is

assigned to (d,R, i) then the length of i is at most d− dA,v − 1.

Definition 53 The input assignment is the register assignment given by

mapping a vertex v of I to (d,I,()). Recall here that by () we denote the

empty tuple.

For any vertex v of VA, the interpretation of a tuple the form (d, . . .) is

that we give directly an array of the appropriate type and dimension, the

interpretation of a tuple of the form (i, . . .) is that we do so indirectly. Let

A := Av. A tuple (d,R, i) as described means that we point to the registers

R1···1i•, where the number of 1′s is appropriate. Likewise, a tuple (d,I, i)

means that we point to the registers Iv,1···1i•. We then call such a register

the data register (for the given assignment and v). A tuple of the form (i,R, i)

means that we address registers indirectly. Concretely, indirect addressing

for such a tuple is as follows: Suppose that the register Ri0 contains a non-

negative integer (an object of type N0) l with 1 ≤ l ≤ d − dA,v and that

the registers Ri1, . . . , Ril contain non-negative integers r1, . . . , rl ≥ 1. Now,

these integers give the addresses of a dA,v-dimensional array R1···1r1···rl• or

I1···1r1···rl•. (If for indirect addressing the given conditions on the content of

the registers are not met, an algorithm using this indirect addressing will

fail.) We call the registers Ri• the address registers and the registers pointed

to by the content of these registers again the data registers.

The reader might now ask her- or himself why we allow addresses which

are “too small” then pad the address with 1′s in front. There are two reason

for this: The first reason is that we want to by able to derive addresses for

vertices not in V in an automated way. We explain this in the following def-

initions. The second reason is as follows: We want to be able to interpret an

algorithm on a machine of type C and for a larger dimension than the given

one d. Both these reasons will become important when we consider repre-

sentations of types and their applications to algorithms in subsection 4.3.

Notation 54 If a is a register assignment and v a vertex, we denote the

corresponding tuple by av.

26

Definition 55 A direct register assignment is a register assignment in which

only tuples of the form (d, . . .) occur. If the set V is equal to VA we speak

of a full direct register assignment.

Definition 56 To any register assignment and content as described above,

we try to associate the obvious corresponding direct register assignment by

evaluating the addresses for indirect addressing – if possible. If this is not

possible, we say that the register assignment does not define a direct register

assignment.

Let now a direct register assignment be given. We extend the direct

register assignment as follows to registers which are not in V , obtaining

what we call the corresponding full direct register assignment.

Note first that by assumption at each edge w not in V there is a unique

edge ending at w. Furthermore V contains the top vertices. It follows that

for each such vertex w there is a (unique) smallest path starting in V and

ending in w.

Let v be a vertex of V such that there is an edge vw with w /∈ V .

Let us first suppose that to v we associate via a given register assignment

and content the input register Iv,i as data register. Let vw be an edge, where

w is not in V . Then we associate to w the register Iw,i as data register. We

continue like this by induction.

Let us now suppose that to v we associate some computation register.

Note that by definition of a register assignment, the address has the form

1 · · · 1i with a non-trivial number of 1′s at the beginning. Now we have

to define an ordering on the edges not in V “below” w. For this, we first

order all vertices of A via the given orderings of the edges at the vertices

and a breadth-first search. (The bottom vertices come first.) This ordering

induces an ordering on the edges starting at some vertex, for example v. We

then associate to the jth edge at v the register Rj1···1i.

Definition 57 Let now C be a complex type which restricts to complex

types A1 and A2 which in turn restrict to a complex type B. Furthermore,

let a1, a2 be register assignments for A1,A2 respectively. We now say that

a1 and a2 are consistent with respect to B if the domains of both maps

contain the top vertices of B and if on the set vertices of B on which both

are defined they define the same map.

Now the commands are:

• Two commands called preserving and updating.

• For each two complex types X and Y from which C is derived and

27

each complex type Z to which both X and Y restrict,3 for each com-

putational problem P from X to Y relative to Z, and for each register

assignments a0 of X and a1 of Y which are consistent relative to Z,

a command

let a1 ←− P applied to the registers given by a0 relative to Z.

(This command is called preserving.)

• For each two complex types X and Y from which C is derived and

each complex type Z to which both X and Y restrict, for each com-

putational problem P from X to X ×Z Y relative to Z, and for each

register assignments a0 of X and a1 of Y which are consistent relative

to Z, a command

let a1 ←− P applied to the registers given by a0 relative to Z
with update .

(This command is called updating.)

• For each elementary type A such that for all a ∈ Base(A) the fiber

Aa is a set and each register assignments a0 of Base(A) and a1 of A

such that a1 restricts to a0 (which is equivalent to the condition that

a0 and a1 be consistent relative to Base(A)), a command

choose a1 relative to a0 .

• For each tuple of non-negative integers i of length at most d and each

natural number c a command

if R1···1i 6= 0 then goto c .

• For each register assignment a of T which is consistent with the input

assignment relative to B a command

output a .

The meaning of the commands should be clear from their names. The reader

might ask him- or herself what is the difference between the commands let

and choose. A first answer is that a choose-command is nothing but a

special case of a let-command. However, choose-commands are seen as

a source of randomization. In contrast, let-commands are a priori non-

deterministic.

3See Definition 23 for the definition of “derived” and “restricts to”; note that the second
notion is stronger than the first one.

28

Definition 58 For a complex type C, two types I and T from which C is

derived, and a number d as above, an abstract algorithm for a machine of

type C and of dimension d with input type I and output type T is a finite

sequence of the above commands with the following restrictions: (We say

that the ith command occurs in the ith line.)

• The command in the first line is either preserving or updating, and

these commands only occur in the first line.

• The command in the last line of the algorithm is of the form if ... or

output

• Each integer c occurring in the if ... commands is at most the largest

line number, that is, the length of the sequence.

Terminology 59 As stated already at the beginning of this subsection and

as done throughout the subsection, we continue by referring to abstracts

algorithms simply as algorithms.

The choose-commands should be seen as a source of randomization in

the algorithm. We thus define:

Definition 60 An algorithm is non-randomized if does not contain a choose-

command.

Furthermore, we define:

Definition 61 An algorithm is functorial if all let-commands commands

are based on functorial computational problems. (Such a let-command is

itself called functorial).

This definition is important for the following reason: If there is a choose-

command we want to consider the computation from a probabilistic point

of view. However, as already stated above the definition, a let-command is

a priori a non-deterministic command. As it does not seem to be reasonable

to have non-determinism and randomization in the same algorithm, if there

is a choose-command it is reasonable to demand that the let-commands be

functorial.

Discussion

We make some remarks here, discussing the intuition surrounding these

definitions and potential alternatives.

• We would like to stress that the commands are really mathematical ob-

jects. We write let etc. merely to refer to these objects. An algorithm

is then a tuple of such objects.

29

• Instead of fixing the types C, I,T and the dimension d in advance, we

could have introduced commands for the initialization of the machine

like

type C

for any complex type C which is derived from the type N0,

dimension A, d

for any elementary type A and any d ∈ N,

input I

for any type from which C is derived, and instead of the output com-

mands output a, we could have introduced a command

output T , a

for every type T from which C is derived and and object a of type

T . Every algorithm would then start with the first three commands,

and instead of the output command there would now be commands

output T , a for a single type T . The other rules would be as stated

above.

• As complex types can be empty, in particular the complex types Z in

the let ... commands above can be empty. This can be interpreted as

an “absolute” rather than a “relative” computation. One might ask

why we have introduced the relative computations at all as maybe it

seems unnecessary to specify that something is fixed. The answer is

that this corresponds to the usual intuition of computation, is rele-

vant for complexity theoretic considerations and is relevant when we

introduce representations of types by other types.

• Alternatively to the definition of an algorithm via commands, we could

also define an algorithm as a finite labeled directed graph with certain

properties. Among these properties are: Every vertex has at most one

ingoing edge and at most two outgoing edges. The input command

then corresponds to vertex with just an outgoing edge, and the output

commands correspond to vertices with just one ingoing edge.

• All let-commands (preserving or updating) can be seen as operating

by call-by-reference. The essential difference is that with the preserv-

ing commands the input data are guaranteed to be fixed whereas with

the updating commands it might be changed as required by the com-

putational problem.

30

• Even though all objects have types, the registers (or variables) them-

selves are type-less. This means that objects of any type can be stored

in any registers. This could be changed. We have refrained from giving

types to registers in order to lower the complexity of the description.

3.4 States and operations on states

We define the set of states of an algorithm:

Definition 62 A state is a tuple (l, (I,R), o) where

• l is a natural number which is at most equal to the length of the

algorithm called the current line number,

• (I,R) is a content of the registers, defined in Definition 50,

• o is either an object from the output type T or one of two other

objects called “running” and “failure”. (In the first case, we say that

the algorithm has terminated with output o.)

Now for each command we would like to describe how it operates on

the set of states. Before we come to this, we have to address however two

potential problems concerning register assignments used in the commands:

an assignment to read data might be inconsistent with the content of the

registers and an assignment to write data might not lead to what we called

content; the result might not even be interpretable anymore. We first ad-

dress these problems.

Definition 63 Let (I,R) a content of the registers (see Definition 50) be

fixed.

• Let a be a register assignment (see Definition 52) of some type X from

which C is derived. We say that a is consistent with the content for

reading if: First, a defines a direct register assignment as indicated in

Definition 56. Second, the full direct register assignment associated

to a has this property: The addresses given point to arrays and the

data in these arrays define an object of type X. Third, for each edge

vw of X and each register in which some object in the array for v is

stored, the pointer for vertex w points to the appropriate subarray of

the array given by w in the register assignment.

• Let W be a type from which C is derived. Let a be a register assign-

ment for W and b an object of type W . We say that a is consistent

with the content for writing if the following holds: First, a defines a

direct register assignment. Second, the full direct register assignment

31

associated to a has this property: If the algorithm is preserving (that

is, the first command of the algorithm is preserving), there is no

vertex v ∈ VW for which the register given by the register assignment

is Iv,i for some i. If the algorithm is updating, there is no vertex

v ∈ VW ∩ VB with this property. Third, when we change the content

by writing b as indicated by the register assignment, we again obtain

a content.

Definition 64 Let again a content (I,R) be fixed.

• A command

let a1 ←− P applied to the registers given by a0 relative to Z

is consistent with the content if a0 is consistent with the content for

reading and a1 is consistent with the content for writing.

• A command

let a1 ←− P applied to the registers given by a0 relative to Z
with update

is consistent with the content if a0 is consistent with the content for

reading and a0 as well as a1 are consistent with the content for writing.

• A command

choose a1 relative to a0 .

is consistent with the content if a0 is consistent with the content for

reading and a0 is consistent with the content for writing.

• A command

if Ri 6= 0 then goto c

is consistent with the content if the register Ri contains an object of

type N0.

• A command

output a

is consistent with the content if a is consistent with the content for

reading.

Remark and Definition 65 Now, given a state and a command as de-

scribed, there are two possibilities:

Either the storage assignment is consistent with the state. In this case

we obtain in an obvious way a class of states be applying the command to

32

the state. Note here that as stated above in terms of the operation defined

here, a choose-command is a special case of a let-command.

Or the register assignment is inconsistent with the state. In this case we

define that the result is the state “failure”.

We can therefore apply an algorithm to an input instance. If at every let-

command and every choose-command we choose one possibility from the

class obtained by applying the computational problem to the corresponding

contents, we obtain a complete computation path (lt, (I,R)t, ot)t∈N0 . Here

the index t is called the uniform time or simply time if no confusion with

time complexity, which will be discussed in the next subsection, is possible.

If we first fix a time bound t0, we obtain a computation path up to (uniform)

time t0. We say that the computation fails for the given input instance if one

complete computation path leads to “failure”. Otherwise, for a preserving

algorithm, we consider the class of all outputs for all terminated states,

referred to by the class of possible outputs. For updating algorithms, for

every terminated state we consider all objects of type I ×B T given by the

objects in the input registers and the outputs. Again we consider the class

of these objects called the class of possible outputs with input modification.

We now want to define what it means that an algorithm computes a

computational problem. For this, we consider only non-randomized and

functorial algorithms.

Definition 66 Let a computational problem P from I to T over B and a

non-randomized algorithm with input type I, output type T and base type

B be given. If now for every object a of type I for no computation path

the algorithm fails and the class of possible outputs or the class of possible

outputs with input modification (depending on the mode of the algorithm)

is non-empty and contained in P(a) we say that the algorithm computes P.

We remark here that above we have said that let-commands are poten-

tially non-deterministic. However, in the definition we consider all computa-

tion paths. In fact, we are not interested in non-determinism as considered

in complexity theory. Rather, we want to allow that not all choices for

computation have to be fixed when an algorithm is written down. We refer

here again to Example 36 for an illustration. In the same spirit, when we

consider the time complexity of algorithms, we will take the maximum of

the time (as defined there) over all computation paths.

For functorial algorithms, we can talk about randomized computation.

For this, as usual, we make the choices in the choose-commands uniformly

and independently of each other. We define:

33

Definition 67 Let a computational problem P from I to T over B and

a functorial algorithm with input type I, output type T and base type B

be given. If now for every object a of type I for no computation path the

algorithm fails, the algorithm terminates with a probability of 1 and the class

of possible outputs or the class of possible outputs with input modification

(depending on the mode of the algorithm) is contained in P(a) we say that

the algorithm computes P.

Discussion

It can happen that in a computation path at two times t1 < t2 the sates are

isomorphic (or even equal) but the following states at the time t1 + 1 and

t2 + 2 are not isomorphic. It arises the question if this is reasonable. Or

should this be ruled out?

Our answer is that this should not be ruled out or at least not a priori.

The reason for this is related to the concepts of representation and speci-

fication discussed in Section 4 below: A let- or a choose-command might

be implemented by another algorithm which does not take objects of the

given type as input but rather objects which are representatives of the given

objects. Now it is possible that one object has different non-isomorphic

representatives, and we do at this point not know how the algorithm imple-

menting the command operates with these representatives.

3.5 Complexity

We now consider the idea of time complexity of a computation, where by

complexity. At this point, it is reasonable to analyze a particular algorithm

with complexity measures which reflect the abstract nature of the objects

involved in the computations. So, for example, one might say that on a

particular input an algorithm need so-and-so many group operations or field

operations or operations in an elliptic curve.

It is however reasonable to distinguish between what might be called

addressing costs and computation costs. The addressing costs are the costs

intuitively follow from the fact that data has to be fetched at different parts

of the storage before computations can be carried out. These costs have the

unit of numbers,4 in contrast to the computation costs which might have

the unit of addition in a group or so.

In this general situation not too much can be reasonably said on how

one should measure these costs. For example, one might overestimate the

addressing costs by considering all addresses which are involved in the input

data because not all these data might actually be used in the computation.

4We use the word unit here as in physics.

34

We now fix, until the end of the subsection, an algorithm A for a machine

of type C.

So we just assume that to every state and every command in a given

algorithm some complexity measure is associated. We then can define the

time complexity of a particular computation path up to some uniform time t

by adding the costs for the computations. We stress here that – as indicated

above – for a particular algorithm it might be reasonable to consider different

complexity measures with different units.

In the study of algorithms it is usual to denote functions on the input

instances just as evaluations of the functions on the said instances. We

follow this tradition:

Notation 68 We often denote functors from some first order elementary

type to R≥0 ∪̇ {∞} in the same way as evaluations of such functors. This

applies in particular to the time complexity of input instances and related

assignments.

Moreover, for two functors from some first order elementary type to

R≥0 ∪̇ {∞} by t ≤ T we mean that for all objects a of the large groupoid

we have t(a) ≤ T (a).

Definition 69 We say that a non-randomized algorithm terminates with a

time complexity of T ∈ R≥0 ∪̇ {∞} on some input instance a if for every

computation path for a the time complexity is at most T . Given a functor T

from the category of the input type to R≥0 ∪̇ {∞} we say that the algorithm

terminates with a time complexity of T if for every instance a the algorithm

terminates with a time complexity of T (a).

We now discuss the notion of expected time complexity for functorial

algorithms. By this we want to capture the intuition that there is an internal

randomization in the algorithm. Randomizations among the input instances

shall not be considered here.

Definition 70 Let a functorial algorithm and an input instance a to the

algorithm be given. As above, at every choose-command we choose one of

the finitely many possible objects uniformly independently at random. The

time complexity of the algorithm applied to a is then a random variable. In

particular, we can talk about the expected time complexity of an application

of the algorithm to a. This can be finite as well as infinite.

35

4 Representations and computations with repre-
senting objects

4.1 Representations of types

Whenever one wants to describe some computation with mathematical ob-

jects which are not bit-strings or non-negative integers via a Turing machine

or a RAM, one first has to describe how the objects shall be represented by

bit-strings / non-negative integers.

Similarly, for some fixed field k, one might consider computations on

register machines which can store elements of both non-negative integers

and elements from k. One might then describe how one represents some

mathematical objects with elements from k and non-negative integers.

To motivate the following definitions, we now consider some examples

which we first describe intuitively and then within the already developed

framework of types.

Example 71 Let us fix a (non-separably closed) field k and consider the

problem to represent finite separable field extensions in terms of field ele-

ments in k and natural numbers. Every such extension is primitive, thus

it is isomorphic to an extension of the form (k[t]/(f(t)))|k with f(t) ∈ k[t]

separable and irreducible. Because of this, it is reasonable to say that “every

finite separable extension of k can be represented by a polynomial in k[t]”.

In this statement, one might (but need not) add the information that the

polynomials in question are separable and irreducible. This situation can

be described from a functorial point of view as follows:

Let A be the first order elementary type of finite separable field exten-

sions of k. This is the type of the objects which shall be represented. In

addition, we have k[t] which is the type of representing objects (cf. Example

13).

Let S be the set of all separable irreducible polynomials in k[t], and again

let S be the corresponding type. Now the assignment f(t) 7→ k[t]/(f(t)) is

a functor from S to A. The fact that every extension is isomorphic to an

extension of the form k[t]/(f(t)) can be expressed by saying that this functor

is essentially surjective.

Example 72 Continuing with the previous situation, one might say that

one represents polynomials over k, that is, elements from k[t], by arrays of

elements from k. This statement seems to be harmless, but we have to be a

bit careful in order to formulate it formally:

First, we have the set k[t], and this set is the type of the objects to be

represented. Now, we have array1(k). Note that the elements in array1(k)

are non-trivial tuples of elements of k.

36

We now consider the subset S of array1(k) consisting of the following el-

ements: First, the tuple (0), and second, every tuple which does not contain

a 0 at the end (that is, as last entry). We have now an obvious isomorphism

from S to k[t]. Put differently, we have an isomorphism of categories from

S to k[t].

Inspired by these examples, we define:

Definition 73 Let X and Y be categories. Then a partial functor from X

to Y is a functor F from a full subcategory S of X to Y . The category S

is then called the domain of F and denoted by dom(F).

Recall here that a full subcategory S of a category X is a subcategory

of X such that for all a, b ∈ S, MorS(a, b) = MorX(a, b).

The idea of “representation” in the above examples is captured with the

following definition.

Definition 74 Let A and A′ be first order types (that is, large groupoids).

Then a partial representation of A by A′ is a partial functor from A′ to A.

A representation is a partial representation which is essentially surjective.

Remark 75 A composition of partial representations is a partial represen-

tation and a composition of representations is a representation.

Remark 76 Note that we say, for example, that we represent finite separa-

ble k-algebras by polynomials over k, whereas formally, it is the type of finite

separable k-algebras which is represented by the type of polynomials over k.

Note in addition that laxly, one might also write in an informal description

of an algorithm a phrase like this one: “Let a finite separable k-algebra A

be given, represented by a polynomial over k.” Note here that the algebra

is of course still variable, and so is the polynomial. Again, formally, one

represents one type by another type.

In order to avoid any confusion, in the definitions below, we will only use

the formally correct wording that a type is represented by another type and

not the informal wording that objects of a particular type are represented

by objects of some other type.

In the above examples, the field k is fixed. If we let k vary, in an obvious

way we obtain second order types. Intuitively, we obtain in an obvious way

again representations. The corresponding definition is as follows.

Definition 77 Let C and C ′ be a complex types. A partial representation

of C by C ′ consists of

37

• a subset V of VC′ containing the top vertices such that each vertex of

C ′ which is not in V is the endpoint of a unique edge,

• a bijection ϕ from V to VC which induces a map from the paths

between the vertices of V to the paths of C such that for all v ∈ V ,

dC′,v ≥ dC,ϕ(v),

• a system (Fv)v∈V , where Fv is a partial functor from arraydC′,v−dC,ϕ(v)(C ′v)

to Cϕ(v), such that for every two vertices v, w of V for which there is

a directed path from v to w in VC′ , fC
′

vw maps the domain of Fv to the

domain of Fw

such that for each edge ww, when we consider the induced functor Fv from

arraydC′,v(C ′v) to arraydC,ϕ(v)(Cϕ(v)) (which is also denoted by Fv) and the

corresponding functor induced by Fw, we have the compatibility relation

fCϕ(v)ϕ(w) ◦ Fv = Fw ◦ fC
′

vw

on the domain of Fv.

Remark 78 A partial representation of C by C ′ induces a partial repre-

sentation of Cat(C) by Cat(C ′).

Remark and Definition 79 Let C be a complex type over a complex type

B and let F be a partial representation of the complex type C by the

complex type C ′. Then there is a unique type B′ such that C ′ is over B′

and the representation of C by C ′ restricts to a representation of B by B′.

Here B′ is characterized as follows: The defining set of vertices is ↓ V ∩VB′ ,

the map is the restriction of ϕ to the set V ∩ VB′ , for each vertex v of VB′

we have

dB′,v = dB,ϕ(v) + dC′,v − dC,ϕ(v) = dC′,v − (dC,ϕ(v) − dB,ϕ(v)) ,

and for each edge vw in B′ we have

dB′,w − dB′,v = dC′,w − dC′,v .

We say that the given partial representation restricts to a partial represen-

tation of B by B′.

Note that the second set of conditions must be satisfied in order that

C ′ can be over B′ (see Definition 23). Here we also need the assumption

that at every vertex of C ′ not in V ends exactly one edge. Otherwise there

are easy examples for which is it not possible to satisfy the second set of

conditions on the dimensions for all edges vw of B′.

38

Example 80 We consider as C the type of pointed groups and as C ′ the

type of smooth proper curves over fields together with an element in the

degree 0 class group. This means that the objects of C are of the form

(G;P), where G is a group and P ∈ G, and the objects of C ′ are of the form

(k; C; c), where k is a field, C a smooth proper curve over k and c ∈ Cl(C)0.
We have an obvious partial representation of C by C ′.

From an intuitive point of view, this example shows that a partial repre-

sentation can have the role of what might be called “specialization of types”.

Remark and Definition 81 Let the elementary type A be partially rep-

resented by the complex type C ′. Then C ′ is also an elementary type.

As stated in Remark 78, the representation induces a partial functor from

Cat(C ′) to Cat(A). Here, this is equal to the partial functor from Top(C ′)

to Top(A) which is part of the data of the representation. We say that we

have a representation of the elementary type A by C ′ if this partial functor

is essentially surjective (that is, defines a representation).

We also consider relative versions of the previous definitions:

Definition 82 Let C and C ′ be complex types which restrict to complex

types B, B′, respectively. Then a partial representation of C over B by C ′

over B′ is a partial representation of C by C ′ which restricts to a partial

representation of B by B′. If moreover B is equal to B′ and the restricted

representation is the identity, we speak of a partial representation of C over

B.

Definition 83 Let f : A −→ B be a functor of large groupoids (defining a

second order type), and let f ′ : A′ −→ B′ be such a functor. Moreover, let

a partial representation of A −→ B by A′ −→ B′ be given. If now for every

object a of A and every object b′ of B′ mapping to an object isomorphic to

f(a) there is an object a′ of A′ in the domain of the partial representation

which maps to an object isomorphic to a and satisfies f(a′) = b′ we speak

of a partial representation of A over B by A′ over B′.

Definition 84 Let C,C ′,B,B′ be as above, where C is an elementary

type, and let a partial representation of C over B by C ′ over B′ be given.

Then this partial representation is a relative representation of the elementary

type C over B by C ′ over B′ if it is a representation of Top(C) over Cat(B)

by Cat(C ′) over Cat(B′).

The following definition is convenient for applications in algorithms.

39

Definition 85 Let F be a representation of the complex type C by the

complex type C ′. If the following holds, we call F a strong representation

of the complex type C by the complex type C ′.

Let C be derived from T and C ′ derived from T ′ such that F induces

a partial representation of T by T ′. Furthermore, let complex types B,B′

be given to which T ,T ′ restrict. Then the induced partial representation of

T by T ′ is a relative representation of T over B by T ′ over B′.

Note here that we do not attach a meaning to the phrase “representation

of C by C ′” without the attribute “strong”.

Remark 86 The use of the notation T ,T ′ is no coincidence and is related

to an application of the definition to output types of algorithms in subsec-

tion 4.3.

4.2 Representations of computational problems

We now come to the application of representations to computational prob-

lems. Our idea is that given a computational problem and representations of

the input and output types, we want to be able to formulate what it means

to compute with the objects used for the representation. Concretely, say

that we have a computational problem P from I to T and representations

of I and T by I ′ and T ′, respectively. Then we want to formulate what

it should mean to compute with the representing objects, that is, with the

objects of I ′ and T ′, instead with the objects of I and T . However, now not

every object of I ′ need be involved in the computation because not every

object of I ′ needs to lie in the domain of the representation. We therefore

define:

Definition 87 Let I and T be categories. A partial computational problem

from I to T is a computational problem P from a full subcategory S of

Cat(I) which is closed under isomorphism to T . Here, the subcategory S is

called the domain of the problem and denoted by dom(P).

Definition 88 Let P be a partial computational problem from I to T , and

let partial representations F of I by I ′ and G of T by T ′ be fixed. Let

furthermore a partial computational problem P ′ from I ′ to T ′ be given.

We then say that P ′ partially computes P if the domain of P ′ contains all

elements from dom(F) which are mapped under F into dom(P) and if for

any such object a′ and any object a of I isomorphic to F(a′), every object

in the class P ′(a′) is a representing object of some object of P(a).

If furthermore a restriction of F defines a representation of the domain

of P (in other words, if every object of dom(P) is isomorphic to an object

of the form F(a)), we say that P ′ computes P.

40

Remark 89 In the definition, for a fixed a′, one just has to require the

condition for one a; it then follows that it holds for all a as given.

Remark and Definition 90 Let P be a partial computational problem

from I to T , and let partial representations F of I by I ′ and G of T by T ′

be fixed.

We can then associate to these data a partial computational problem P ′
from I ′ to T ′ as follows:

The domain of P ′ consists of the objects a′ of dom(F) which are mapped

under F into dom(P) and for which there exists an object of T ′ which is

mapped to an object which is isomorphic to an object of P(F(a′)). For

such an object we define P ′(a′) as the class of objects of T ′ which are

mapped under the representation to objects which are isomorphic to objects

in P(F(a′)).

We call the computational problem just described the induced partial

computational problem.

By Definition 88, if furthermore a restriction of F defines a representation

of dom(F) then P ′ computes P.

Remark 91 If G is a representation of T by T ′, P ′ is a partial computa-

tional problem.

The definition of partial computational problem in an obvious way gives

rise to a definition of a partial computational problem from some type I to

some type T relative to some type B. In addition, we define:

Definition 92 Given a type B and two types C and D over B as well as

partial representations of C over B by C ′ over B′ and D over B by D′ over

B′, we say that the partial representations are consistent with each other

over B if they induce the same partial representation of B by B′.

We now have the following obvious definition.

Definition 93 Let P be a partial computational problem from I to T over

B. Furthermore, let F and G be partial representations of I and T by

I and T respectively which are consistent with each other over B. Now a

partial computational problem P ′ from I ′ to T ′ relative to B′ which partially

computes P is said to partially compute P relatively to the given data.

We also give an analogous definition for induced computational problem

in the relative situation:

Remark and Definition 94 Let P be a partial computational problem

from I to T relative to B, and let partial representations F of I over B by

41

I ′ over B′ and G of T over B by T ′ over B′ be fixed which are consistent

with each other over B.

We can then associate to these data a partial computational problem P ′
from I ′ to T ′:

The domain of P ′ consists of the objects a′ of dom(F) which are mapped

under F into dom(P) and for which there exists an object b of T ′ which is

mapped under G to an object which is isomorphic to an object of P(F(a))

and which restricts to resI
′

B′(a′). For such an object a′ we define P ′(a′) as

the class of objects c′ of T ′ which are mapped under G to an object which is

isomorphic to an object of P(F(a′)) and which satisfy resT
′

B′(c′) = resI
′

B′(a′).

Remark 95 With the above notations, let us assume that G has the prop-

erty that for every object a′ of T and every object b′ of B′ mapping to an

object isomorphic to a′ there exists an object a′ of T with resT
′

B′(a′) = b′

which is mapped under G to an object isomorphic to a. Then P ′ is defined

on the whole domain of F .

4.3 Algorithms and representations

We study now the idea of representation in the context of algorithms.

First, in the light of Definition 87, we define:

Definition 96 A partial algorithm is defined as in Definition 58 except that

in the let- and choose-commands all partial computational problems rather

than just computational problems can occur.

The application to an input instance is defined as in subsection 3.3 with

the following change: When in a let-command a partial computational prob-

lem P is applied to an object complex for which the problem is not defined,

the algorithm enters the state of “failure”.

Similarly to Definition 66 we define:

Definition 97 Let P be a non-randomized partial computational problem

from I to T , and let A be an algorithm with input type I and output

type T . We say that A computes P if for all a in the domain of P for no

computation path the algorithm fails and the class of possible outputs or the

class of possible outputs with input modification (depending on the mode

of the algorithm) is non-empty and contained in P(a).

We adapt Definition 67 in the same way.

Let now a computational problem P from I to T relative to B and

algorithm A for a machine of type C and of dimension d be given which

computes P.

42

Recall that by definition C has a fixed vertex v0 to which the elementary

type N0 is associated. Let a second type C ′ be given with a fixed vertex

v′0 whose associated type is also N0. Let now a partial representation of

C by C ′ be given which maps v′0 to v0 and restricts to the identity on the

associated elementary type N0. According to the last sentence of Definition

82 we speak here of a representation of C by C ′ over N0.

This partial representation defines a representation of I by some type

I ′, of T by some type T ′ and of B by some type B′. Here, both I ′ and T ′

restrict to B′.

Let ∆ be the maximum of the the differences dC′,v − dC,ϕ(v) for vertices

v of V , and let d′ := d+ ∆ + 1.

Let the notation of the representation be as in Definition 77.

We have the induced computational problem P ′ from I ′ to T ′ relative

to B′. It is now nearly immediate that A defines an algorithm A′ which

computes P ′: If in a let-command occurs some computational problem we

substitute it by the induced computational problem. The assignments are

transferred by first applying ϕ to the vertices. Note that here we use that

we pad the addresses with leading 1′s if necessary. Note also that if A is

non-randomized so is A′.
We immediately obtain the following proposition.

Proposition 98 Let us assume that the partial representation of C by C ′

is a strong representation. Then the partial algorithm A′ computes the

partial computational problem P ′.

In fact, the condition in Definition 85 on strong representations only

needs to hold for types T and B as in the definition which occur in let-

commands in the algorithm.

4.4 Specification

Let now an algorithm A for a machine of type C and of dimension d be

given, and let us say that in line l of the algorithm there is a command of

the form

let a1 ←− P applied to the registers given by a0 relative to Z

or

let a1 ←− P applied to the registers given by a0 relative to Z
with update .

Now, let B be an algorithm which computes P. Then intuitively, we can

specify the line l of algorithm A via algorithm B. Expressed differently, the

reference implements the given line in algorithm A.

43

Let us now in addition suppose that the type C is represented by some

type C ′ over N0 – as in the previous subsection. In is now reasonable to

allow that B operates on the representing objects from C ′ rather than on

the represented objects from C.

Example 99 Say in a particular line of an algorithm we use the computa-

tional problem of addition on an elliptic curve as described in Example 36:

(k;E; (P,Q)), where k is a field, E an elliptic curve over k and P,Q ∈ E(k)

is mapped to (k;E,P + Q). By specification we want to give information

on the inner workings of this operation which up to now has been treated

as a black box.

For this, we first fix a representation of the input and output types X

and Y . Here the complex type Y ′ representing Y is of second order, has

one bottom vertex and three above it. The type for the bottom vertex is

the type of fields. The objects of the elementary type defined by the first

vertex at the top are (k; f), where k is a field and f ∈ k[x, y] is a Weierstraß-

polynomial. The objects of the elementary type defined by the second top

vertex are (k;x), where k is a field and x ∈ P1(k) = k ∪̇ ∞, The objects of

the third elementary type defined by the third top vertex are (k; y), where

k is a field and y ∈ k. Therefore, the objects of type T ′ are of the form

(k; (f, x, y)) with the definitions as given.

The definition of the type X ′ is similar with the difference that there

are five vertices on top and the objects are then (k; (f, x1, y1, x2, y2)). We

now have an obvious representation of X by X ′ and of Y by Y ′.

Given this representation, we might now implement the addition with a

second algorithm with input type X ′ and output type Y ′.

We state the general situation we have just described in the example:

We start with a partial algorithm A for a machine of type C and of

dimension d. Suppose in line l of A there is a let-command based on a

partial computational problem P with input type X and output type Y

over Z.

Let a partial representation of C by a complex type C ′ be fixed. This

induces a partial representation of X by some complex type X ′, of Y by

some complex type Y ′ and of Z by some complex type Z ′. We have the

induced partial computational problem P ′ from X ′ to Y ′ over Z ′.

Then we can consider the specification by an algorithm with input type

X ′ and output type Y ′ over Z ′ computing P ′.
What we just described is merely a special case of the situation we want

to capture with a definition. The generalizations are as follows:

• We do not merely want to implement one line of an algorithm A with

44

a let-command but an arbitrary number of lines. For each specializa-

tion / implementation we want to be able to use other representations.

• All these representations should however be consistent with one rep-

resentation of the type C.

• We want to be able to iterate the process of specification, leading to

a specification tree.

These ideas are captured by the following definition.

In the definition, we use the following notations:

If a partial algorithm A is given, the corresponding complex type is de-

noted by CA and the corresponding dimension by dA. The input type of the

algorithm is denoted by IA and the output type by TA. For each algorithm

A under consideration we fix a representation of C by some complex type

we denote by C ′.

If C is a complex type for a partial algorithm and in the algorithm there

is a line with a let-command based on a partial algorithm with input type

X and output type Y , this representation restricts to a representation of

X by some type X ′ and of Y by some type Y ′.

Definition 100 A complex of partial algorithms consists of

i) a multigraph on a finite set of non-randomized or functorial partial

algorithms without loops with labeled edges, where

• the label of an edge from a partial algorithm A to an algorithm

B is a line number of A in which there is a let-command or a

choose-command,

• for each vertex (=partial algorithm) and each line number, there is

at most one edge starting at the vertex with the given line number

as label,

ii) a fixed vertex, called partial input algorithm,

iii) for each vertex (=partial algorithm) A,

• a partial representation

FA : C ′A −→ CA

such that for each edge from some vertex A to some vertex B
labeled by a line number l of A,

– if the command is preserving and the corresponding compu-

tational problem at line l of A is P from X to Y over Z,

or

45

– if the command is updating and the corresponding computa-

tional problem at line l of A is P from X to X ×Z Y over

Z,

the types X ′ and I ′B are essentially equal and the types Y ′ and

T ′B are essentially equal,

• partial representations as indicated in the following diagrams such

that the diagrams

X ′ //X

I ′B
// IB

OO Y ′ // Y

T ′B
// TB

OO ,

where the upper rows are the induced partial representations, com-

mute, and such that both partial representations induce the same

representations in the diagram

Z ′ // Z

B′B
// BB

OO

such that for each edge from a partial algorithm A to a partial algorithm B
labeled by line number l of A as above,

• B computes the partial computational problem induced by P and the

partial representations of X by IB, Y by TB and Z by BB

• if moreover the line in algorithm A is

choose a1 relative to a0

based on an elementary type A be implemented by an algorithm B,

then for any input instance a either all computation paths fail or the

image of the output in A (which is then a random variable) is uniformly

randomly distributed.

If such a complex of partial algorithms is given then if there is a line from

algorithm A to algorithm B with line number l of A, we say that the

command in line l of A is specified by B or implemented by B.

Definition 101 If in the above definition in iii) all partial representations

are the identity (such that the data given reduce to the ones in i) and ii)),

we speak of a complex of partial algorithms without representation.

46

Remark and Definition 102 If a complex of partial algorithms as in Def-

inition 100 is given, one obtains, by considering the induced partial algo-

rithms on the representing types defined in iii), a complex of partial algo-

rithms without representation. We call this complex of partial algorithms

the complex of partial algorithms induced by the representations. If the orig-

inal complex of partial algorithms is given, we denote this complex by C ′.

Definition 103 A complex of partial algorithms is called non-randomized

if all occurring algorithms are non-randomized.

In comparison, the definition of a functorial complex of partial algo-

rithms is more difficult:

Definition 104 A complex of partial algorithms is called functorial if

• all occurring partial algorithms are functorial,

• all partial algorithms induced by the representations are functorial.

We now discuss the operation of a complex of partial algorithms. For

this, we first pass to the associated complex of partial algorithms induced

by the representations. After all, we introduced the representations in iii)

and iv) in order to be able to pass from one algorithm to another one.

So let now a complex of partial algorithms without representations C be

given. The intuitive idea is now as follows: Each algorithm A has its own

registers Ri. Every time such an algorithm is initiated, all these registers

are set to 0 ∈ N0. Moreover, whenever an algorithm A is called in a line

with a command

let a1 ←− P applied to the registers given by a0 relative to Z (1)

or

let a1 ←− P applied to the registers given by a0 relative to Z
with update

we identify the registers pointed to by a0 with the input registers Iv,i of A.

The following definition generalizes Definition 102.

Definition 105 A state of a complex of partial algorithms without repre-

sentation C consists of

• a sequence of natural numbers (l1, . . . , lr), where l1 is a label of an edge

in the multigraph of C starting at the input algorithm and ending at

some algorithm B (which means that line l1 of A is implemented by

B), similarly l2 is a the label of an edge in the multigraph starting at

B and so on until r−1 and lr is an arbitrary line of the last algorithm

called,

47

• for each of the algorithms involved in the path just described a con-

tent as defined in Definition 50 such that the identifications of input

registers with registers RA,i as described above are made.

• an object o from the output type of the input algorithm or one of two

other objects called “running” and “failure”. (In the first case, we say

that the algorithm has terminated with output o.)

Now, given a state, we obtain in an obvious way a next state. It follows

that given an input instance to the input algorithm, we obtain in an ob-

vious way computation paths and the class of possible outputs. Just as for

a single algorithm, we can say what it means that a non-randomized or a

functorial complex of partial algorithms without representation computes a

computational problem – the definition is again just as above.

The following lemma is immediate.

Lemma 106 Let a complex of algorithms without representation be non-

randomized or functorial. If then the input algorithm computes P then the

complex of algorithms without representation computes P.

Definition 107 Let P be a partial computational problem and C be a

non-randomized or a functorial complex of partial algorithms with the ap-

propriate input and output types. We say that C computes P if the complex

of partial algorithms induced by the representation computes the induced

partial computational problem P ′ and P ′ computes P (which means that

the induced representation of the input type of the input algorithm restricts

to a representation of the domain of P).

Finally, we briefly discuss the notion of complexity in the context of

complexes of partial algorithms, continuing with the discussion for a single

algorithm in subsection 3.5.

Let a complex type C be given. Then for each induced partial compu-

tational problem which occurs in a let-command which is not specified, we

fix a complexity measure. Now, we proceed just as for a single algorithm

with the obvious difference that for each occurrence of a let-command which

refers to another algorithm, we loop into this algorithm.

Discussion

It might seem to be reasonable to remove the condition in the definition of

“complex of partial algorithms” that the multigraph on set of vertices has

no loops. If this condition was removed, one could also apply recursion.

With this alternative definition, the previous lemma would be false: In-

deed, one can then consider a complex of partial algorithms consisting of

48

only one algorithm for a computational problem P which refers to itself for

computing P. This algorithm would then never terminate, but of course,

the input algorithm (being the algorithm itself) would compute P.

The reason why we do not allow loops in the multigraph is that we

want to study the idea “specification” of algorithms and also allow for the

possibility of representation. This is a goal which is different from the goal

to study recursion.

4.5 Bit oriented computations

In this section, we give the link between the very general computational

model presented so far and usual RAM-models. The guiding idea is that

the following should be conveniently possible: To give an algorithm in a

RAM-model which operates on bit-strings representing certain mathemati-

cal objects, it should be possible to start out with some “abstract algorithm”,

followed by repeated specifications (including representations, as given in

Definition 100) until one finally obtains an algorithm with essentially the

commands of that of a usual RAM-model operating on a multi-dimensional

storage. As already explained in the introduction, there is no essential dif-

ference between such an algorithm an an algorithm in a RAM-model for the

usual one-dimensional storage.

We begin with the following definition, referring to Definition 33:

Definition 108 A complex type for which for all elementary types the cor-

responding fibers are trivially fibered with trivial fiber or with fiber N0 is

called bit-oriented.

Remark 109 The category of a bit-oriented complex type is (canonically

isomorphic to) a first order type of the form arrayd1(N0)×· · ·×arraydr(N0).

The object complexes can therefore be given by tuples of arrays of non-

negative integers.

Definition 110 A partial representation of a complex type is bit-oriented

if the representing type is bit-oriented.

To give the link to the classical addition RAM model, we now define what

we mean by a bit-oriented algorithm. For this, we restrict the computational

problems which are allowed in the let-commands:

• For each type C we have a computational problem idC which, as

the name suggests, is given by the identities. Obviously, this is a

computational problem over each type to which C restricts.

49

• For each non-negative integer i we have a computational problem ci
from the trivial type to the type N0 which gives i.

• For each trivially fibered elementary type A with trivial fiber we have

a computational problem initA (from initialize) from Base(A) to A

which is given by a 7→ (a; ∗) if ∗ is the unique object of the fiber F .

This is a computational problem over Base(A) (and therefore over

each complex type to which Base(A) restricts).

• For each fibered elementary type A with fiber F we have a computa-

tional problem fromtop from the elementary type A to F which is given

by (a; b) 7→ b. This is again a computational problem over Base(A).

• For each fibered elementary type A with fiber F we have a computa-

tional problem totop from the complex type Base(A)×F to A which

is given by (b, n) 7→ (b;n). This is also a computational problem over

Base(A).

• We have a computational problem Add which is defined in the obvi-

ous way: The input type I is the first order complex type N0 ×N0

consisting of two vertices each of which is labeled by N0. The output

type T is the elementary type N0. Now, to (a, b) ∈ Cat(I) = N0 the

number a+ b ∈ T = N0 is assigned.

• Similarly, we have a computational problem Sub which is given by

assigning to (a, b) ∈ Cat(I) = N0 the number max{a−b, 0} ∈ T = N0

We remark here that the last two problems, addition and subtraction,

are exactly the commands of the classical addition RAM model. They can

be substituted by other commands if one wants to consider the computation

in other RAM models.

Furthermore only the computational problem of computing either 0 or 1

is allowed in a choose-command. Formally, the problem is as follows: We

consider the elementary type N0 and the problem given by assigning to the

trivial complex the set {0, 1}.

Definition 111 A partial algorithm is called bit-oriented if its type C is

bit-oriented and the let-commands are based on computational problems as

given above.

Note that in the description of the allowed computational problems

we did not impose that the types be bit-oriented but this requirement is

nonetheless present in the definition above.

50

Definition 112 A complex of partial algorithms is called bit-oriented if all

representing types are bit-oriented and for the algorithms which are not

specified the representations are trivial and the algorithms are bit-oriented.

We assign to all the relative computational problems in a bit-oriented

algorithm the following time complexity: The complexity of a problem from

X to Y over Z applied to some input is given the sum of the bit-length of

the numbers for the vertices in X not in Z.

We now strive for an efficient simulation of a bit-oriented algorithm by

an addition RAM.

For this, we consider a computational problem P with input type I and

output type T .

As already stated in the introduction, up to logarithmic factors, one can

simulate a “multi-dimensional addition RAM” by a usual addition RAM.

We therefore obtain:

Proposition 113 If a bit-oriented non-randomized partial computational

problem can be computed in time T with a bit-oriented partial algorithm,

it can be computed in time Õ(T) with a deterministic addition RAM.

This implies:

Proposition 114 Let a partial computational problem be given, and let a

bit-oriented non-randomized complex of partial algorithms be given which

computes the partial problem in a time of T . Then with respect to the given

partial representations of the input and output types, the problem can be

computed in a time Õ(T) with a deterministic addition RAM.

And:

Proposition 115 Let a partial computational problem be given, and let a

bit-oriented functorial complex of partial algorithms be given which com-

putes the partial problem in an expected time of T . Then with respect to

the given partial representations of the input and output types, the problem

can be computed in an expected time Õ(T) with an addition RAM.

5 Perspectives

We mention some perspectives for expansion of the model.

Further computational models. In the previous subsection, we dis-

cussed what we called bit-oriented computations. The computational model

discussed there is just one of the computational models which might be

51

used. In addition, as stated in the introduction, it is now also classical to

regard computational models in which exact operations with field elements

can be performed. In this spirit, one can – within the framework of abstract

algorithm – regard a computational model relying on the storage of fields,

elements in arbitrary fields and of non-negative integers. Besides the usual

field operations, it might also be of interest to allow commands based on the

computational problem of factorization of polynomials.

Automated construction of complex types and representations.

Complex types are one of the bases for the concepts presented. In the

presentation one interesting aspect about types is however absent: The types

form themselves a category. One can therefore also regard transformations of

types, or more accurately, one can regard functors from a full subcategory

of the category of types to the category of types. In fact, a particular

family these functors was frequently used: The functor arrayn for first order

elementary types.

If A is a first order elementary type with a fixed representation by a

first order elementary type B, we obtain immediately a representation of

arrayn(A) by arrayn(B). Maybe of greater importance than the automated

generated of types is the generated of types with representations. We give

another example for this:

Say for a fixed commutative ring R we consider the type of elements of

R: R. Say we have a representation of R by some set S fixed. (Concretely,

this means that we have a surjective map S −→ R fixed.) We then have

an obvious representation of R[x] by array1(S). If we now let R and the

representation vary, we obtain an assignment from commutative rings with

representation by sets to commutative rings with representation. With the

appropriate definitions, this assignment gives also rise to a functor between

categories.

Axiomatic semantics. Axiomatic semantics provide a formalized way to

argue about algorithms via formal propositions. Just the same is possible

here. Recall here that in the commands of abstract algorithms computa-

tional problems occur, and that these computational problems are them-

selves mathematical objects, generalizing functors. Of course, types and

computational problems should then also occur in the propositions. This

means that the propositions are not mere “formulae”.

Metalanguage. An abstract algorithm is a mathematical object. Just as

any mathematical object, it can be described in different ways. In particular,

one need not write down the commands in the way written down above. It

52

is the content which is important, not the form. We give some examples for

this:

• One can introduce variables with arbitrary names. These variables are

then simply identified with the registers. These variables can be intro-

duced in an ad hoc manner, as is usual in a description via pseudo-code.

We remark here that in the analysis of algorithms, it is appropriate to

distinguish between a variable and its content at a specific time. This

can be achieved by using different symbols for variables and values.

For example, we used Ri for a register and Ri for its content.

• Also, one need not follow the syntax for the commands suggested

above. For example, if a, b, c are variables and in the context of the

algorithm always store integers, it is perfectly clear to write “Let c←−
ab”.

• To give another example, say that the type of pointed groups is used.

Recall again that a pointed group is nothing but a group with an

element of the group. Now, as remarked above, a “group element” is

just the same as a “pointed group”. It therefore causes no harm if the

intuition is changed to group elements.

• Continuing with the previous example, say two elements in an abelian

group shall be added. In the context of abstract algorithms, this is

given by a functor from the complex type of groups with two elements

to the elementary type of groups with one element. Say now that

a and b are variables which always store pointed groups. Then it is

perfectly well defined to simply write, e.g., “Let a←− b+ c”.

• One can also use further control commands in the meta-language. Ex-

amples are if ... then ... else, while ... repeat or repeat ...

until.

6 Discussion

In the introduction we have stated that the uses of the word “algorithm” are

divers. Here we give a more detailed discussion on the notion of algorithm,

its different uses and the scientific implication of its uses.

We begin by this question: How is the word “algorithm” used? More

specifically, we ask how the word is used in a scientific context, in particular

in scientific literature. Even more precisely, we ask how the word is used

in the mathematics, to which we also include mathematically oriented com-

puter science. We exclude thus any potential use of the word associated to

physical operations.

53

The two meanings of “algorithm”. As already sated, broadly speak-

ing, the word “algorithm” is used in two different ways: The first way is quite

informal. Here, usually, some kind of procedure is given in a rather intuitive

way, using pseudo-code. The second use of the word is formal. Here, it is

defined that the word “algorithm” should mean a particular mathematical

object with a particular rigorous definition. This definition might for exam-

ple be “Turing machine” with respect to a particular definition of Turing

machine or “RAM machine” with respect to a particular definition of RAM

machine.5 So, one can find the same word “algorithm” both in a theorem in

which formally the existence of a mathematical object like a Turing machine

with certain properties is postulated and in an informal description of the

computation performed by the said Turing machine. Quite often, one can

find both uses in the same scientific work.6

One aspect of the formal application of the word is that a representation

of the mathematical objects under consideration, by specific objects which

can be manipulated by the algorithm have to be fixed. Usually, these specific

objects are bit-strings / natural numbers, however, in some formal computa-

tional models some other objects are considered. For example, in “algebraic

complexity theory” as in [BCS91] one considers computations with elements

of some field. In contrast, for an algorithm in the informal sense, one can

argue about computations with arbitrary mathematical objects.

Now, of course it would be wrong to say that one can prove something

about an algorithm in the informal sense by the very meaning of “to prove”

within mathematics: One cannot prove anything if no clear definitions have

been given to start with, and an informally given “algorithm” by the word

“informal” itself does not have a proper definition. On the other hand, ar-

guments about informally given algorithms are really the key to the analysis

of algorithms. How is this possible? Two possible answers come to mind

here:

The first possibility is that really statements about formally defined al-

gorithms are made. So every statement on an algorithm in the informal

sense should be interpreted as a statement on an algorithm in the formal

5We would like to stress that – as already stated – such a “machine” is indeed a
mathematical object. In fact, it is an object within set-theory in just the same way as
objects like fields, vector spaces or manifolds. So to claim that such a “machine” with
certain properties exist is just as much a statement of (pure) mathematics as a statement
that a field, a vector space or a manifold with certain properties exists.

6In addition, there is no consensus on whether an algorithm should by definition always
terminate. For example, Doland Knuth in [Knu97] formulates this condition and advises to
talk about a “computational method” for the more general concept. Generally speaking,
this condition is however not imposed. In fact, often one reads a phrase similar to “The
algorithm always terminates”, which implicitly implies that even before termination had
been established, it was reasonable to talk about an “algorithm”. We have not imposed
the condition of termination throughout the work and also do not impose it here.

54

sense. For example, in algorithmic number theory the computational model

one uses is usually an addition RAM model. Here, implicitly a represen-

tation of the objects under consideration by bit-strings is fixed and for all

the commands in pseudo-code “implementations” in the model are fixed.

But depending on the algorithm given, even then there might be quite a bit

of ambiguity concerning the complete machine, for example concerning the

data storage.

The second possibility is that one really argues about the mathematical

objects actually present in the algorithm in the informal sense, however one

implicitly uses an induction argument. This means that without stating this

explicitly, one really talks about a (possibly finite) sequence of mathematical

objects defined by a rule laid out in the algorithm, and one proves statements

on this sequence. The fact that one should analyze algorithms by induction

(but without reference to sequences) is emphasized in standard textbooks

like [CLRS01].

To give an example of this approach: Say a particular “complete Gaus-

sian elimination algorithm” shall be analyzed. It shall be proven that the

algorithm terminates with a reduced row normal form. The structure of an

argument for this usually has about this form:

Suppose that at some time the matrix A considered in the algo-

rithm has this form. Then after the update the new matrix A′

has this “nicer” form. One therefore sees that after some steps,

a reduced row normal form is reached.

Such an argument (if properly stated) is surely valid, precisely because

it is in fact nothing but a proof by induction on a particular sequence of

matrices. So the argument on the termination of the algorithm (which we

recall is only informally given and on which we cannot prove anything just

because it is given informally) is turned into a proof on a sequence of matri-

ces. However, intuitively the situation is in fact the opposite: Every matrix

is right-equivalent to a matrix in row normal form because the complete

Gaussian elimination method terminates.

Now, in the particular example just given, it is already now possible to

give a formally defined algorithm because as mentioned above there are com-

putational models based on computations in fields. The already mentioned

model in [BCS91] is an example. This model is non-uniform, but there are

also uniform models which are used in “real complexity theory” – here the

computations are always in the field of real numbers, but this can be easily

generalized. However, computations with elements of a particular field are

just a very particular example of “abstract computations” one might like

to perform. To stay with the particular example, in another algorithms (in

the informal sense) computations with matrices might be performed, and in

55

this algorithm a command “Let B be the reduced row normal form of A” or

– what is the same – “Compute the row normal from B of A” might occur.

If one now wants to argue about the correctness of an algorithm in which

such a command occurs, it is natural to regard matrices as the objects one

performs computations with and to postulate that a command as the one

indicated is available in the computational model. Or with other words: It

is not necessary to think of the matrices as being represented by something

else (for example tuples of field elements) and it is not necessary to think

about how one would perform the computation with the help of some more

“basic” commands. However, when one argues about complexity, one might

want to perform the analysis with field operations, and at this point one

might be interested how the matrices are represented and how the computa-

tion is “implemented” with field elements. But one might not even want to

stop there. One might, for example, then consider computations over finite

fields and analyze the computation in a RAM model.

Two words for two meanings. Even though the word “algorithm” is

used in the two different ways indicated, and often it is used so in the same

work, it is also common that different words or phrases are used to denote

different levels of “abstraction”.

One possibility is to only only speak of an “algorithm” if a certain de-

gree of concreteness is reached and otherwise to speak for example of an

“algorithm scheme”. So, an algorithm scheme can be “specialized” to an

algorithm. From a systematic point of view this terminology is however not

convincing: What is in the end called an “algorithm” is often just as infor-

mally described as the “algorithm scheme” one started with; the difference is

just that it is “more concrete”. We note here that even an innocently looking

command like “Let c := ab” for variables a, b which can take values in the

natural numbers still has to be implemented if one performs computations

with in the addition RAM model.

Another related but different possibility is to reserve the work “algo-

rithm” strictly for the formal meaning. Starting from this, one possibility

is then to always say that one “outlines” an algorithm when one gives an

algorithm in the informal sense. Another possibility is to use another word

for an algorithm in the informal sense. The word “algorithm scheme” is not

appropriate for the informal meaning – who would for example talk about

a “Gaussian elimination algorithm scheme” just because not every opera-

tion is fixed with respect to a particular model of computation? But one

might use for example the word “procedure” or “method” for the informal

meaning.

Just another possibility is to use the word “algorithm” for the informal

meaning and to use another word for the formal meaning. Here, evidently,

56

the word “machine” suggests itself for the formal meaning. This approach

is for example taken in the work [Die13] by the author.

We remark that this discussion is only about problems associated with

the use of the word “algorithm”. As stated, the problem is however deeper:

If a situation is only informally described one cannot prove anything about

it, no matter if what one argues about is called “algorithm”, “algorithm

scheme” or “procedure”.

To conclude a personal comment

This work was difficult to write. A lot of effort was necessary for what I con-

sider – at least for the moment – the “right” definitions. Are they the “right”

ones? Of course, this can be argued. Naturally, there is no monopoly on the

“right definitions” for an informal concept.The definitions given should not

be considered to be set in stone and other definitions starting with the same

ideas are possible. Having said this, I am however convinced that starting

from the idea that one should take a “categorial approach” to algorithms,

some underlying ideas and some definitions are at least in principle indeed

the “right ones”. This includes, for example:

• The emphasis on large groupoids: Isomorphisms are important and

should be respected. Further morphisms are not important.

• The idea of a computational problem and the fact that each computa-

tional problem can itself be the basis of a command in an algorithm.

• The definition of representations of first order elementary types via

partial functors.

It would be presumptuous to assume that from now on “abstract al-

gorithms” will be written down in the framework laid out. It is however

my hope that at least the fundamental idea of the application of category

theory to provide a framework for algorithms will inspire other researchers.

Already the fact that a formal theory of “abstract algorithms” from a cat-

egorial point of view can be developed and that one can therefore reason

about such “abstract algorithm” might be of interest and might serve as a

basis for further developments.

Science in general is an open ended endeavor based on individual effort

and interpersonal communication. In this sense I end this work by saying:

Comments are welcome!

57

References

[BCFS11] W. Bosma, J. Cannon, C. Fieker, and A. Steel, editors. Handbook

of Magma functions, Edition 2.17. 2011.

[BCS91] P. Bürgisser, M. Clausen, and M. Shokrollahi. Algebraic Com-

plexity Theory. Springer-Verlag, 1991.

[BS03] E. Börger and R. Stark. Abstract State Machines. Springer, 2003.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction

to Algorithms. McGraw-Hill and The MIT Press, 2001. Second

Edition.

[Die13] C. Diem. On the complexity of some computational models in

the turing model. Preprint, 2013.

[DJB] D.J. Bernstein. The devil’s guide to choosing new mathematical

terminology. http://cr.yp.to/bib/devil-name.html.

[Gur99] Y. Gurevich. The Sequential ASM Thesis. Bull. Eur. Assoc.

Theor. Comput. Sci., 1999.

[Gur00] Y. Gurevich. Sequential Abstract State Machines Capture Se-

quential Algorithms. ACM Trans. Comput. Log., 1:77–111, 2000.

[Knu97] D. Knuth. The Art of Computer Programming Volume 1 (Fun-

damental Algorithms), Third Edition. Addison-Wesley, 1997.

[Sch79] A. Schönhage. On the power of random access machines. In H.

Maurer, editor, Proc. 6th Internat. Coll. on Automata, Languages

and Programming, volume 71 of LNCS. Springer, 1979.

[SSB01] R. Stärk, J. Schmidt, and E. Bröger. Java and the Java Virtual

Machine. Springer, 2001.

[Wik] Wikipeda article on Pairing function.

[WW86] K. Wagner and G. Wechsung. Computational Complexity. VEB

Verlag der Wissenschaften, Berlin, 1986.

Claus Diem

Universität Leipzig

Mathematisches Institut

Johannisgasse 26

04103 Leipzig

Deutschland

diem@math.uni-leipzig.de

58

	Introduction
	The framework of abstract algorithms
	Relationship with related works
	What follows

	Computational problems and abstract algorithms
	Types
	A formalism for computational problems

	Abstract algorithms
	Classical RAM models
	The storage of objects
	Algorithms
	States and operations on states
	Complexity

	Representations and computations with representing objects
	Representations of types
	Representations of computational problems
	Algorithms and representations
	Specification
	Bit oriented computations

	Perspectives
	Discussion

