LINEARE ALGEBRA FÜR INFORMATIKER ÜBUNGSBLATT NR. 5

Aufgaben für die Übungsgruppen

Aufgabe Ü1 Diskutieren Sie die "Konstruktion" der ganzen Zahlen aus den natürlichen Zahlen mittels Äquivalenzklassen (S.37 im Skript)!

Aufgabe Ü2 Zeigen Sie: Die Menge $\mathbb{R}_{>0}$ der positiven reellen Zahlen ist eine Untergruppe von \mathbb{R}^* (der multiplikativen Gruppe des Körpers \mathbb{R}).

Finden Sie einen bijektiven Homomorphismus von $(\mathbb{R},+)$, der additiven Gruppe des Körpers \mathbb{R} , nach $\mathbb{R}_{>0}$! Geben Sie auch die Umkehrabbidlung an!

Aufgabe Ü3 Sei K ein Körper. Für welche $a,b \in K$ ist die Abbildung $K \longrightarrow K$, $x \mapsto ax + b$ ein Homomorphismus von (K,+) nach (K,+)? Für welche a,b handelt es sich um einen Isomorphismus?

Schriftliche Hausaufgaben

Abgabe. Bis Freitag, 21.11.

Jede der folgenden Aufgaben hat 4 Punkte.

Aufgabe H1 Auf S.37 - 38 im Spript werden die rationalen Zahlen aus den ganzen Zahlen "konstruiert". Vollziehen Sie dies nach und gehen Sie dabei auf alle Details ein (Wohldefiniertheit, Rechengesetze)!

Aufgabe H2 Sei G eine Gruppe mit Verknüpfung \circ , und sei $H \subseteq G$ eine Untergruppe. (Achtung: G muss nicht abelsch sein.) Wir definieren wie folgt eine Relation auf G: $x \sim_H y :\iff x \circ y^{-1} \in H$.

- a) Zeigen Sie: Die soeben definierte Relation ist eine Äquivalenzrelation.
- b) Für $x \in G$ definieren wir: $H \circ x := \{h \circ x \mid h \in H\}$. Zeigen Sie: Für alle $x \in G$ gilt: $[x]_{\sim_H} = H \circ x$.
- c) Sei $x \in G$. Zeigen Sie: Die Abbildung $m_x : G \longrightarrow G$, $y \mapsto y \circ x$ ist bijektiv.
- d) Sei wiederum $x \in G$. Zeigen Sie: Die soeben definierte Abbildung induziert durch Einschränkung eine Bijektion $H \longrightarrow H \circ x$. (Was bedeutet diese Aussage?)
- e) Sei nun G endlich. Zeigen Sie: Es gilt die Formel

$$\#G = \#G_{/\sim_H} \cdot \#H$$
.

Aufgabe H3 Sei G eine (multiplikativ geschriebene) Gruppe, und sei $x \in G$. Wir definieren die Ordnung ord(x) von x wie folgt: Wenn es ein $n \in \mathbb{N}$ mit $x^n = e$ gibt, dann setzen wir ord(x) als die kleinste solche natürliche Zahl. Wenn es kein solches $n \in \mathbb{N}$ gibt, setzen wir ord $(x) := \infty$.

Ferner setzen wir $\langle x \rangle := \{x^n \mid n \in \mathbb{Z}\}.$

Zeigen Sie:

- a) Sei ord(x) endlich. Dann gilt für alle $n \in \mathbb{N}$: $x^n = e \longleftrightarrow \operatorname{ord}(x) | n$.
- b) $\langle x \rangle$ ist die kleinste Untergruppe von G, die x enthält.
- c) Es ist $ord(x) = \#\langle x \rangle$. (Das ist auch richtig, wenn ord(x) unendlich ist.)
- d) Sei G endlich. Dann gilt $\operatorname{ord}(x) \mid \#G$.

Hinweis. Die Aussage in d) hat etwas mit H2 zu tun.