ALGEBRAISCHE TOPOLOGIE ÜBUNGSBLATT NR. 5

Am Freitag den 19.11. fallen Vorlesung und Übung aus!

Aufgabe 1. Beschäftigen Sie sich mit Aufgabe 1 von Übungsblatt 4.

Aufgabe 2. Es sei \mathcal{C} eine Kategorie. Es seien für eine Indexmenge I Familien von Objekten $(X_i)_{i\in I}$ und $(Y_i)_{i\in I}$ aus \mathcal{C} gegeben. Wir nehmen an, dass es zu den beiden Familien von Objekten jeweils Produkte gibt. Wir fixieren solche Produkte $(\Pi_{i\in I}X_i, (p_{X,i})_{i\in I})$ und $(\Pi_{i\in I}Y_i, (p_{Y,i})_{i\in I})$.

Sei nun weiterhin eine Familie von Morphismen $(f_i: X_i \longrightarrow Y_i)_{i \in I}$ in \mathcal{C} gegeben. Zeigen Sie, dass diese Familie einen Morphismus von $\Pi_{i \in I} X_i$ nach $\Pi_{i \in I} Y_i$ induziert. (Dieser Morphismus wird mit $X_{i \in I} f_i$ bezeichnet, für $i = \{1, \ldots, n\}$ mit $f_1 \times \cdots \times f_n$.)

Aufgabe 3. Es sei C eine kleine Kategorie.

- a) Zeigen Sie, dass in der Funktorkategorie $\mathcal{E}ns^{\mathcal{C}}$ beliebige Produkte existieren.
- b) Es sei nun \mathcal{D} eine weitere Kategorie. Zeigen Sie: Wenn in \mathcal{D} endliche Produkte existieren, dann auch in $\mathcal{D}^{\mathcal{C}}$, wenn in \mathcal{D} beliebige Produkte existieren, dann auch in $\mathcal{D}^{\mathcal{C}}$.

Aufgabe 4. Zeigen Sie das *Yoneda-Lemma* für kovariante Funktoren, also diese Aussagen:

Es sei \mathcal{C} eine Kategorie, $\mathcal{F}:\mathcal{C} \longrightarrow \mathcal{E}ns$ ein kovarianter Funktor, $A \in ob(\mathcal{C})$. Dann gilt:

i) Für $a \in \mathcal{F}(A)$ wird wie folgt eine natürliche Transformation $\Phi_a : \operatorname{Mor}_{\mathcal{C}}(A, -) \longrightarrow \mathcal{F}$ definiert:

$$(\Phi_a)_T : \operatorname{Mor}_{\mathcal{C}}(A, T) \longrightarrow \mathcal{F}(T) , f \mapsto \mathcal{F}(f)(a)$$

- ii) Es ist hierbei $a = (\Phi_a)_A(\mathrm{id}_A)$.
- iii) Für eine natürliche Transformation $\Phi: \operatorname{Mor}_{\mathcal{C}}(A,-) \longrightarrow \mathcal{F}$ ist mit $a:=\Phi_A(\operatorname{id}_A)$ $\Phi=\Phi_a$.

Zusammenfassend:

Die natürlichen Transformationen von $\operatorname{Mor}_{\mathcal{C}}(A,-)$ nach \mathcal{F} stehen in Bijektion zu den Elementen von $\mathcal{F}(A)$. In diesem Sinne sagt man auch, dass sie auch eine Menge bilden. (Wie das axiomatrisch gerechtfertigt werden kann, ist eine andere Frage.) Diese "Menge" werde mit $\operatorname{NatTrans}(\operatorname{Mor}_{\mathcal{C}}(A,-),\mathcal{F})$ bezeichnet. Wir haben dann zueinander inverse Bijektionen

$$\mathcal{F}(A) \rightleftharpoons \operatorname{NatTrans}(\operatorname{Mor}_{\mathcal{C}}(A, -), \mathcal{F})$$

$$a \longmapsto \Phi_{a}$$

$$\Phi_{A}(\operatorname{id}_{A}) \lessdot \Phi .$$