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Abstract
We discuss a 2D moving-boundary problem for the Laplacian with Robin bound-
ary conditions in an exterior domain. It arises as model for Hele-Shaw flow of
a bubble with kinetic undercooling regularization and is also discussed in the
context of models for electrical streamer discharges.

The corresponding evolution equation is given by a degenerate, nonlinear trans-
port problem with nonlocal lower-order dependence. We identify the local struc-
ture of the set of travelling-wave solutions in the vicinity of trivial (circular) ones.
We find that there is a unique nontrivial travelling wave for each velocity near
the trivial one. Therefore, the trivial solutions are unstable in a comoving frame.

The degeneracy of our problem is reflected in a loss of regularity in the estimates
for the linearization. Moreover, there is an upper bound for the regularity of its
solutions. To prove our results, we use a quasilinearization by differentiation,
index results for degenerate ordinary differential operators on the circle, and
perturbation arguments for unbounded Fredholm operators.
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1. Introduction and problem formulation

This paper is concerned with the following moving-boundary problem: One seeks a
family of bounded moving domains t 7→ Ω(t) ⊂ R2, t ≥ 0, with outer normal n = n(t)
and boundary Γ(t) and functions φ = φ(·, t) defined on R2 \ Ω(t) such that

∆φ = 0 in R2 \ Ω(t),

φ− `∂nφ = 0 on Γ(t),

∇φ− ~e1 = o(|x|−1) for |x| → ∞,
Vn = ∂nφ.

 (1.1)
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Here, ~e1 is the unit vector in x1 direction and Vn is the normal velocity of the mov-
ing boundary Γ(t). The initial domain Ω(0) = Ω0 is given and the parameter ` is a
nonnegative constant. Note that we have to consider an exterior problem here. Due to
` ≥ 0, it can be shown by standard arguments that the fixed time problem (1.1)1-(1.1)3

is uniquely solvable for arbitrary (sufficiently smooth) Ω(t) [12]. The evolution of Ω(t) is
volume preserving as

d

dt

∫
Ω(t)

dx =
∫

Γ(t)

Vn ds =
∫

Γ(t)

∂nφds = 0. (1.2)

It is well known that for ` = 0 the problem is strongly linearly ill-posed [6]. (The
problem is first order forward or backward parabolic, depending on the sign of Vn which
changes along Γ(t).) Introducing ` > 0 is a regularization technique as replacing in this
way a Dirichlet boundary condition by a Robin condition changes the type of the problem
to a transport problem with nonlocal lower order terms; this will be discussed below in
more detail.

Problem (1.1) arises as model for the motion of a bubble in an exterior Hele-Shaw
flow with so-called kinetic undercooling regularization [6, 11], driven by a prescribed flow
velocity at infinity. For this problem, short time well-posedness results in Sobolev spaces
of sufficiently high order can be established as in [10]. (A bounded drop is considered
there instead of a bubble. However, the proof remains valid without essential changes.)

Furthermore, (1.1) is also discussed as a model for certain electrical discharge processes
[2, 8, 9]. Such discharge processes are observed in various natural and experimental
settings, e.g. as precursors of lightnings, and are sometimes referred to as electrical
streamers. In this context, Ω(t) represents the domain of total ionization and φ is the
electric potential in the non-ionized, charge-free phase. The regularization parameter
` is related to the thickness of the interface between these two phases. However, the
(near) circular geometry we discuss here is different from the typically elongated shape
of real streamers, and studying this geometry in the context of streamer modelling is
motivated by the assumption that the dynamics and stability properties of the streamer
are determined by the behavior near its tip [2]. There an ionization front advances into
the nonionized domain. In this situation, the evolution law (1.1)4 has been found from
the discussion of a plane situation [1]. For further comments on our results with respect
to stability properties for streamer models we refer to the Conclusions section at the end
of the paper.

To remove the inhomogeneous term at infinity we write φ = ψ + x1 and obtain

∆ψ = 0 in R2 \ Ω(t),

ψ − `∂nψ = −x1 + `n1 on Γ(t),

|∇ψ| = o(|x|−1) for |x| → ∞,
Vn = ∂nψ + n1.

 (1.3)

It is not hard to see that (1.3)3 implies boundedness of ψ, and this implies in turn even
|∇ψ| = O(|x|−2), cf. [12] §V.26. Therefore, we can equivalently replace (1.3)3 by the
more usual demand that ψ is bounded. In this case, the problem (1.3)1, (1.3)2 is known
to be uniquely solvable for fixed Ω.
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Our main concern here will be the existence of “travelling-wave solutions”, i.e. so-
lutions of the type Ω(t) = Ω0 + ~νt, where ~ν = (ν1, ν2) ∈ R2 is the velocity of the
travelling wave. After introduction of a corresponding moving coordinate system we find
the stationary free boundary problem

∆ψ = 0 in R2 \ Ω,

ψ − `∂nψ = −x1 + `n1 on Γ,

ψ = O(1) for |x| → ∞,
∂nψ + (~e1 − ~ν)n = 0 on Γ,

 (1.4)

where both the shape Ω of the moving domain and its velocity are a priori unknown.
We start by collecting some invariance properties of (1.4) for given, fixed ~ν that will

be used later. Assume in the following that (Ω, ψ, `) is a solution to (1.4).

• Translation invariance: For any a ∈ R2, (Ω +a, Taψ, `) is a solution to (1.4), where

Ω + a := {x+ a |x ∈ Ω}, Taψ(x) := ψ(x− a).

• Scaling invariance: For any R > 0, (RΩ, SRψ,R`) is a solution to (1.4), where

RΩ := {Rx |x ∈ Ω}, SRψ(x) := Rψ(x/R).

• Point reflection symmetry: (−Ω, ψ−, `) is a solution to (1.4), where

−Ω := {−x |x ∈ Ω}, ψ−(x) := −ψ(−x).

• If ~ν ‖ ~e1 then one also has reflection symmetry with respect to the x1-axis:
(Ω×, ψ×, `) is a solution to (1.4), where

Ω× := {(x1,−x2) | (x1, x2) ∈ Ω}, ψ×(x1, x2) := ψ(x1,−x2).

Together with the point reflection symmetry this implies also symmetry with re-
spect to the x2-axis.

It is easy to check that (1.4) has a solution for any ` ≥ 0 given by circles of radius 1,
moving in direction ~e1 with speed 2/(`+ 1):

Ω = B1(0) := {|x| < 1}, ~ν = ~ν0 :=
2

`+ 1
~e1, ψ =

`− 1
`+ 1

x1

|x|2
. (1.5)

Being interested in the structure of the set of solutions (Ω, ~ν) to (1.4) near (1.5) we first
note that due to the translation and scaling invariance, (1.5) is an element of a trivial
three-parameter family of solutions (with ` fixed)

Ω = BR(a) := {|x− a| < R}, ~ν =
2R
`+R

~e1, ψ = R2 `−R
`+R

x1 − a1

|x− a|2
,

R > 0, a ∈ R2.
To exclude the corresponding degrees of freedom from our analysis we demand that Ω

has the area of the unit circle and its geometric center is at 0:∫
Ω

dξ = π,

∫
Ω

ξ dξ = 0. (1.6)
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Both demands are unessential as far as the shapes of possible travelling waves are con-
cerned, i.e. up to translation and scaling. (Recall, however, that scaling entails a change
of `.)

Note, furthermore, that in the case ` = 0 there is a one-parameter family of nontrivial
solutions to (1.4), (1.6) given by ellipses, moving in direction of e1 with varying speed,
depending on the ratio of the axes:

Ω := {(x1, x2) |x2
1/a

2 + a2x2
2 < 1}, ~ν = (1 + a2)~e1.

The central result of the present paper is a proof of the fact that also for the regularized
problem with ` > 0, nontrivial solutions to (1.4), (1.6) exist whose smoothness appears
to decrease as ` increases, i.e. while using ` > 0 regularizes the evolution problem, it
deregularizes travelling-wave solutions.

In fact, we will identify the set of all domains that appear in travelling-wave solutions
near (1.5) as a two-dimensional submanifold in a suitable Sobolev space whose order
decreases with increasing `. This local submanifold can be parameterized by the corre-
sponding velocities ~ν. (Note, however, that we strictly prove the nonsmoothness only for
the linearized version of our problem, cf. Remark 2.4 below.)

This paper is organized as follows: In Section 2 we rewrite our problem as a nonlocal
operator equation for an unknown function u which represents radial perturbations of
the unit circle. We describe the properties of the nonlocal solution operator for the
exterior Robin problem and announce our main result. In Section 3 we discuss the
linearized problem at the trivial solution. While this might be of independent interest
for a qualitative understanding of the problem, the results are also crucial as a basis
of the perturbation arguments for unbounded Fredholm operators that are used later.
Section 4 starts out with identifying a quasilinear structure for a differentiated version
of our operator equation. Then some results on degenerate linear differential operators
on the unit circle are derived which form the starting point for the proof of the crucial
estimates on the linearized operator in Lemma 4.5. Finally, the proof of the main result
is given by a fixed point iteration.

The main technical difficulty here is the fact that due to the degeneracy of the first order
differential operators that form the principal part in the linearization, elliptic theory does
not directly apply, and one has to cope with a loss of regularity. Moreover, the domains of
definition of these operators are dependent on the point around which the linearization is
carried out. These problems are overcome here by “quasilinearization by differentiation”
and working with two different norms for the fixed point iteration.

We want to point out that we deliberately have refrained from using complex analysis
and conformal mapping techniques that are widely used for problems of our type. In our
approach, Fourier techniques can be applied and interpreted more straightforwardly, and
it is more easily generalized to the 3D problem we intend to discuss in a forthcoming
paper.

2. Transformation and main result

We restrict ourselves to domains that are star-shaped with respect to 0 and reformulate
our problem as a nonlinear, nonlocal operator equation on the unit circle S := ∂B1(0).
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To shorten notations, in the following we often identify functions u = u(x1, x2) defined
on S with 2π-periodic functions on R via u(θ) = u(cos θ, sin θ), θ ∈ R.

Define for positive continuous functions u : S → R

Ωu :=
{
x ∈ R2

∣∣ 0 < |x| < u(x/|x|)
}
∪
{

(0, 0)
}
, Γu := ∂Ωu.

Then (1.4), (1.6) can be written as

F (u, ~ν) := `~ν · n(u)− x1(u) +A`(u)
[
x1(u)− `n1(u)

]
= 0 on S, (2.1)∫ 2π

0

u2(θ) dθ = 2π,
∫ 2π

0

u3(θ) sin θ dθ =
∫ 2π

0

u3(θ) cos θ dθ = 0, (2.2)

where

x(u)(θ) = u(θ)(cos θ, sin θ), θ ∈ [0, 2π]

is a parameterization of Γu, and

n(u)(θ) =
(
u2(θ) + u′

2(θ)
)−1/2 ((u(θ) sin θ)′,−(u(θ) cos θ)′

)
is the exterior unit normal to Ωu in the point x(u)(θ) ∈ Γu. Furthermore, the operator
A`(u) acting on (sufficiently smooth) real-valued functions φ defined on S is given by
A`(u)φ = ψ ◦ x(u), where ψ : R2 \Ωu → R is the solution to the exterior Robin problem

∆ψ = 0 in R2 \ Ωu,

ψ − `∂nψ = φ ◦ x(u)−1 on Γu,

ψ = O(1) for |x| → ∞.

 (2.3)

In other words, A`(u) is (the transformed version of) an exterior Robin-Dirichlet operator
for the Laplacian. In particular, for u = 1 (i.e. u ≡ 1 on S) and

φ(θ) = a0 +
∞∑
k=1

(
ak cos(kθ) + bk sin(kθ)

)
we get (

A`(1)φ
)
(θ) = a0 +

∞∑
k=1

(
ak cos(kθ) + bk sin(kθ)

)
/(1 + k`). (2.4)

Observe that u = 1, ~ν = ~ν0 is a solution to (2.1), (2.2) corresponding to (1.5). Moreover,
the volume conservation (1.2) reappears now as∫

S

F (u, ~ν)(θ)
(
u2(θ) + u′

2(θ)
)1/2

dθ = 0. (2.5)

We collect some properties of A` that will be needed in the sequel to study the mapping
properties of F and its derivatives. As usual, the standard L2-based Sobolev space of
order s ∈ R on S will be denoted by Hs(S). Furthermore, for s > 1/2 let

Hs
+(S) := {u ∈ Hs(S) |u > 0}.

Lemma 2.1. (Properties of A`)
Let s > 3/2, t ∈ [1/2, s]. Then A` ∈ C∞

(
Hs

+(S),L
(
Ht−1(S), Ht(S)

))
with

‖A(k)
` (u){h1, . . . , hk}φ‖t ≤ Ck‖h1‖s · · · ‖hk‖s‖φ‖t−1, k = 1, 2, . . .
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where the constants Ck are independent of u, as long as u varies in a set U of the form

U =
{
u ∈ Hs(S)

∣∣ ‖u‖s ≤M and u ≥ α on S
}

with fixed M,α > 0. Moreover, A′`(u){h}φ is explicitly given by

A′`(u){h}φ = A`(u)
[(
−∂rψ ◦ x(u)

)
h+ `

((
∂r∂nψ ◦ x(u)

)
h

+ (∇ψ ◦ x(u)) · n′(u){h}
)]

+
(
∂rψ ◦ x(u)

)
h

(2.6)

where ψ = A`(u)φ◦x(u)−1 and ∂r := |x|−1x ·∇ denotes the derivative in radial direction.

Remark 2.2. Note that u ∈ Hs(S), φ ∈ Hs−1(S) imply only A`(u)φ ∈ Hs(S) and
consequently

∂rψ ◦ x(u) ∈ Hs−1(S), ∂n∂rψ ◦ x(u) ∈ Hs−2(S),

so the summands on the right side of the representation formula (2.6) are both in Hs−1(S)
only while their sum is in Hs(S). However, (2.6) will be used to explicitly calculate the
linearization of F around u = 1.

We refrain from giving the details of the proof and refer the reader instead to Section 4
of [4] where the result is implicitly contained in the proof of Lemma 4.5; cf. in particular
Eqns. (3.6), (4.14), (4.19), and (4.23) there. (In the problem discussed in [4], the domain
is bounded and ` = 1, however, this is not essential.)

Observe, moreover, that the structure of the linearization can be formally verified by
“variation of the domain” in the BVP (2.3) which gives

∆ψ′ = 0 in R2 \ Ωu,

ψ′ − `∂nψ′ = −∂rψh+ `
(
∂r∂nψh+∇ψ · n′(u){h}

)
on Γu,

ψ′ = O(1) for |x| → ∞.


and using A′`(u){h}φ = ψ′ ◦x(u) +

(
∂rψ ◦x(u)

)
h. Here ψ′ has to be interpreted formally

as derivative of a function defined on a changing domain. For a general approach to the
problem of “variation of a boundary value problem with respect to the domain” see Ch. 2
in [5].

Using Lemma 2.1 we see that

F (·, ~ν) ∈ C∞
(
Hs

+(S), Hs−1(S)
)
, s > 3/2.

Now we are in position to formulate our main result about the existence of travelling-wave
solutions near the moving circles given by (1.5).

Theorem 2.3. Fix ` ∈ (0, 2/7) and let s ∈ N with 4 ≤ s < 1
` + 1

2 . Then there exist
δ > 0, ε > 0 such that for |~ν − ~ν0| ≤ ε the equations (2.1), (2.2) have a unique solution
in the set {u ∈ Hs(S) | ‖u− 1‖s ≤ δ}. Moreover, we have

u = 1 + `(~ν0 − ~ν) · (ϕ1, ϕ2) + o
(
|~ν − ~ν0|

)
in Hs−1 (2.7)

with functions ϕ1, ϕ2 ∈ Hs(S) given by the formulas (3.6), (3.7) below. The correspond-
ing domain Ωu is point-symmetric with respect to 0, i.e. Ωu = −Ωu. If additionally
~ν ‖ ~e1 then Ωu is symmetric with respect to both coordinate axes.
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This theorem gives a complete characterization of the structure of the set of solutions
to (1.4) near (1.5) and reveals some remarkable features of the problem. First, it shows
that the solutions given by translating circles have no (Ljapunov) stability as in any
neighborhood of a circle there are shapes of travelling-wave solutions that move with
different velocities. In such a situation, it seems hard to predict whether in the nonsta-
tionary problem there is convergence to a travelling-wave solution and if so, to which
one.

Remark 2.4. We will see below that ϕ1 and ϕ2 are actually nonsmooth functions whose
smoothness depends on `. This reflects the degenerate character of the problem. More
precisely, the smoothness increases towards C∞ as `→ 0. This is in accordance with the
fact that for ` = 0 nontrivial solutions are given by ellipses. Thus, as mentioned above
already, while introducing ` > 0 regularizes the evolution problem, at the same time it
appears to deregularize the (nontrivial) travelling waves.

To make the last point more precise, observe the following: Although Theorem 2.3
does not yield a strict result on the nonsmoothness of nontrivial solutions, it ensures
that the mapping ~ν 7→ u cannot be differentiable at ~ν = ~ν0 with values in Hσ(S) for any
σ > 1

1 + 1
2 , see Remark 3.2 below.

Remark 2.5. Although the case ` ≈ 1 is outside the scope of our analysis, we will use this
particularly simple case to illustrate our results in an informal way by explicitly describing
a subfamily of nontrivial travelling waves near circles. If ` = 1 and ~ν = ~e1 then (2.1)
reduces to the purely geometric problem of finding domains Ω such that n1−x1 = const
on the boundary. By translational invariance we can demand n1 = x1 and

∫
Ω
x2 dx = 0.

It is not hard to see that there is a one-parameter family of domains

Ω(c) :=
{

(x1, x2) ∈ R2
∣∣∣ |x1| < 1, |x2| < (1− x2

1)1/2 + c
}
, c ∈ (−1,∞),

satisfying these demands. Of course, Ω(c) does not have the prescribed area for c 6= 0.
However, if we rescale by an appropriate factor we get domains Ω̃(c) satisfying (1.4) with
some ` = `(c) (and appropriate ψ) as well as (1.6). If |c| is small then Ω̃(c) represents
a domain near the unit circle moving as travelling wave with velocity ~e1 while the unit
circle itself moves with the slightly different velocity 2~e1/(`(c) + 1).

3. Linearization at the trivial solution

The first step to solve the equations (2.1), (2.2) locally near u = 1, ~ν0 is to discuss the
solvability of the linearized equations. From Lemma 2.1 and the facts that x(1) is the
identity on S and ∂r = ∂n there it is not hard to calculate the linearization

L̂ := DuF (1, ~ν0) ∈ L
(
Hs(S), Hs−1(S)

)
.

We get

L̂h =
2`
`+ 1

h′ sin θ − h cos θ + ∂nψh

+A`(1)
[
−∂nψh+ `

(
∂2
nψh+∇ψ · n′(1){h}

)
+ h cos θ − `h′ sin θ

]
,
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where ψ satisfies (2.3) with u ≡ 1 and φ = (1− `)x1, i.e.

ψ =
1− `
`+ 1

x1

|x|2
.

(We have abused notation here by writing sin θ and cos θ for the functions sin and cos.
Moreover, note that n′ denotes a Frechet derivative with respect to h while h′ denotes
the spatial derivative of h.) Consequently,

L̂h =
2

`+ 1
(
`h′ sin θ − h cos θ +A`(1)

[
(1 + `− `2)h cos θ − `2h′ sin θ

])
. (3.1)

Note that due to (2.2) we can restrict our attention to perturbations h of the trivial solu-
tion u ≡ 1 where the zeroth and first Fourier coefficients vanish. Using a corresponding
Fourier representation

h(θ) =
∞∑
k=2

(
ak cos(kθ) + bk sin(kθ)

)
(3.2)

and the identities

sin θ
(
cos(kθ)

)′ =
k

2

(
cos
(
(k + 1)θ

)
− cos

(
(k − 1)θ

))
,

cos θ cos(kθ) =
1
2

(
cos
(
(k + 1)θ

)
+ cos

(
(k − 1)θ

))
together with their counterparts for sin(kθ) and (2.4) we find

(L̂h)(θ) =
`

`+ 1

∞∑
k=2

[(
αk cos

(
(k + 1)θ

)
+ βk cos

(
(k − 1)θ

))
ak

+
(
αk sin

(
(k + 1)θ

)
+ βk sin

(
(k − 1)θ

))
bk

]
where

αk = (k − 1)
(

1− 1
1 + (k + 1)`

)
, βk = (k − 1)

(
1 +

1
1 + (k + 1)`

)
. (3.3)

With this we get

(L̂h)(θ) =
`

`+ 1

∞∑
k=1

(
fk cos(kθ) + gk sin(kθ)

)
where the coefficients fk and gk are given by

f1 = −β2a2, f2 = −β3a3, fk = αk−1ak−1 − βk+1ak+1, (3.4)

g1 = −β2b2, g2 = −β3b3, gk = αk−1bk−1 − βk+1bk+1, (3.5)

k = 3, 4, . . .. From this we easily obtain

Lemma 3.1. The equation

L̂h = α cos θ + β sin θ

has the solution

h = αϕ1 + βϕ2
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which is unique within the class given by (3.2). Here,

ϕ1(θ) :=
`+ 1
`

∞∑
k=1

ck cos(2kθ), ϕ2(θ) :=
`+ 1
`

∞∑
k=1

ck sin(2kθ) (3.6)

with coefficients given by

c1 = − 1
β2
, ck = −α2

β2
· α4

β4
· · · α2k−2

β2k−2
· 1
β2k

(k ≥ 2). (3.7)

Remark 3.2. From (3.3), (3.7) we find ck ∼ k−(1+1/`), hence in fact ϕ1, ϕ2 ∈ Hs(S) for
s < 1

` + 1
2 and ϕ1, ϕ2 /∈ Hσ(S) for σ > 1

` + 1
2 .

Remark 3.3. Note that

ϕ1(θ) + iϕ2(θ) = C`Φ`(e2iθ)

where Φ` is a certain generalized hypergeometric function of type 3F2 whose parameters
depend on `. Observe that the argument e2iθ lies on the boundary of the domain of
convergence of Φ`. This gives another possibility to understand how the smoothness of
ϕ1, ϕ2 depends on `.

Remark 3.4. A function u (near 1) on S satisfies Ωu = −Ωu if and only if it has period
π. Therefore, the fact that ϕ1 and ϕ2 have period π is a consequence of the invariance of
(1.4) under point reflections which holds of course for the linearization as well. Similarly,
the symmetry with respect to the axes in the case ~ν ‖ ~e1 implies that ϕ1 has a pure
cosine series.

Remark 3.5. Observe additionally that

L̂[cos θ] = L̂[sin θ] = 0, L̂[1] = − 2`2

(`+ 1)2
cos θ. (3.8)

This expresses the previously described invariances of the problem with respect to trans-
lations and scaling on the level of the linearization. Moreover, together with Lemma 3.1
this implies dim ker L̂ = 2.

Lemma 3.1 ensures the unique solvability of the linearization of (2.1), (2.2) around
(1, ~ν0), given by

`(~ν − ~ν0) · (cos θ, sin θ) + L̂(u− 1) = 0,
〈u− 1,1〉L2(S) = 〈u− 1, sin〉L2(S) = 〈u− 1, cos〉L2(S) = 0,

}
(3.9)

and provides a representation for the solution which formally resembles the one given in
Theorem 2.3. Some examples are given in Figure 1.

4. Linearization near the trivial solution and proof of the main
result

Throughout this section, let ` and s be as in the assumptions of Theorem 2.3.
It is important to realize that in our problem the main result for the nonlinear problem

does not immediately follow from the discussion of the linearization at the trivial solution
and then applying the Implicit Function theorem. The reason for this is the nonellipticity
of the operator L̂ which results in a loss of regularity in the corresponding a priori
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Figure 1: Domains corresponding to solutions of (3.9) for ` = 0.25.

Left: ~ν − ~ν0 = ±0.1~e1; Right: ~ν − ~ν0 = ±0.1~e2.

The domains corresponding to the + and − sign are drawn with solid and broken lines,

respectively. The dotted circle line in both pictures represents the trivial solution.

estimates. To explain this, we remark that up to terms of differentiation order zero we
have

L̂ ∼ L̂0 := γ0D, D :=
d

dθ
, γ0(θ) :=

2`
`+ 1

sin θ. (4.1)

The degeneracy of L̂ results from the fact that γ0 changes sign on S, and so its kernel
contains functions that are nonsmooth at the zeros of γ0. Put more abstractly, the domain
of the Hσ−1(S)-realization of both L̂ and L̂0 are larger than Hσ(S) if ` is sufficiently
small, as seen from Remark 3.2. However, this realization is Fredholm. Moreover, we
mention the fact, visible from Remark 3.2 as well, that for fixed ` the index of L̂ as an
operator in the scale Hσ(S) depends on σ. For more general results on pseudodifferential
operators on closed curves with degenerate symbols we refer to [3], Ch. 5. (Note that
the results given there are not directly applicable here due to the nonsmoothness of the
coefficients in our problem.)

Due to the degeneracy of the problem, it will be necessary to consider the linearization
of F not only at (1, ~ν0) but also at points nearby. The domains of definition will depend on
this point, therefore the necessary estimates cannot be obtained by standard perturbation
arguments for Fredholm operators but have to be proved directly.

Moreover, note that (2.1) is a fully nonlinear equation. As a remedy, we consider the
differentiated equation

DF (1 + v, ~ν) = 0. (4.2)

This is equivalent to (2.1) as F ≡ const implies F ≡ 0 because of (2.5). Our further
strategy ist to write (4.2) as a quasi-linear second-order equation and then to apply the
usual iteration scheme to solve the resulting equations, based on a priori estimates for
the linearization. In our case this procedure yields boundedness of the iteration sequence
in Hs and contraction in Hs−1.
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Assume v ∈ Hs(S), ~ν ∈ R2 such that ‖v‖s and |~ν − ~ν0| are small. There is a smooth
function G = G(~ν, θ, ξ, ζ) such that(

`~ν · n(1 + v)− x1(1 + v)
)

= G(~ν, θ, v, v′).

Differentiating with respect to θ we get

D
(
`~ν · n(1 + v)− x1(1 + v)

)
= Gθ(~ν, θ, v, v′) +Gξ(~ν, θ, v, v′)v′ +Gζ(~ν, θ, v, v′)v′′.

Writing

Gθ(~ν, θ, ξ, ζ) = Gθ(~ν, θ, 0, 0) + ξG1(~ν, θ, ξ, ζ) + ζG2(~ν, θ, ξ, ζ)

with smooth functions Gi = Gi(~ν, θ, ξ, ζ), i = 1, 2, we obtain the representation

D
(
`~ν · n(1 + v)− x1(1 + v)

)
= `~ν(− sin θ, cos θ) + sin θ + L1(~ν, v)v,

where L1(~ν, v)w is given by

L1(~ν, v)w := G1(~ν, v, v′)v +
(
G2(~ν, v, v′) +Gξ(~ν, v, v′)

)
w′ +Gζ(~ν, v, v′)w′′. (4.3)

Further, setting

H(v) := DA`(1 + v)
[
x1(1 + v)− `n1(1 + v)

]
(4.4)

we have

H(v) = DA`(1)
[
(1− `) cos θ

]
+ L2(v)v =

`− 1
`+ 1

sin θ + L2(v)v

where

L2(v)w :=
∫ 1

0

H ′(τv){w} dτ. (4.5)

Thus, defining linear operators

L(v, ~ν) ∈ L
(
Hs+1(S), Hs−1(S)

)
, L(v, ~ν)w := L1(v, ~ν)w + L2(v)w (4.6)

with L1, L2 given by (4.3)–(4.5) we obtain

DF (1 + v, ~ν) = `~ν · (− sin θ, cos θ) +
2`
`+ 1

sin θ + L(v, ~ν)v

= `(~ν − ~ν0) · (− sin θ, cos θ) + L(v, ~ν)v.

Note that L(0, ~ν0)w = DL̂w. Further, from the above construction and Lemma 2.1 one
checks that we have a representation

L(v, ~ν)w = DL̂w + a(v, v′, ~ν)w′′ +R(v, ~ν)w (4.7)

with a function a = a(v, v′, ~ν) ∈ Hs−1(S) and an operator

R = R(v, ~ν) ∈ L
(
Hs(S), Hs−1(S)

)
such that ‖a‖s−1 and ‖R‖

L
(
Hs(S),Hs−1(S)

) are small.

As a preparation for our investigation of the operators L(v, ~ν) we start with a key esti-
mate on degenerate first order differential operators on S. For given coefficient functions
γ, b we define L0 = L0(γ, b) by

L0(γ, b)u := γDu+ bu.
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At first we will consider operators of this form on the real axis. Note that

〈L0(γ, b)u, u〉 =
∫

R
(b− 1

2γ
′)u2 dx, u ∈ H1(R), (4.8)

where 〈· , ·〉 denotes the standard inner product of L2(R). For positive integer σ ≤ s− 1
and u ∈ Hσ+1(R), γ, b ∈ Hs−1(R) we have, moreover,

DσL0(γ, b)u = L0(γ, b+ σγ′)Dσu+ Tu (4.9)

where the remainder term Tu consists of a sum of terms of the form

DαγDβu, α+ β = σ + 1, β ≤ σ − 1, α ≤ σ

or

DαbDβu, α+ β = σ, β ≤ σ − 1.

Estimating

‖DαγDβu‖0 ≤ C
{
‖γ‖3‖u‖σ−1 (β = σ − 1),
‖γ‖α‖u‖β+1 (β ≤ σ − 2)

and analogously for the terms containing b we find

‖Tu‖0 ≤ C‖u‖σ−1, (4.10)

where the constant C depends only on ‖γ‖s−1, ‖b‖s−1.
We will consider L0 now on a finite interval, say (−1, 1), and restrict our attention

to the situation in which γ is nonincreasing and changes sign near 0 while b is strictly
positive. In this situation, the ordinary differential equation L0u = f can be solved
straightforwardly on the two maximal intervals on which γ does not vanish. If this
approach is used, the estimates ensuring the regularity of the solution have to be proved
by means of a Hardy inequality. We have chosen a different approach via a Galerkin
method which is more easily generalizable to higher dimensional problems.

Lemma 4.1. Assume σ ∈ [1, s − 1] integer, γ, b ∈ Hs−1(−1, 1), δ ∈ (0, 1
2 ). Assume

γ′ ≤ 0 on (−1, 1), γ(−δ) > 0, γ(δ) < 0, and

b+ (σ − 1
2 )γ′ ≥ µ > 0 on (−δ, δ) (4.11)

for a positive constant µ. Then for all f ∈ Hσ(−1, 1) with supp f ⊂ (−δ, δ) there is
precisely one u ∈ Hσ(−1, 1) satisfying L0(γ, b)u = f and suppu ⊂ (−δ, δ). It satisfies
an estimate

‖u‖σ ≤ C‖f‖σ
with C depending only on µ, δ, σ, ‖γ‖s−1, and ‖b‖s−1.

Proof. Extend γ|(−δ,δ), b|(−δ,δ) to b̃, γ̃ ∈ Hs−1(R) such that

γ̃′ ≤ 0, b̃+ (σ − 1
2 )γ̃′ ≥ µ > 0 on R

and
b̃ = b0 > 0 on R \ (−2δ, 2δ),
γ̃ = γ− > 0 on (−∞,−2δ),
γ̃ = γ+ < 0 on (2δ,∞),
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where b0, γ± are suitable constants. Our assumptions and (4.8)–(4.10) imply that for
u ∈ Hσ+1(R)

〈L0(γ̃, b̃)u, u〉 ≥ µ‖u‖20 (4.12)

and

〈DσL0(γ̃, b̃)u,Dσu〉 ≥ 〈L0(γ̃, b̃+ σγ̃′)Dσu,Dσu〉 − C‖u‖σ−1‖u‖σ
≥ µ‖Dσu‖20 − C‖u‖σ−1‖u‖σ

≥ µ

2
‖u‖2σ − λ‖u‖20 (4.13)

for some λ > 0, where a standard interpolation inequality has been used. Define the
continuous bilinear form

[· , ·] : Hσ−1(R)×Hσ+1(R) −→ R

by

[v, w] := −〈Dσ−1v,Dσ+1w〉+ λ〈v, w〉.
Observe that [· , ·] is compatible with the norm of Hσ(R), in particular, we have

|[v, w]| ≤ C‖v‖σ‖w‖σ

for all v ∈ Hσ(R), w ∈ Hσ+1(R). Moreover, [· , ·] is easily seen to be nondegenerate, i.e.
v ∈ Hσ−1(R) and [v, w] = 0 for all w ∈ Hσ+1(R) imply v = 0. From (4.12) and (4.13)
we get

[L0(γ̃, b̃)u, u] ≥ µ
2 ‖u‖

2
σ, u ∈ Hσ+1(R)

By Galerkin approximations and a weak convergence argument as in [7] we find that for
any f ∈ Hσ(R) there is a u ∈ Hσ(R) such that L0(γ̃, b̃)u = f on R, hence L(γ, b)u = f

on (−δ, δ). We also get the estimate

‖u‖Hσ(R) ≤ C‖f‖σ. (4.14)

Moreover, by solving L0(γ̃, b̃)u = f as an ordinary differential equation with constant
coefficients on R \ (−2δ, 2δ) we find

u(x) =
{
c− exp(−b0x/γ−) for x ∈ (−∞,−2δ),
c+ exp(−b0x/γ+) for x ∈ (2δ,∞).

Therefore, u ∈ Hσ(R) implies c± = 0. Furthermore, solving the nondegenerate first-
order equation L0(γ̃, b̃)u = f on the intervals (−2δ,−δ) and (δ, 2δ) and using u(±2δ) = 0
yields u = 0 on these intervals as well. Therefore L0(γ, b)u = f on (−1, 1), and the
estimate of the lemma follows from (4.14).

To see uniqueness, assume L0(γ, b)u1 = L0(γ, b)u2 for u1,2 ∈ Hσ(−1, 1), suppu1,2 ⊂
(−δ, δ). Let ũ := u1−u2 in (−1, 1) and ũ := 0 elsewhere. Then ũ ∈ H1(R), L0(̃b, γ̃)ũ = 0,
and thus ũ = 0 by (4.8).

We define now γ0 as in (4.1) and

b0 = − 2
`+ 1

cos θ, b1 = b0 + γ′0 (4.15)

and consider operators L0(γ, b1) on S with ‖γ − γ0‖σ small.



14 M. Günther and G. Prokert

Recall that the Hσ(S)-realization of L0(γ, b1), denoted by L0(γ, b1), is defined as the
restriction of this operator from H2(S) to the domain of definition

domL0(γ, b1) := {u ∈ Hσ(S) |L0(γ, b1)u ∈ Hσ}.

We will define realizations of related operators analogously, without explicit mentioning.

Lemma 4.2. Assume σ ∈ [1, s− 1] integer. There are constants ε, C > 0 such that for
all γ ∈ Hσ with ‖γ − γ0‖σ < ε the equation

L0(γ, b1)u = f (4.16)

has a solution u ∈ Hσ(S) for arbitrary f ∈ Hσ(S), and any solution u satisfies

‖u‖σ ≤ C(‖f‖σ + ‖u‖σ−1). (4.17)

Moreover, the Hσ(S)-realization of L0(γ, b1) is a Fredholm operator of index 2.

Proof. Choosing δ sufficiently small and defining

Sδ := S \
(
(−δ, δ) ∪ (π − δ, π + δ)

)
we choose ε small enough to ensure that |γ| is uniformly positive on Sδ. Consequently,
we can solve L(γ, b1)v = f on Sδ as a nondegenerate linear first order ODE and find a
solution v ∈ Hσ+1(Sδ) satisfying an estimate

‖v‖σ+1 ≤ C
(
‖f‖σ + |v(π/2)|+ |v(3π/2)|

)
with C depending on ε only.

Let ρ ∈ C∞(S) be a cutoff function with ρ ≡ 1 in S2δ, ρ ≡ 0 in (−δ, δ)∪ (π− δ, π+ δ).
Setting u = ρv + w we find

L0(γ, b1)w = f − L0(γ, b1)[ρv] =: f̃ , (4.18)

where supp f̃ ⊂ (−2δ, 2δ)∪(π−2δ, π+2δ). As we have ε small and `(σ− 1
2 ) < 1 it is easy

to check that on (−2δ, 2δ) the operator −L0(γ, b1) and on (π − 2δ, π + 2δ) the operator
L0(γ, b1) satisfies the assumptions of Lemma 4.1 with δ replaced by 2δ. This lemma
ensures the solvability of (4.18) with w ∈ Hσ(S), suppw ⊂ (−2δ, 2δ) ∪ (π − 2δ, π + 2δ)
and an estimate

‖w‖σ ≤ C‖f̃‖σ ≤ C
(
‖f‖σ + ‖v‖σ+1

)
.

Therefore

‖u‖σ ≤ C
(
‖f‖σ + |v(π/2)|+ |v(3π/2)|

)
= C

(
‖f‖σ + |u(π/2)|+ |u(3π/2)|

)
which implies (4.17). This estimate, together with the surjectivity, implies that the
Hσ(S)-realization of L0(γ, b1) is Fredholm.

If f = 0, the above construction provides a two-dimensional solution space, parameter-
ized by u(π/2) and u(3π/2). On the other hand, if we assume f = 0, u(π/2) = u(3π/2) =
0 then from solving L(γ, b1)u = 0 on Sδ we get suppu ⊂ (−2δ, 2δ)∪ (π− 2δ, π+ 2δ), and
thus u = 0 from the uniqueness result of Lemma 4.1. This implies indL0(γ, b1) = 2.

Returning to (3.1) we find

L̂w = L0(γ0, b0)w + L3(γ0Dw) + L4w,
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where L3, L4 ∈ L
(
Hσ(S), Hσ+1(S)

)
are given by

L3w := −`A`(1)w, L4w :=
2(1 + `− `2)

`+ 1
A`(1)[cos θw].

Using (4.9) and the fact that D and L3 commute we find

DL̂w = (I + L3)L0(γ0, b1)Dw +Kw,

where K ∈ L
(
Hσ(S), Hσ(S)

)
is given by

Kw := b′0w −DL3(b0w) +DL4w.

Defining

Λ : Hs−1(S)×L
(
Hs(S), Hs−1(S)

)
−→ L

(
Hs+1(S), Hs−1(S)

)
by

Λ(a,B) := (I + L3)L0(γ0 + a, b1)D +B +K (4.19)

we get from (4.7)

L(v, ~ν) = Λ(a,R− L3M(a)D2),

where M(a), given by M(a)w := aw, denotes the pointwise multiplication operator.
The next lemma provides an a priori estimate for operators of the type Λ(a,B), pro-

vided a and B are small.

Lemma 4.3. Let t ∈ [2, s] be integer. There are constants δ > 0, C > 0 such that for
any a ∈ Hs−1(S), B ∈ L

(
Ht(S), Ht−1(S)

)
with

‖a‖s−1, ‖B‖L (Ht(S),Ht−1(S)) < δ (4.20)

we have, for any u ∈ Ht+1(S),

‖u‖t ≤ C (‖Λ(a,B)u‖t−1 + ‖u‖t−1) . (4.21)

Proof. The facts that L3 is compact on Ht−1(S) and Ht−1(S) ↪→↪→ Ht−2(S) imply

‖w‖t−1 ≤ C
(
‖(I + L3)w‖t−1 + ‖w‖t−2

)
, w ∈ Ht−1(S).

Thus, for sufficiently small δ we get from (4.17) and (4.20)

‖u‖t ≤ C (‖Du‖t−1 + ‖u‖t−1) (4.22)

≤ C (‖L0(γ0 + a, b1)Du‖t−1 + ‖u‖t−1) (4.23)

≤ C (‖(I + L3)L0(γ0 + a, b1)Du‖t−1 + ‖u‖t−1) (4.24)

≤ C (‖Λ(a,B)u‖t−1 + ‖u‖t−1 + δ‖u‖t) , (4.25)

and (4.21) follows for δ sufficiently small.

Assume ‖a‖s−1 small again and B = 0 for the moment. Let us denote by L0(γ0 +
a, b0) the Ht(S)-realization of L0(γ0 + a, b0) and by domL0(γ0 + a, b0) its domain of
definition. Similarly, let Λ(a, 0) denote the Ht−1(S)-realization of Λ(a, 0) and dom Λ(a, 0)
its domain. As usual, we equip domL0(γ0+a, b0) and dom Λ(a, 0) with the corresponding
graph norms. In analogy to Lemma 4.2, we have that L0(γ0 + a, b0) is Fredholm and

indL0(γ0 + a, b0) = 2.
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Furthermore, recalling (4.19) we have dom Λ(a, 0) = domL0(γ0 + a, b0) and

Λ(a, 0) = D(I + L3)L0(γ0 + a, b0)− (I + L3)M(b′0) +K, (4.26)

where I+L3 ∈ L
(
Ht(S), Ht(S)

)
∩L

(
Ht−1(S), Ht−1(S)

)
and D ∈ L

(
Ht(S), Ht−1(S))

are Fredholm operators of index 0, so the first term on the right in (4.26) is a Fredholm
operator of index 2. The last two terms represent bounded operators on Ht(S), and due
to

domL0(γ0 + a, b0) ↪→ Ht(S) ↪→↪→ Ht−1(S)

these operators are compact from dom Λ(a, 0) to Ht−1(S). Therefore Λ(a, 0) is Fredholm
and

ind Λ(a, 0) = 2.

To deal with the remaining degrees of freedom we introduce extended operators. For
t ∈ [2, s] integer, let

P t := Hs−1(S)×L
(
Ht(S), Ht−1(S)

)
×
(
L2(S)

)3
,

Xt−1 := Ht−1(S)× R3

and define

L̃ : P t −→ L
(
Ht+1(S)× R, Xt−1

)
by

L̃(a,B, z)(u, c) :=
(
Λ(a,B)u+ c, 〈1 + z1, u〉L2 , 〈cos +z2, u〉L2 , 〈sin +z3, u〉L2

)
.

From Lemma 4.3 one straightforwardly gets a corresponding a priori estimate

‖u‖t ≤ C
(
‖L̃(p)(u, c)‖Xt−1 + ‖u‖t−1 + |c|

)
(4.27)

with C independent of u and p, provided p = (a,B, z) small in P t.
Let B = 0 first and write

L̃(a, 0, z) = L̃0(a) + K̃(z),

where

L̃0(a)(u, c) = (Λ(a, 0)u, 0)

and observe that K̃(z) has finite rank. Clearly, the Xt−1-realization of L̃0(a) is a Fred-
holm operator of index 0, and therefore also (with obvious notation)

ind L̃(a, 0, z) = 0. (4.28)

In particular, from Lemma 3.1 we additionally get that L̃(0) is injective, and (4.27) may
therefore be sharpened to

‖u‖t + |c| ≤ C‖L̃(0)(u, c)‖Xt−1 . (4.29)

The next lemma generalizes this estimate via a perturbation argument to all sufficiently
small p.

Lemma 4.4. Let t ∈ [2, s] be integer. There are constants δ, C∗ > 0 such that for all
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p ∈ P t with ‖p‖P t < δ and all (u, c) ∈ Ht+1(S)× R one has

‖u‖t + |c| ≤ C∗‖L̃(p)(u, c)‖Xt−1 . (4.30)

Proof. Assume the opposite. Then there would exist sequences (un, cn) in Ht+1(S)×R,
(pn) in P t such that

‖un‖t + |cn| = 1, pn → 0 in P t,

and

L̃(pn)(un, cn)→ 0 in Xt−1. (4.31)

Then (4.27) implies

‖un‖t−1 + |cn| ≥ c > 0 (4.32)

for n sufficiently large. On the other hand, after restriction to a subsequence if necessary,

(un, cn) ⇀ (u∗, c∗) weakly in Ht(S)× R, (4.33)

(un, cn)→ (u∗, c∗) in Ht−1(S)× R. (4.34)

Now (4.33) implies

L̃(pn)(un, cn) ⇀ L̃(0)(u∗, c∗) weakly in Xt−2,

therefore (u∗, c∗) = 0 by (4.31) and the injectivity of L̃(0). In contradiction to this,
(4.34) and (4.32) imply (u∗, c∗) 6= 0.

While (4.30) ensures injectivity for the operators L̃(p), we get surjectivity from (4.28)

only if B = 0. To prove surjectivity of L̃(p) in the general case, note that

L̃(p)(u, c) = f, p = (a,B, z) small, f ∈ Xt−1,

is solvable by the iteration procedure

L̃(a, 0, z)(un, cn) = f − (Bun−1, 0),

for which convergence in Ht × R is ensured by (4.30) for ‖B‖ < 1/(2C∗) by a straight-
forward contraction argument.

Returning to the original notation (4.3)–(4.6) we summarize our results as follows:

Lemma 4.5. There are constants C, δ > 0 such that for all v ∈ Hs(S), ~ν ∈ R2, w ∈(
L2(S)

)3 satisfying

‖v − 1‖s, |~ν − ~ν0|, ‖w1 − 1‖0, ‖w2 − cos ‖0, ‖w3 − sin ‖0 < δ

and all f ∈ Hs−1, g ∈ R3 the problem

L(v, ~ν)u = f + c, (4.35)

〈wi, u〉L2 = gi, i = 1, 2, 3 (4.36)

has a unique solution (u, c) ∈ Hs × R satisfying

‖u‖t + |c| ≤ C
(
‖f‖t−1 + |g|

)
, (4.37)

2 ≤ t ≤ s.
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Moreover, we have

‖L(v, ~ν)w − L(ṽ, ~µ)w‖s−2 ≤ C
(
‖v − ṽ‖s−1 + |~ν − ~µ|

)
‖w‖s (4.38)

for v, ṽ ∈ Vδ := {v ∈ Hs(S) | ‖v‖s < δ}, |~ν − ~ν0|, |~µ− ~ν0| small, w ∈ Hs(S).
To see this, one shows the corresponding estimates for L1 and L2 separately. The

estimate for L1 follows from (4.3) and standard results concerning superposition operators
induced by smooth functions on spaces that are Banach algebras with respect to pointwise
multiplication. To find the estimate for L2 we recall (4.4) and (4.5) to find

L2(v)w − L2(ṽ)w =
∫ 1

0

∫ 1

0

H ′′(τ(ṽ + t(v − ṽ))){v − ṽ, w} dtdτ,

with

H ′′(v){w1, w2}
= DA′′` (1 + v){w1, w2}[(1 + v)(cos θ − `n1(v))]

+DA′`(1 + v){w1}[w2(cos θ − `n1(v))]−DA′`(1 + v){w1}[`(1 + v)(n′1(v){w2}]
−DA`(1 + v)[`w1n

′
1(v){w2}]−DA`(1 + v)[`(1 + v)n′′1(v){w1, w2}] + . . . ,

where the dots stand for three more summands obtained by interchanging w1 and w2

in the nonsymmetric terms. For all these terms, the estimates follow straightforwardly
from Lemma 2.1 with t = s− 2. Thus, (4.38) is proved.

Now we can complete the proof of our main result.

Proof of Theorem 2.3. As already mentioned above, we replace the equations (2.1),
(2.2) by

L(v, ~ν)v = f,〈
wi(v), v

〉
L2 = 0, i = 1, 2, 3.

with v := u− 1, f := `(~ν0 − ~ν) · (− sin θ, cos θ) and

w1(v) := 1 + v/2, w2(v) := (1 + v + v2/3) cos, w3(v) := (1 + v + v2/3) sin .

Starting with v0 ≡ 0 in view of Lemma 4.5 we can define iteratively functions v1, v2, . . .

and real numbers c1, c2, . . . such that

L(vn, ~ν)vn+1 = f + cn+1,〈
wi(vn), vn+1

〉
L2 = 0, i = 1, 2, 3.

Assuming δ > 0 sufficiently small, we obtain from (4.37)

‖vn+1‖s ≤ C|~ν − ~ν0| ≤ δ,

provided Cε ≤ δ, hence

vn ∈ Vδ for n = 1, 2, . . . . (4.39)

Further, we have

L(vn, ~ν)(vn+1 − vn) =
(
L(vn−1, ~ν)− L(vn, ~ν)

)
vn + cn+1 − cn,〈

wi(vn), vn+1 − vn
〉
L2 =

〈
wi(vn−1)− wi(vn), vn

〉
L2 , i = 1, 2, 3.
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Consequently we obtain from (4.37) with t = s− 1 and (4.38)

|cn+1 − cn|+ ‖vn+1 − vn‖s−1

≤ C
(
‖(L(vn−1, ~ν)− L(vn, ~ν))vn‖s−2 + ‖wi(vn−1)− wi(vn)‖0‖vn‖0

)
≤ C‖vn − vn−1‖s−1‖vn‖s
≤ C‖vn − vn−1‖s−1|~ν − ~ν0|,

hence for ε sufficiently small

|cn+1 − cn|+ ‖vn+1 − vn‖s−1 ≤ 1
2‖vn − vn−1‖s−1, n = 1, 2, . . . .

Consequently, after restriction to a suitable subsequence, there exist c ∈ R and v ∈ Vδ
with

cn → c, vn ⇀ v in Hs(S), vn → v in Hs′(S) for s′ < s

for n→∞, where ⇀ denotes weak convergence again. This implies

L(vn, ~ν)vn ⇀ L(v, ~ν)v in Hs−2(S), wi(vn)→ wi(v) in L2(S)

for n→∞, hence

L(v, ~ν)v = f + c,〈
wi(v), v

〉
L2 = 0, i = 1, 2, 3.

As L(v, ~ν)v and f have mean value zero, we conclude c = 0. This shows the existence
statement of Theorem 2.3.

To prove uniqueness, assume

L(z, ~ν)z = L(v, ~ν)v,

〈wi(z), z〉L2 = 〈wi(v), v〉L2 , i = 1, 2, 3,

for some z ∈ Vδ. Then

L(z, ~ν)(v − z) =
(
L(v, ~ν)− L(z, ~ν)

)
v,

〈wi(z), v − z〉L2 = 〈wi(z)wi(v), v〉L2 ,

and by (4.38) and (4.37) we find

‖v − z‖s−1 ≤ Cδ‖v − z‖s−1

implying v = z for δ small. The statements on the symmetry of Ωu follow immediately
from the uniqueness result and the invariance properties discussed in Section 1.

Finally, to get (2.7), let v̂ := `(~ν0 − ~ν) · (φ1, φ2). Then, by Lemma 3.1,

L(0, ~ν0)v̂ = f, 〈wi(0), v̂〉L2 = 0, i = 1, 2, 3,

and therefore v̂ ∈ Vδ and

L(v, ~ν)(v − v̂) =
(
L(0, ~ν0)− L(v, ~ν)

)
v,

〈wi(v), v − v̂〉L2 = 〈wi(0)− wi(v), v̂〉L2 .

Applying again (4.38) and (4.37) together with some straightforward estimates concern-
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ing the auxiliary conditions we get from this

‖v − v̂‖s−1 ≤ C
(
‖v‖s−1 + |~ν − ~ν0|

)
‖v̂‖s ≤ C|~ν − ~ν0|2.

5. Conclusions

Let us compare the (in)stability results found here to the results in [2], where stability
properties of the linearization are discussed in the case ` = 1 by complex analysis meth-
ods. The results given there amount to decay of solutions to the linearized problem in
the L∞-norm, but not in stronger ones. In such a situation, linearized stability of the
time-dependent problem does not necessarily imply nonlinear stability, as is seen from
our results, at least as long as no further assumptions on e.g. higher smoothness of ini-
tial data are made. Moreover, it is by no means clear whether a similar behavior of the
linearization persists for ` < 1, and the delicate stability properties in the near circular
geometry should also be interpreted as a cautionary sign concerning the applicability of
the simplified models to real streamer phenomena.

References

[1] Arrayas, M., Ebert, U.: Stability of negative ionization fronts: regularization by
electric screening? Phys. Rev. E 69 036214 (2004)
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