
Spectral stability of small-amplitude viscous shockwaves in several space dimensionsHeinrich Freist�uhler� and Peter Szmolyany
AbstractA planar viscous shock pro�le of a hyperbolic-parabolic system of conservationlaws is a steady solution in a moving coordinate frame. The asymptotic stabilityof viscous pro�les and the related vanishing-viscosity limit are delicate questionsalready in the well understood case of one space dimension and even more so in thecase of several space dimensions.It is a natural idea to study the stability of viscous pro�les by analysing thespectrum of the linearization about the pro�le. The Evans function method providesa geometric dynamical-systems framework to study the eigenvalue problem. Inthis approach eigenvalues correspond to zeros of an essentially analytic functionE(��; �!) which detects nontrivial intersections of the so-called stable and unstablespaces, i. e., spaces of solutions that decay on one (\�1") or the other side (\+1")of the shock wave, respectively.In a series of pioneering papers, Kevin Zumbrun and collaborators have estab-lished in various contexts that spectral stability, i. e., the non-vanishing of E(��; �!)and the non-vanishing of the Lopatinski-Kreiss-Majda function �(�; !), imply non-linear stability of viscous shock pro�les in several space dimensions. In this paperwe show that these conditions hold true for small amplitude extreme shocks undernatural assumptions.This is done by exploiting the slow-fast nature of the small-amplitude limit,which was used in a previous paper by the authors to prove spectral stability ofsmall-amplitude shock waves in one space dimension. Geometric singular perturba-tion methods are applied to decompose the stable and unstable spaces into subbun-dles with good control over their limiting behaviour.Three qualitatively di�erent regimes are distinguished that relate the smallstrength � of the shock wave to appropriate ranges of values of the spectral pa-rameters (��; �!). Various rescalings are used to overcome apparent degeneraciesin the problem caused by loss of hyperbolicity or lack of transversality.
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0 IntroductionIn this paper, we study the stability of planar viscous shock wavesv(x; t) = u(x �N � st); u(�1) = u�; (0.1)in multidimensional systems of hyperbolic-parabolic viscous conservation laws@@tv + dXj=1 @@xj (fj(v)) = dXj=1 @2@x2j v; (0.2)with fj : V ! Rn ; j = 1; : : : ; d smooth; V � Rn convex and open (0.3)and dXj=1 �jDfj(v) R-diagonalizable for all v 2 V and � 2 Sd�1. (0.4)Assuming w. l. o. g. that N = (1; 0; : : : ; 0) and Fourier transforming with respect to timet and transverse space variables (x2; : : : ; xd), one obtains the eigenvalue problem(��I + iB �!(u) + j�!j2I)p+ ((A(u)� sI)p)0 = p00 (0.5)with frequencies (��; �!) 2 C � Rd�1 :In Eqs. (0.5), we have writtenA � Df1; B �! � D(f �!); f �! � dXj=2 �!jfj; �! = (�!2; : : : ; �!d):Any solution p of (0.5) that decays at both in�nities, p(�1) = 0, is called an eigenfunc-tion; e. g. and notably, for (��; �!) = (0; 0), there is always the (\trivial") eigenfunctionp = u0 corresponding to translation invariance. Roughly speaking, our goal will be toexclude eigenfunctions for (��; �!) 6= (0; 0) with <� � 0:Together with the equation for the pro�le u of the shock wave itself, Eq. (0.5) can bephrased as a �rst order autonomous systemu0 = f1(u)� su� cp0 = (A(u)� sI)p+ qq0 = (��I + iB �!(u) + j�!j2I)p: (0.6)To prepare for a precise statemant of our goal, we �x (��; �!) and note that due to thelinearity of the (p; q)-part of (0.6), this part can be viewed as a (non-autonomous) owX 0 = (A��;�!(u)(X) (0.7)2



on G2n1 (C ), the Grassmann manifold of all 1-dimensional subspaces of C 2n . LetS���;�!; U���;�!; S+��;�!; U+��;�!be the (n-dimensional) stable and unstable spaces of the \frozen-end coe�cient matrices"at �1, i. e., of � A(u�)� sI I(��I + iB �!(u�) + j�!j2I) 0 � :(More precisely, S���;�!; U���;�!; S+��;�!; U+��;�! are continuous space-valued functions of (��; �!) withthe de�ning property that their values at (��; �!) indeed are the stable resp. unstable spacesat least as long as <� > 0. Cf. below.) Regarded as subsets of G2n1 (C ), S���;�!; U���;�! andS+��;�!; U+��;�! are invariant manifolds for the (autonomous) owsX 0 = (A��;�!(u�))(X); (0.8)respectively. We call any orbit X : R ! G2n1 (C ) of (0.7) with limitsX(�1) 2 U���;�!; X(+1) 2 S+��;�!:an unstable-to-stable-bundle connection (USBC) for (0.7).Our �ndings concern shock waves of su�ciently small amplitude. We assume there existsa state u0 2 V such thatA.1. The matrices Dfj(u0); j = 1; : : : ; d are symmetric.A.2. For u near u0 and �! near 0, thesmallest [resp. biggest] eigenvalue �(u; �!) of A(u) +B �!(u)is simple and satis�esa. Du�(u0; 0) =2 left-ker(A(u0)� �(u0; 0)I) (genuine nonlinearity in the sense of Lax),b. D2�!�(u0; 0) > 0 (strict convexity in the sense of M�etivier [M1]).Assumption A.1 implies that system the left-hand side of (0.2) is symmetric hyperbolic.1Assumption A.2.a implies | cf. [L, MaPe] | that there are families(u�� ; u+� )0<�<�0; (u�)0<�<�0 with lim�&0u� = lim�&0 u�� = u0of pairs of states and of pro�les that solve (0.1) and (0.2) or, equivalently with the latter,(0.6)1 with appropriate c = c� and ju+� � u�� j � 2�;covering locally all small-amplitude Lax 1-shocks [resp. n-shocks] of speedss = s� � �(u0; 0):1In fact, a more general context would also include a temporal component f0 of the ux; for the minoradaptations needed to properly account for f0 6= id, we refer the reader to the companion paper [FrSz3],which also covers state-dependent, and degenerate, viscosity and relaxation operators as opposed to the,though prototypical, Laplacian in (0.2). 3



Without loss of generality we will henceforth assume that we are dealing with 1-shocks(� is the smallest eigenvalue). We note (from Lemma 6.2 of [M1]) that A.2.b impliesA.2.b0. Pnj=2B �!1j(u0)2 > 0 for any �! 2 Rd�1 n f0g:Finally, we assume w. l. o. g. thatA(u0) = diag(�01; : : : ; �0n) with �01 = s0 = 0 and B �!11(u0) � 0 for any �! 2 Rd�1 ;which can be achieved by simple transformations. We will sometimes write A0 � A(u0);B!;0 � B!(u0).Theorem 1. Under the stated assumptions, if �0 > 0 is su�ciently small, then for any� 2 (0; �0] and any (�; !) 2S � f(�; !) 2 C � Rd�1 : <� � 0; j�j2 + j!j2 = 1g;(i) the ODE system u0 = f(u)� s�u� c�p0 = (A(u)� s�I)p+ qq0 = �(�I + iB!(u) + �j!j2I)p: (0.9)has no unstable-to-stable-bundle connection for any � > 0 and,(ii) the quantity �[u�]+i[f!(u�)] is transverse to the stable space of (�I+B!(u+� ))A(u+� )�1.The motivation to prove Theorem 1 arose from the deep work [ZS, GMWZ1, GMWZ2,GMWZ3] of Kevin Zumbrun and collaborators in which it has been shown that anymultidimensional planar Lax shock wave is nonlinearly stable in the viscous and thevanishing-viscosity context, if its so-called Evans and Lopatinski-Kreiss-Majda functionsE ;� satisfy E(��; �!) 6= 0 for all (�; !) 2 S and � > 0 (0.10)and �(�; !) 6= 0 for all (�; !) 2 S: (0.11)As we will detail in Section 4, Theorem 1 readily means exactly that extreme shocksof small amplitude satisfy these two conditions and thus are nonlinearly stable, underthe essentially sole assumptions A.2 of genuine nonlinearity in the sense of Lax and ofconvexity in the sense of M�etivier. We point out that part (ii) of Theorem 1 was alreadyproved in [M1].Instead of going into details on the, important, previous results, at this place we simplyrefer the reader to the fundamental papers [Go1, Li, SyX, ZH] on shock stability in one,and [Ma1, Ma2, M1, ZS, GMWZ1, GMWZ2, GMWZ3] in several space dimensions, aswell as [AGaJ, GaJ, Sd, GaZ] on speci�c aspects of Evans functions, and the surveys[Z, M2]. The spectral stability of small-amplitude shock waves has been addressed in[FrSz1, PZ].Part (i) of the Theorem 1 will be shown via the following three propositions:4



Proposition 1. (Inner regime.) For any r0 > 0, the assertion of Theorem 1 holds underthe restriction 0 < � � �2r0: (0.12)Proposition 2. (Outer regime.) There exist r0; r1 > 0 such that the assertion of Theorem1 holds under the restriction �2r0 � � � r1: (0.13)Proposition 3. (Outmost regime.) For any r1 > 0, the assertion of Theorem 1 holdsunder the restriction � � r1: (0.14)Propositions 1,2,3 will be proved in Sections 1,2,3, respectively.Part (ii) of Theorem 1 will be proved in Section 4 together with a brief discussion ofthe Evans and Lopatinski-Kreiss-Majda functions and a geometric-singular-pertubationre-derivation of the (general) fact | [ZS], here: Theorem 2 | that with a transversalitycoe�cient �, ( @@�E(��; �!))j�=0 = ��(�; !); (�; !) 2 S: (0.15)While we have to overcome a number of obstacles to obtain the exclusion of USBCs statedin Theorem 1, one prime di�culty consists in the fact that the abovementioned trivialeigenfunction manifests itself in various ways along portions of the boundaries of the innerand outer regime. To exclude USBCs at nearby interior points of these regimes, we willuse a lemma on transversal breaking of unstable-to-stable-bundle connections. The rest ofthe present introductory section serves to just state this lemma, which will also be provedin Section 4.Lemma 1. Consider a family of autonomous systems� 0 = g(�; �)p0 = A(�; �)p+ L(�; �)qq0 = M(�; �)p (0.16)on Rk � C k � C m , parametrized by � 2 [0; �0], with g : Rk � [0; �0]! Rk ,A(�; �) � D�g(�; �) 2 Rk�k ; L(�; �) 2 C k�m ; M(�; �) 2 C m�k ;and M(�; 0) � 0:5



Let ��, � 0� = g(��; �); ��(�1) = ��� ;be a corresponding family of transversal heteroclinic orbits and consider the naturallyassociated unstable-to-stable-bundle connection (\USBC") at � = 0 spanned by(p; q) = (� 00; 0):Assume that the A(��0 ) are hyperbolic and the dimensions of their unstable resp. stablespaces satisfy d�u + d+s = k + 1:For the (linear autonomous) left-end and right-end slow ows_q = G�� q; (G�0 � �D�M(��; 0)(A(��; 0))�1L(��; 0); )assume that the unstable space of G�� is � E��and the stable space of G+� is � E+�with continuous bundles � 7! E�� ; E+� � C n . If the Melnikov type vector quantityD�[q]j�=0 � Z +1�1 D�M(�0; 0)� 00 2 C msatis�es E�0 � CD� [q]j�=0 � E+0 = C m ;then the USBC breaks up transversely upon variation of � away from 0.1 Evans function: Inner regimeAs in [FrSz1], we henceforth describe the pro�les v� by the scalar center-manifold coordi-nate �� � ��1(u�)1;which satis�es � 0� = �(1 +O(�))(1� � 2� ):For concreteness and simplicity, we assume ��(0) = 0 and henceforth write � for �0.In this section we study (0.9) in the case (0.12). Writing� = ��2;we have to consider the range 0 < � � r0: (1.1)
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Scaling q with �, the (p; q)-part of Eqs. (0.9) readsp01 = �2��p1 + �q1 +O(�pj) +O(�2p)p0j = �0jpj + �qj +O(�p); j = 2; : : : ; nq01 = ��(�p1 + iPmB!;01mpm +O(�p))q0j = ��(�pj + iPmB!;0jm pm +O(�p)); j = 2; : : : ; n: (1.2)In view of geometric singular perturbation theory [F, Sz], the next lemma is immediate.Lemma 2. For any r > 0, there exists an �r > 0 such that the following holds uniformlyfor ((�; !); �; �) 2 S+ � [0; r]� [0; �r] :(i) The system that (1.2) induces on G2n1 (C ) possesses an n-dimensional normally hyper-bolic attracting invariant slow manifold M�;��;! : (1.3)In the linear coordinates (p; q) 2 C 2n , M�;��;! is given by equations of the formpj = ��qj=�0j +O(�2); j = 2; : : : ; nand the (\slow") ow on M�;��;! is governed, in linear coordinates (p1; q) 2 C n+1 , by_p1 = �2�p1 + q1 +O(�)_q1 = �(�p1 � i�Pm6=1(B!;01m=�0m)qm +O(�p1) +O(�2))_qj = �(iB!;0j1 p1 � i�Pm6=1(B!;0jm =�0m)qm +O(�p1) +O(�2)); j = 2; : : : ; n (1.4)
Since the manifoldM�;��;! is attracting, any USBCs of (1.2) for (�; �) 2 (0; r0]�(0; �0] mustlie inside this slow manifold. Lemma 1 will thus be proved once we showLemma 3. For any r > 0, there exists an �r > 0 such that the slow manifold M�;��;!contains no USBC, for all values((�; !); �; �) 2 S � (0; r]� (0; �r]of the parameters.The rest of this section serves to prove three further lemmata which together imply Lemma3.Lemma 4. (Subregime I.) For any cI > 0, the assertion of Lemma 3 holds under therestriction j�j � cI: (1.5)

7



Proof. For � = 0, Eqs. (1.4) read _p1 = �2�p1 + q1_q1 = ��p1_qj = i�B!;0j1 p1 : (1.6)We distinguish two cases.Outer part of Subregime I: rI � � � r0 for some 0 < rI < r0.In this case ~� = �� satis�es 0 < rIcI � j~�j � r0;and for the frozen-end systems at � = �1, the eigenvalues are� �p1 + ~� (simple), 0 ((n� 1)-fold), � +p1 + ~� (simple).The unstable bundles Û�; Û+ are hyperbolic attractors for the frozen-end ows. The(decoupled) (p1; q1) equations are just the eigenvalue problem for Burgers equation, whichhas no eigenvalues with <~� � 0 except ~� = 0. Hence, the unique orbit with �-limit Û�has !-limit Û+. Because of hyperbolicity, this situation persists for small � > 0. Inparticular, no USBC can exist.Inner part of Subregime I: � � rI for su�ciently small rI > 0. If also � = 0, there is aUSBC, corresponding to (p�1; q�1; q̂�) = (� 0; 0; 0): (1.7)We apply Lemma 1. In its terminology,E�0 = (0; 0)>; D�[q]j�=0 = 2(�; ib)> =2 E+0 :The latter holds as the right-end slow-ow (p = 2q) coe�cient matrix,��=2 0ib=2 0� ; (1.8)has the stable space E+0 = f0g � C n�1 :The unstable and stable manifolds thus break away from each other transversely uponincreasing � away from 0. This transversality is robust in �. Lemma 4 is proved. 2Lemma 5. (Subregime II.) For su�ciently small cII > 0 and su�ciently large CII > 0,the assertion of Lemma 3 holds under the restrictionCIIp� � j�j � cII : (1.9)
8



Proof. Letting� = j�j~�; � = j�j2~�; ~qj = j�jqj; j = 2; : : : ; n; and ~� � �j�jwe write (1.4) as _p1 = �2�p1 + q1 +O(�)_q1 = ~�(~�p1 +O(~�))_~qj = ~�(iB!;0j1 p1 +O(~�)) (1.10)It su�ces to show that (1.10) has no USBC for su�ciently small ~�; � > 0. This, however,follows immediately, since we have recovered the situation of the inner part of Subregime I.2Lemma 6. (Subregime III.) For any CIII > 0 and any su�ciently small cIII > 0, theassertion of Lemma 3 holds under the restrictionj�j � minfcIII; CIIIp�g: (1.11)Proof. We introduce the scaling� = p��̂; q̂j = p�qj; j = 2; : : : ; n; and �̂ = p��and rewrite Eqs. (1.4) as_p1 = �2�p1 + q1 +O(�)_q1 = �̂(�̂p1 � iPm6=1(B!;01m=�0m)q̂m +O(p�))_̂qj = �̂(iB!;0j1 p1 +O(p�)): (1.12)For �̂ = 0 and � = 0 there exists the USBC(p�1; q�1; q̂�) = (� 0; 0; 0) :We apply Lemma 1 with respect to �̂. In its terminology,E�0 = (0; 0)>; D�̂[q]j�̂=0 = 2(�̂; ib)> =2 E+0 :The latter holds as the right-end slow-ow (p = 2q) coe�cient matrix,� �̂=2 �i~bib=2 0 � ; (1.13)has the stable space E+0 = (f0g � f~bg?) + C (1; i�b)? � C � C n�1with some � satisfying ��̂ 6= 1. The unstable and stable manifolds thus break away fromeach other transversely upon increasing �̂ away from 0. This transversality is robust in �.Lemma 6 is proved. 2As Lemmata 4, 5, 6 imply Lemma 3, Proposition 1 is proved.9



2 Evans function: Outer regimeIn this section we study (0.9) in the case (0.13).Letting � = �p� (2.1)and replacing q by p�q, Eqs. (0.9) readp01 = �2�p��p1 +p�q1 +O(�p�pj) +O(��2)p0j = �0jpj +p�qj +O(�p�p)q0 = p� [�I + iB!;0 +O(�p�) +O(�)]p: (2.2)By virtue of (2.1), the inequalities (0.13) de�ning the outer regime, �2r0 � � � r1,equivalently turn into � � 1=pr0; � � r1: (2.3)Our task will thus be to understand (2.2) for small � and �.We reduce system (2.2) further by (i) splitting o� the n� 1 unstable directions pj; j � 2;via a slow-fast decomposition, (ii) rescaling the slow dynamics in the u1; p1; q variables,and (iii) decomposing (q2; : : : ; qn) 2 C n�1 into an \active" component w 2 C and a\passive" component z 2 C n�2 .For p� = 0, the equations pj = 0; j = 2; : : : ; n; de�ne a normally hyperbolic criticalmanifold for (2.2). The corresponding slow manifold is given bypj = �p�qj�0j +O(�p�p1) +O(�); j = 2; : : : ; n:The slow dynamics is governed by the system_p1 = �2��p1 + q1 +O(p�)_q1 = �p1 �p� nXj=2 i(B!;01j =�0j)qj +O(�p�p1) +O(�)_qj = iB!;0j1 p1 +O(p�): (2.4)Letting � = �4 and qj = �i~qj=�; j = 2; : : : ; n;we obtain _p1 = �2��p1 + q1 +O(�2)_q1 = �p1 + � nXj=2(B!;01j =�0j)~qj +O(�2)_~qj = �B!;0j1 p1 +O(�3): (2.5)
10



We de�ne the active componentw := ( nXj=2 B!;01j B!;0j1 =�0j)�1=2 nXj=2 B!;01j ~qjand the passive component z = (z3; : : : ; zn) byzl := nXj=2 Clj ~qj with C of full rank n� 2 and nXj=2 CljB!;0j1 = 0and replace � with (Pnj=2B!;01j B!;0j1 =�0j)�1=2�. In these variables, dropping subscripts andtildas, system (2.5) has the form _p = �2��p+ q +O(�2)_q = �p+ �w +O(�2)_w = �p+O(�3)_z = O(�3): (2.6)Momentarily neglecting the higher-order terms and the passive component z, we arriveat _p = �2��p + q_q = �p+ �w_w = �p (2.7)on C 3 . System (2.7) is invariant under the scaling(�; �; �)! (r2�; r3�; r4�)(p; q)! (r�1p; rq): (2.8)To understand (2.7), it hence su�ces to study the system for parameter values on thesphere �2 + �2 + j�j2 = 1:Lemma 7. The only parameter value inS � f(�; �; �) 2 [0;1)� [0;1)� C : <� � 0; �2 + �2 + j�j2 = 1gfor which (2.7) has a USBC is (��; ��; ��) = (1; 0; 0): Upon variation of the parameter(�; �; �) 2 S near (��; ��; ��), the stable and unstable manifolds whose intersection thatconnection is move away from each other transversely.Proof. Subregime � � �0 with some �0 > 0. The (constant-) coe�cient matrices of (2.7)at both � = �1 and � = +1 are of the form0@� 1 0� 0 �� 0 01A with 0 < �0 � � � 1;�2 � � � 2; j�j � 1;<� � 0: (2.9)Straightforward inspection shows that any such matrix has one simple eigenvalue ofstrictly positive real part and two simple, or one double, eigenvalue(s) of strictly negative11



real part. Assume now there were a heteroclinic unstable-to-stable connection (p; q; w);necessarily, it behaves exponentially at both in�nities. Considering~p := Z�1 p; ~w := Z�1w;we �nd (~p0 + 2�� ~p)0 = �~p+ ~w~w0 = �~p: (2.10)Multiplying with �~p and integrating by parts, we obtain� Z ~p0�~p0 � � Z � 0~p�~p = � Z ~p�~p+ � Z ~w�~w0which implies <� Z j~pj2 < 0; (2.11)a contradiction. The !-limit of the orbit whose �-limit is the unstable bundle at �1 isthe unstable bundle at +1. As the latter is an attractor, this unstable-to-unstable bundleconnection is robust.Subregime 0 � � � �0; j�j � 0 with su�ciently small �0 > 0 and some 0 > 0. Assume�rst that � = 0. In that subcase, any heteroclinic unstable-to-stable connection (p; q; w)would have w = 0 and satisfy (~p0 + 2�� ~p)0 = �~p: (2.12)We readily reach the same conclusions as in the previous case. Due to its robustness,the unstable-to-unstable heteroclinic connection persists for small � > 0. I. e., again noUSBC is possible in the whole subregime, if �0 > 0 is chosen su�ciently small.Subregime 0 � � � �0; 0 � j�j � 0 with su�ciently small �0; 0 > 0. For (�; �; �) =(��; ��; ��) = (1; 0; 0); there is the unique USBC given by(p�; q�; w�) = (� 0; 0; 0):We parametrize points in S near (��; ��; ��) as(�; �; �) = (p1� �2; ��̂; ��̂) with �̂2 + j�̂j2 = 1and investigate what happens to (p�; q�; w�) upon perturbing � in_p = �2��p + q_q = ��̂p+ ��̂w_w = ��̂p: (2.13)away from 0. We apply Lemma 1. In its terminology,E�0 = (0; 0)>; D�[q]j�=0 = 2(�̂; �̂)> =2 E+0 ;12



the latter as the right-end slow-ow (p = 2q) coe�cient matrix,��̂=2 �̂�̂=2 0� ; (2.14)satis�es ��̂=2 �̂�̂=2 0���̂̂�� = (�̂=2)��̂̂�� + ��̂20� : (2.15)The unstable and stable manifolds thus break away from each other transversely uponincreasing � away from 0. Lemma 7 is proved. 2Lemma 2 is an immediate consequence ofLemma 8. If �0; �0 > 0 are su�ciently small, then the only parameter values ((�; !); �; �) 2S � [0; �0]� [0; �0] for which (2.4) has an unstable-to-stable bundle connection are givenby � = 1; � = 0; j!j = 1; � = 0:Upon variation of ((�; !); �; �) away from these critical values, the stable and unstablemanifolds whose intersections these connections are move away from each other trans-versely.Proof. We �rst note that for any c > 0 there is a ~c > 0 such that for all parametervalues satisfying j�j � c > 0 and 0 � �; � < ~c, there can be no USBCs. To see this, weconsider (2.5) for (�; �) = (0; 0), _p1 = q1_q1 = �p1_~qj = 0; (2.16)for this constant-coe�cients system the one-dimensional left-end unstable bundle connectsto the right-end stable bundle | this connection, and thus the non-existence of an USBC,are robust.We can hence restrict attention to those values ((�; !); �; �) 2 S � [0;1) � [0;1), forwhich �; �; � are near 0 (and correspondingly j!j is almost equal to 1). Now, writing suchvalues as (�; �; �) = (r2��; r3��; r4��)with ��2 + ��2 + j��j2 = 1 and r � 0 su�ciently small (2.17)and using scaling property (2.8), we write (2.6) as_p = �2���p + q +O(r��)_q = ��p+ ��w +O(r��)_w = ��p+O(r��)_z = O(r��) (2.18)
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and augment this system by adding the trivial equations_�� = 0;_�� = 0;_�� = 0;_r = 0: (2.19)The augmented system (2.18),(2.19) has the bundle connections corresponding to(p; q; w; z; ��; ��; ��; r) � (� 0; 0; 0; 0; 1; 0; 0; r)and we will be done once we know that this intersection of smooth invariant manifoldsis transverse for su�ciently small r. Now, Lemma 7 means exactly this transversality.Lemma 8 and thus Proposition 2 are proved. 23 Evans function: Outmost regimeIn this section we study (0.9) in the case (0.14). The coe�cient matrix of the (p; q)-partis � A(u�) I�(�I + iB!(u�) + �j!j2I) 0� : (3.1)We consider several subregimes.Inner part of outmost regime: r1 � � � r2 with r1; r2 arbitrary such that 0 < r1 < r2. Inthis regime (3.1) is uniformly close, for su�ciently small � > 0, to the constant-coe�cientshyperbolic family� A0 I�(�I + iB!;0 + �j!j2I) 0� ; ((�; !); �) 2 S+ � [r1; r2]: (3.2)Outer part of outmost regime: � � r2 with r2 su�ciently large.We consider two subcases.Subcase j!j > �0 with arbitrary �0. By rescaling q = �j!j~q and dividing the resultingvector�eld by �j!j, i.e. rescaling the independent variable, (3.1) can be written as�0 II 0� +O(1=�); (3.3)uniformly. Matrices (3.3) are uniformly hyperbolic, if r2 is large enough.Subcase j!j � �0 with su�ciently small �0 > 0. Scaling q = (�j�+�j!j2j)1=2~q and dividingthe resulting vector�eld by (�j�+ �j!j2j)1=2 turns (3.1) into� 0 I�I 0�+O(j!j+ 1p�); (3.4)with � = (� + �j!j2)j� + �j!j2j�1, again uniformly. For (�; !) 2 S, matrices (3.4) areuniformly hyperbolic, if �0 and r2 are su�ciently small respectively large.Proposition 3 is proved. 14



4 Lopatinski condition and transversal breakingWe �rst recapitulate a theorem by Zumbrun and Serre by formulating its proof via aslow-fast-dynamics argument.Theorem 2. [ZS] Consider the pro�le u of any Lax shock wave. Its Evans functionE(��; �!) and Lopatinski-Kreiss-Majda function �(�; �) are related to each other by theidentity ( @@�E(��; �!))j�=0 = ��(�; !); (�; !) 2 S (4.1)with � 6= 0 if and only if the intersection of the unstable and stable manifolds of the pro�leequation along the pro�le is transverse. There are 2n C 2n-valued continuous functionsv�1 ; : : : ; v�l ; w�1 ; : : : ; w�n�l and v+l ; : : : ; v+n ; w+1 ; : : : ; w+l�1of (�; (�; !)) 2 [0;1)� S such thatE = det(v�1 ; : : : ; v�l ; w�1 ; : : : ; w�n�l; v+l ; : : : ; v+n ; w+1 ; : : : ; w+l�1)and @@� det(v�1 ; : : : ; v�l ; w�1 ; : : : ; w�n�l; v+l ; : : : ; v+n ; w+1 ; : : : ; w+l�1)j�=0 (4.2)exists and is equal to the product of the two n� n determinants� = � det(�p(v�1 ); : : : ; �p(v�l ); �p(v+l+1); : : : ; �p(v+n ))j�=0 (4.3)and det(�[u] + i[f!(u)]; �q(w�1 ); : : : ; �q(w�n�l); �q(w+1 ); : : : ; �q(w+l�1))j�=0;while for � = 0, �q(w�1 ); : : : ; �q(w�n�l) and �q(w+1 ); : : : ; �q(w+l�1) span the unstable resp.stable space of, in the notation of Sec. 0,�(�I + iB!(u�))(A(u�)� sI)�1;respectively.Proof. The equations for the shock pro�le and the eigenvalue problem areu0 = f(u)� su� cp0 = (A(u)� sI)p+ qq0 = �(�I + iB!(u) + �j!j2I)p: (4.4)Consider the unstable and stable solution spaces via the values U(0); S(0) 2 G2nn of their(p; q)-component at 0 (as a value of the independent variable. By the general theory[AGaJ, Z, ZS, GMWZ1] and the continuous dependence of the frozen-end invariant spaceswith respect to the parameters, U(0) and S(0) can be represented by basesv�1 ; : : : ; v�l ; w�1 ; : : : ; w�n�l and v+l ; : : : ; v+n ; w+1 ; : : : ; w+l�115



which are continuous functions of (�; (�; !)). We use a particular decomposition into"fast" vectors v�i and "slow" vectors w�j which is adapted to the analysis of the limit� ! 0. The starting point of this decomposition is the observation that system (4.4)is singularly perturbed for � small. Standard geometric singular perturbation theory [F]implies the existence of two n-dimensional normally hyperbolic slow manifoldsu = u�; p = �(A� � sI)�1q +O(�); q 2 C n :The corresponding slow ows on C n are described by_q = �(�I + iB!(u�))(A(u�)� sI)�1q +O(�) : (4.5)The fast ow away from the slow manifolds is a smooth O(�) perturbation of the layerproblem u0 = f(u)� su� cp0 = (A(u)� sI)p+ qq0 = 0: (4.6)In particular, the q-components of the unstable resp. stable solutions at 0 di�er from theirasymptotic values at u� resp. u+ by O(�).In the terminology of geometric singular perturbation theory [F, Sz], the unstable / stablesolution spaces correspond to fast unstable / stable �bres, of the slow unstable space E�;uslowat u� and the slow stable space E+;sslow at u+, respectively; the corresponding sections at 0are U(0) = (Fu(E�u ))j0; S(0) = (F s(E+s ))j0:We choose v�1 ; : : : ; v�l ; and v+l ; : : : ; v+n as bases for the corresponding sub�bresUfast(0) = Fu(f0g)j0 ; Sfast(0) = F s(f0g)j0 ;as the fast ow depends smoothly on the parameters, these vector �elds can be assumedto be smooth functions of (�; (�; !)). Complementing this, the above considerations implythat w�1 ; : : : ; w�n�l and w+1 ; : : : ; w+l�1 can be chosen such that�q(w�i ) = r�i +O(�);where r�1 ; : : : r�n�l and r+1 ; : : : r+l�1are bases of the unstable / stable spaces of the matrices�(�I + iB!(u�))(A(u�)� sI)�1;respectively. Recall that the vectors r�i are precisely the vectors used in the de�niton ofthe Lopatinski-Kreiss-Majda function.For the computation of (4.2), recall now that | the pro�le u lying in the intersection ofthe unstable manifold of u� and the stable manifold of u+ | for � = 0, the vector u0(0)belongs to both Ufast(0) and Sfast(0); we express this asv�l j�=0 = v+l j�=0 = u0(0): (4.7)16



Up to a sign, E is equal todet(v�1 ; : : : ; v�l ; v+l+1; : : : ; v+n ; v�l � v+l ; w�1 ; : : : ; w�n�l; w+1 ; : : : ; w+l�1)By virtue of (4.7), the derivative @@�E at � = 0 exists even though the vectors w�i are onlycontinuous in �, and is equal to the product of (4.3) anddet(�q( @@�(v�l � v+l ))j�=0; r�1 ; : : : ; r�n�l; r+1 ; : : : ; r+l�1)The exponential decay of u, v�l at �1, the smoothness of v�l with respect to �, and theform of the equations (4.4) imply�q( @@�v�l )j�=0 = Z 0�1(�I + iB!(u))u0 and �q( @@�v+l )j�=0 = Z 01 (�I + iB!(u))u0and thus �q( @@�(v�l � v+l ))j�=0 = �[u] + i[f!] :Finally, as for q = 0 the second equation in (4.6) is the variational equation associatedwith the �rst one, � does indeed play the claimed rôle as a transversality coe�cient. TheTheorem is proved. 2By a close analogy, we can now give a quickProof of Lemma 1. As in the speci�c situation of Theorem 2, we now �nd k + mC k+m -valued continuous functionsv�1 ; : : : ; v�l ; w�1 ; : : : ; w�r and v+l ; : : : ; v+k ; w+1 ; : : : ; w+m�r�1of � 2 [0; �0], with analogous meanings | notably the w�j now spanning the E�� |, suchthat D = @@� det(v�1 ; : : : ; v�l ; w�1 ; : : : ; w�r ; v+l ; : : : ; v+k ; w+1 ; : : : ; w+m�r�1)j�=0exists, D equals the product of the k � k determinantD1 = � det(�p(v�1 ); : : : ; �p(v�l ); �q(v+l+1); : : : ; �p(v+k ))j�=0times the m�m determinantD2 = det(D�[q]j�=0; �q(w�1 ); : : : ; �q(w�r ); �q(w+1 ); : : : ; �q(w+m�r�1))j�=0;and the desired transversality holds if D 6= 0:Now, D1 does not vanish because the orbit as such was assumed to be transverse. Thedesired transversality thus holds if D2 6= 0:However, this inequality just rephrases the conditionE�0 � CD� [q]j�=0 � E+0 = C mmentioned at the end of the statement of Lemma 1. Part (i) of Theorem 1 is proved.17
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