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Abstract

We investigate a moving boundary problem with a gradient flow structure which
generalizes Hele-Shaw flow driven solely by surface tension to the case of noncon-
stant surface tension coefficient taken along with the liquid particles at boundary.
The resulting evolution problem is first order in time, contains a third-order non-
linear pseudodifferential operator and is degenerate parabolic. Well-posedness
of this problem in Sobolev scales is proved. The main tool is the construction
of a variable symmetric bilinear form so that the third-order operator is semi-
bounded with respect to it. Moreover, we show global existence and convergence
to an equilibrium for solutions near trivial equilibria (balls with constant surface
tension coefficient). Finally, numerical examples in 2D and 3D are given.
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1. Introduction

It is the aim of the present paper to consider the generalization of the well-investigated

Hele-Shaw flow problem to the case of nonconstant surface tension coefficient (or surface

energy density). While experiments on such situations have been reported in the litera-

ture (e.g. [10]), theoretical investigations of this seem to be lacking. A first step in this

direction has been made in [8] where short-time solvability was proved for a Hele-Shaw

problem with nonconstant surface tension coefficient and so-called kinetic undercool-

ing. Here we discuss the problem without this regularization, using again the simple

assumption that the surface energy density is convectively transported along the moving

boundary.

This leads to the following moving boundary problem: For a given bounded domain

Ω(0) ⊂ R
m and a given non-negative function γ0 defined on ∂Ω(0) one looks for a family
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of C2-domains Ω(t) ⊆ R
m, t > 0 and functions ϕ(·, t) ∈ C2

(
Ω(t)

)
, ψ(·, t) ∈ C2

(
Ω(t)

)
,

γt ∈ C2
(
Γ(t)

)
such that

∆ϕ(·, t) = 0 in Ω(t),

∆ψ(·, t) = 0 in Ω(t),

∂nψ(·, t) = ∆Γ(t)γt on Γ(t),

ϕ(·, t) = γtκ(t) − ψ(·, t) on Γ(t),

Vn = ∂nϕ(·, t) on Γ(t).






(1.1)

Here κ(t) is the (m− 1)-fold mean curvature of Γ(t), with the sign taken such that κ is

negative for convex domains, ∂n is the outer normal derivative and Vn(t) is the (outer)

normal velocity of Γ(t), determining its time evolution.

This problem generalizes the well-known Hele-Shaw flow with surface tension regular-

ization in the following way: Any solution represents a gradient flow with respect to the

usual energy functional

E(γ,Γ) :=

∫

Γ

γ dΓ,

where γ > 0 is now variable on Γ, and to the Riemannian metric gΓ on the infinite-

dimensional manifold M of surfaces Γ enclosing a fixed volume given by

gΓ(v1, v2) :=

∫

Ω

∇ϕ1∇ϕ2 dx (1.2)

where the ϕi, i = 1, 2 are (weak) solutions of the Neumann problems

∆ϕi = 0 in Ω, ∂nϕi = vi on Γ.

The functions vi can be identified with tangent vectors of M ; note that the conservation

of volume implies
∫
Γ vi = 0 dΓ. For more details and references see [1, 5, 8]. Kinetic

undercooling regularization corresponds to adding in (1.2) a boundary integral term

β
∫
Γ v1v2 dΓ with β > 0, this case is discussed in [8].

As mentioned already, we assume that the values of the function Γ are transported

with the liquid particles: Introducing Lagrangian coordinates x = x(ξ, t), ξ ∈ Γ(0)

corresponding to the velocity field via

∂tx(ξ, t) = ∇ϕ
(
x(ξ, t), t

)
for t ≥ 0, x(ξ, 0) = ξ, (1.3)

we obtain that x = x(·, t) is a diffeomorphism from Γ(0) onto Γ(t), and the transport

law for γt takes the form

γt

(
x(ξ, t)

)
= γ0(ξ), ξ ∈ Γ(0), t ≥ 0. (1.4)

This assumption is reasonable, for example, when γ depends on temperature and heat

diffusion is negligible compared to convection. While it certainly oversimplifies the physi-

cal situation in the case when e.g. surfactants play a role, it seems that the mathematical

character of the problem is essentially the same there as in our case. Note, however, that

the situation here is qualitatively different from other models like anisotropic Hele-Shaw

flow (cf. [4]) because in our case, the evolution is not determined solely by the shape

of the evolving domain but there is a coupling with a transport problem in the moving

boundary.
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Our approach is based on reformulating (1.1) as a vector-valued evolution equation for

a diffeomorphism mapping a fixed reference manifold to the moving boundary. In this

way, the transport problem for γ is simply solved by prescribing a fixed smooth positive

function on this reference manifold and pushing it forward to the moving boundary.

The paper is organized as follows:

After announcing our main results on short-time existence in Section 2, we start the

proofs in Section 3 by investigating mapping properties of the occurring nonlocal oper-

ators in Sobolev scales. In particular, we derive flexible multilinear estimates for their

Fréchet derivatives in low norms and extend them to higher norms by a generalized chain

rule based on invariance properties. For related considerations concerning the analytic

dependence of the Dirichlet-Neumann operator on the domain we refer to [3] and the

references given there. Section 4 is devoted to the proof of the crucial estimate providing

the semiboundedness of the evolution operator with respect to a specifically constructed

variable inner product.

Technically, we use the natural decomposition of the right hand side into a second

order operator mapping vectors to scalars and a first order operator mapping scalars to

vectors. Furthermore, we use the fact that the right hand side is -in a sense to be made

precise later - coercive with respect to the normal component. The semiboundedness

enables us to invoke an abstract existence result based on Galerkin approximations and

Rothe’s method. This is done in Section 5. In this way, we prove our main result

(Theorems 2.1 and 2.2) on short-time wellposedness of the moving boundary problem

(1.1),(1.3),(1.4). We will omit certain details as they are parallel to the discussion in [8].

However, the right hand side of the evolution problem obtained there is of order two.

As we are concerned here with an evolution equation whose right hand side is of order

three, we have to refine the construction from [8] by including certain lower order terms.

Differing from the situation there, here we have to demand strict positivity of γ because

its inverse γ−1 enters one of these terms.

Finally, in Section 6 we investigate the evolution near the equilibrium solutions given

by balls with constant γ. In this situation, Theorem 6.8 gives global existence in time

and the evolving domain approaches a nontrivial equilibrium configuration depending

on the given (nonconstant) γ and the initial domain. In contrast to the classical case

of constant γ where the equilibria are given only by balls, any shape near a ball occurs

as an equilibrium configuration for a certain function γ near the constant. Due to the

degeneracy of our problem, the proof of long-time existence is more involved compared

to the known proofs for the case of constant γ, cf. [6].

2. Statement of the local existence results

We list some notation. C,C1, . . . etc. denote generic constants; their dependences on

other quantities is only indicated if not obvious from the context. Let E ⊆ R
m, m ≥ 2

be a bounded domain with smooth boundary S := ∂E and ν the outer unit normal

on S. For M = S or M = E, we make constant use of the usual L2-based Sobolev

spaces Hs(S), Hs(S,Rm) of order s with values in R and R
m, respectively. The norms

of these spaces will be denoted by ‖ · ‖M
s ; for M = S the upper index M is dropped in
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most cases. When Fréchet derivatives of operator-valued mappings are considered, the

additional arguments describing the variations are written in accolades ({}).
Now, as already mentioned in the introduction, we reformulate the moving boundary

problem (1.1) - (1.4) by describing Γ(t) as an embedding u(·, t) : S → R
m such that the

curves t 7→ u(y, t) for fixed y ∈ S are trajectories belonging to the velocity field and γt is

constant along these curves. This approach enables us to consider γt as a known function

during the evolution at the cost of describing the moving boundary by m functions. To

do so, let

U :=
{
u : S → R

m
∣∣ u = w|S with w ∈ Diff(Ē,Ωu ∪ Γu)

}
(2.1)

where

Ωu = w(E) and Γu = ∂Ωu = u(S).

Throughout this paper, we use the abbreviation

Us := U ∩Hs(S,Rm).

Now, (1.1) - (1.4) is reduced to the following Cauchy problem, which will be investigated

in the sequel: For given u0 ∈ Us, s sufficiently large, we look for T > 0 and a mapping

[0, T ] 3 t 7→ u(t) ∈ Us, such that

u′(t) = F
(
u(t)

)
, t ∈ [0, T ], (2.2)

u(0) = u0. (2.3)

Thereby, for u ∈ U , we have set

F (u) := F (u)G (u) with G (u) := H(u) +G(u), (2.4)

where, for any given function f on S,

F (u)f := ∇ϕ(u, f) ◦ u (2.5)

and ϕ = ϕ(u, f) denotes the solution of the Dirichlet problem

∆ϕ = 0 in Ωu, ϕ = f ◦ u−1 on Γu. (2.6)

Further, H(u), G(u) are given by

H(u) := γ(κΓu
◦ u), G(u) := −A(u)∆(u)γ. (2.7)

Here γ ∈ C∞(S) is a fixed and given positive function, κΓu
denotes the mean curvature

of Γu with sign and scaling conventions as above and

∆(u)w := ∆Γu
(w ◦ u−1) ◦ u (2.8)

is the pullback to S of the Laplace-Beltrami operator ∆Γu
on Γu and

A(u)f := ϕN

(
u, f) ◦ u (2.9)

the Neumann-Dirichlet operator, i.e. ϕN = ϕN (u, f) solves the Neumann problem

∆ϕN = 0 in Ωu, ∂nϕN = c+ f ◦ u−1 on Γu,
∫
Γu

ϕN dx = 0. (2.10)

The constant c = c(u, f) ∈ R in (2.10) is determined by the solvability condition
∫
Γu

(f ◦ u+ c) dΓu = 0; (2.11)
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clearly c(u, f) = 0 for f = ∆(u)γ. For fixed smooth γ on S, the mapping u 7→ H(u)

constitutes a quasi-linear second order differential operator on S. Moreover, the solutions

of the boundary value problems (2.6), (2.10) depend smoothly on the domain Ωu, i.e. on

u ∈ Hs, s > (m+1)/2 and f 7→ F (u)f , f 7→ A(u)f represent pseudodifferential operators

of order one and minus one, respectively. In particular, G is a pseudodifferential operator

of lower order than H and may be considered as a correction term to ensure the gradient

flow structure of the evolution problem. We will show later that

[u 7→ F (u)] ∈ C∞
(
Us, H

s−3(S,Rm)
)

(2.12)

for s > (m+ 3)/2, s ≥ 3. Now we are in position to formulate our main results.

Theorem 2.1. (Short-time existence and uniqueness.)

Fix an even integer s0 > (m + 7)/2, s0 ≥ 6 and assume γ ∈ C∞(S) strictly positive on

S. Let s ≥ s0 be an even integer and u0 ∈ Us. Then there exist T > 0 and an unique

solution

u ∈ C
(
[0, T ], Us

)
∩ C1

(
[0, T ], Hs−3(S,Rm)

)
(2.13)

of the initial value problem (2.2), (2.3). Additionally, any given ū0 ∈ Us0 has a suitable

Hs0 -neighborhood K, such that for initial values u0 varying in K ∩Hs, there are T > 0

and C independent of u0 such that

‖u(t)‖s ≤ C(1 + ‖u(0)‖s) for all t ∈ [0, T ]. (2.14)

Theorem 2.2. (Regularity and continuous dependence on initial values.)

Under the assumptions of Theorem 2.1 let u be a any solution to (2.2) in the class (2.13)

with some T > 0. Then there holds:

(i) u(0) ∈ Hs+1(S,Rm) implies u(t) ∈ Hs+1(S,Rm) for all t ∈ [0, T ].

(ii) Assume un
0 → u0 in Hs(S,Rm) for n → ∞. Then, for n sufficiently large, there

exist solutions un of (2.2) in the class (2.13) with initial values un(0) = un
0 and

there holds un → u in C
(
[0, T ], Hs(S,Rm)

)
.

The proof of both theorems is given in Section 5.

Remarks: The restriction to even integers s is due purely to the construction of our

bilinear form involving integer powers of a generalized Laplacian. This restriction can

be lifted afterwards by using the nonlinear interpolation result given in [2], Proposition

A.1 and Remark A.2. The dimension independent restriction s0 ≥ 6 is needed as we use

dual estimates for elliptic boundary value problems in norms with negative index.

3. Smooth domain dependence of the non-local operators

We start by gathering some properties of the nonlocal operators F , A, and G defined

by (2.4)–(2.11). The multilinear estimates for the Fréchet derivatives can be seen as

counterparts to the product estimate

‖u1 . . . uk‖t ≤ C‖u1‖s1 . . . ‖uk‖sk

holding if 0 ≤ t ≤ si ≤ σ, σ > (m − 1)/2,
∑k

i=1 si ≥ t + (k − 1)σ. Here, however, we

have to deal with nonlocal operators of various orders involving differentiations and the

solution of elliptic BVP.
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The statements and their proofs are essentially parallel to Corollary 4.4 and Lemma 4.5

in [8], therefore proofs will be omitted. Note, however, that f 7→ F (u)f is an operator

of order one here as (2.6) is a Dirichlet problem. In fact, the normal component of F

is given by the Dirichlet-Neumann operator while the tangential component is given by

the tangential gradient of f .

Due to the variability in the choice of the si, the estimates will be flexible enough to

control various lower order terms that will occur in the sequel.

Lemma 3.1. (i) Let s > (m+ 1)/2 and t ∈ [1, s] be given. Then

F ∈ C∞
(
Us,L (Ht(S), Ht−1(S,Rm)

)
,

A ∈ C∞
(
Us,L (Ht−1(S), Ht(S,Rm)

)

and for any u ∈ Us and any choice of s1, . . . sk+1 ∈ [t, s] with s1+. . .+sk+1 ≥ t+ks

there exists a constant C > 0 such that for all f ∈ Hs(S), and all u1, . . . , uk ∈
Hs(S,Rm) there holds

∥∥F (k)(u){u1, . . . , uk}f
∥∥

t−1
≤ C‖u1‖s1 · · · ‖uk‖sk

‖f‖sk+1
(3.1)

∥∥A(k)(u){u1, . . . , uk}f
∥∥

t
≤ C‖u1‖s1 · · · ‖uk‖sk

‖f‖sk+1−1 (3.2)

(ii) Let s > (m+ 3)/2 and t ∈ [2, s] be given. Then

G ∈ C∞
(
Us, H

s−2(S)
)

and for any u ∈ Us and any choice of s1, . . . sk ∈ [t, s] with s1 + . . .+ sk+1 ≥ t+ ks

there exists a constant C > 0 such that for all u1, . . . , uk ∈ Hs(S,Rm) there holds
∥∥G

(k)(u){u1, . . . , uk}
∥∥

t−1
≤ C‖u1‖s1 · · · ‖uk‖sk

. (3.3)

The constants may be chosen independently of u as u varies in bounded and weakly

closed subsets of Us.

Remark 3.2. Note that a bounded subset of Hs(S) is weakly closed if and only if it is

closed in Ht(S) for some t < s. Then it is compact in all H t(S) with t < s.

Remark 3.3. The estimate (3.3) is not optimal as we do not use the quasilinear character

of G . For our purposes, however, it will be sufficient.

Note that Lemma 3.1 implies the smoothness assertion (2.12).

Next, we prove some related estimates in norms with negative index. The use of such

norms implies a loss of flexibility. Essentially, these estimates are parallel to product

estimates of the type

‖u1 . . . uk‖t ≤ C‖u1‖s . . . ‖uk−1‖s‖uk‖t,

t ∈ [−s, s], s > (m− 1)/2, which can be proved by duality arguments if t < 0.

Lemma 3.4. Assume s > (m+ 1)/2, s ≥ 4, t ∈ [−3, s− 1]. Then

F ∈ C∞
(
Us,L (Ht+1(S), Ht(S))

)

A ∈ C∞
(
Us,L (Ht−1(S), Ht(S))

)
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and for u ∈ Us

‖F ′(u)u1‖t ≤ C‖u1‖s‖f‖t+1, (3.4)

‖A(u)f‖t ≤ C‖f‖t−1, (3.5)

‖A(k)(u){u1, . . . , uk}f‖t ≤ C‖u1‖s . . . ‖uk‖s‖f‖t−1, (3.6)

‖A(k)(u){u1, . . . , uk}f‖t ≤ C‖u1‖s . . . ‖uk−1‖s‖uk‖t‖f‖s, (3.7)

u1, . . . , uk ∈ Hs(S,Rm), k ∈ N. The constants C can be chosen independently of u as u

varies in bounded, weakly closed subsets of Us.

Proof. We will restrict ourselves to the assertions concerning A. Fix s0 ∈ ((m+1)/2, s)

and an extension operator E ∈ L (H t(S), Ht+1/2(E)), t > 0. Pick v ∈ Us and choose an

Hs0 -neighborhood Vs0 ⊂ Us and u0 ∈ C∞(E,Rm) such that

ũ := u0 + E (u− u0) ∈ Diff(E,Ωu).

This is possible by Lemma 4.1 in [8].

For u ∈ Vs0 , let the transformed operators L(u) and B(u) be defined by

L(u)ψ := ∂i(
√
ggij∂jψ), B(u)ψ := νi

√
ggij∂jψ,

where
√
g, gij are the volume element and the (inverse) coefficients of the metric on

E induced by ũ, respectively, and ν is the outer unit normal on S. We consider the

transformed boundary value problem

L(u)ψ = Φ1, B(u)ψ = ω(u)(Φ2 + c),

∫

s

ω(u)(Φ2 + c) dS =

∫

E

√
gΦ1 dx, (3.8)

c = c(u,Φ1,Φ2) ∈ R. Here ω(u) = dΓu/dS is the surface element belonging to the

transformation induced by u which is given by a nonlinear first-order differential operator

in ũ.

For τ > 0 and v ∈ L2(E) define

‖v‖τ := sup
z∈Hτ (E),‖z‖τ=1

∣∣∣∣
∫
vz dx

∣∣∣∣ .

(This differs from the usual norm in H−τ (E) := (Hτ
0 (E))′.) The BVP (3.8) is uniquely

solvable and ψ satisfies an estimate

‖ψ‖t + ‖ψ‖E
t+1/2 ≤ C

(
‖Φ1‖E

t−3/2 + ‖Φ2‖t−1

)
(3.9)

(cf. [7], Lemma 3.1).

As A(u)f is the trace of the solution ψ of (3.8) with Φ1 = 0, Φ2 = f , we get (3.5)

immediately from (3.9).

Note that A′(u){u1}f is given as the solution ψ′ of

L(u)ψ′ = −L′(u){u1}ψ,
B(u)ψ′ = −B

′(u){u1}ψ + ω′(u){u1}(f + c(u, 0, f)) + ω(u)∂uc(u, 0, f){u1}.

As f 7→ c(u, 0, f) and v 7→ ∂uc(u, 0, f){v} are given by smoothing operators, to obtain

(3.6) and (3.7) it is sufficient to use (3.9) and estimate either

‖L′(u){u1}ψ‖Ω
t−3/2 ≤ C

(
‖E u1‖Ω

t+1/2 + ‖u1‖t

)
‖ψ‖s+1 ≤ C‖u1‖t‖f‖s



8 M. Günther and G. Prokert

or

‖L′(u){u1}ψ‖Ω
t−3/2 ≤ C

(
‖ψ‖Ω

t+ 1
2

+ ‖ψ‖t

)
‖u1‖s ≤ C‖u1‖s‖f‖t−1,

together with analogous estimates for ‖B′(u)ψ‖t−1 and ‖ω′(u){u1}f‖t−1. The general

case follows now by induction over k, cf. [8], Lemma 4.5.

The estimate (3.4) can be obtained in a similar fashion, discussing a Dirichlet problem

instead of (3.8).

Finally, the uniformity of the estimates follows from the fact that bounded, weakly

closed subsets of Us are compact in Hs0(S).

We choose m smooth vector fields D1, . . . , Dm on S such that

span{D1, . . . , Dm} = Tx for all x ∈ S

and use the multi-index notation Dα = Dα1
1 . . .Dαm

m , α = (α1, . . . , αm) for higher order

derivatives; for simplicity we assume that (D1, . . . , Dm) coincides with the tangential

gradient on S. Note that, for s ≥ 0 integer, we can use

(u, v)s =
∑

|α|≤s

(Dαu,Dαv)L2(S)

as scalar product generating the norm in Hs(S). Moreover, as an immediate consequence

of the invariance properties
(
F (u)f

)
◦ τ = F (u ◦ τ)(f ◦ τ)

for any diffeomorphism τ on S, we have a differentiation rule which resembles Leibniz’

rule at an abstract level, cf. [8]: For any multi-index α and u ∈ Us, f ∈ Hs(S), s >

|α| + (m+ 1)/2 there holds

DαF (u)f =
∑

cβ1,...,βk+1
F (k)(u){Dβ1u, . . . , Dβku}Dβk+1f (3.10)

where the sum has to be extended over all integers k and systems of non-negative multi-

indices β1, . . . , βk+1 with

0 ≤ k ≤ |α|, 1 ≤ |β1|, . . . , |βk|, β1 + . . .+ βk+1 = α. (3.11)

The coefficients are non-negative integers, in particular, cα = cα,0 = 1.

Combining the differentiation rule for F with the estimate of the derivatives in lower

norms we obtain

Proposition 3.5. (i) Let s ≥ s0 > (m+ 1)/2, s integer, u ∈ Us. Then

‖F (u)f‖s−1 ≤ C
(
‖u‖s‖f‖s0 + ‖f‖s

)
(3.12)

with an uniform constant as long as u varies in Hs0- bounded and weakly Hs0 - closed

subsets of Us.

(ii) Assume additionally s ≥ s0 + 2 and let α be any multi-index with |α| = s. Writing

Dα = Dα1 . . . Dαs with |α1| = . . . = |αs| = 1, we have

DαF (u)f = F (u)Dαf + F ′(u){Dαu}f +

s∑

i=1

F ′(u){Dαiu}Dβif +Rα(u)f (3.13)
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where α = αi + βi and the remainder term allows the estimate

‖Rα(u)f‖0 ≤ C
(
‖u‖s‖f‖s0+1 + ‖f‖s−1

)
.

The constant can be chosen uniformly as u varies in Hs0+2- bounded, weakly Hs0+2-

closed subsets of Us.

Proof. We consider the more complicated situation (ii) only. According to (3.10), the

remainder term has a representation as a sum of terms

Iβ = F (k)(u){Dβ1u, . . . , Dβku}Dβk+1f,

where the multi-indices satisfy (3.11) and additionally

|β1|, . . . , |βk| ≤ s− 1, |βk+1| ≤ s− 2.

Hence k ≥ 1. For each of the terms Iβ , we will choose numbers θ1, . . . , θk+1 ∈ [0, 1] such

that θ1 + . . .+ θk+1 = 1 and set

si := (1 − θi)s0 + θi.

If k = 1 we choose θ1, θ2 such that θ1 + θ2 = 1 and |β2| = θ1 + θ2(s − 2). If k = 2 and

|β3| = 0 we choose θi := (|βi| − 1)/(s− 2) for i = 1, 2 and θ3 := 0. If k = 2 and |β3| ≥ 1

or k ≥ 3 we choose

θi := (|βi| − 1)/(s− 3) for i = 1, 2, 3, θi := |βi|/(s− 3) for i ≥ 4.

In all cases, we have

|βi| + si ≤ (1 − θi)(s0 + 2) + θis, i = 1, . . . , k,

|βk+1| + sk+1 ≤ (1 − θk+1)(s0 + 1) + θk+1(s− 1).

}
(3.14)

Set λ := θ1+ . . .+θk. Using (3.1) with t = 1, s = s0, (3.14), norm convexity, and Young’s

inequality we get

‖Iβ‖0 ≤ C‖u‖|β1|+s1
. . . ‖u‖|β1|+sk

‖f‖|βk+1|+sk+1

≤ C‖u‖k−1
s0+2

(
‖u‖s0+2‖f‖s−1

)1−λ(
‖u‖s‖f‖s0+1

)λ

≤ C‖u‖k−1
s0+2

(
‖u‖s0+2‖f‖s−1 + ‖u‖s‖f‖s0+1

)
,

and the result follows.

The following lemma provides an explicit characterization for the linearization of F ,

namely, up to terms of order zero in v,

F ′(u)f ≈ −F (u)(v · F (u)f).

This structure will be important later. It can be verified in an informal way by performing

the variation on Ωu itself instead of transforming the problem to the reference domain.

Lemma 3.6. Let s > (m+ 3)/2. Then for u ∈ Us, v ∈ Hs(S,Rm) and f ∈ Hs(S) there

holds

‖F ′(u){v}f + F (u)(v · F (u)f)‖0 ≤ C‖f‖s‖v‖0.
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Proof. From (2.5) we get

F ′
i (u){v}f = ∂iφ

′ ◦ u+ vj∂i∂jφ ◦ u

with φ = φ(u, f) from (2.6) and φ′ = φ′(u, f){v} given by

φ′(u, f){v}(x) = ∂ε(φ(u+ εv, f)(x))|ε=0, x ∈ Ωu.

The function φ′ satisfies

∆φ′ = 0 in Ωu, φ′ = −∇φ · v on Γu, (3.15)

therefore ∂iφ
′ ◦ u = −Fi(u)(v · F (u)f).

Parallel to the proof of Lemma 5.1 in [8] one obtains

‖vj∂i∂jφ ◦ u‖0 ≤ C‖v‖0‖φ(u, f)‖C2(Ωu) ≤ C‖f‖s‖v‖0.

This proves the assertion.

4. The main estimate

In this section we prove Hs- a priori estimates for the non-linear operator F w.r. to

variable bilinear forms which we define in the sequel. As already mentioned in the

introduction, these estimates are the main ingredient in the existence proof.

To begin with, for u ∈ Us, s > (m+ 1)/2 we define

P (u)v := v ·
(
n(u) ◦ u

)
, N(u)w := w

(
n(u) ◦ u

)
, (4.1)

Λ(u)w := ∇Γu
(w ◦ u−1) ◦ u (4.2)

as the euclidean scalar product and multiplication with outer normal n(u) of Γu and

pullback of tangential gradient ∇Γu
along Γu, respectively. Considered as operators in

v and w, the coefficients of P (u), N(u) and Λ(u) are smooth functions of u and its first

derivatives. Thus,

P (u) ∈ L
(
Ht(S,Rm), Ht(S)

)
, N(u) ∈ L

(
Ht(S), Ht(S,Rm)

)
, (4.3)

Λ(u) ∈ L
(
Ht(S), Ht−1(S,Rm)

)
(4.4)

depend smoothly on u ∈ Us for |t| ≤ s− 1 and |t− 1| ≤ s− 1, respectively. Clearly, the

operators P,N,Λ satisfy invariance properties as stated for F in [8]. As a consequence,

the differentiation rule (3.10) is also true for P,N,Λ; we make use of that without explicit

mention. Further recall that the pullback ∆(u)w of the Laplace Beltrami operator ∆Γu

on Γu according to (2.8) and the operator H(u) according to (2.7) may be expressed as

∆(u)w = Λi(u)
(
Λi(u)w

)
, H(u) = −γΛi(u)

(
ni(u) ◦ u

)
(4.5)

respectively.

In the further considerations of this section we fix s0 to be the smallest integer such

that s0 ≥ 6 and s0 > (m+ 7)/2 and set

Ũs := Us ∩K for all s ≥ s0

with a fixed Hs0 - bounded and weakly Hs0 -closed subset K ⊆ Us0 . Note that

1 ≤ C‖u‖s0 ≤ C ′‖u‖s, ‖u‖C3(S) ≤ C
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for all u ∈ Ũs, s ≥ s0.

Furthermore, we have the estimates

‖G (u)‖s−2, ‖F (u)‖s−3 ≤ C‖u‖s for all u ∈ Ũs, s ≥ s0,

and the operators defined in (4.3), (4.4) are bounded uniformly with respect to u ∈ Ũs.

Due to our choice of the differential operators Di the Laplace-Beltrami operator on the

compact reference manifold S is given by ∆0 := DiDi. It has an approximate inverse,

i.e. there is an operator ∆+
0 ∈ L

(
Hτ (S), Hτ+2(S)

)
, τ ∈ R, such that

∆0∆
+
0 = ∆+

0 ∆0 = id +Q0,

with a smoothing operator Q0 simply given by orthogonal projection in L2(S) onto

the subspace of functions which are constant on each connectivity component of S; in

particular, Q0 ∈ L (Hτ (S), Hσ(S)) for any σ, τ ∈ R. In the same manner, we define the

approximate inverse ∆+(u) for ∆(u). In this case we have

[u 7→ ∆+(u)] ∈ C∞
(
Us,L

(
Ht(S), Ht+2(S)

))
, t ∈ [0, s− 2]

and

∆(u)∆(u)+ = ∆(u)+∆(u) = id +Q(u), (4.6)

where Q(u) ∈ L
(
Hτ (S), Hσ(S)

)
for any σ ∈ R, τ ≥ 1− s, and the corresponding norms

are bounded independently of u ∈ Ũs.

Lemma 4.1. Let s ≥ s0 with s = 2k, k ∈ N and u ∈ Us. Then we have

∆k
0F (u) = F̃ (u)

(
G̃(u)(∆k

0u)
)

+ F (u)
(
Ra(u)

)
+Rb(u) (4.7)

where the abbreviations

F̃ (u)f := F (u)f + F0(u)f, G̃(u)v := γ∆(u)(P (u)v) +G1(u)v

have been used. Here f 7→ F0(u)f and v 7→ G1(u)v are operators of order zero and one,

respectively,

F0(u) ∈ L
(
Ht(S), Ht(S,Rm)

)
, G1(u) ∈ L

(
Ht(S,Rm), Ht−1(S)

)
, (4.8)

t ∈ [−1, s− 1] and t ∈ [−2, s− 3], respectively, and the remainder terms Ra, Rb satisfy

‖Ra(u)‖0 ≤ C‖u‖s−1, (4.9)

‖Rb(u)‖0 ≤ C
(
‖G̃(u)(∆k

0u)‖−1 + ‖F (u)‖s0−3‖u‖s + ‖u‖s−1

)
. (4.10)

The constants are independent of u and and the operator norms of F0(u) and G1(u) are

bounded independently of u as long as u varies in a set Ũs.

Proof. The operator F (u) vanishes on constants and, by elliptic regularity,

‖f‖s0−2 ≤ C‖F (u)f‖s0−3, u ∈ Ũs (4.11)

if f has zero mean value over S. We define

G̃ (u) := G (u) − 1

|S|

∫

S

G (u) dS. (4.12)
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Using Proposition 3.5, (ii), we write ∆k
0F (u) = ∆k

0F (u)G̃ (u) in the form

F (u)
(
∆k

0 G̃ (u)
)

+ F ′(u)
{
∆k

0u
}
G̃ (u) + 2

k−1∑

j=0

F ′(u)
{
Diu

}
∆j

0Di∆
k−1−j
0 G̃ (u) +R1(u)

= F (u)
(
∆k

0G (u)
)

+ F ′(u)
{
∆k

0u
}
G̃ (u) + 2kF ′(u)

{
Diu

}
Di∆

k−1
0 G (u) +R1(u) +R2(u).

According to this proposition and (4.11) R1(u) allows the estimate

‖R1(u)‖0 ≤ C
(
‖u‖s‖G̃ (u)‖s0−2 + ‖G̃ (u)‖s−1

)
≤ C

(
‖u‖s‖F (u)‖s0−3 + ‖G (u)‖s−1

)

For R2(u) we find from Lemma 3.1 (with t = 1)

‖R2(u)‖0 ≤ 2

k−1∑

j=0

∥∥F ′(u)
{
Diu, [∆

j
0, Di]∆

k−1−j
0 G (u)

}∥∥
0

≤ C
∑

i,j

∥∥[∆j
0, Di]∆

k−1−j
0 G (u)

∥∥
1
≤ C‖G (u)‖s−1.

Further, by Lemma 3.6 we have

F ′(u)
{
∆k

0u
}
G̃ (u) = −F (u)

(
∆k

0u · F (u)
)

+R3(u)

with

‖R3(u)‖0 ≤ C‖∆k
0u‖0‖G̃ (u)‖s0−2 ≤ C‖u‖s‖F (u)‖s0−3.

Defining F0(u) by

F0(u)v := 2kF ′(u)
{
Diu

}
Di∆

+
0 v,

we get

∆k
0F (u) =

(
F (u) + F0(u)

)(
∆k

0G (u) − ∆k
0u · F (u)

)
+R4(u)

with a remainder term

R4(u) = F0(u)
(
∆k

0u · F (u)
)

+R1(u) +R2(u) +R3(u) − 2kF ′(u){Diu}DiQ0∆
k−1
0 G̃ (u).

Hence, using
∥∥F0(u)

(
∆k

0u · F (u)
)∥∥

0
≤ C‖u‖s‖F (u)‖s0−3

and the above estimates for R1, R2, R3 we obtain

‖R4(u)‖0 ≤ C
(
‖G (u)‖s−1 + ‖u‖s‖F (u)‖s0−3

)
. (4.13)

Recall that G (u) depends linearly on γ. Slightly abusing notation, we write G (u)γ etc.

in the remaining part of this proof (see (6.6) below). Note that in analogy to (3.10), we

get (for sufficiently smooth u)

Dα
G (u)γ =

∑
cβ1,...,βk+1

G
(k)(u){Dβ1u, . . . , Dβku}Dβk+1γ

with (3.11) holding for k and the multiindices β1, . . . , βk+1. Applying this differentiation

rule, we get

∆k
0G (u)γ = G

′(u)
{
∆k

0u
}
γ + G1(u)γ +R5(u),

where G1(u) contains all terms where derivatives of u of order s − 1 and s − 2 occur.
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Consequently, it is a sum of terms of the forms

G
′(u)

{
∆j

0Di∆
k−1−j
0 u

}
Diγ, G

′′(u)
{
Diu,∆

j
0Di∆

k−1−j
0 u

}
γ,

with j ∈ {0, . . . , k − 1}, and

G
′(u){z}DiDlγ, G

′′(u){Diu, z}Dlγ, G
′′(u){DiDlu, z}γ, G

′′′(u){Diu,Dlu, z}γ,

with z := ∆j
0Di∆

µ
0Dl∆

k−2−j−µ
0 u and j, µ ∈ {0, . . . , k − 2}, j + µ ≤ k − 2. Using the

estimates (3.3) and the assumption s ≥ s0 > (m + 7)/2, one obtains from analogous

arguments as in the proof of Proposition 3.5, (ii)

‖R5(u)‖0 ≤ C‖u‖s−1. (4.14)

Writing in the above terms

∆k−1−j
0 u ≈ (∆+

0 )j+1∆k
0u, ∆k−2−j−µ

0 u ≈ (∆+
0 )j+µ+2∆k

0u (4.15)

up to smoothing remainder terms, we get

∆k
0G (u)γ = G

′(u)
{
∆k

0u
}
γ + G2(u){∆k

0u}γ +R6(u) (4.16)

with a first-order operator v 7→ G2(u){v}γ and a remainder term R6(u) satisfying the

estimate (4.14) again. Hence, using that the linearization of the mean curvature H(u)

has ∆(u)(P (u)v) as main part, i.e.

G
′(u){v}γ = γ∆(u)P (u)v + G3(u){v}γ (4.17)

with a first-order operator v 7→ G3(u){v}γ, we get the representation (4.7) with

G1(u)v := G2(u){v}γ + G3(u){v}γ − v · F (u)

and with the remainder terms

Ra(u) := R6(u), Rb(u) := R4(u) + F0(u)
(
R6(u)

)
.

Now the estimate (4.9) of Ra coincides with (4.14), whereas the estimate (4.10) of Rb

follows from

‖Rb(u)‖0 ≤ C
(
‖R4(u)‖0 + ‖R6(u)‖0

)

≤ C
(
‖G (u)‖s−1 + ‖u‖s‖F (u)‖s0−3 + ‖u‖s−1

)

by (4.13), (4.14) and

‖G (u)‖s−1 ≤ C
(
‖∆k

0G (u)‖−1 + ‖G (u)‖0

)

= C
(
‖G̃(u)(∆k

0u) +R6(u)‖−1 + ‖G (u)‖0

)

≤ C
(
‖G̃(u)(∆k

0u)‖−1 + ‖u‖s−1

)
.

The statements (4.8) are consequences of Lemma 3.4 and of (3.4). This becomes clear if

G1 is written out explicitly in terms of differential operators and Fréchet derivatives of

A.

Now fix s ≥ s0 with s = 2k, k ∈ N. Letting F0 and G1 as in Lemma 4.1 we set for

u ∈ Us

F̃ (u)v :=
(
F (u) + F0(u)

)
G̃(u)v.



14 M. Günther and G. Prokert

Further, for u ∈ Us let M(u) be the operator defined by

M(u)v := M0(u)v + M̃0(u)v, M̃0(u)v = M1(u)P (u)v +N(u)M2(u)v (4.18)

Here, the main part M0 of M is given by

M0(u)v := v − Λ(u)A(u)P (u)v (4.19)

with A from (2.9) (cf. [8]), whereas the lower order terms are given by

M1(u)w := −M0(u)F0(u)A(u)w, (4.20)

M2(u)v := ∆(u)+
(
γ−1G1(u)v

)
(4.21)

From (3.5) and (4.8) we get

M0(u) ∈ L
(
Ht(S,Rm), Ht(S,Rm)

)
, −4 ≤ t ≤ s− 2,

M1(u) ∈ L
(
Ht(S), Ht+1(S,Rm)

)
, −2 ≤ t ≤ s− 3

M2(u) ∈ L
(
Ht(S,Rm), Ht+1(S)

)
− 2 ≤ t ≤ s− 3.

The operators depend smoothly on u ∈ Us and have uniformly bounded norms as u

varies in Ũs.

Because of P (u)Λ(u) = 0 the operator M0(u) constitutes an isomorphism in L2(S,Rm)

with inverse

M0(u)
−1v = v + Λ(u)A(u)P (u)v. (4.22)

In particular, we have

c‖v‖0 ≤ ‖M0(u)v‖0 ≤ C‖v‖0, (4.23)

c‖v‖0 − C‖v‖−1 ≤ ‖M(u)v‖0 ≤ C‖v‖0 (4.24)

with suitable positive constants c, C independent of u ∈ Ũs and v ∈ L2. Moreover, after

a simple calculation we obtain
(
M0(u)F (u)f,M0(u)v

)
0

=
(
B(u)f, P (u)v

)
0
, (4.25)

where f 7→ B(u)f := P (u)(F (u)f) is the Dirichlet-Neumann operator.

For the sake of completeness, we gather some properties of B which we will need in the

sequel. We will use the commutator notation [Q1, Q2] := Q1Q2 −Q2Q1 for operators, in

particular, if f is a function we will write [f,Q]w := fQw −Q(fw). Note that property

b) is in fact the L2-symmetry of B(u) with respect to the measure induced from Γu.

Lemma 4.2. Assume u ∈ Ũs, f ∈ C1(S), w ∈ H2(S), v ∈ H1(S). Then:

a) If f ≥ α > 0 then ∫

S

fwB(u)w dS ≥ c‖w‖2
1/2 − C‖w‖2

0

with c = c(α) > 0, C = C(‖f‖C1). Moreover,

b) ∫

S

wB(u)v dS =

∫

S

ω(u)v B(u)(ω(u)−1w) dS,
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c)

‖B(u)w‖−2 ≤ C‖w‖−1,

d)

‖[f,B(u)]w‖0 ≤ C‖w‖0

with C = C(‖f‖C1),

e)

‖[Λi(u), B(u)]w‖0 ≤ C‖w‖1.

All constants are independent of u ∈ Ũs.

Proof. a) As in the proof of Lemma 3.4 we extend u to a diffeomorphism from E

to Ωu and denote the coefficients of the corresponding induced metric by gij and the

corresponding volume element by
√
g. Let ν denote the outer unit normal on S and let

E denote the harmonic extension from S into E. Let φ be the solution of the Dirichlet

problem

L(u)φ := ∂i(
√
ggij∂jφ) = 0 in E, φ|S = w.

Then

B(u)w = ω(u)−1νi
√
ggij∂jφ,

and by integration by parts
∫

S

fwB(u)w dS

=

∫

S

fφω(u)−1νi
√
ggij∂jφ dS =

∫

E

∂i(E (fω(u)−1)φ
√
ggij∂jφ) dx

=

∫

E

E (fω(u)−1)
√
ggij∂iφ∂jφ dx+

∫

E

∂i(E (fω(u)−1)φ
√
ggij∂jφ dx

≥ c‖φ‖E
1

2 − C‖φ‖E
1 ‖φ‖E

0 ≥ c‖φ‖E
1

2 − C‖φ‖E
0

2 ≥ c‖w‖2
1/2 − C‖w‖2

0.

The uniformity of these estimates with respect to u ∈ Ũs follows by a compactness

argument as in [8].

b) The assertion follows from transforming the integral to Γu, applying Green’s formula

and transforming back.

c) Using b), the assertion follows from a standard duality argument and the fact that

B(u) ∈ L (H2(S), H1(S)).

d) Maintaining the notation from the proof of a), we have

[f,B(u)]w = ω(u)−1νi
√
ggij(f∂jφ− ∂jψ)

where ψ satisfies

L(u)ψ = 0 in E, ψ|S = fw = fφ|S .
Therefore, by estimates parallel to Lemma 4.3 in [8],

‖[f,B(u)]w‖1/2 ≤ ‖ω(u)−1νi
√
ggij∂j(φE f − ψ)‖1/2 + C‖φ‖1/2

≤ C
(
‖L(u)(φE f)‖E

0 + ‖φ‖1/2

)
≤ C

(
‖φ‖E

1 + ‖φ‖1/2

)
≤ C‖w‖1/2.
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As both multiplication by f and B(u) are symmetric with respect to the L2-inner product

induced from Γu, we get by duality

‖[f,B(u)]w‖−1/2 ≤ C‖w‖−1/2,

and the result follows by interpolation.

e) We have, by the chain rule for the operators Dk,

[Λi(u), B(u)] = [αi
k(u)Dk, B(u)] = [αi

k(u), B(u)]Dk + αi
k(u)[Dk, B(u)]

= [αi
k(u), B(u)]Dk + αi

k(u)B′(u){Dku}.

The result follows now from b) and the estimate

‖B′(u){Dku}w‖0 ≤ C‖w‖1,

which is a simple consequence of (3.1).

The next lemma will be crucial in the proof of the main estimate as it will provide

coercivity for the normal component.

Lemma 4.3. There are positive constants c, C such that

(∆(u)+(γ−1w), B(u)w)0 ≤ −c‖w‖2
−1/2 + C‖w‖2

−2

for all u ∈ Ũs, w ∈ H1(S).

Proof. Set z := ∆(u)+(γ−1w). Then w = γ∆(u)z + γQ(u)(γ−1z), see (4.6). By

Lemma 4.2, b),

I :=
(
∆(u)+(γ−1w), B(u)w

)
0
≤

(
z,B(u)γ∆(u)z

)
0

+ ‖z‖1‖B(u)(γQ(u)(γ−1z)‖−1

≤
(
ω(u)γ∆(u)z,B(u)(ω(u)−1z)

)
0

+ C‖w‖2
−1.

Setting z̃ := ω(u)−1z, γ̃ := ω(u)2γ and using (4.5) we get

I ≤
(
γ̃∆(u)z̃, B(u)z̃

)
0
+

(
ω(u)γ[ω(u),∆(u)]z̃, B(u)z̃

)
0
+ C‖w‖2

−1

≤
(
γ̃Λi(u)Λi(u)z̃, B(u)z̃

)
0

+ C‖z‖2
1 + C‖w‖2

−1.

By integration by parts, one obtains an estimate
∣∣∣∣
∫

S

Λi(u)f dS

∣∣∣∣ ≤ C

∫

S

|f | dS,

cf. [8], Eq. (5.5). This yields

I ≤ −(Λi(u)z̃,Λi(u)γ̃B(u)z̃)0 + C‖z‖2
1 + C‖w‖2

−1

≤ −(Λi(u)z̃, γ̃Λi(u)B(u)z̃)0 + C‖z‖1

∑

i

‖[Λi(u), γ]B(u)z̃‖0 + C‖w‖2
−1

≤ −(Λi(u)z̃, γ̃B(u)Λi(u)z̃)0 + C‖z‖1

∑

i

‖[B(u),Λi(u)]z̃‖0 + C‖w‖2
−1

≤ −c‖Λi(u)z̃‖2
1/2 + C‖z‖2

1 + C‖w‖2
−1

≤ −c‖z̃‖2
3/2 + C‖w‖2

−1 ≤ −c‖w‖2
−1/2 + C‖w‖2

−2,

where parts a) and e) of Lemma 4.2 have been used together with interpolation in the

scale Ht(S).
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In view of (4.23), (4.24) for every fixed u ∈ Us, s ≥ s0, s = 2k, k ∈ N and λ sufficiently

large (independent of u ∈ Ũs)

(v, w)s,u := λ
(
M0(u)v,M0(u)w

)
0

+
(
M(u)∆k

0v,M(u)∆k
0w

)
0

(4.26)

defines a scalar product on Hs(S,Rm) which is equivalent to the usual one.

The next two lemmas provide properties of the inner product (·, ·)s,u which will be

used when we apply the abstract existence result of Theorem 5.2 to our situation. They

are parallel to Lemmas 5.3 and 5.4 in [8], therefore the proofs are omitted here. Note

the uniformity of all estimates with respect to u ∈ Ũs.

Lemma 4.4. Assume s ≥ s0.

(i) There exists a C > 0 such that for all v ∈ Hs+3(S,Rm), w ∈ Hs(S,R), u ∈ Ũs

(v, w)s,u ≤ C‖v‖s+3‖w‖s−3.

(ii) There exist λ0, c0 > 0 such that for all v ∈ Hs+6(S,Rm), λ ≥ λ0

(
v, (−∆3

0 + λ)v
)

s,u
≥ c0‖v‖2

s+3.

As an immediate consequence of Lemma 4.4 (i) we get the existence of a continuous

bilinear form 〈·, ·〉s,u on Hs+3(S,Rm) ×Hs−3(S,Rm) compatible with (·, ·)s,u, i.e. there

holds 〈v, w〉s,u = (v, w)s,u for all v, w ∈ Hs+3(S,Rm). Further, we put for ε ∈ (0, 1]

〈v, w〉εs,u := 〈v, w〉s0 ,u + ε2〈v, w〉s,u. (4.27)

Lemma 4.5. We assume as above s ≥ s0, ε ∈ (0, 1].

(i) For fixed u ∈ Us, the mapping 〈·, ·〉εs,u : Hs+3(S,Rm) ×Hs−3(S,Rm) → R consti-

tutes a continuous, nondegenerate bilinear form whose restriction to H s+3(S,Rm)×
Hs+3(S,Rm) is symmetric.

(ii) With constants C > 0 independent of ε, u, v, w, one has for u,w ∈ Ũs and v ∈
Hs+3(S,Rm):

C−1
(
‖v‖2

s0
+ ε2‖v‖2

s

)
≤ 〈v, v〉εs,u ≤ C

(
‖v‖2

s0
+ ε2‖v‖2

s

)
, (4.28)

〈v, v〉εs,u ≤ 〈v, v〉εs,w

(
1 + C‖u− w‖s0−3

)
. (4.29)

(iii) Weak convergences un ⇀ u in Hs, wn ⇀ w in Hs−3 imply

〈v, wn〉εs,un
→ 〈v, w〉εs,u

for all v ∈ Hs+3.

Now we are prepared to formulate and prove the following a-priori estimates for F

w.r. to the bilinear forms (·, ·)s,u.

Proposition 4.6. Let s ≥ s0 be an even integer. Then
(
u,F (u)

)
s,u

≤ C‖u‖2
s (4.30)

for all u ∈ Ũs ∩ C∞(S,Rm) with a constant C independent of u.
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Proof. For later use, we prove the estimate in the following stronger form: For every

ε > 0 there exists a constant C(ε) such that
(
u,F (u)

)
s,u

≤ C‖u‖s

(
(ε+ ‖F (u)‖s0−3)‖u‖s + C(ε)‖u‖s−1

)
. (4.31)

Setting v := ∆k
0u and using the notations of Lemma 4.1 we have

(
M(u)∆k

0u,M(u)∆k
0F (u)

)
0

= I(u)v2 + J(u) +
(
M(u)v,M(u)Rb(u)

)
0

with

I(u)v2 :=
(
M(u)v,M(u)F̃ (u)v

)
0

J(u) :=
(
M(u)v,M(u)F (u)Ra(u)

)
0

¿From (4.10) we obtain
(
M(u)v,M(u)Rb(u)

)
0
≤ C‖u‖s

(
‖G̃(u)v‖−1 + ‖F (u)‖s0−3‖u‖s + ‖u‖s−1

)
.

To estimate J(u), we write this term as J1(u) + . . .+ J4(u) with

J1(u) =
(
M0(u)v,M0(u)F (u)Ra(u)

)
0
, J2(u) =

(
M̃0(u)v,M0(u)F (u)Ra(u)

)
0
,

J3(u) =
(
M0(u)v, M̃0(u)F (u)Ra(u)

)
0
, J4(u) =

(
M̃0(u)v, M̃0(u)F (u)Ra(u)

)
0
.

Using (4.25) and (4.9) we obtain for J1

J1(u) =
(
(B(u)Ra(u), P (u)v

)
0
≤ C‖Ra(u)‖0‖P (u)v‖1 ≤ C‖u‖s−1‖P (u)v‖1

As

P (u)v = ∆(u)+
(
γ−1(G̃(u)v −G1(u)v)

)
−Q(u)(P (u)v) (4.32)

we see from (4.8)

‖P (u)v‖1 ≤ C
(
‖G̃(u)v‖−1 + ‖v‖0

)
, (4.33)

and consequently

J1(u) ≤ C‖u‖s−1

(
‖G̃(u)v‖−1 + ‖u‖s

)
.

For J2 we have

J2(u) ≤ C‖M̃0(u)v‖1‖M0(u)F (u)Ra(u)‖−1 ≤ C‖v‖0‖Ra(u)‖0 ≤ C‖u‖s‖u‖s−1,

and the same estimates are valid for J3, J4, thus

J(u) ≤ C‖u‖s−1

(
‖G̃(u)v‖−1 + ‖u‖s

)
.

Further, we decompose I according to I(u)v2 = I1(u)v
2 + . . . + I4(u)v

2 in the same

manner as J , i.e.

I1(u)v
2 =

(
M0(u)v,M0(u)F̃ (u)v

)
0
, I2(u)v

2 =
(
M̃0(u)v,M0(u)F̃ (u)v

)
0
,

I3(u)v
2 =

(
M0(u)v, M̃0(u)F̃ (u)v

)
0
, I4(u)v

2 =
(
M̃0(u)v, M̃0(u)F̃ (u)v

)
0

and estimate each term separately. Using (4.25) again, the term I1 may be written as

I1(u)v
2 =

(
M0(u)v,M0(u)F (u)G̃(u)v

)
0

+
(
M0(u)v,M0(u)F0(u)G̃(u)v

)
0

=
(
P (u)v,B(u)G̃(u)v

)
0

+
(
M0(u)v,M0(u)F0(u)G̃(u)v

)
0
.

In the first summand we insert (4.32) and use
∣∣(Q(u)P (u)v,B(u)G̃(u)v

)
0

∣∣ ≤ C‖v‖0‖G̃(u)v‖−1,
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and by Lemma 4.3
(
∆(u)+(γ−1G̃(u)v), B(u)G̃(u)v

)
0
≤ −c0‖G̃(u)v‖2

−1/2 + C‖G̃(u)v‖2
−1.

Remembering the definitions (4.20), (4.21) of M1 and M2, we have
(
M0(u)v,M0(u)F0(u)G̃(u)v

)
0

= −
(
M0(u)v,M1(u)B(u)G̃(u)v

)
0
,

(
∆(u)+(γ−1G1(u)v), B(u)G̃(u)v

)
0

=
(
M2(u)v,B(u)G̃(u)v

)
0
,

and consequently we arrive at

I1(u)
2v ≤ −

(
M2(u)v,B(u)G̃(u)v

)
0
−

(
M0(u)v,M1(u)B(u)G̃(u)v

)
0

− c0‖G̃(u)v‖2
−1/2 + C

(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1

(4.34)

From Lemma 4.2, c) we get F ∈ L (H−1(S), H−2(S,Rm)) and therefore for I4 we have

the estimate

|I4(u)v2| ≤ C‖M̃0(u)v‖1‖M̃0(u)F̃ (u)v‖−1

≤ C‖v‖0‖(F (u) + F0(u))G̃(u)v‖−2 ≤ C‖v‖0‖G̃(u)v‖−1,
(4.35)

where (4.8) has been applied again. Further, concerning I3 we have

I3(u)v
2 =

(
M0(u)v, M̃0F (u)G̃(u)v

)
0

+
(
M0(u)v, M̃0F0(u)G̃(u)v

)
0

where the last summand allows the estimate
∣∣(M0(u)v, M̃0(u)F0(u)G̃(u)v

)
0

∣∣ ≤ C‖v‖0‖‖G̃(u)v‖−1.

Remembering M̃0(u) = M1(u)P (u) +N(u)M2(u), the first summand is written
(
M0(u)v, M̃0(u)F (u)G̃(u)v

)
0

=
(
M0(u)v,M1(u)B(u)G̃(u)v

)
0

+
(
P (u)v,M2(u)F (u)G̃(u)v

)
0
.

Using (4.33) we get
∣∣(P (u)v,M2(u)F (u)G̃(u)v

)
0

∣∣ ≤ C‖P (u)v‖1‖G̃(u)v‖−1

≤ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1,

and consequently

I3(u)v
2 ≤

(
M0(u)v,M1(u)B(u)G̃(u)v

)
0

+ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1. (4.36)

Arguing along the same lines for I2 we obtain

I2(u)v
2 =

(
M̃0(u)v,M0(u)F (u)G̃(u)v

)
0

+
(
M̃0(u)v,M0(u)F0(u)G̃(u)v

)
0
,

where again
∣∣(M̃0(u)v,M0F0(u)G̃(u)v

)
0

∣∣ ≤ C‖v‖0‖G̃(u)v‖−1

and
(
M̃0(u)v,M0(u)F (u)G̃(u)v

)
0

=
(
M2(u)v,B(u)G̃(u)v

)
0

+
(
M1(u)P (u)v,M0(u)F (u)G̃(u)v

)
0
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with
∣∣(M1(u)P (u)v,M0(u)F (u)G̃(u)v

)
0

∣∣

≤ ‖M1(u)P (u)v‖2‖M0(u)F (u)G̃(u)v‖−2 ≤ C‖P (u)v‖1‖G̃(u)v‖−1

≤ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1.

Thus we have

I2(u)v
2 ≤

(
M2(u)v,B(u)G̃(u)v

)
0

+ C
(
‖v‖0 + ‖G̃(u)v‖−1

)
‖G̃(u)v‖−1. (4.37)

Summarizing, we get

(u,F (u))s,u ≤ −c1‖G̃(u)v‖2
−1/2 + C1

(
‖G̃(u)v‖2

−1 + ‖u‖s(‖G̃(u)v‖−1

+‖F (u)‖s0−3‖u‖s + ‖u‖s−1)
)

and, estimating further

‖u‖s‖G̃(u)v‖−1 ≤ ε

C1
‖u‖2

s + C2(ε)‖G̃(u)v‖2
−1,

‖G̃(u)v‖2
−1 ≤ c1

C1(1 + C2(ε))
‖G̃(u)v‖2

−1/2 + C(ε)‖G̃(u)v‖2
−3,

‖G̃(u)v‖2
−3 ≤ C‖u‖2

s−1,

we obtain (4.31).

Remark 4.7. Reinspecting the estimates in the previous proofs it is straightforward to

check that for fixed s ≥ s0 the occurring constants, in particular in (4.30), (4.31), are

independent of γ as long as γ varies in some fixed set

{
γ ∈ C∞(S) | γ ≥ γ∗ > 0, ‖γ‖s1 ≤M

}
(4.38)

with some sufficiently large s1 = s1(s).

Using Lemma 3.6, we write for u ∈ Ũs, v ∈ Hs, s ≥ s0

F
′(u)v = F (u)

(
γ∆(u)(P (u)v) +G2(u)v

)
+R(u)v (4.39)

where v 7→ G2(u)v := G3(u)v − F (u) · v and v 7→ R(u)v are operators of order one and

zero, respectively. Note that F ′(u) coincides with F̃ (u) if G1 is replaced by G2 and F0

is replaced by 0. Hence, defining (cf. (4.18)-(4.21))

M3(u) := ∆(u)+(γ−1G2(u)v), M̃(u) := M0(u) +M3(u),

we find that M̃ has the same properties as M above, and we obtain, parallel to (4.31),

the following estimate which will be used in the uniqueness proof:

Lemma 4.8. Let s ≥ s0. Then there exists a constant C such that for all u ∈ Ũs,

v ∈ Hs we have
(
M̃(u)F ′(u)v, M̃(u)v

)
0
≤ C‖v‖2

0.
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5. Proof of short time existence and uniqueness

We are ready now to prove our main results as announced in Theorems 2.1 and 2.2. As

the existence proof is in some respects analogous to the corresponding considerations in

[8], we restrict ourselves to an outline and refer to that paper for the details.

Fix an even integer s0 > (m + 7)/2, s0 ≥ 6 and let s ≥ s0 be an even integer as

well. Let Ũs be defined as above. The notations Cw([0, T ], X) and C1
w([0, T ], X) will

denote the spaces of weakly continuous and weakly continuously differentiable functions,

respectively, with values in some subset X of a normed space.

At first an estimate which provides uniqueness and Lipschitz continuous dependence

on the initial value in the L2-norm is given:

Proposition 5.1. Let u, v ∈ Cw([0, T ], Ũs0)∩C1
w([0, T ], Hs0−3(S,Rm)) be two solutions

of (2.2). Then

‖v(t) − u(t)‖0 ≤ C‖v(0) − u(0)‖0 (5.1)

with C depending only on Ũs0 and on T .

Proof. Set w(t) := v(t) − u(t) and note that

w(t) ∈ C([0, T ], Hσ(S,Rm)) ∩ C1([0, T ], Hσ−3(S,Rm))

for σ < s0. In particular, the map

t 7→ g(t) := ‖M̃(u(t))w(t)‖2
0

is differentiable and has the derivative

g′(t) = 2
(
M̃ ′(u(t)){u′(t)}w(t), M̃ (u(t))w(t)

)
0

+2
(
M̃(u(t))(F (v(t)) − F (u(t)), M̃ (u(t))w(t)

)
0
.

To estimate the first term we note that, parallel to the estimates in Lemma 3.1,

‖M̃ ′(u(t)){u′(t)}w(t)‖0 ≤ C‖u′(t)‖s0−3‖w(t)‖0

≤ C‖F (u(t))‖s0−3‖w(t)‖0 ≤ C‖w(t)‖0.

The second term can be estimated by using

F (v(t)) − F (u(t)) = F
′(u(t))w(t) +R,

where

R :=

∫ 1

0

∫ τ

0

F
′′(θv(t) + (1 − θ)u(t)){w(t), w(t)} dθdτ

allows an estimate

‖R‖0 ≤ C‖w(t)‖3‖w(t)‖s0−3 ≤ C‖w(t)‖s0‖w(t)‖0 ≤ C‖w(t)‖0,

where estimates on F ′′ parallel to Lemma 3.1 and norm convexity have been used. Thus,

by Lemma 4.8,

g′(t) ≤ 2
(
M̃(u(t))F ′(u(t))w(t), M̃ (u(t))w(t)

)
0

+ C‖w(t)‖2
0

≤ ‖w(t)‖2
0 ≤ Cg(t).
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Therefore, by Gronwall’s inequality,

‖v(t) − u(t)‖2
0 ≤ Cg(t) ≤ Cg(0) ≤ C‖v(0) − u(0)‖2

0.

To prove existence, we will rely on an abstract existence theorem whose proof has

been given in [8]. It generalizes an existence theorem concerning evolution equations

with semibounded operators by Kato and Lai [9] to the case of variable bilinear forms.

The setting is the following:

Let X ⊆ Y ⊆ Z be real, separable Banach spaces with dense and

continuous embeddings and U ⊆ Y open. For every u ∈ U let 〈·, ·〉u :

X × Z → R be a continuous and nondegenerate bilinear form, such

that with fixed constants C ≥ 1, M ≥ 0:

(H1) 〈v, w〉u = 〈w, v〉u for all v, w ∈ X ;

(H2) C−1‖v‖2
Y ≤ 〈v, v〉u ≤ C‖v‖2

Y for all v ∈ X , u ∈ U ;

(H3) 〈v, v〉u ≤ 〈v, v〉w
(
1 +M‖u− w‖Z

)
for all v ∈ X , u,w ∈ U ;

(H4) weak convergences un ⇀ u in Y , un, u ∈ U , and wn ⇀ w in Z

imply 〈v, wn〉un
→ 〈v, w〉u for all v ∈ X .





(H)

Assuming (H) to hold, by the dense embedding X ⊆ Y and

∣∣〈v, w〉u
∣∣2 ≤ 〈v, v〉u〈w,w〉u ≤ C2‖v‖2

Y ‖w‖2
Y for v, w ∈ X

there exists to each u ∈ U a scalar product (·, ·)u on Y , which is compatible with 〈·, ·〉u,

i.e. we have

(v, w)u = 〈v, w〉u for v ∈ X,w ∈ Y.

Moreover, for un, u ∈ U , un ⇀ u, wn ⇀ w in Y implies

(v, wn)un
→ (v, w)u for all v ∈ X.

For the sake of brevity we put

‖v‖u = (v, v)1/2
u , |||u||| = (u, u)1/2

u .

Theorem 5.2. Assume (H) is satisfied with some ball

U = B :=
{
u ∈ Y

∣∣ ‖u‖Y < R
}
, R > 0,

and F : B → Z is a weakly sequentially continuous mapping such that

2〈u,F (u)〉u +M ‖F (u) ‖Z |||u||| ≤ β
(
|||u|||2

)
for all u ∈ X ∩ B (5.2)

with a C1-function β : R+ → R+ = [0,∞). Let u0 ∈ B,

|||u0||| < r := R/(2C3)1/2,

and T > 0 such that the solution ρ of the scalar Cauchy problem

dρ/dt = β
(
ρ(t)

)
, ρ(0) = |||u0|||2 (5.3)
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exists on [0, T ] and satisfies ρ(t) < r2 there. Then the Cauchy problem

u′(t) = F (u(t)), u(0) = u0, (5.4)

possesses a solution u ∈ Cw([0, T ],U ) ∩ C1
w([0, T ], Z) for which additionally

|||u(t)|||2 ≤ ρ(t) for all t ∈ [0, T ],

u(t) → u0 in Y for t→ +0.

Proof of Theorems 2.1, 2.2 (outline): Instead of (2.2), (2.3) we consider the

Cauchy problem

v′(t) = F̂ (v) := F (v + w0),

v(0) = u0 − w0,

}
(5.5)

where w0 is smooth and near u0.

To apply Theorem 5.2, we set for ε ∈ (0, 1]

X := Hs+3(S,Rm), ‖ · ‖X := ‖ · ‖s0+3 + ε‖ · ‖s+3,

Y := Hs(S,Rm), ‖ · ‖X := ‖ · ‖s0 + ε‖ · ‖s,

Z := Hs−3(S,Rm), ‖ · ‖X := ‖ · ‖s0−3 + ε‖ · ‖s−3.

For u ∈ Ũs0 , let 〈·, ·〉εu be the bilinear form compatible to the inner product on Y given

by

(v, w)ε
u := (v, w)s0 ,u + ε2(v, w)s,u

with (v, w)s0 ,u, (v, w)s,u given by (4.26). Lemma 4.5 ensures that this bilinear form

satisfies the assumptions (H), with constants independent of ε. Thus Theorem 5.2 yields

existence of a solution

u ∈ Cw([0, T ], Ũs) ∩ C1
w([0, T ], Hs−3(S,Rm))

and an estimate

‖u(t)‖s ≤ C(1 + ‖u0‖s) (5.6)

with C independent of u0 and t.

The uniqueness result from Proposition 5.1 enables us to define an evolution operator

Tt by setting Ttu0 := u(t). By a nonlinear interpolation result given in [2], Proposition

A.1 and Remark A.2, the estimates (5.1) and (5.6) implyHτ -continuity of Tt for τ ∈ [0, s),

uniformly in t ∈ [0, T ]. Approximation of the initial value u0 by un
0 ∈ Hs+1 and of the

solution u by the corresponding solutions un
0 ∈ C([0, T ], Ũs) ∩ C1([0, T ], Hs−3(S,Rm))

yields then

u ∈ C([0, T ], Ũs) ∩ C1([0, T ], Hs−3(S,Rm))

by uniform convergence. Finally, the existence time T can be shown to be independent

of s by standard continuation arguments. For further details we refer to [8].

6. Nontrivial equilibria and long-time existence

In this section we will investigate the existence of equilibrium points and the long-time

dynamic of the evolution problem (2.2). Our considerations are restricted to situations
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near trivial equilibria; i.e. we will assume that the domain is near a ball and γ is near a

constant. Therefore in the following we specialize the reference domain to

E := {x ∈ R
m

∣∣ |x| < 1}, S := ∂E = {x ∈ R
m

∣∣ |x| = 1}.

First we show that for any given domain Ωu near a ball there exists a corresponding γ such

that (u, γ) yields an equilibrium point for (2.2). Of course, the opposite question is more

interesting for our evolution: Given a surface energy density, find a corresponding class

of equilibrium shapes and for given initial shape, show global existence of the solution

in time and convergence to some member of this class. Our proof of this is organized as

follows. Using the refined semiboundedness estimate of Proposition 4.6 we obtain weak

exponential growth of a solution in higher Sobolev norms provided the solution remains

near the trivial equilibrium with respect to some lower norms. This enables us to show

that the scalar function f(t), which is defined by (6.11) below, controls the evolution.

Then a simple dicussion of the spectral properties of the evolution equation for f yields

global existence.

We start by stating some simple integral identities needed later on; in particular,

assertion (ii) of following lemma together with volume conservation implies that the

center of gravity remains fixed during evolutions under consideration.

Lemma 6.1. (i) We have
∫

S

ω(u)Ni(u)uj dS = δij |Ωu|, (6.1)

where δij denotes the Kronecker symbol, and
∫

S

ω(u)N(u)
(
G (u)γ

)
dS = 0. (6.2)

(ii) For any solution u = u(t) of (2.2) the vector of first moments

M(t) :=

∫

Ωu(t)

x dx (6.3)

is independent of t.

Proof. (i) After retransformation onto Γu with outer normal n, the equation (6.1) follows

from ∫

Γu

nixj dΓu =

∫

Ωu

∂ixj dx = δij |Ωu|,

whereas (6.2) reads ∫

Γu

n(γκ− ψ) dΓu = 0,

where ψ is harmonic in Ωu with Neumann boundary condition ∂nψ = ∆Γu
γ on Γu. By

Green’s formula we get ∫

Γu

nψ dΓu =

∫

Γu

x∂nψ dΓu,

hence writing nκ = ∆Γu
x on Γu we obtain

∫

Γu

n(γκ− ψ) dΓu =

∫

Γu

(
γ∆Γu

x− x∆Γu
γ
)
dΓu = 0 (6.4)
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by an integration by parts.

(ii) Consider the solution to (1.1) corresponding to u. We have, using Green’s formula

and (6.4),

Ṁ(t) =

∫

Γ(t)

xVn dΓ(t) =

∫

Γ(t)

x ∂nφ dΓ(t)

=

∫

Γ(t)

∂nxφ dΓ(t) =

∫

Γ(t)

n(γκ− ψ) dΓ(t) = 0,

which is the assertion.

Remark 6.2. Note that the presence of the correction term G is crucial not only for the

generalized gradient flow property but also for the validity of above Lemma.

In further considerations we assume s ≥ s0 with s0 ∈ N fixed as in Section 4, set

Ũs :=
{
u ∈ Hs(S,Rm)

∣∣ ‖u− w0‖s0 ≤ δ0
}
, w0(x) := x for x ∈ S (6.5)

and assume δ0 > 0 sufficiently small, whenever necessary. Moreover, to stress the depen-

dency on γ, we consider now F (u) and G (u) as linear operators defined by

F (u)v := F (u)
(
G (u)v

)
, G (u)v := −vΛi(u)

(
ni(u) ◦ u

)
−A(u)∆(u)v; (6.6)

for s ≥ s0 und 2 ≤ t ≤ s the operators

G (u) ∈ L
(
Ht(S), Ht−1(S)

)
, F (u) ∈ L

(
Ht(S), Ht−2(S)

)
(6.7)

depend smoothly on u ∈ Ũs. For a given surface energy density γ ∈ C∞(S) and u0 ∈ Ũs

the Cauchy problem (2.2), (2.3) reappears as

u̇ = F (u)γ, u(0) = u0. (6.8)

We call a function γ on S an equilibrium surface energy density for a given u ∈ Ũs iff

F (u)γ = 0 on S or equivalently G (u)γ = const. on S. (6.9)

The latter condition yields a nonlocal first-order elliptic equation for the determination

of an equilibrium surface energy density γ. By straightforward perturbation arguments

and expansion into spherical harmonics in case of u = w0, the next lemma ensures the

existence of a solution of this equation, uniquely determined up to a scaling factor and

a linear combination of m functions.

Lemma 6.3. Assume δ0 > 0 sufficiently small. Then for any given u ∈ Ũs, s ≥ s0 there

exists a uniquely determined positive function γ(u) ∈ Hs−1(S) such that

G (u)γ(u) = −1 on S,

∫

S

N(u)γ(u) dS = 0.

Proof. By elliptic regularity it suffices to consider the case s = s0. If a ∈ R
m, u ∈ Ũs

and γ ∈ Hs−1(S) such that

G (u)γ = −1 + a · u on S,

then (6.2) implies ∫

S

ω(u)N(u)(a · u) dS = 0,
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and further a1 = . . . = am = 0 by (6.1). Hence it suffices to show the invertibility of the

operator

[(γ, a) 7→ L(u)(γ, a)] ∈ L
(
Hs−1(S) × R

m, Hs−2(S) × R
m

)

given by

L(u)(γ, a) :=
(
G (u)γ − a · u, c

)
, c :=

∫

S

N(u)γ dS.

As L(u) depends smoothly on u ∈ Ũs it remains to show the existence of

L(w0)
−1 ∈ L

(
Hs−2(S) × R

m, Hs−1(S) × R
m

)
. (6.10)

In this case we have

G (w0)γ = −(m− 1)γ −AS∆Sγ,

where AS and ∆S denote the Neumann-Dirichlet operator and the Laplace-Beltrami

operator on the unit sphere S, respectively. Hence, if we expand

γ =

∞∑

l=0

γl, γ1 = b · x,

where γl is a spherical harmonic of degree l and b ∈ R
m, it follows from

∆Sγl = −l(l+m− 2)γl, ASγl = l−1γl (l > 0)

that

L(w0)(γ, a) =
(
−(m− 1)γ0 − a · x+

∞∑

l=2

(l − 1)γl,
|S|
m
b
)
.

This gives immediately (6.10). Clearly, the equilibrium surface energy density belonging

to w0 is the constant function

γ := γ(w0) = L(w0)
−1(−1, 0) = −1/κ0 on S

with the curvature κ0 = −(m− 1) on S. The proof is complete.

In the following considerations, to derive a-priori estimates independent of the existence

interval [0, T ], let

u ∈ C0
(
[0, T ], Ũs0+4

)
∩ C1

(
[0, T ], Hs0+1(S,Rm)

)

be any solution of (6.8). Thereby, without explicit mentioning, we always assume that

‖u0‖s0+4 = ‖u(0)‖s0+4 ≤M

and γ is taken from some set of the form (4.38) with fixed positive constants γ∗, M and

with a sufficiently large s1 ∈ N, such that, in view of Remark 4.7, the constants in the

estimates of Section 4 are independent of γ for s ≤ s0 + 4. Further we define (cf. (4.12))

f(t) := G̃
(
u(t)

)
γ = G

(
u(t)

)
γ − 1

|S|

∫

S

G
(
u(t)

)
γ dS. (6.11)

Note that F
(
u(t)

)
v ≡ 0 for v ≡ const implies

u̇(t) = F
(
u(t)

)
γ = F

(
u(t)

)
f(t). (6.12)
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The following Lemmas 6.4, 6.5 show in which sense the evolution of u can be controlled

by f(t), t ∈ [0, T ] with constants independent of the existence time T . As main step,

we find from the improved semi-boundedness estimate (4.31) that ‖u(t)‖ has only slow

exponential growth, more precisely we have

Lemma 6.4. Let ε > 0, a > 0, c > 0 be given. There are constants C = C(a, c, ε),

δ = δ(ε) > 0 such that each of the assumptions

(i) ‖f(t)‖s0−2 ≤ δ, t ∈ [0, T ], or

(ii) ‖f(t)‖s0−2 ≤ ce−at, t ∈ [0, T ],

implies

‖u(t)‖s0+4 ≤ Ceεt for all t ∈ [0, T ]. (6.13)

The constants C and δ may be chosen independently of u and T .

Proof. In view of Theorem 2.2 it is sufficient to prove (6.13) for any sufficiently regular

solution u = u(t) of (6.8). In particular, the mapping t 7→ g(t) :=
(
u(t), u(t)

)
s,u(t)

with

s := s0 + 4 may be assumed to be differentiable. From Proposition 4.6, estimate (4.31)

we get for any given ε > 0
(
u(t),F (u(t))γ

)
s,u(t)

≤
(
C‖F (u(t))γ‖s0−3 +

ε

2

)
g(t) + C(ε)

and, using D(u){w}v2 as abbreviation for the derivative of the mapping u 7→ (v, v)s,u,
∣∣D(u(t)){F (u(t))γ}u(t)2

∣∣ ≤ C‖F (u(t))γ‖s0−3‖u(t)‖2
s.

Consequently, by differentiating g, we have

g′(t) = 2
(
u(t), u̇(t)

)
s,u(t)

+D
(
u(t)

){
u̇(t)

}
u(t)2

≤
(
C‖F (u(t))γ‖s0−3 +

ε

2

)
g(t) + C(ε) ≤

(
C1‖f(t)‖s0−2 +

ε

2

)
g(t) + C(ε).

Defining

α(t) :=
ε

2
t+ C1

∫ t

0

‖f(s)‖s0−2 ds

and noting that under the assumptions (i) or (ii) we have

0 ≤ α(t) ≤ εt+ C(a, c)

we get from Gronwall’s inequality

‖u(t)‖2
s ≤ Cg(t) ≤ Ceαt

(
g(0) + C(ε)

∫ t

0

e−α(s) ds

)

≤ C(ε)eεt(g(0) + t) ≤ C(ε)e2εt(g(0) + 1) ≤ C(ε)(M2 + 1)e2εt.

This implies the assertion.

Lemma 6.5. Let ε > 0 and a > 0 be given. Then there exists δ > 0 such that

‖u(0) − w0‖s0 ≤ δ, ‖f(t)‖s0+1 ≤ δe−at for all t ∈ [0, T ] (6.14)

imply

‖u(t) − w0‖s0 ≤ ε for all t ∈ [0, T ].
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The constant δ may be chosen independently of T and u.

Proof. We assume according to Lemma 6.4

‖u(t)‖s0+1 ≤ Ceat/2 for t ∈ [0, T ].

Define g(t) := ‖u(t) − w0‖2
s0

. Then

g′(t) = 2
(
F (u(t))γ, u(t) − w0

)
s0

≤ C‖F (u(t))γ‖s0 = C‖F (u(t))f(t)‖s0 ,

and consequently,

g′(t) ≤ C‖u(t)‖s0+1‖f(t)‖s0+1 ≤ C ′δeat/2e−at

Hence, for δ sufficiently small,

g′(t) ≤ 1
4aε

2e−at/2 and g(0) ≤ 1
2ε

2.

This implies

g(t) ≤ 1
2ε

2(2 − e−at/2) ≤ ε2,

which is the assertion.

Now, to obtain estimates of f(t) we derive the evolution equation satisfied by f . Dif-

ferentiation of (6.11) with respect to t gives

ḟ(t) = G
(
u(t)

){
u̇(t)

}
γ − 1

|S|

∫

S

G
(
u(t)

){
u̇(t)

}
γ dS,

hence inserting (6.12) we obtain

ḟ(t) = H
(
u(t), γ

)
f(t) (6.15)

where the operator H is given by

H (u, γ)w := G
′(u){F (u)w}γ − 1

|S|

∫

S

G
′(u){F (u)w}γ dS. (6.16)

The operator H is negative semi-bounded in L2 in the following sense:

Lemma 6.6. For ‖u − w0‖s0 and ‖γ − γ‖s0 sufficiently small we have with a positive

constant c independent of u and γ:
(
H (u, γ)w,w

)
0
≤ −c‖w‖2

3/2 (6.17)

for all w ∈ C∞(S) with
∫

S

w dS = 0,

∫

S

ω(u)Ni(u)w dS = 0.

Proof. Instead of (6.17) we prove the estimate in the form
(
H (u, γ)w,w

)
0
≤ −c1‖w‖2

3/2 + c2R(u,w) (6.18)

for all w ∈ C∞(S) with some constants c1, c2 > 0, where

R(u,w) :=

(∫

S

w dS

)2

+

m∑

i=1

(∫

S

ω(u)Ni(u)w dS

)2

.
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Further, by perturbation arguments using

‖H (u, γ)w − H (w0, γ̄)w‖−3/2 ≤ C‖w‖3/2

(
‖u− w0‖s0 + ‖γ − γ‖s0

)
,

it suffices to show (6.18) for u = w0, γ = γ̄. For γ = γ̄ we have

G (u)γ = γH(u),

therefore the linearization of the mean curvature at a sphere yields

G
′(w0){v}γ = γ

(
(m− 1)(x · v) + ∆S(x · v)

)
,

As [w 7→ x ·F (w0)w] = BS is the Dirichlet-Neumann operator on the unit sphere S, this

implies (6.18).

Lemma 6.7. There exists a > 0 with the property that for any ε > 0 there exists δ > 0

such that ‖u(0)− w0‖s0 ≤ δ and ‖γ − γ̄‖s0 ≤ δ imply

‖f(t)‖s0+1 ≤ εe−at for all t ∈ [0, T ].

δ may be chosen independently of u and T > 0.

Proof. First note, that by definition of f(t) and Lemma 6.1, (i) we have
∫

S

f(t) dS = 0,

∫

S

ω
(
u(t)

)
Ni

(
u(t)

)
f(t) dS = 0.

Consequently (6.15) and Lemma 6.6 imply

d

dt

(
‖f(t)‖2

0

)
= 2

(
H (u(t), γ)f(t), f(t)

)
0
≤ −c‖f(t)‖2

0,

with some c > 0, hence

‖f(t)‖0 ≤ e−ct‖f(0)‖0.

Further, as

‖f(t)‖s0−2 ≤ C
(
‖u(t) − w0‖s0 + ‖γ − γ̄‖s0

)
≤ C(δ0 + δ),

we get from Lemma 6.4 (i) by assuming δ and the constant δ0 in the definition (6.5) of

Ũs sufficiently small,

‖u(t)‖s0+4 ≤ Ceµt, µ := c/(2(s0 + 1))

and moreover, using the estimate (2.14),

‖f(t)‖s0+2 = ‖G (u(t))γ‖s0+2 ≤ C‖u(t)‖s0+4 ≤ C ′eµt.

Now we have by interpolation

‖f(t)‖s0+1 ≤ C
(
eµt

) s0+1

s0+2
(
e−ct‖f(0)‖0

) 1
s0+2 = C‖f(0)‖

1
s0+2

0 e−at

with a = c/(2(s0 + 2)). This implies the assertion.

Now we are in position to formulate our main result about the long-time existence and

convergence to an equilibrium configuration for t→ ∞.
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Theorem 6.8. Let M > 0 be given. Then there exists an ε > 0 such that for γ ∈ C∞(S)

with ‖γ‖s1 ≤M , ‖γ− γ̄‖s0 ≤ ε and for any initial value u0 ∈ Hs0+4 with ‖u0‖s0+4 ≤M ,

‖u0 −w0‖s0 ≤ ε the solution of the Cauchy problem (6.8) exists for all t > 0. Moreover,

u(t) converges exponentially to some u? = u?(u0, γ) in Hs, s < s0 + 4 for t→ ∞, i.e.

‖u(t) − u?‖s ≤ Ce−at (6.19)

with suitable C, a > 0 (depending on s < s0 + 4). Finally we have G (u?)γ = const. on

S, i.e. γ is an equilibrium surface energy density for u?.

Proof. First, choose δ ∈ (0, δ0) and T > 0, such that, by our local existence theorems,

initial values u0 ∈ Hs0+4 with ‖u0 − w0‖s0 ≤ δ guarantees the (unique) solvability of

(6.8) on the time interval [0, T ] with u(t) ∈ Ũs0+4, t ∈ [0, T ]. Then, for ε > 0 sufficiently

small, Lemmas 6.5, 6.7 ensure ‖u(T ) − w0‖s0 ≤ δ, hence the solution can be continued

to the interval [T, 2T ] with u(t) ∈ Ũs0+4, t ∈ [0, 2T ]. Applying now Lemma 6.5 and 6.7

to the time interval [0, 2T ] (note the independence of the constants in these lemmas of

the time interval length) we obtain ‖u(2T ) − w0‖s0 ≤ δ0 again and the solution can be

continued to the interval [2T, 3T ]. Repeating these arguments yields global existence of

the solution. Moreover, Lemma 6.7 implies

‖f(t)‖s0+1 ≤ Ce−at for all t ≥ 0

with a > 0. Consequently for any ε > 0 there exists a constant C(ε) such that

‖u(t)‖s0+4 ≤ C(ε)eεt for all t ≥ 0 (6.20)

by Lemma 6.4 (ii). Further, for 0 ≤ t ≤ θ <∞,

‖u(t) − u(θ)‖0 ≤
∫ θ

t

‖F (u(τ))f(τ)‖0 dτ ≤ C

∫ θ

t

‖f(τ)‖s0+1 dτ ≤ Ce−at,

and by interpolation using (6.20) with ε sufficiently small,

‖u(t) − u(θ)‖s ≤ Cse
−ast for s < s0 + 4

with suitable constants Cs, as > 0. This implies convergence of u(t) to some u? in Hs(S),

s < s0 + 4 as t → ∞ and the estimate (6.19). The final statement follows from letting

t→ ∞ in (6.11).

Remark 6.9. It is not hard to see the following regularity property of u?: if the initial

value u0 belongs additionally to Hs with some s > s0 +4 then u?(u0, γ) ∈ Hs′

for s′ < s

(recall that we have always assumed γ ∈ C∞). The question whether or not u? belongs

to Hs remains open and requires more sophisticated estimates.

To illustrate possible equilibrium shapes Γu? according to Theorem 6.8 we have per-

formed several numerical test calculations for m = 2, 3. In a 2D situation, starting from

a circle S = Γw0 and a surface energy density of form

γ(x) = 1 + 0.8 cos(6ϕ), x = (cosϕ, sinϕ) ∈ S, 0 ≤ ϕ < 2π,

we obtain an equilibrium shape Γu? as pictured by the solid line in Figure 1. In contrast,

if the correction term G(u), which ensures the gradient flow structure of the evolution

problem, is dropped in the definition (2.4), then the resulting shape Γu? is given by the
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dotted line in Figure 1. Clearly, in the latter situation the center of gravity remains fixed

due to the symmetries of the chosen initial values and every equilibrium configuration

(u, γ) is characterized by γκ = const. on Γu, hence Γu must be convex. (This is similar

to a Hele-Shaw evolution where the values of γ are transported only in normal direction

to the moving boundary, as this also leads to a dropping of the term G(u).) As Figure 1

shows, this convexity is not true for the full problem. The second example concerns an

axisymmetric situation in 3D. Here the evolution starts from the unit sphere S = Γw0

with the surface energy density

γ(x) = 1.0 + 0.8x1(4.0x
2
1 − 3.0), x = (x1, x2, x3) ∈ S

and results in a equilibrium shape as shown in Figure 2. To indicate the length scale we

have added grid lines with distance 0.25 in each direction.

-1.5 0.0 1.5
-1.5

0.0

1.5

Figure 1: 2D examples

x2

x3

x1

Figure 2: 3D example
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