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Abstract

Nonlinear resonant fluid sloshing in a circular cylindrical tank, which contains a
rigid-ring baffle, is examined by using a nonlinear asymptotic modal method. The
overall fluid depth is fairly deep (depth/radius ratio > 1) and relevant restrictions
to the distance between baffle and hydrostatic fluid plane are introduced to avoid
baffle’s slopes. A nonlinear modal system is derived. It couples five natural modes
and extends earlier results for circular cylindrical tanks without baffles. Derivation
of the modal system utilises numerical-analytical solutions of the linear sloshing
problem obtained in earlier authors’ paper. The main emphasis is placed on quan-
tifying steady-state wave motions versus the size and the location of the baffle. A
forthcoming paper will study nonlinear damping due to vorticity stress at the sharp
baffle edges and generalise the present modal technique.
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Introduction

Tanks with baffles, which suppress mobility of a fluid cargo, are typical attributes of various
industrial applications. Being intended for mitigating hydrodynamic loads, installation of
baffles increases the overall structural damping, prevents wave impacts and slamming. Since
the sloshing behaviour depends on the shape, the location and the number of baffles, testing
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is a very tedious and expensive task when studying the numerous design scenarios. The
task becomes simpler for non-resonant sloshing when fluid motions can be evaluated in
the framework of linear theories. However, relevance of resonant sloshing associated with
the closeness of the lowest sloshing frequency to a control structural frequency is a great
motivation to develop numerical tools for fully nonlinear free boundary problems.

Resonant sloshing behaviour may be strictly dissipative, accompanied by flow separation
at the baffle edge and even discontinuity of the fluid volume. This happens for instance in
ship tanks on realistic seaway. Study of such a behaviour disallows analytical approaches
and there is only a limited set of numerical tools providing robust simulations (Cariou
& Casella [4], Colagrossi & Landrini [9]). Sloshing demonstrates another behaviour for
fairly deep fluid fill levels and small-amplitude (structural) vibrations of the carrier. It
is not so strongly dissipative and the vorticity is perceptible only in small vicinity of the
baffle edge to influence the ambient flows. Such sloshing behaviour appears, for instance,
in some spacecraft applications and building industry (connected with the Tuned Sloshing
Dampers). As matter of fact, major of the Computational Fluid Dynamics (CFD) methods
focuses on simulating this type of sloshing. By computing an appropriate Cauchy problems
(see recent examples by Celebi & Akyildiz [5], Cho & Lee [6, 7, 8] and surveys by Ibrahim
et al. [21], introductory section by Gavrilyuk et al. [19]}), the CFD methods showed quite
efficient simulations of transient waves on short-time scale. However, they are quite limited
in quantifying steady-state (periodic) solutions which appear after 200-300 forcing periods.
Prediction of stable steady-state motions by the CFD methods is especially difficult and
tedious task for three-dimensional waves when different steady-state wave regimes co-exist
for the same physical parameters and there is a frequency domain where all the regimes
are not stable: these methods cannot distinguish “chaotic” motions (occurring in the latter
frequency domain) and the numerical instability.

Selection of stability zones for resonant steady-state solutions (this procedure is called
the classification, Faltinsen et al. [12]) belongs to the most important engineering task. The
classification makes it possible to predict the types of hydrodynamic loads and, after testing
different tank shape, to find an optimal structural design. Since traditional CFD methods
run into serious difficulties to perform the classification, it has been doing by analytical
methods finalised by experimental tests. Typically, analytical predictions are based on linear
sloshing theories, but the current scientific literature contains some nonlinear analytically-
oriented approaches which combine asymptotic and modal methods. The background of
these approaches for smooth (without baffles) tanks is in some detail described by Miles
[28, 29], Lukovsky [24], Gavrilyuk et al. [18], Faltinsen et al. [13, 10] and Faltinsen &
Timokha [16]. To the authors best knowledge, the present pioneering study represents the
first attempt expanding the nonlinear approaches to tanks with baffles.

We consider an inviscid fluid partially filling a circular cylindrical tank with an annular
horizontal rigid baffle. Applicability of the ideal fluid model for weakly-nonlinear sloshing
is confirmed by experiments and numerical simulations by Bogoryad & Druzhinina [1],
Mikishev [26], Mikishev & Churilov [27] and Cho & Lee [7]. The fluid damping (due to
viscosity and vorticity stress at the sharp edge) plays the secondary role for relatively small
wave amplitudes. Of course, its importance growths with increasing the amplitudes, but,
even in that case, the classification of forced steady-state waves remains qualitatively the

{Furthermore, Part 1
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Fig. 1. The sketch of a circular cylindrical tank with partially filled by a fluid.

same. This has been defended by Miles [28, 29], Faltinsen et al. [15, 12, 11] and Hill [20] by
operating with damping terms in modal systems for sloshing in smooth tanks. Appropriate
generalisations for tanks with baffles will be presented in the forthcoming paper. Buzhinkii’s
[3] formula on damping rates due to vorticity stress is useful in this context.

We start with short introductory description of an asymptotic modal scheme by Nari-
manov [31]. Using this scheme derives a five-dimensional system of ordinary differential
equations (modal system) governing nonlinear resonant waves due to horizontal tank’s vi-
bration with frequencies close to the lower natural modes. The modal system is based on
the third-order Moiseyev ordering. This ordering has widely been explored in nonlinear
modal analysis. Its justification was done by Lukovsky [24] and Miles [28, 29]. One should
note, that derivation of the modal system is facilitated by results of the authors earlier pa-
per (Part 1), where accurate analytically-oriented methods for approximating the natural
linear modes (complex amplitudes) is proposed. The physical and numerical limitations of
the nonlinear modal system are extensively discussed.

1. Nonlinear modal theory
1.1. Free boundary problem

Let a rigid circular base cylindrical tank of the radius R be partially filled by a fluid with
the mean depth h. The inner periphery of the tank is equipped by a thin rigid-ring baffle
which divides the overall height h into h; and hy, where h; is the height of fluid layer
over the baffle in its hydrostatic state and hs is the length between the baffle and the flat
bottom. Thickness of the baffle is neglected. Fluid motions occurring due to either initial
perturbations of the planar hydrostatic equilibrium or tank’s oscillations are furthermore
described in the framework of an inviscid model with irrotational flows. Waves magnitude
is assumed to be small relative to hy to keep the baffle inside of the fluid bulk (sloshing
does not slope baffle).

The problem is studied in size-dimensionless statement suggesting that all the lengths
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and physical constants are normalised by the base radius R. This implies in particular that
hy := hi/R,hy := ha/R,g := g/L; (gravity acceleration g has the dimension [s~2]) etc.
Corresponding free boundary problem is formulated in the tank-fixed coordinate system
Ozyz (see, Moiseyev & Rumyantsev [34], Narimanov et al. [32] and Lukovsky & Timokha
[25]). Without loss of generality, the Oz-axis is directed along the symmetry axis and the
origin O is posed in the baffle plane as shown in Figure 1. Further, the analysis will be
restricted to the prescribed horizontal tank oscillations along the Oz-axis that are governed
by a given time-dependent vector vo(t) = (vio(t),0,0)T implying translatory velocity of

the mobile coordinate system relative to an absolute coordinate system O'z'y’z’.

Under these assumptions the governing free boundary problem takes the following form

A® =0 in Q(¢); g—(i:vo-u on S(t)UT,

0P fe

- =v0 - V+ —=—=— on X(1); d@ = const, 1.1
ov © 1+ (Vf)? () Q) Q (1.1)

%—‘f + %(V@f —V®-vo+gf=0 onX(t),

where the unknowns are the function f(z,y,t) defining the free surface evolution %(¢) :
z = f(z,y,t) and the absolute velocity potential ®(z,y, z,t) which should be calculated in
time-varying fluid volume Q(¢) confined to the wetted body surface S(t), the baffle I" and
% (t); v is outward normal to Q(t).

This papers examines the case of resonant harmonic forcing, i.e.

vo1(t) = —oesinot, (1.2)

where € € 1 is the non-dimensional excitation amplitude and o — wg) =1/ gfcg) (w?) is
the lowest sloshing frequency).

The evolutional free boundary problem (1.1) should be completed by either initial or
periodicity conditions. The initial (Cauchy) conditions assume

0%

f(xathO) = fO(mJy)a E 2= fo(2.p) = Qo(m,y,z) (13)

to be known at t = tg. The periodicity conditions are in many applied problems associated
with periodicity of wave pattern and velocity field, i.e.

flx,y,t +T) = f(z,y,t); V&(2,y,2,t+T)=V(x,y,2,t), (1.4)

where T = 27 /0.

1.2. Third-order asymptotic scheme by Narimanov

The nonlinear asymptotic modal modelling and its modifications were reported by Lukovsky
[24], Lukovsky & Timokha [25], Faltinsen et al. [13] and La Rocca et al. [22, 23]. Fur-
thermore, we follow the original scheme by Narimanov [31, 32]. It introduces the following
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Fig. 2. Hydrostatic fluid shape in a rigid cylindrical tank; three-dimensional and meridional sketches. A
thin rigid-ring baffle I" is permanently submerged into the fluid volume.

solution of (1.1) (in cylindrical coordinate system Ornz)

Flrom,t) =30 3" (B5:(t) sing + 85, ;(t) cos ) F™ (r,1),

m=0 i=1
®(r,n,2,t) = — roe cos(8) sin(ot)+ (1.5)
o — d fnz(t) m,s dﬂfnz(t) m,c
+ Z Z (T¢E ' )(Tanazat) + T’t¢5 ' )(ranazat)) .
m=0 i=1

Here, (37, ;(t) and 7, ;(t) are the unknown modal functions and ﬁ;(m)(r, n) = Fz.(m) (S, m =
0,...; 2 =1,... are the normalised linear surface modes defined in Part 1 as

Ky )

F™ () =
SO =T )

where wgm)(r, z)(sziorén are the fundamental solutions (complex amplitudes) in Qo (see, Fig-
ure 2).

Representation (1.5) needs solutions of the Neumann boundary value problem

A¢r =0 in Q(¢); %Lj =0 on S(t) and T}

6¢F — F(T’, 77)
ov 1+(Vf)?

on X(t) (1.6)

where F(r,n) coincides with either Fi(m) (r)sing or = Fz.(m) (r) cos 7. In the first case, pp =
¢$m,s) and the second case implies ¢r = qﬁgm’c).

Since solutions of (1.6) depend parametrically on X(¢) : z = f(r,n,t), by assuming
small deviations of the free surface, Narimanov solves (1.6) asymptotically and defines the
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following series by {f.i(t)} = 1B i)} U{Bs5,.:()}

00 o0
¢F(T;77,Z,t): 7‘77: +ZZ m,i szrna )

m=0 i=1
+ Z Z ﬁm an,]¢sz nJ(r n,z ) (17)
m,n=01,j=1
Here, ¢g9) (r,m, 2), g)m(r 1, 2), qﬁg)m nj(rsm,2) etc. can be found from a recursive Neu-

mann boundary value problems in the static domain Qg (Narimanov [31, 32] and Lukovsky
[24]) with zero-boundary condition on Sy and non-zero conditions on Xg (see, Figure 2).
Each a Neumann problem has analytical solutions in terms of a Fourier series with natu-

ral modal basis ¢§m)( z)giom (see, the spectral theorems by Feschenko et al. [17]). An

accurate numerical-analytical approximation of ngm)( )cosn has been obtained in Part 1.

1.3. Finite-dimensional nonlinear modal system, its applicability

As shown by Narimanov [31] (circular cylindrical tank), Moiseyev [30] (rectangular tank)
and Faltinsen & Timokha [10] (square-base tank) resonant excitations of the lowest natural
modes lead to the following ordering of the modal functions:

Bf,1 ~ ﬂf,l = 0(51/3); ﬂ;: ~ 551 ~ Bg,i ~ Bg,z' = 0(52/3)7
Sir ;,i <O0(e), j>3,i=12,.... (1.8)

JYZ

Adopting (1.8) in the Narimanov scheme implies the dominating pair of modal functions
Bi 1, Bi, and the second-order modal functions 35 ;, 83 ;, 56, B5, @ =1,2,.... Pursuing
approximations of the free surface within to O(e) makes it possible to neglect an infinite-
dimensional set of higher-order modes. Lukovsky [24] (generic axial-symmetric tanks) and
Miles [28, 29] (circular cylindrical tank) proposed and, by using numerous examples, de-
fended the five-dimensional modal approximation

Flrymt) = 851 () F (r) + [B5.1(#) sing + 65 1 (£) cos ] FL (r)+
+ 83,1 (8) sin 2y + 55, (£) cos 2] F2(r).  (1.9)

Miles [28, 29] showed that 35 ;, B85 ;, 5§, B3> @ > 2 contribute 10~* into the overall kinetic
energy of forced motions and their contribution may increase only in small vicinity of some
isolated critical depths. Secondary (internal) resonances leading to amplification of higher
modal functions will be discussed in the last section of the present paper.

Formal usage of (1.9) in Narimanov’s scheme and neglecting o(e) lead to the following
system of nonlinear ordinary differential equations
Bf,1 + w£1)/3i9,1 + Dl((ﬁf,1)251s,1 + 5f,1(3f,1)2 + ﬂf,15f,13i1 + 5f,1(3f,1)2)+
+ D2((ﬁ1c,1)25f,1 + 25f,1ﬂ.1s,15.f,1 - ﬂf15f15f1 - 2515,1(Bf,1)2)_
- D3(/3§,1519,1 - 5§,1Bf,1 + Bf,1135,1 - Bf,lﬁiﬂ + D4(,3f,15§,1 - ,310,155,1)"‘
+ D5(5(C),15i9,1 + Bf,lﬂg,l) + Dﬁ(ﬂf,l/ég,l) =0, (1.10a)
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Bi oy iV B8+ Di((5 1) B + B85 1811 + BE 4081007 + B 1 (85 1))+
+ D2((ﬂf,1)25f,1 - 5?,1,8&5‘1;,1 + 2ﬂ1s,1/3f,1/61c,1 - 2ﬂf,1(5f,1)2)+
+ D3(/3§,1Bi1 + B§,1Bf,1 + Bf,1B§,1 + 616,165,1) - D4(ﬂf,13§,1 + ﬂf,133,1)+
+ D5 (85,155 1 + B7.186,1) + De(B,186,1) — Ao =0, (1.10b)

B +wiVBS 1 + Dio(BL ATy + 85 1551) + Ds((B11)* + (B 1)) =0, (1.10c)

35,1 + w§2)55,1 - D9(Bf,1ﬂf,1 + Bf@ﬁf;) - 2D7(Bf,15i1) =0, (1.10d)

B5.0 + i 851 + Do(B] 1871 — BT1BT 1) + Dr((81)° — (B1)%) =0, (1.10¢)

where wgm) = gmgm) and D;, i =1,...,10; A are functions of hi, hs and a (see, Figure 2).

The coefficients D;, i = 1,...,10 and A are computed by

d d d d d d
Di=—; Dy=—; Dy=—>; Dy=——; Dsy=—>; Dg=—,

H11 H11 Hi1 M11 M11 H11

d d d d A (1.11)
Dr=-—"; Dg=-—-; Dg=—; Dig=—; A=,

H21 Ho1 H21 Ho1 H11

where d;, i =1,...,8 and X are determined by the integrals

2,,(1)
di=7 / [(391 +20,)(F")? + (30 + 4G5 + 206 + 2670 + 2L ]rdr,
Lo

2 022
m (1)y2 m 107" )
dr =7 [| @+ 10D + @+ 2001?57 O
Lo
e
=g / (Ga10f” + (F)F)rar,
Lo
=3 / [Gu2” + (1 — Go)oy” +2(F{) Y FP]rdr,
Lo
ds = W/(¢§1)go1 + (Fl(l))2F1(0))rdr,
Lo
do =5 [[Gortd? + @+ Ga)ol” + 25V F
Lo
1 1
dy = di+ 5ds; ds =do — 5ds; A= it /r2¢§1’dr,

Lo

pi1 = W/Fl(l)d)g)rdr; o1 = 27T/F1(0)¢§0)T‘d7‘; Ho1 = W/Flmv,/}g)rdr.
Lo Lo Lo

Table 1 facilitates interested readers by some numerical data on d;, (™ and .
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Table 1. Numerical data for computing coefficients of the modal system (1.10) versus hy and a. The case hy = 1.0
Coeflicients for a = 0.4
hi Ho1 M1 Ha1 nﬁ") ngl) KEQ) dq do ds da ds de A
0.25 | 1.0424 | 1.1096 | 0.4374 | 2.9084 | 0.9286 | 2.0076 | 3.6519 | 1.4384 | 0.8838 | 0.6474 | 1.7457 | -0.8467 | 0.8971
0.30 | 0.9654 | 0.9961 | 0.3934 | 3.1778 | 1.0518 | 2.2471 | 2.3531 | 0.7392 | 0.8303 | 0.4236 | 1.5966 | -0.5777 | 0.9041
0.35 | 0.9170 | 0.9140 | 0.3642 | 3.3738 | 1.1615 | 2.4383 | 1.6583 | 0.3697 | 0.7893 | 0.2839 | 1.4848 | -0.4153 | 0.9095
0.40 | 0.8855 | 0.8524 | 0.3443 | 3.5136 | 1.2585 | 2.5881 | 1.2499 | 0.1569 | 0.7576 | 0.1909 | 1.3963 | -0.3102 | 0.9138
0.45 | 0.8645 | 0.8048 | 0.3303 | 3.6120 | 1.3436 | 2.7038 | 0.9926 | 0.0263 | 0.7327 | 0.1262 | 1.3245 | -0.2387 | 0.9170
0.50 | 0.8504 | 0.7673 | 0.3204 | 3.6805 | 1.4179 | 2.7921 | 0.8216 | -0.0576 | 0.7128 0.0795 1.2656 | -0.1881 | 0.9195
0.55 | 0.8408 | 0.7375 | 0.3132 | 3.7280 | 1.4822 | 2.8589 | 0.7031 | -0.1135 | 0.6969 | 0.0451 | 1.2171 | -0.1512 | 0.9214
0.60 | 0.8343 | 0.7134 | 0.3081 | 3.7607 | 1.5377 | 2.9091 | 0.6182 | -0.1518 | 0.6839 | 0.0192 | 1.1770 | -0.1235 | 0.9229
Coefficients for a = 0.5
0.25 | 0.9699 | 0.9462 | 0.4106 | 2.9996 | 1.0445 | 2.0807 | 2.8393 | 0.9970 | 0.6863 | 0.4825 | 1.2082 | -0.6779 | 0.8796
0.30 | 0.9199 | 0.8765 | 0.3759 | 3.2463 | 1.1588 | 2.3072 | 1.8781 | 0.5052 | 0.6965 | 0.3177 | 1.2251 | -0.4677 | 0.8911
0.35 | 0.8883 | 0.8247 | 0.3526 | 3.4236 | 1.2582 | 2.4862 | 1.3578 0.2363 0.6963 0.2122 1.2223 | -0.3394 | 0.9001
0.40 | 0.8674 | 0.7847 | 0.3365 | 3.5490 | 1.3445 | 2.6255 | 1.0490 | 0.0764 | 0.6916 | 0.1404 | 1.2079 | -0.2556 | 0.9069
0.45 | 0.8531 | 0.7529 | 0.3251 | 3.6368 | 1.4193 | 2.7325 | 0.8527 | -0.0245 | 0.6851 | 0.0893 | 1.1872 | -0.1981 | 0.9121
0.50 | 0.8432 | 0.7271 | 0.3168 | 3.6978 | 1.4837 | 2.8139 | 0.7210 | -0.0910 | 0.6780 | 0.0520 | 1.1642 | -0.1572 | 0.9160
0.55 | 0.8362 | 0.7059 | 0.3108 | 3.7399 | 1.5391 | 2.8753 | 0.6289 | -0.1363 | 0.6709 | 0.0241 | 1.1412 | -0.1272 | 0.9190
0.60 | 0.8313 | 0.6885 | 0.3063 | 3.7689 | 1.5865 | 2.9214 | 0.5625 | -0.1678 | 0.6644 | 0.0028 | 1.1196 | -0.1047 | 0.9211
Coefficients for a = 0.6
0.25 | 0.8811 | 0.7926 | 0.3721 | 3.1508 | 1.2039 | 2.2157 | 2.0178 | 0.5927 | 0.5571 | 0.3124 | 0.8822 | -0.4784 | 0.8649
0.30 | 0.8639 | 0.7615 | 0.3505 | 3.3583 | 1.3024 | 2.4169 | 1.3823 | 0.2767 | 0.6014 | 0.2041 | 0.9804 | -0.3360 | 0.8812
0.35 | 0.8530 | 0.7372 | 0.3356 | 3.5041 | 1.3855 | 2.5729 | 1.0363 | 0.0978 | 0.6258 | 0.1326 | 1.0365 | -0.2478 | 0.8934
0.40 | 0.8450 | 0.7170 | 0.3250 | 3.6059 | 1.4560 | 2.6927 | 0.8298 | -0.0120 | 0.6390 | 0.0826 | 1.0655 | -0.1895 | 0.9025
0.45 | 0.8389 | 0.6999 | 0.3172 | 3.6765 | 1.5161 | 2.7839 | 0.6974 | -0.0833 | 0.6454 | 0.0463 | 1.0773 | -0.1490 | 0.9092
0.50 | 0.8341 | 0.6853 | 0.3113 | 3.7253 | 1.5672 | 2.8528 | 0.6079 | -0.1314 | 0.6478 | 0.0192 | 1.0787 | -0.1199 | 0.9141
0.55 | 0.8304 | 0.6726 | 0.3069 | 3.7589 | 1.6106 | 2.9046 | 0.5446 | -0.1648 | 0.6477 | -0.0013 | 1.0742 | -0.0983 | 0.9177
0.60 | 0.8275 | 0.6617 | 0.3036 | 3.7819 | 1.6475 | 2.9433 | 0.4983 | -0.1884 | 0.6463 | -0.0170 | 1.0665 | -0.0820 | 0.9203




Table 1 (continued).

Coefficients for a = 0.7

hi Ho1 H11 H21 Hgo) Rgl) K?) d1 da d3 dy ds ds A
0.25 | 0.8049 | 0.6764 | 0.3306 | 3.3580 | 1.3991 | 2.4266 | 1.2826 | 0.2531 | 0.5073 | 0.1603 | 0.7654 | -0.2876 | 0.8615
0.30 | 0.8167 | 0.6728 | 0.3228 | 3.5071 | 1.4722 | 2.5837 | 0.9303 | 0.0724 | 0.5593 | 0.0982 | 0.8780 | -0.2077 | 0.8805
0.35 | 0.8233 | 0.6678 | 0.3168 | 3.6091 | 1.5321 | 2.7023 | 0.7391 | -0.0331 | 0.5912 | 0.0558 | 0.9476 | -0.1574 | 0.8940
0.40 | 0.8260 | 0.6619 | 0.3120 | 3.6791 | 1.5819 | 2.7918 | 0.6246 | -0.0998 | 0.6107 | 0.0252 | 0.9889 | -0.1235 | 0.9036
0.45 | 0.8266 | 0.6556 | 0.3081 | 3.7272 | 1.6237 | 2.8589 | 0.5504 | -0.1440 | 0.6223 | 0.0026 | 1.0118 | -0.0995 | 0.9104
0.50 | 0.8260 | 0.6493 | 0.3049 | 3.7603 1.6588 | 2.9092 | 0.4994 | -0.1745 | 0.6287 | -0.0146 1.0230 | -0.0820 | 0.9153
0.55 | 0.8250 | 0.6432 | 0.3023 | 3.7829 | 1.6884 | 2.9468 | 0.4627 | -0.1960 | 0.6320 | -0.0277 | 1.0270 | -0.0688 | 0.9187
0.60 | 0.8239 | 0.6375 | 0.3003 | 3.7984 | 1.7133 | 2.9747 | 0.4354 | -0.2113 | 0.6333 | -0.0379 | 1.0268 | -0.0588 | 0.9211

Coefficients for a = 0.8
0.25 | 0.7736 | 0.6156 | 0.3003 | 3.5858 | 1.5991 | 2.6972 | 0.7201 | -0.0148 | 0.5271 0.0401 0.8083 | -0.1391 | 0.8777
0.30 | 0.7977 | 0.6235 | 0.3020 | 3.6648 | 1.6403 | 2.7901 | 0.5846 | -0.0965 | 0.5674 | 0.0111 | 0.8909 | -0.1061 | 0.8936
0.35 | 0.8107 | 0.6267 | 0.3021 | 3.7180 1.6738 | 2.8585 | 0.5108 | -0.1457 | 0.5923 | -0.0095 | 0.9413 | -0.0845 | 0.9042
0.40 | 0.8172 | 0.6271 | 0.3013 | 3.7541 | 1.7015 | 2.9092 | 0.4653 | -0.1776 | 0.6075 | -0.0246 | 0.9712 | -0.0694 | 0.9113
0.45 | 0.8201 | 0.6260 | 0.3001 | 3.7787 | 1.7245 | 2.9469 | 0.4347 | -0.1993 | 0.6167 | -0.0361 | 0.9883 | -0.0584 | 0.9162
0.50 | 0.8212 | 0.6240 | 0.2990 | 3.7955 | 1.7438 | 2.9748 | 0.4126 | -0.2144 | 0.6220 | -0.0448 | 0.9974 | -0.0502 | 0.9195
0.55 | 0.8215 | 0.6217 | 0.2979 | 3.8070 | 1.7599 | 2.9956 | 0.3962 | -0.2253 | 0.6250 | -0.0515 | 1.0016 | -0.0438 | 0.9217
0.60 | 0.8214 | 0.6193 | 0.2970 | 3.8149 | 1.7733 | 3.0109 | 0.3835 | -0.2331 | 0.6265 | -0.0567 | 1.0029 | -0.0389 | 0.9233

Coefficients for a = 0.9
0.25 | 0.7959 | 0.6069 | 0.2917 | 3.7647 | 1.7496 | 2.9470 | 0.4195 | -0.1917 | 0.5901 | -0.0400 | 0.9328 | -0.0532 | 0.9090
0.30 | 0.8086 | 0.6106 | 0.2942 | 3.7862 | 1.7650 | 2.9753 | 0.3976 | -0.2116 | 0.6052 | -0.0486 | 0.9609 | -0.0453 | 0.9153
0.35 | 0.8148 | 0.6119 | 0.2952 | 3.8007 | 1.7777 | 2.9960 | 0.3834 | -0.2244 | 0.6139 | -0.0550 | 0.9766 | -0.0396 | 0.9192
0.40 | 0.8179 | 0.6119 | 0.2954 | 3.8106 | 1.7883 | 3.0113 | 0.3730 | -0.2331 | 0.6189 | -0.0597 | 0.9851 | -0.0353 | 0.9217
0.45 | 0.8193 | 0.6113 | 0.2953 | 3.8173 | 1.7971 | 3.0225 | 0.3651 | -0.2392 | 0.6217 | -0.0634 | 0.9895 | -0.0320 | 0.9234
0.50 | 0.8199 | 0.6104 | 0.2951 | 3.8219 | 1.8045 | 3.0309 | 0.3589 | -0.2436 | 0.6233 | -0.0662 | 0.9915 | -0.0294 | 0.9245
0.55 | 0.8201 | 0.6094 | 0.2949 | 3.8250 | 1.8106 | 3.0370 | 0.3539 | -0.2467 | 0.6241 | -0.0684 | 0.9921 | -0.0273 | 0.9252
0.60 | 0.8202 | 0.6084 | 0.2947 | 3.8271 | 1.8157 | 3.0415 | 0.3499 | -0.2490 | 0.6244 | -0.0701 | 0.9919 | -0.0257 | 0.9257

II 4T144Vd DNIY—AIDIY V HLIM ONIHSO'IS
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Table 2. Convergence of di and da versus Ip in the Fourier series (1.14) (a = 0.7; ha = 0.5).

h1 =0.3 h1 =05
dx ds d1 —d>
0.91465 | 0.064550 | 0.52435 | 0.16810
1.00504 | 0.095611 | 0.53062 | 0.16729
1.01616 | 0.099171 | 0.53091 | 0.16729
1.01640 | 0.099204 | 0.53093 | 0.16728
1.01645 | 0.099239 | 0.53094 | 0.16728
1.01647 | 0.099245 | 0.53094 | 0.16728

o o x| co| po| | S

The integrals above contain several relatively complex expressions that were denoted as

OFy Y ol w0ty (DM,
9= or Or - 922 G2 = —F (N
Gs = Lo (F(l))262w£1) + (F1(1))2 32¢§1 _ &/;P (Fl(l))2
*T 2 or ! 0z0r r 0z0r Bz r2 ’
9 O 0% ) 0¥y 2F(1)
Gs = o ( 1 5 + o Gr = =
0 o0 FO 5y F(1)
G = o (Fl(l) 67_2) + ; 67@2 _4 p T,
G 6F1(0) 6¢(1) s 52 §1)_ o 6F1(1) 6¢(2) s 62%2) ) 3¢(2>
N R 1 2 5 Y= 55— A - @)

G _ R oy Lr® (Lo 2 v
2 or Or 1 r2 71 022 ’

The last expressions include the functions ¥g(z,r) and ¥2(z,7) which are solutions of
the Neumann boundary value problems in the meridional plane G:

Lo(To) =0 inG; [¥o(0,2)] < oo,
Ty 9T, 1 ‘ (1.12)
W_O on Ly; W—i(gl-l-gﬂ on Lo;

and

LQ(‘I/Q) =0 in G, |\I’2(0 Z)| < 00,
9Ty 9T, 1 (1.13)
o 0 on Ly; By = 5(91 —G2) on Lo.

These solutions were found in terms of Fourier series based on fundamental linear solutions,
ie.

¥y = lim Zaﬂ,ﬁ(o) (z,7), ¥y = lim Zb ¢(2) (z,7) (1.14)

Io—)(X)
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where o )
_ S, (G + Ga))} )Tdr‘ by — S, (G = Go ) )Tdr'
2;@50) fLo r(wz(o))2dr 2&1(2) fLo r(wz@))er

These Fourier approximations are quite efficient and guarantee prompt convergence to dy
and dz. The convergence in (1.14) versus Iy is illustrated in Table 2.

i

There are several limitations in implementing the modal modelling, in general, and the
modal system (1.10), in particular. A natural limitation is associated with numerical-
analytical method of Part 1, which is numerically stable only for A; > 0.1 and a > 0.3.
Later on, since h; = 0.1 is quite small to disable baffle’s sloping in nonlinear wave regimes
and, even if this does not happen, causes shallow fluid flows over the baffle, the limitation
on hy should be stronger. Using an estimate of the shallow water phenomena by Miles [28],
we restrict ourselves to h; > 0.2.

In addition, limitation on a must be stronger due to numerical difficulties. In fact,

computing d; needs higher derivatives of wz(m) (r, 2)5>n, but the methods of Part 1 showed
good convergence of these higher derivatives only for a > 0.38. Finally, we will consider
only hy + hs > 1, namely, only fairly deep fluid fillings.

2. Steady-state resonant waves
2.1. Galerkin scheme

When considering harmonic horizontal forcing (1.2) in the modal system (1.10) and ac-
counting for the asymptotic relationships (1.8) we pose dominating modal functions as

B51(t) = Acosat + Asinat + o(e'/?), i (t) = Bcosot + Bsinat + o(e'/?). (2.1)
Setting (2.1) in (1.10¢)-(1.10e) and using the Fredholm alternative give

B6.1(t) = co + c1 cos 20t + ca sin 20t + o(e/?),
B3.1(t) = 8o + 81 cos 20t + sz sin 20t + o(€2/?), (2.2)
B3.1(t) = eq + e1 cos 20t + eg sin 20t + o(e2/?),

where
Co = l()(A2 + A2+ B% + BQ); c1 = p()(A2 —A*-B? 4+ BQ),
CQZQPO(AA-"-BB), 30:l2(A2+A2—Bz—BZ), (2 3)
S1 =p2(A2—A2+BQ—Bz); SQZZpQ(AA_BB), ‘
eg = _ZIQ(AB + BA), e = 2p2(AB — AB), ey = —2p2(AB + AB)
and
_ Di1o + Dg = Dyo — Ds
P=5@ -4 T 22 o0
_DotDr oy Do=Dro W™ |
p2—2(6_%_4)72— 25_5 ’ m — ’ — YL
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m3
5|
11
0]
-1 1.0
20,4 05 06 = ' .h
a 08 o 02 1

Fig. 3. mgo) versus (hi,a) for hy +hy = 1.

By substituting (2.1) and (2.2) into (1.10a)-(1.10b) and using the Fredholm alternative we
get the following system of algebraic equations of the four unknown variables A, A, B, B

A[6? =14+ my (A% + A% + B?) + myB?)| + m3ABB = Ae,

~ ~ o (2.5)
B[} —1+mq(B? + A% + B?) + maA?] + m3BAA =0,

( )
A6} — 14 m;(A® + A% + B?) + myB?] + m3ABB =0,
( )
B[67 — 1+my (A% + B? + B?) + my A% + m3 AAB =0,
where
my = Ds(3po — lo) — Ds(3p2 — l2) — 2Dgpo — 2D4p2 — 5D,
ma = —D3(lo + 3p2) — Ds(lo + $po) + 2Dgpo — 6Dap2 + D1 — 2Ds, (2.6)

m3 =MmMp — My

are functions of o, hy, hy and a.

Accounting for the resonance condition ; — 1 and A ~ A ~ B ~ B = O(¢'/?) one
deduces that

6'% -1= 0(62/3); mi(aa h13h25a) = m?(hlahZaa) + 0(61/3)’ i=1,2,3, (27)

where the first relationship implies the so-called Moiseyev asymptotic detuning and m$ =
m,-(w?), hi,hs,a) = O(1) (computing m{ means setting o = w?) in (2.4)).

When analysing similar algebraic systems, Gavrilyuk et al. [18] and Faltinsen et al. [15]
showed that resolvability condition for (2.5) is

A#0; A=0; m3#0. (2.8)
Neglecting o(€) in (2.5) one re-writes the system to the following form
A} —1-m%A% —mIB*) =€\, B(G: —1-m{B*>—mJA?) =0, A=B=0. (2.9)

The features of (2.9) are then predetermined by the geometric triad (hi,hs,a), but its
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solutions (A, B) change with ;. By fixing the fluid fill level H = h; + hy, the coefficient

m$ can be evaluated as a function of h; and a. Calculation showed that the zeros of m$

lay on the curve 73 in the (a, hq)-plane as demonstrated in Figure 3 for H = 1. We have
found that 3 is almost invariant for larger H > 1.

2.2. Steady-state wave regimes

Taking into account the resolvability condition (2.8) and repeating the analysis by Lukovsky
[24] and Faltinsen et al. [10] we find that there exist only two possible solutions of (2.9).
They correspond to

(i) ‘planar’ wave regime

flryn,t) = AFl(l) (r) cos n cos ot + o(e/?) (2.10)

occurring for B = 0 and
(ii) ‘swirling’ wave regimes

flrym,t) = Fl(l) (r)(A cosncosot + Bsinnsinat) + o(e'/?) (2.11)

occurring for B # 0. The + ahead of amplitude component B in (2.11) means two solutions
which determine either clockwise or counterclockwise rotary wave. Since both signs are
mathematically possible, initial conditions and transient phase should determine the sign.

2.3. Stability

Stability of the steady-state solutions (2.10) and (2.11) can be studied by combining the
first Lyapunov method and the multi-timing technique (see, Miles [29] and Faltinsen et al.
[10]). This introduces the slowly varying time 7 = €2/35t/2 and

Bi 1 = (A+a(r)) cosot + a(r) sin ot + o(e!?),

i} (2.12)
Bi1 = B(7) cosat + (B + B(r))sin ot + o(e!/?),

where a, @, 8 and 3 are infinitesimal perturbations varying with 7 and A and B are solutions
of (2.9).
_ Gathering terms of the lowest asymptotic order and keeping linear terms in a, @, and
B lead to the following linear system of ordinary differential equations

c' +[6c]+Cc=0, (2.13)

where a speculative small damping rate § > 0 is incorporated.
Further, ¢ = (o, @, 3, 3)T and the matrix C has the following non-zero elements

c12 = —[67 =1+ mlA% + mB?]; co1 =% — 1+ 3mlA% + mIB?,
—(m —m3AB; ¢y = —2mIAB,
c23 = 2ABm3; c32 = (m) —m3)AB,

c3s =07 —1+mIB? +mlA?; cy3 = —[67 — 1+ 3mIB? + mJA?].

Ci14



14 GAVRILYUK, LUKOVSKY, TROTSENKO AND TIMOKHA

Fig. 4. mgo) and my ’ versus a and h; for hy +hy = 1.

(0)

Fundamental solutions of (2.13) depend on the eigenvalue problem det[(A+d§)E+ C] = 0.
Computations give the following characteristic polynomial

A+0)*+c(A+68)*+¢co =0, (2.14)

where ¢ is the determinant of C and ¢; is a complicated function of the elements of C.
Since the eigenvalues A can be expressed as — £ /Z1 2 (#1,2 are solutions of the equation
z? + c12 + co = 0), the asymptotic stability of the fixed point solutions means that

co>0; ¢ >0; ¢ —4c >0. (2.15)

Here ¢y vanishes at the turning point solutions and at Poincare-bifurcation points. The
zeros of the discriminant ¢? — 4¢; are Hopf-bifurcation points where the real parts of a pair
of complex-conjugate zeros of ¢g becomes positive.

The analysis of the next section will be done for 6 = 0. One should note, that small
positive § do not lead to instability of a steady-state regime, but rather can reduce frequency
domains where such regimes are unstable.

2.4. Response curves of ‘planar’ and ‘swirling’ regimes versus h; and a
The dominating amplitude A of ‘planar’ wave regime (i) is governed by the single equation

A(@? —1+mlA?) = Ae; B =0, (2.16)
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but the pair (4, B) of (ii), which describes ‘swirling’, should be found from the algebraic
equation

0
A@? — 14+ mlA%) = msAe, ml = —%, mg =m + m9 (2.17)
3
and the auxiliary formula for computing B

. 1 .
B% = W((}f —1+mJA?) >0, (2.18)
1

where A is solution of (2.17).

Existence and properties of (i) and (ii) depend on solutions of the cubic equations (2.16)
and (2.17) and, as a consequence, on the signs of m{ and m$ (Miles [28], Gavrilyuk et al.
[18] and Faltinsen et al. [10]). If hy + ha > 1 and a > 0.38, hy > 0.2, numerical testing finds
m§ > 0, but m? changes its sign on a curve 7; in the (a, h1)-plane. This point is illustrated
in Figure 4, where M;" and M, are areas of positive and negative m{, respectively.

Analysis in Figures 5 (a-e) for ¢ = 0.002, hy + hy = 1 and h; = 0.3 displays evolution of
the response curves with decreasing a < 1 (baffle is introduced deeper into the fluid bulk for
each new figure). The value h; = 0.3 guarantee that the pairs (a, h1) runs from M; to M;"
and, therefore, effect of changing ‘soft-spring’ to ‘hard-spring’ behaviour at 7 is captured.

In Figures 5 (a-e), we treat A and B as (dominating) amplitudes of longitudinal (along
oscillations of the tank) and transversal (perpendicular to the oscillations) wave elevations
in steady-state wave regimes. Since A and B are functions of 1/5;, the response curves are
considered in the (1/54, |A|, |B|)-space. Their projections on the (1/51,|A|)-plane express
solutions of (2.16) and (2.17). Figures 5 (a-e) represent both these projections and three-
dimensional views. Solid lines are used for stable solutions, but dashed lines denote unstable
solutions.

Figure 5 (a) starts with the case of smooth circular cylindrical tank (there is no baffle).
The branching of this figure has been established by Miles [28, 29], Lukovsky [24], Lukovsky
& Timokha [25] and Gavrilyuk et al. [18]. The analysis gives the turning point T' for
‘planar’ response curve, the Poincare-bifurcation point P, where ‘planar’ response curve
bifurcates to ‘swirling’ (this fact is demonstrated by three-dimensional view) and H is
the Hopf-bifurcation point, where ‘swirling’ changes its stability properties. In order to
classify the wave regimes versus 1/4; the frequency domains of stable ‘planar’ and ‘swirling’
solutions are incorporated in the (1/51,|A|)-plane. These domains show zones where the
corresponding wave regimes exist, stable and have minimum energy with respect to other
stable steady-state waves. In addition, we denoted as ‘chaotic’ the frequency domain, where
our analysis did not find any stable steady-state waves and, therefore, we expect chaotic
motions.

In Figure 5 (b), we show that a narrow ring baffle (a = 0.7) does not change shapes of
the branches. There is a small drift of ‘chaotic’ frequency domain, but its range (interval
between abscissas of T' and H) is almost unchanged. A migration of ‘chaotic’ frequency
domain becomes visible only if (a, h1) € M; approaches to ;. The situation is depicted in
Figure 5 (c), which is drawn for a = 0.6. Here, m{ is close to zero and, therefore, response
curves responsible for ‘planar’ regimes (found from (2.16)) are approximately the same as in
the linear sloshing theory. The Hopf-bifurcation point H moves to the right and projections
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‘planar’  chaotic ‘swirling’  ‘planar”
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1Al ‘planar’ | chaotic p'swirling’ planar’
03 |BI . (b)
0.2
WP
N / \
SH
0 ,,,,,,,,,,,,,,,,,,,
0.96 0.98 1 1.02 1.04
s,
1A1 ‘planar’  chaotic “planar”
03 — IBI (c)
0.3
02 02
AP
0.1
N H/\
0
0.96 0, 03
0 098 ! :
0.96 0.98 1 1.02 1.04 _ 1.02 .
s, /5, 104 ¢ Al

Fig. 5. Response curves for ¢ = 0.002,h; + ha = 1 and h; = 0.3. Each row gives |A| versus 1/41 in
the (1/d1,|Al)-plane and spatial representation of the triads (1/51,|A|,|B|). A implies longitudinal wave
component (in the forcing plane) and B notes transversal component (perpendicular to the forcing). The
solid lines correspond to stable solutions and the dashed lines are used for unstable steady-state wave
regimes. We present the effective frequency domains for ‘planar’ and ‘swirling’ solutions. ‘Chaotic’ domain
marks the absence of stable steady-state regimes. (a) The tank has no baffle (a = 1); T is the turning point
of ‘planar’ regime, P is the Poincare-bifurcation point, where unstable ‘swirling’ appears from ‘planar’
solutions and H is the Hopf-bifurcation point. (b) corresponds to a = 0.7; bifurcation points are as in the
case (a). (c) The same as in (b), but for a = 0.6.

of ‘swirling’ curves on the (1/51,|A|)-axis become close to each other. That is why, the
three-dimensional representation is this case more informative.

When (a, h1) runs into M;", the branching of response curves changes dramatically. Ex-
amples are given in Figures 5 (d,e) for a = 0.5 and 0.4. First of all, we find out that earlier
bifurcation points disappear. Besides, frequency domain of ‘chaotic’ motions is removed at
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Fig. 5 (continued). (d) represents the branching for a = 0.5; T is the turning point for ‘planar’ solutions,
P; implies the Poincare-bifurcation point, where both regimes are unstable, 7% is the turning point for
‘swirling’ and Hj, i = 1,2 are the Hopf-bifurcation points. (e) gives the results for a = 0.4; T is the turning
point for ‘planar’ response curve and P> is the Poincare-bifurcation point.

all as well as response curves responsible for ‘swirling’ move away from the primary reso-
nance 1/61 = 1. In the case a = 0.5 depicted in Figure 5 (d), ‘planar’ solution is stable in
all the resonant frequency domain and ‘swirling’” does not realise (stable ‘swirling’ between
the turning point 7} and the Hopf-bifurcation point H; and in a zone in the right of H, cor-
respond to waves of higher kinetic energy than corresponding ‘planar’ regime). Figure 5 (e)
shows that 77, H; and Hs-bifurcation points disappear with decreasing a to 0.4 and the
Poincare-bifurcation point P; “jumps” to P, i.e. from one ‘planar’ branch to another.
In addition, there is a frequency domain, where our theory expects stable ‘swirling’, but
unstable ‘planar’ waves.

One should note, that non-zero damping § > 0 from § 2.3 can increase effective fre-
quency domains of stable steady-state solutions and zone of ‘chaotic’ waves may disappear
for (a,h1) € M7, but the qualitative conclusion on the effective frequency domains should
be the same. we do not present suitable analysis, because we are sure that effect of damp-
ing on resonant baffled sloshing should account for realistic dissipation rates due to shear
stress (Hill [20]) and vorticity stress at the baffle edge (Buzhinskii [3]). This consititite an
interesting perspective for future work and will be of special attention in the forthcoming

paper.
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Fig. 6. Ro2 and Roa for hy + ha = 1 (first row) and for h1 + ha = 2 (second row). Contours 722 and rg2
represent solutions of the equations Ra2(a,h1) =1 and Roga(a, h1) = 1, respectively.

3. Secondary resonance as a perspective direction

Another interesting perspective consists of increasing the dimension of the modal system.
This operation is of importance when the secondary resonance phenomena cause ampli-
fication of 85, B3, B5: B5: @ > 2 and (1.9) fails. Miles [28] showed that the latter
occurs in circular basin near a depth to radius ratio 0.831, when the first harmonic of wave
progressing around the basin forces resonantly the second harmonic of the wave causing the
two harmonics to be of comparable magnitude. A resonance triad is set up consisting of
the first harmonic interacting with itself and the second harmonic.

The internal resonances are discussed by Bryant [2] (circular basin), these are extensively
examined for large amplitude forcing by Faltinsen & Timokha [14, 15] (rectangular tank),
Ockendon et al. [33], La Rocca et al. [22, 23] and Faltinsen et al. [10] (square base tank).
Following Bryant [2] we expect those internal resonances when one from

1 [Koi 1 [ke .
Ro; = — —,R ;= — s >1 3.1
01 2 K11 27 2 K11 12 ( )

passes to 1. QOur numerical analysis showed that only Rys and Ry can be equal to 1.
Figure 6 illustrates the curves r22 and rge on which the secondary resonance occurs.
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