The fluid sloshing in a vertical circular cylindrical
tank with a rigid-ring baffle I:
Linear fundamental solutions*

I. GAVRILYUK!, I. LUKOVSKY?, YU. TROTSENKO? AND A. TIMOKHA3!

1 Berufakademie Thiiringen-Staatliche Studienakademie,
Am Wartenberg 2, 99817, Eisenach, Germany;
2 Institute of Mathematics, National Academy of Sciences of Ukraine,
Tereschenkivska 3, 01601 Kiev, Ukraine;
3 Friedrich-Schiller- Universitit Jena, Institut fir Angewandte Mathematik,
Ernst-Abbe-Platz 2-4, Jena, 07745, Germany

Abstract

The paper centres around fundamental solutions of a linear evolutional problem
which describes fluid sloshing in a vertical circular cylindrical tank with a thin
rigid-ring horizontal baffle fitted to the inner walls. Under certain postulations
accepted for those hydrodynamic systems, the paper adopts inviscid fluid model with
irrotational flows and, thereupon, places emphasis on quantifying natural frequencies
and modes versus both position and width of the baffle. The analysis is based on an
analytically-oriented variational method which gives accurate approximate solutions
capturing asymptotic behaviour of the velocity potential at the sharp baffle edge.
Forthcoming Part II will use the analytical approximate solutions in a nonlinear
modal modelling and in computing the damping due to local vorticity stress.
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Introduction

A fluid occupying partly either earth-fixed or moving tanks of rockets, nuclear reactors,
tower- and bridge constructions, ships and liquefied natural gas carriers performs wave
motions, the sloshing, that are caused by time-dependent and instantaneous perturbations
of its hydrostatic equilibrium. Since the fluid sloshing disturbed by guidance and control
systems commands, ship manoeuvres and structural vibrations of mobile vessels generates
significant hydrodynamic force- and moment loads on the moving tank, it becomes a danger
for structural integrity and can produce a dramatical feedback sensed and responded by to
the tank motions forming a closed loop that leads to an instability, tank bulkheads and
even damage. In view of minimising the crucial loads, preventing structural failure and
governing the fluid position within the tank, extensive experimental and theoretical studies
have been undertaken from several decades ago and, as a result, numerous devices have
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been designed for suppressing the fluid mobility. These devices use fact that the structural
instability hazard is explainable by the closeness of a control structural frequency to a
fundamental sloshing frequency. This closeness yields, over and above the gust inputs,
coupled resonant vibrations involving large sloshing mass and, as a consequence, leading to
non-controllability and even destruction of the whole object. In order to diminish the fluid
effects to structural stability, the lowest fundamental sloshing frequencies should be shifted
away from the control frequency domain. Systematic analysis of the passive devices which
influence the natural sloshing frequencies has at different time and for different applications
been given by Abramson [1], Bauer [5], Mikishev & Rabinovich [38], Mikishev & Churilov
[37], Mikishev [36] and Ibrahim et al. [28]. Design criteria by Abramson [1] give a series
of suitable engineering solutions consisting for instance of subdividing the container by
longitudinal (vertical) walls (Bauer [3, 4]). However, the compartment is characterised by
increasing structural mass and the baffling is in many cases the cheaper method without
the weight penalty.

While engineering of mobile vehicles with fluids requires the splitting of structural and
sloshing frequency domains, the so-called tuned sloshing dampers of large buildings, towers
and bridges suggests their overlapping. This makes it possible to redistribute the total
kinetic energy of the whole object in behalf of the fluid mass and, since the fluid motions
have in many cases larger damping rates than the rigid/elastic structures, to increase the
resulting dissipation with consequent mitigation of structural vibrations. In that case, the
theoretical analysis becomes more complicated, because it should be based on fully nonlinear
formulation. This implies requirements in robust and accurate computer programs (see
reviews by Solaas [48], Moan & Berge [41] and Cariou & Casella [9] and some successful
simulations of the baffled fluid sloshing by Arai et al. [2], Campolo et al. [8], Celebi &
Akyildiz [10] and Cho & Lee [13, 14]).

Physical nature of the tuner sloshing dampers is found quite different for distinct tanks’
shapes and fluid fillings. As explained by Ockendon et al. [44], Faltinsen & Timokha
[21] and Yalla [53]), the tuned sloshing dampers with small fluid depths employ features
of shallow fluid flows. The fundamental sloshing spectrum of the shallow fluid layer is
nearly-commensurate and, therefore, nonlinearity leads in this case to progressive resonant
activation of higher modes which are responsible for short, steep surface waves. Since
these short wave phenomena are accompanied by local breaking and dramatically effected
by viscosity and surface tension, the kinetic sloshing energy dissipates very rapidly and
desirable structural damping can be achieved even without slosh-suppressing devices. In
contrast, the sloshing in smooth tanks with a finite fluid depth resembles to the long free-
standing waves which, if baffles are not introduced, have small damping rates (see, reviews
on its quantification by Yalla [53], Faltinsen & Timokha [20], Faltinsen et al. [19]). An
explanation of the physical nature of the tuned sloshing dampers is based on changing the
steady-state nonlinear resonant response (see two-dimensional numerical results by Ikeda
& Nakagawa [29] and Cho & Lee [14]) and the damping due to vorticity forces at the sharp
baffle edges. The latter has been in primary focus of many investigations including Keulegan
& Carpenter [31], Miles [39], Silveira et al. [47], Mikishev & Rabinovich [38], Mikishev
[36], Sarpkaya & O’Keefe [46]), and, recently, Isaacson & Premasiri [30] and Buzhinskii
[7]. They showed that, if the surface wave magnitude is relatively small, the vorticity-
based logarithmic decrements can be quantified in the framework of linear hydrodynamic
theory based on inviscid potential model. The analysis introduces the so-called velocity
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intensity factor, the coefficient K, appearing at the main singular term of the linear velocity
potential along the sharp baffle edge. By mentioning that an analogous problem arises in
linear fracture mechanics (when calculating the stress intensity factors on the sharp edges
of cracks in a solid) Buzhinskii [7] discusses difficulties to quantify K, in sloshing problems
by traditional Computational Fluid Mechanics (CFD) methods. He calls for analytically-
oriented approaches that capture singular behaviour of the fundamental linear solution.

The need in analytically-oriented approaches to fluid sloshing in tanks with baffles has
motivated us to undertake a special applied mathematical studies. We restricted ourselves
to the case of relatively simple tank geometry, exemplified in this paper by a vertical circular
cylinder. The research project pursued three consequent, linked goals: (i) the development
of analytically-oriented methods for the linearised fluid sloshing problem that approximate
the natural spectrum of the free-standing wave modes as precise as the singular asymptotics
of the linear fundamental solutions at the baffle edge; (ii) the generalisation of nonlinear
modal methods for theoretical classification of steady-state resonant fluid motions in similar
manner as it has been done by Lukovsky [35], Faltinsen et al. [19, 18] and Gavrilyuk et al.
[24] for smooth cylindrical tanks; (iii) an analytical quantification of the fluid damping due
to vorticity stress at the baffle edge by utilising both Buzhinskii’s formula [7]. The problem
on analytical approximations of the linear fundamental solutions, the core of the project, is
investigated in the present paper.

The linear fluid sloshing in a circular cylindrical tank with rigid baffles has been studied
by many authors in context of spacecraft applications. Experimental and numerical results
are reported by Dokuchaev [15], Bauer [5], Rabinovich [45], Ermakov et al. [17], Trotsenko
[49], Morozov [43] and, recently, by Watson & Evans [52], Biswal et al. [6] and Gedikli
& Ergiiven [26, 27]. Since the task of these papers consists basically in quantifying the
lower natural sloshing frequency, almost all theoretical and numerical investigation were
based on classical finite element schemes that provide sufficient accuracy in computing the
primary natural tone. To the authors knowledge, there is very limited set of numerical
approaches which take into account analytical features of the velocity potential at the baffle
edge. Three of the rare examples are represented in papers by Galitsin & Trotsenko [23],
Trotsenko [50] and Gavrilyuk et al. [25] devoted to two-dimensional linear sloshing in a
rectangular tank with two horizontal baffles. After detailed reading these papers, we found
it possible to develop similar method in more general cases including the tanks of circular
base. As a result, we obtained a very efficient and precise semi-analytical solver which
gives six significant figures of the fundamental frequencies with small (up to 8) number
of the basis functions. Abilities of the method are demonstrated by numerical examples.
The analysis of fundamental sloshing spectrum versus geometric size of the baffle and its
position has also been done. The failure of the method is detected when either baffle is very
close to the mean fluid surface or baffle is sufficiently wide to prevent fluid current between
lower (under the baffle) and upper (over the baffle) fluid domains. We give mathematical
and physical treatment of these failures as well as note that decreasing length between the
baffle plate and the hydrostatic fluid surface leads in practise to either the baffle stripping
or the shallow wave motions over the baffle.
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Fig. 1. Hydrostatic fluid shape in a rigid cylindrical tank; three-dimensional and meridional sketches. The
thin rigid-ring baffle I" is submerged into the fluid volume.

1. Statement of the problem
1.1. Theory

Let a rigid circular base cylindrical tank of the radius R be partially filled by a fluid with
the mean depth h. The inner periphery of the tank contains a thin rigid ring-plate baffle
which divides the amount fluid height A into hy and hs, where h; is the mean height of
fluid layer over the baffle and hs is the length between the baffle and the bottom. The
thickness of the baffle is assumed to be negligible relative to h; and hy. The fluid motions
occurring due to initial perturbations are furthermore described in the framework of the
inviscid incompressible hydrodynamic model with irrotational flows. In order to conserve
the baffle inside of the fluid bulk (the sloshing does not strip the baffle), the free-standing
waves deflections relative to hydrostatic plane are assumed to be smaller than h;.

The problem is studied in the size-dimensionless formulation suggesting that all lengths
and physical constants are normalised by the circular base radius R. This implies in par-
ticular that hy := hy/R,hy := ha/R,g := g/Ly (the gravity acceleration g has now the
dimension [s72]) etc. The free boundary problem is formulated in the tank-fixed coordinate
system Ozyz. The Oz-axis is directed along the symmetry axis of the tank and the origin
O is posed in the plane of the baffle as shown for hydrostatic case in Figure 1 (a). Fur-
ther, we assume small initial perturbations that initialise the linear free-standing gravity
waves. Under certain circumstances, these waves can be found from the following problem
(Feschenko et al. [22])

6—? =0 on Sy and T} 6—(I>dS =0, (1.1a)

A® =0 in Qu;
5 s, 02

02 _of 9% .
5 = ot E+gf—0 on X, (1.1b)
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where Qg is the static fluid domain, Sy is the statically wetted tank surface, ¥g coincides
with the mean fluid surface, v is the outward normal to Qy, the function f (z,y,t) defines
small-amplitude deviations of the free surface evolution (z = f(z,y,t)) and ®(z,y,z,1)
denotes the linear velocity potential. The boundary value problem (1.1) should be accom-
plished by the initial conditions

f0.00) = ey G000 = Aea), [ Fds=oi=12  (2)

where the prescribed small-norm functions fg and fl define initial deviations and velocities
of the free surface, respectively.

Solutions of the linear problem (1.1) are associated with a special class of spectral prob-
lems with spectral parameter in boundary conditions. This suggests the substitution

‘i’(iﬂ,y,»’i,t) = 90(37,%2) eXp(IWt)a I’ = -1, (13)

which introduces the natural frequency w and the natural mode ¢(z,y, 2). By rewriting the
boundary conditions (1.1b) to the form

e 0% ;109
— — =0 =—-— by 14
and introducing k = w?/g, the evolutional problem (1.1a) (1.4) is transformed to
0
Ap =0 in Qo; —90:0 on Sp and T,
ov
dp (1.5)

— = Kp on Xg; /cpdSzO.
32 2o

As established by Eastham [16], the spectral problem (1.5) has a real positive pointer
spectrum {k;}, £; = 400 and {y;(z,y,0)} put together an orthogonal basis in Ls(Xg) for
any functions which satisfy the last integral condition of (1.5). These spectral theorems
deduce that eigenfunctions of (1.5) constitute, via formula (1.3), the fundamental solution
of the evolutional problem (1.1): Having known fy and f; in (1.2) we can find ® by using
the Fourier series in {¢;(x,y, 2)}, the natural frequencies are determined by w; = /gk;.

1.2. Natural modes in a circular-base tank with a ring baffle

When Qg has axial-symmetric shape, the spectral problem (1.5) allows for separation of spa-
tial variables in the (7,7, z)-cylindrical coordinate system, e.g. = cosn,y = rsinn, z = 2.
Introducing ™) (r,n,z) = "™ (z,r)exp(Imn), m = 0,1,... reduces (1.5) to the m-
parametric family of the two-dimensional spectral problems in the meridional cross-section
of Qol

92pm) 1 9p(m)  §2q(m)

(m) = — — 2 (m) — 1
L ($'™) 5 T e T The m*1 0 inG,
(™) dep(m)
— L — . (m) 1.
o 0 on Ly; 52 0 onvy; 9™ (z,0) < oo, (1.6)
(™)

= n(m)¢(m) on Ly, m=0,1,...; / mb(o)dr =0,
0z Lo
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where geometric definitions of G, Ly, Ly and + are sketched in Figure 1 (b).

Simple analysis shows that (1.6) has an analytical solution for either @ = 1 (there is not
baffle) or a = 0 (the horizontal baffle completely splits the tank into two non-connected vol-
(m)
i

umes). Explicit expressions for the natural spectra m[h]gm) and k[hy];"", i > 1 (eigenvalues

are posed in ascending order with ) can be written down as
K[B™ = a; m tanh(aimh); K[ )™ = @i m tanh(@imh), (1.7)

where «; ,,, is the ith root of the equation J! (o m) = 0 (J,(z) is the Bessel function of
first kind). The eigenfunctions take the form

O[A)\™ = T (tsmr)

cosh(a,m (2 + ha)) | cosny,
cosh (e mh) sin my,

m h i,m ,
olha){™ = Jm(ai’mr)w {cosnn

cosh(a;,mhi) | sinm.

Spectral theorems given by Feschenko et al. [22] and Lukovsky et al. [34] show that
(m)

K2

eigenvalues of (1.6) lay between n[hl]gm) and k[h];"", i.e.

ah])™ < 6™ < k)™, i=1,2,...; m=0,1,.... (1.9)

2. Approximate fundamental solutions
2.1. Variational method

If 0 < a < 1, the spectral problems (1.6) have not analytical solutions. Following Galitsin
& Trotsenko [23] and Trotsenko [50], let us consider an artificial vy = {# = 0,0 < r < a}
that cuts (together with v = {z = 0, a < r < 1}) the original meridional domain G into
two rectangles G; and Gy as shown in Figure 1 (b). The original solution (™) falls then
into two functions defined in G; and G5 as follows

(m) _ ¢(m’1) (Z,T'), (Z,T') € G17
vren = {¢<m=2>(z,r), (2,7) € Go. @1)

These function must satisfy
Ly(@'™9) =0 in Gi, 9™ (2,0) < o0, i=1,2 (2:2)

and the boundary conditions following from (1.6), i.e.

(m,1) (m,1)
% =0 (r=1, 0< 2z < hy); %% =0 (z=0,a<r<1),
Ap(m1) ’

P () (ms1) (z=h1, 0<r <)
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for (™) and

(m,2) (m,2)
%% =0 (r=1, —hs < 2<0); % =0 (z=0,a<r<1),
or 0z
P (2.4)
97 =0 (z=—hg, 0<7r<1).
for 4p(m:2),

In addition, since the original 9™ (r, z) and their first derivatives should be continuous
at 70, (2.2)-(2.4) must be accomplished on vy by the following transmission conditions

p D (r,0) =™ (r,0) (0<r<a), (2.52)
dyptm) pyplma2) L m)y
= o, NFEZI(r)y (0<r<a), (2.5b)

(m)
where N )(r) is an auxiliary function from L,(0,a) depending on (™). Besides, when
m = 0, the integral condition of (1.6) leads to

/ rp®Ydr =0 and / TN(’)‘(m)(T)dr =0.
Lo 0

Further, we consider a transmission procedure, which inputs the test spectral parameter
k(M ¢ {mgm)[hl], i = 1,2,...} and assumes that the test function N,’f;m)(r) is known.
By combining (2.3)-(2.5b) we get two boundary value problems (2.2)+(2.3)+(2.5b) and
(2.2)+(2.4)+(2.5b), which have the analytical Green functions

oo

mT)Jm (QkmTo)
K& m (k) Jm (@t hlctem (2 — B
W) (r, 2310, 20) ; o2, Sinh(akm Bt — D) cosh[agm, (2 — h1)+

+ ﬁkm] COSh(aksz)a ((7'5 Z), (7'0520) € Gl;z > ZO), (263)

- Jm(akmr)Jm(akmro)
K (r, 2570, = - hlagm h(agmzo),
(r,2;70,20) kEZI comn®sinh(apmPz) cosh[agm (2 + h2)] cosh(agm20)

((T‘, Z), ('f‘o,Zo) € G2;z > Zo), (26b)
where

Opm + k(™)

'19an =In m

1
1 2
sna = /ran (Qgmr)dr = 3 (1 - m2_> J2 (Qtgm)-
0
These Green functions compute

¢(m 1)(z T) /Nﬂ(m) )K(n(m))(z 7;0,70)T0dr0,
(2.7)
™2 (2, 1) = / N3 (1)Ko (2,730, 70)rodro + Somconst
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(0sm is the Kronecker delta).
The solutions (2.7) must satisfy the transmission condition (2.5a), which leads to the
integral equation
a
/ [Km(hl,T,O,To) + K,(,f(m))(hl,r; O,ro)] N,’;”:m)(r)rgdro = Som (2.8)
0

(
with respect to N ™ and k(™). A way to solve this integral equation consists of the
Galerkin variational method. This implies the series

)

o0
N () = ST X ) (0 < r < a), (2.9)

p=1

where {X, (m’”(m)} are unknown and {f{™} is a two-parametric family of the L(0,a)-

complete functions (the case m = 0 requires fo r 0 )( )Ydr =0, p=1,2,...). The integral
equation (2.8) can be reduced to the two- parametrlc equalities

/ ' (2D, 0) = ™D, 0)) rf{™ ()dr = 0, p.a=1,2,..., (2.10)

0

or, more precisely, to the following infinite-dimensional system of linear homogeneous alge-
(m)
braic equations with respect to X,(,m’” )

Ppo
1 (m’n(m)) (N(m)ﬂn) = =
pggan;Xp Alr 0, (¢=1,2,3,..)), (2.11)
where
m (m) tanh (agmhi) — a
A(H( ) m Bm)B(m) . 2 th b K km/'l1 km
pa Z Qe N, |COth(Qmh2) + R S tanh(cemhn ) )
a (2.12)
1
pm _ / (m)
W = e [ O Im@mrrdr
0

The linear system (2.11) has non-trivial solution, if and only if, the test value x(™)
coincides with an eigenvalue from (1.6). When truncating (2.11), the necessary solvability
condition

det|| {Az ™™, p,q=1,...,p0} [| =0 (2.13)

can be considered as a transcendental equation with respect to the test numbers k(™).

Therefore, the roots of (2.13) output the approximate eigenvalues {n,(,m), p=1,2,...,p0}
as well as enable calculation of approximate eigenfunctions. The latter suggests the usage

of non-trivial solutions {X,gm’")} of (2.11) and the integral presentation (see, Watson [51])

Jyrvt1(2) = 2"I‘ / (zsin®) sin**! 9 cos® 1 9d,
0
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with the gamma-function I'(z), which deduces

P (e, = = 3™ (g™,
k=t (2.14)
¢("‘ 2 (z,r) Z a(m’ ) T akr)g,gm) ("), (m=0,1,2,...),

where

m,n - (m,n m m 7 (m 2P+1 m
0/5‘: ):ZXP bz()k)’ bz()k):bg()k)_(som2 1b1()+ik7

1
a™t29pP- 5T (p - —) Trntp—1 (Wkma)
Fm 2

1 7
akmn%m (agma)? 3

(myn) _ coshlagm (2 — )] cgm + K™ tanh[ag, (z — hy)]

k ~ cosh(agmhi) Qg tanh (agmhy) — K™
(m) _ coshlagm (2 + ha)]
ko sinh(apmhe)

2.2. Functional basis

Accuracy, convergence and numerical effectiveness of the variational method depend on the
functional basis {f\™} used in (2.9). Since

aw(m) dep(m) m

asr —va; ——~r", asr —0 (2.15)

\/7\/1_7_ ' "oz

(Lukovsky et al.[34]), the basis has to have special asymptotic behaviour at r = 0 and a,
respectively.

A simplest example of such basis that is used in the present paper reads

p—1
rm

1_7(2)2 1—(2)] , (mp=12,..),

£00) = £590) - 215

wo=h-()]

(m)
Remark 2.1. Since Aé'; ™) 5 g=1,...,po are determined by the series (2.12) which are

K™ =

(2.16)
£ m=0p=12,..),

where
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functions of x(™), accuracy in computing roots of the transcendental equation (2.13) will
depend on convergence of (2.12). By using

. 2
Qe ~ kT T2 (0km) = 5 k — o0, (2.17)
one can show that elements of (2.12) are
0 L =0,1,2 ; =1,2 2.18
kp+q ? m = ) 7"'7p7q_ e B (‘ )

and, therefore, the case p = ¢ = 1 is characterised by weak convergence. In order to improve
this convergence, one can account for (2.17) and take in mind that the series

Sm T kz ’ k

k=1

cos® kra, (m =1)
are computed analytically with the following result

Sy = 7Ta2m+3(1 - Cl), (m = 07 2)7
"\ mat (f+at-a), (m=1).

This makes it possible to re-write (2.12) for p = ¢ = 1 to the following form

(k,m)
1

o =S+

S 4 (2 2 )y, _ 20720
+ Z b1k )" Ckm Mg [cOth(arm h2) + coth(agmhy — 0, )] — e ,
k=1

where the modified numerical series has the asymptotics O(k~3) instead of O(k™?2).

3. Numerical results
3.1. Convergence

When using the functional basis (2.16), the proposed Galerkin method shows good con-
vergence for different values of hi,hy and a. This can be viewed in Table 1 representing
ngm), i=1,2,3,4 (m =0,1,2) versus po. If hy > 0.1 and a > 0.3, the numerical method
guarantees six significant figures of mgm) (m = 0,1,2) with the truncation size pg = 5.
Approximation of some of higher eigenvalues need py = 8 to get the same accuracy.

One should note, that calculations of approximate (™ from the transcendental equa-
tions (2.13) are usually based on an iterative methods and, therefore, the effectiveness and
stability of our algorithm may depend on initial approximations. We tested various solvers
of the transcendental equations. When h; > 0.1 and a > 0.3, all of them provide stable
computing with arbitrary initial £(™) from the range determined by inequalities (1.9). The
situation changed for lower h; and a, when the solvers became unstable and a special care
of initial approximation has been needed. Typical way that has been used in our numerical
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Table 1. Convergence of n,(.bo),nsll) and n,(f), n = 1,2, 3,4 versus truncation size po in (2.13) for a = 0.7,

hs = 0.5 and two values of h1 = 0.1 and 0.5.

hy =0.1 hy =0.5
n | po K £ £ £ kD K2
1 2.28607 0.93790 1.53476 3.75597 1.62183 2.90455
2 2.28653 0.94024 1.53544 3.75910 1.62404 2.90621
3 2.28654 0.94027 1.53544 3.75912 1.62404 2.90621
1 4 2.28655 0.94028 1.53544 3.75912 1.62404 2.90621
5 2.28655 0.94028 1.53544 3.75912 1.62404 2.90621
6 2.28655 0.94028 1.53544 3.75912 1.62404 2.90621
7 2.28655 0.94028 1.53544 3.75912 1.62404 2.90621
1 4.81039 2.98097 4.68493 7.00504 5.28665 6.69385
2 6.12230 4.15960 5.88364 7.01042 5.31058 6.70035
3 6.19683 4.18504 5.93413 7.01088 5.31187 6.70077
2 4 6.19733 4.18506 5.93441 7.01089 5.31188 6.70078
5 6.19734 4.18506 5.93441 7.01089 5.31188 6.70078
6 6.19734 4.18506 5.93441 7.01089 5.31188 6.70078
7 6.19734 4.18506 5.93441 7.01089 5.31188 6.70078
1 8.29360 6.26769 8.02229 10.17280 8.53331 9.96865
2 8.55123 6.66552 8.39313 10.17294 8.53395 9.96887
3 9.50380 7.82773 9.31368 10.17322 8.53525 9.96919
3 4 9.60561 7.92096 9.39597 10.17326 8.53539 9.96923
5 9.60785 7.92226 9.39760 10.17326 8.53539 9.96923
6 9.60788 7.92227 9.39761 10.17326 8.53539 9.96923
7 9.60788 7.92227 9.39761 10.17326 8.53539 9.96923
1 11.60040 9.68234 11.40933 | 13.32365 | 11.70581 | 13.17032
2 11.86938 | 10.04555 | 11.66641 | 13.32365 | 11.70584 | 13.17033
3 12.09188 | 10.29531 | 11.94871 | 13.32366 | 11.70588 | 13.17034
4 4 12.70927 | 11.05345 | 12.56100 | 13.32368 | 11.70594 | 13.17035
5 12.80440 | 11.14807 | 12.64583 | 13.32368 | 11.70595 | 13.17036
6 12.80820 | 11.15087 | 12.64899 | 13.32368 | 11.70595 | 13.17036
7 12.80827 | 11.15091 | 12.64905 | 13.32368 | 11.70595 | 13.17036

tests consisted in implementing a path-following procedure with respect to the two real
parameters hy; and a. The procedure computed the roots of (2.13) for the fixed h; < 0.1
and a < 0.3 with initial k(™ obtained as roots of (2.13) for larger h; and a. This path-
following made it possible to extend the results for Ay > 0.01 and a > 0.1. However, it
showed sensitivity to stepping in h; and a, especially for the dimensions py > 5, and failed
for hy <0.01 and a < 0.1.

Numerical failure for h; — 0. While good convergence of our variational method for
non-small h; is caused by adequate functional basis which captures the actual asymptotic
behaviour of N;(m) = 0™ [8z(r,0) at r = a and 0, its numerical failure for smaller h;
needs special studies. Mathematically, it can be explained by the fact that the spectral
problem (1.6) with hy = 0 (the baffle lies on the unperturbed free surface), which describes
the fluid sloshing in a circular hole, has other, logarithmic asymptotics for 9¢(™ /dz at
r = a, which is inconsistent with our functional basis. Detailed mathematical analysis of
the corresponding spectral problem is given by Kozlov et al. [32] and Kuznetsov & Motygin
[33].

An alternative, physical treatment of the numerical failure involves a shallow fluid analysis



12 GAVRILYUK, LUKOVSKY, TROTSENKO AND TIMOKHA

of the fluid layer over the rigid plate assuming that h;/(1 — a) — 0. By using prediction
of the shallow-like sloshing h; /(1 — a) < 0.2 given by Faltinsen & Timokha [21], we deduce
strongly nonlinear and dissipative surface waves (Chester [11] and Chester & Bones [12])
which are not described by our inviscid linear fluid model for h; < 0.1 and a < 0.3. This
means that any results based on linear inviscid model for small h; can be irrelevant.

Numerical failure for a — 0. Even if hy is not small, our method can be invalid for
small a, namely, when the baffle is relatively wide to prevent fluid flows between the upper
and lower fluid domains. This numerical failure is caused by using the Green technique
in our variational method. If a thin rigid-ring baffle is fitted in the inner fluid periphery,
the eigenvalues Kgm) are not only confined to (1.9), but also depend monotonically on
a. Theoretically, by using the spectral theorem documented by Feschenko et al. [22] we
deduce that when the baffle is introduced further and further into the fluid, the spectral
values ngm), m =0,1,...;¢ = 1,2,... change from its corresponding value in the absence

of the baffle to the natural frequencies than it corresponding to the two separate fluids, i.e.
K™ o k)™ +0 asa—0 and &™ — k[A™ —0 asa— 1. (3.1)

Accounting for the first limit we can see that if a test value (") approximates solution
with small a, it is close to one from ﬁ[hl]gm), 1 =1,2,..., and therefore the Green function
(2.6a) becomes degenerate. The reason is the ill-possedness of the boundary value problem
(2.2)+(2.3)+(2.5b) and consequent division by zero in (2.6a), when at least one root of
(2.13) tends to an isolated K][hl]gm). On the other hand, the failure for @ — 0 implies
that fundamental solutions are close to those without baffle, and the latter can be used in
practical calculations.

The limitations on h; and a restricted our systematical study of the linear baffled sloshing

to the domain 0.1 < hy; and 0.3 < a, where the Galerkin scheme is stable and guarantees
high accuracy.

3.2. Natural surface wave profiles

By using the second boundary condition of (1.4) the linear fundamental solutions ¢;(z,y, z),
j > 1, determine standing wave profiles (natural surface modes) as follows
0p; .
z:Fj(Tan):K’ﬂDJ’(ranao):E(Tanao)a Jj=>1 (32)
Splitting angular (in terms n) and radial (along r) components and noting that the an-
gular steepness is defined by the trigonometric functions, we focus furthermore on the
two-dimensional projections in the meridional cross-section

z= Fz-(m) (r) = Kgm)¢§m) (r,0), m=0,1,...; i=1,2,.... (3.3)

Our analytically-oriented method is applicable to compute Fi(m) (r). Some examples of
the radial profiles are drawn in Figure 2. These examples leave traces the curves z =
Fi(m), m =0,1,2; i = 1,2,3 versus a. The figures show that, as it has been predicted, if
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© ) 2
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Fig. 2. Meridional profiles of the natural modes m = 0,1,2; ¢ = 1,2,3 versus a for h1 = 0.1 and h1 +ho = 1.
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Fig. 3. The same as in Figure 2, but with A1 = 0.3 (only for Fl(m), m=0,1,2).

a = 0 or 1, the natural radial surface profiles coincide with that defined for smooth circular-
base tanks (there are no baffles), i.e. Fi(m)(r) = Jm(aimr), m=0,1,...;i=1,2,.... The
latter is drown with solid line. Even if hy is relatively small (hy = 0.1 in our examples)
and a # 0 and 1, the numerical analysis establishes that F;(m) define qualitatively the
same profiles as for ¢ = 0. The difference is of quantitative character. Deviations of Fi(m)
relative to Jp, (@i,mr) is larger for smaller hy (do compare the first rows in Figures 2 and
3). The maximum deviation depend on m and i. Numerical tests find it in the domain
0.5<a<0.7.
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Fig. 4. Eigenvalues ngm), m =0,1,2; ¢ =1,2,3 versus a for h; + ha = 1 and some isolated hj.

3.3. Natural spectrum versus a

(m)

Spectral theorems by Feschenko et al. [22] establish monotonic evolution of k; ' versus a.

Besides,
(M) Iiz(m)[h], for a =1,
CT k™ k), for a=0.

This theoretical prediction is illustrated for m = 0,1,2; ¢ = 1,2, 3 in Figure 4.
(m)

We performed numerous tests to find quantitative features of ; ~ versus a for different

hi and hy. They showed that the critical value h{, so that fcgm) is approximately equal to
ngm)[hl] for hy > hj, depends on m and i. This critical value decreases with increasing i
(compare first and third rows in Figure 4).

When h; is relatively small, the monotonic function ngm)

Calculations showed that when a = 0.3, the eigenvalues /-cgm) are close to their lower limits

(a) has non-small gradients.

n[hl]gm) which are denoted on the vertical axes. This confirms the design criteria that the
lowest natural frequency and mode of the baffled sloshing with a < 0.3 can be approximated
by those for a = 0. The second and the third rows show also that the higher frequencies are
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still not close to their lower limit at a = 0.3, and, therefore, their influence to the nearly-
shallow behaviour over the baffle and free standing wave patterns in the hole is significant.
Physically, these properties imply that increasing the baffle size over 0.7R (a < 0.3) for
relatively large length between the baffle plate and the free surface gives minor contribution
to corresponding natural frequencies, i.e. the fluid motions under the baffle plate do not
influence in this case the linear free-standing waves. However, this is not true for the higher
modes (with increasing i) as shown in the last line of Figure 4. The graphs Figure 4 show
also quite different quantitative behaviour of ngm) versus a depending on integer parameter
i, which characterises the wave steepness in radial direction of the free-standing waves.
While I-’-?Em) associated with the longest (in radial direction) natural waves (i = 1 in the first
row in Figure 4) have positive second derivatives (are convex) in the range 0.3 < a < 1,
the second derivatives of /-zgm) (a), ngm) (a), m = 0,1,2 may change signs. The graphs have
a shelf-like shape. Our numerical analysis shows that the ranges of small gradient coincide
with the nodal points of z = Fi(m), while the domain of large gradients of mgm)

anti-nodal points.

occurs nearly

3.4. Natural spectrum versus h;

The numerical examples in Figure 5 show the monotonic dependence of fcgm) on hy > 0.1 as
a quantitative numerical validation of the general spectral theory from Feschenko et al. [22].

Whereas h; > 0.3, the functions mgm) = fcgm)(a) become approximately constant, especially
for the higher modes (see the second and third rows in Figure 5). An physical explanation
is connected with exponential decaying of the natural modes in vertical cylindrical domains.
When the baffle is situated deeper in the fluid, its influence on the standing waves around
the hydrostatic plane becomes lower. Since the decaying increases with mgm), the relative
influence of the baffling grows with the eigenvalues. However, lowest mode associated with
59) is effected by hi, even for relatively large h;. The maximum influence is detected for
approximately a = 0.7.

4. Some concluding remarks

The paper showed that the problem on linear fluid sloshing in a circular base cylindrical
tank allows for semi-analytical solutions that account for analytical features of the velocity
potential at the baffle edge. By adopting appropriate functional basis in a variational
technique and using transmission of two boundary problems (over and under the baffle
level), we obtained very robust and efficient numerical method. The method has a lot of
advantages and many traditional engineering problems associated with linear fluid sloshing
in a circular-base tank with a horizontal baffle can be solved. Some limitations of the
method are detected with small fluid layer over the baffle and for relatively wide baffle,
which covers the fluid current into the fluid volume beneath the baffle. Both cases are not
of practical interest in this physical formulation, because may lead to shallow flows that are
characterised by significant nonlinearities and damping.

The main advantage of the analytical approximate solutions is their applicability in non-
linear modal analysis and quantification of the vorticity damping at the edges. This is
subject of our forthcoming paper.



GAVRILYUK, LUKOVSKY, TROTSENKO AND TIMOKHA

0.2 0.4 h 0.6 0.8 1

1

Fig. 5. Eigenvalues ngm), m=20,1,2; ¢ =1,2,3 versus h; for a = 0.7,0.4 and 0.3.
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