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Abstract. We establish a precise asymptotic formula for the number
of homotopy classes of periodic orbits for the geodesic flow on rank one
manifolds of nonpositive curvature. This extends a celebrated result
of G.A. Margulis to the nonuniformly hyperbolic case and strengthens
previous results by G. Knieper.

We also establish some useful properties of the measure of maximal
entropy.
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1. Introduction
1.1. Manifolds of rank one

Let M be a compact Riemannian manifold with all sectional curva-
tures nonpositive. For a vector v € T'M, the rank of v is the dimension
of the vector space of parallel Jacobi fields along the geodesic tangent



2 Roland Gunesch

to v. The rank of M is the minimal rank of all tangent vectors. Ob-
vious consequences of this definition are that

1 <rank(M) < dim(M),
that the rank of R* with the flat metric is k& and that
rank(M x N) = rank(M) + rank(XV).

Every manifold whose sectional curvature is never zero is automati-
cally of rank one. Products with Euclidean n-space clearly have rank
at least n + 1. However, it is possible for a manifold to be everywhere
locally a product with Euclidean space and still have rank one. It
turns out that the rank of a manifold of nonpositive curvature is the
algebraic rank of its fundamental group [BaEb].

Apart from manifolds of negative curvature, examples are non-
positively curved surfaces containing flat cylinders or an infinitesimal
analogue of a flat cylinder, as illustrated in the following diagram.

)

Fig. 1.1. A surface of rank one with a flat strip and a parallel family of geodesics.

In higher dimensions, examples include Gromov’s (3-dimensional)
graph manifolds [Gro]. There is an interesting rigidity phenomenon:
Every compact 3-manifold of nonpositive curvature whose fundamen-
tal group is isomorphic to that of a graph manifold is actually diffeo-
morphic to that graph manifold [Sch].

We will study properties of manifolds of rank one in this article.

1.2. Reasons to study these spaces

1.2.1. Rank rigidity 'W.Ballmann [Ball| and independently K. Burns
and R. Spatzier [BuSp] showed that the universal cover of a non-
positively curved manifold can be written uniquely as a product of
Euclidean, symmetric and rank one spaces. The first two types are
understood, due to P. Eberlein and others. A general introduction
to higher rank symmetric spaces is e.g. [Ebe5]; see also [BGS]. For a
complete treatment of rank rigidity, see [Bal2].

Thus, in order to understand nonpositively curved manifolds, the
most relevant objects to examine are manifolds of dimension at least
two with rank one. This becomes even more obvious if one considers
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the fact that rank one is generic in nonpositive curvature [BBE]. Thus,
in a certain sense, “almost all” nonpositively curved manifolds have
rank one.

1.2.2. Limits of hyperbolic systems Another reason to study non-
positively curved manifolds is the following. On one hand, strongly
hyperbolic systems, particularly geodesic flows on compact manifolds
of negative curvature, are well understood since D.V. Anosov; see e.g.
[Ano]. Later, P. Eberlein established a condition weaker than nega-
tive curvature which still ensures the Anosov property of the geodesic
flow ([Ebe3|, [Ebe4]). On the other hand, much less is known about
the dynamics of systems lacking strong hyperbolicity. The open set
of geodesic flows on manifolds with negative curvature is “essentially”
understood (hyperbolicity is an open property), and hence the edge of
our knowledge is mainly marked by the boundary of this set, which is
a set of geodesic flows on manifolds of nonpositive curvature. There-
fore it is important to study the dynamics of these.

However, the set of nonpositively curved manifolds is larger than
just the closure of the set of negatively curved manifolds. This can
be seen e.g. as follows: Some nonpositively curved manifolds, such as
Gromov’s graph manifolds, contain an embedded 2-torus. Thus their
fundamental group contains a copy of Z2. Hence, by Preissmann’s
theorem, they do not admit any metric of negative curvature. There-
fore, the investigation in this article actually deals with even more
than the limits of our current knowledge of hyperbolic systems.

1.3. Statement of the result

We count homotopy classes of closed geodesics ordered by length in
the following sense: The number P, of homotopy classes of periodic
orbits of length at most ¢ is finite for all ¢. (For a periodic geodesic
there may be uncountably many periodic geodesics homotopic to it,
but in nonpositive curvature they all have the same length.) Trying
to find a concrete and explicit formula for P; which is accurate for
all values of ¢ is completely hopeless, even on very simple manifolds.
Nonetheless, in this article we manage to derive an asymptotic formula
for P, i.e. a formula which tells us the behavior of P, when ¢ is large.
We will show (Theorem 5.28):

1
P~ — ht
Pt
where the notation f(t) ~ ¢(t) means % — 1 as t — oo. This

extends a celebrated result of G.A. Margulis to the case of nonpositive
curvature. It also strengthens results by G. Knieper, which were the
sharpest estimates known to this date in the setup of nonpositive
curvature. This is explained in more detail in the following section.
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2. History
2.1. Margulis’ asymptotics

The study of the functions P and b, where b;(x) is the volume of the
geodesic ball of radius ¢ centered at x, was originated by G.A. Margulis
in his dissertation [Marl]. He covers the case where the curvature is
strictly negative. His influential results were published in [Mar2]. He
established that, on a compact manifold of negative curvature,

be(z) ~ c(x)eM (2.1)
for some continuous function ¢ on M. He also showed that
oht
P~ c’T (2.2)

for some constant ¢’. The exponent h is the topological entropy of
the geodesic flow. See [KaHa] for a modern reference on the topic of
entropy.

Margulis pointed out that if the curvature is constant then the
exponential growth rate equals (n — 1)v/—K and that in this case the
function c is constant. Today we know that ¢ = 1/h in that case.
Moreover, ¢ = 1/h for variable negative curvature.

2.2. Beyond negative curvature; Katok’s entropy conjecture

The vast majority of the studies that have since been done are re-
stricted to negative curvature; see e.g. [PaPo|, [BaLe|, [PoSh|. The
reason is that in that case techniques from uniformly hyperbolic dy-
namics can be applied. From the point of view of analysis, this case
is much easier to treat. However, from a geometrical viewpoint, man-
ifolds of nonpositive curvature are a natural object to study. Already
in the seventies the investigation of manifolds of nonpositive curva-
ture became the focus of interest of geometers. (Also more general
classes have been studied since, such as manifolds without focal points,
i.e. where every parallel Jacobi field with one zero has the property
that its length increases monotonically when going away from the
zero, or manifolds without comjugate points, i.e. such that any Ja-
cobi field with two zeroes is trivial.) In 1984 at a MSRI problem
session a major list of problems which were open at the time was
compiled [BuKal], including A. Katok’s entropy conjecture: The mea-
sure of maximal entropy is unique.

One of the first result in the direction of asymptotics of closed
geodesics in nonpositive curvature is G. Knieper’s result [Kni3] that
the growth rate of closed geodesics is h, even if the curvature is just
nonpositive (instead of strictly negative). The same can be deduced
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from A. Manning’s result [Man] that the growth rate of volume equals
h in nonpositive curvature. This shows in particular that the exponent
in Margulis’ asymptotics must equal i (and justifies that we have
already written Margulis’ equations that way). A method for showing
that (in the case of negative curvature) the constant ¢’ in equation
(2.2) equals 1/h is outlined in C. Toll’s dissertation [Tol]; see also
[KaHa]. The behavior of the function ¢ in the asymptotic formula
(2.1) was investigated by C. Yue in [Yuel] and [Yue2].

It took almost two decades after Knieper’s and Manning’s results,
which in turn were published about one decade after Margulis’ results,
until the next step in the analysis of asymptotics of periodic orbits
was completed, again by Knieper.

2.3. Knieper’s multiplicative bounds

In 1996 G. Knieper succeeded in establishing asymptotic multiplica-
tive bounds for volume and periodic orbits [Kni2| which, in the case of
nonpositive curvature and rank one, were the sharpest results known
until now: There exists a constant C' such that for sufficiently large ¢,

1 bt (w)

Eg eht

<C

and 1 .
t
Ct = eht <G
These results are a groundbreaking success. The main step in the
proof of these asymptotics is the proof of Katok’s entropy conjecture.
Knieper also demonstrated in [Knil] that the measure of maximal en-
tropy can be obtained via the Patterson-Sullivan construction ([Pat],
[Sul]; see also [Kail], [Kai2]). Moreover, for the case of higher rank
Knieper obtained asymptotic information using rigidity. Namely,

1 by
C < t(rank(M)—1)/2 oht =C.
He also estimates the number of closed geodesics for higher rank.
Knieper subsequently sharpened his results. With the same method
he is able to prove that in the rank one case actually

1 b

C = et /t s¢
holds. (See also [Kni4].) Still, the quotient of the upper and lower
bounds is a constant which cannot be made close to 1.

The question whether in this setup of nonpositive curvature and
rank one one can prove more precise multiplicative asymptotics—
namely without such multiplicative constants—has remained open so
far. In this article we establish this result.
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Remark 2.1. For non-geodesic dynamical systems no statements pro-
viding asymptotics similar the ones mentioned here are known. One
of the best known results is that for some prevalent set of diffeo-
morphisms the number of periodic orbits of period n is bounded by
exp(C - n'*9) for some ¢ > 0 [KaHul].

But even for geodesic flows in the absence of nonpositive curvature
it is difficult to count—or even find—closed geodesics. The fact that
every compact manifold has even one closed geodesic was established
only in 1951 by Lyusternik and Fet [LuFe]. In the setup of positively
curved manifolds and their kin, one of the strongest known results is
H.-B. Rademacher’s Theorem from 1990 ([Radl], [Rad2]) stating that
every connected and simply connected compact manifold has infinitely
many (geometrically distinct) closed geodesics for a C"-generic metric
for all r € [2,00]. See also [Rad3] for this.

For Riemannian metrics on the 2-sphere, existence of many closed
geodesics took considerable effort to prove. The famous Lyusternik-
Shnirelman Theorem asserts the existence of three (geometrically dis-
tinct) closed geodesics. The original proof in [LuSch] is considered
to have gaps. Complete proofs were given by W. Ballmann [Bal3],
W. Klingenberg (with W. Ballmann’s help) [Kli] and also J. Jost
([Jos1], [Jos2]). See also [BTZ1], [BTZ2].

J. Franks [Fra] established that every metric of positive curvature
on S? has infinitely many (geometrically distinct) geodesics. This is
a consequence of his results about area-preserving annulus homeo-
morphisms. V. Bangert managed to show existence of infinitely many
(geometrically distinct) geodesics on S? without requiring positive
curvature by means of variational methods [Ban].

For the case of Finsler manifolds, there actually exist examples of
simply connected manifolds that possess only finitely many geometri-
cally distinct closed geodesics. On S? such examples were constructed
by A.B. Katok in [Katl] as a by-product of a more general construc-
tion; see also [Zil]. Explaining this particular aspect of Katok’s con-
struction is also the topic of [Mat].

In this article we derive asymptotics like the ones Margulis ob-
tained. We prove them for nonpositive curvature and rank one using
non-uniform hyperbolicity. Hence the same strong statement is true
in considerably greater generality.

3. Geometry and dynamics in nonpositive curvature

Let M be a compact rank one Riemannian manifold of nonpositive
curvature. As is usual, we assume it to be connected and geodesically
complete. Let SM be the unit sphere bundle of the universal covering
of M. For v € SM let ¢, be the geodesic satisfying ¢/(0) = v (which



Precise asymptotics for periodic orbits 7

is hence automatically parameterized by arclength). Here ¢’ of course
denotes the covariant derivative of c. Let g = (¢');cr be the geodesic

flow on SM, which is defined by g*(v) := ¢, (t) =: v;.

3.1. Review of asymptotic geometry

Definition 3.1. Let m : TM — M be the canonical projection. We say
that v,w € SM are positively asymptotic (written v ~ w) if there
ezists a constant C' such that d(wg'v, mg'w) < C for all t > 0. This is
evidently an equivalence relation. Similarly, we say that v,w € SM
are negatively asymptotic (written —v ~ —w) if there ezxists a
constant C such that d(wgtv, mgtw) < C for allt < 0. Of course, v and
w are positively asymptotic if and only if —v and —w are negatively
asymptotic.

Recall that rank(v) := dim{parallel Jacobi fields along ¢, }. Clearly
the rank is constant along geodesics, i.e. rank(c,(¢)) = rank(c,(0))
for all t € R.

Definition 3.2. We call a vector v € SM, as well as the geodesic c,,
regular if rank(v) = 1 and singular if rank(v) > 1. Let Reg and
Sing be the sets of reqular and singular vectors, respectively.

Remark 3.3. Since rank is semicontinuous in the sense that

rank(lim v,,) > lim rank(vy,),

the set Reg is open.

Remark 3.4. For every v € SM and p € M there exists some w; €
SpM which is positively asymptotic to v and some w_ € S, M which is
negatively asymptotic to v. In contrast, the existence of w,_ € T,M
which is simultaneously positively and negatively asymptotic to v is
rare. Moreover, if v ~ w and —v ~ —w then v, w bound a flat strip,
i.e. a totally geodesic embedded copy of [—a,a] x R with Euclidean
metric. Here the number « is positive if v, w do not lie on the same
geodesic trajectory. In particular, if rank(v) = 1 (hence ¢, is a regular
geodesic) then there does not exist such w with w ~ v and —v ~ —w
through any base point in the manifold outside ¢,. In other words, if
w ~ v and —w ~ —v on a rank 1 manifold then w = g'v for some t.
On the other hand, if rank(v) > 1 (and thus ¢, is a singular geodesic)
then v and hence ¢, may lie in a flat strip of positive width, and in
that case there are vectors w with w ~ v and —w ~ —v at base points
outside ¢,, namely at all base points in that flat strip.
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Since M is of nonpositive curvature, it is diffeomorphic to R” by
the Hadamard-Cartan theorem, hence to an open Euclidean n-ball.
It admits the compactification M = M U M(co) where M (o),
the boundary at infinity of M, is the set of equivalence classes of
positively asymptotic vectors, i.e., ]\;I(oo) = S]\;I/ ~.

A more accurate but cumbersome way to write M would be M;
however, since M is already compact, it is clear that the compactifi-
cation is that of M.

A detailed and very readable description of spaces of nonpositive

curvature, even of those not equipped with a manifold structure, can
be found in [Bal2].

3.2. Stable and unstable spaces

Definition 3.5. Let K : TSM — SM be the connection map, i.e.
K¢ := VreZ where V is the Riemannian connection and Z(0) =
dré€, %Z(t)!tzo = £. We obtain a Riemannian metric on SM, the
Sasaki metric, by setting (£,n) := (dr&,dmn) + (K&, Kn) for &,n €
T,SM where v € SM. Hence we can talk about length of vectors in
TSM.

There is a canonical isomorphism (dr, K) between T,,SM and the
set of Jacobi fields along c,. It is given by £ — J; with J¢(0) =
dm - €, Jé(O) = K&. This uses the well-known fact that a Jacobi field

is determined by its value and derivative at one point.

The space T'SM, i.e. the tangent bundle of the unit sphere bundle,
admits a natural splitting

TSM = E*® E*@ E°,
ie. T,SM = E3 ® E* @ EY for all v € SM, where

d
EO':R- @t
e

EiH¢ € T,SM : ¢ 1 E°, Jg is the stable Jacobi field along dn{},
E4={¢eT,SM : ¢ 1 EY, Jg is the unstable Jac. field along dn¢}.

Definition 3.6. For v € SM, define W*(v), the stable horosphere
based at v, to be the integral manifold of the distribution E° passing
through v. Similarly, define W"(v), the unstable horosphere based
at v, via integrating E". The projection of W* (resp. W") to M is
again called the stable horosphere (resp. the unstable horosphere). The
flow direction of course integrates to a geodesic trajectory, which one
might call W°(v). The 0- and u-directions are jointly integrable, giving
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rise to an integral manifold W, and similarly the 0- and s-directions
give rise to an integral manifold W9, We write Bf; (resp. Bf;) for the
open (resp. closed) 6-neighborhood in W' (i = u, s, 0u, 0s,0).

On the other hand, the u- and s-directions are usually not jointly
integrable. Continuity of these foliations has been proven in this form
by P. Eberlein [Ebe2] and J.-H. Eschenburg [Esch]:

Theorem 3.7. Let M be a compact manifold of nonpositive curva-
ture. Then the foliation {W*(v) : v € SM} of SM by stable horo-
spheres is continuous. The same holds for the foliation {W"(v) : v €
S]\;I} of SM by unstable horospheres.

Note that due to compactness of M (hence of SM), the continuity is
automatically uniform.

During the same years, Eberlein considered similar questions on
Visibility manifolds [Ebe2]. The continuity result was improved by M.
Brin [BaPe, Appendix A] to Holderness on the Pesin sets. (See [BaPe]
for the definition of these sets.) For our discussion, uniform continuity
is sufficient.

The following result is easier to show in the hyperbolic case (i.e.
strictly negative curvature) than for nonpositive curvature, where it
is a major theorem, proven by Eberlein ([Ebel]):

Theorem 3.8. Let M be a compact rank one manifold of nonposi-
tive curvature. Then stable manifolds are dense. Similarly, unstable
manifolds are dense.

3.3. Important measures

The Riemannian structure gives rise to a natural measure A\ on SM,
called the Liouville measure. It is finite since M is compact. It
is the prototypical smooth measure, i.e., for any smooth chart ¢ :
U — R*~1 U C SM open, the measure ¢, \ on a subset of R?*~ ! is
smoothly equivalent to Lebesgue measure.

The well-known variational principle (see e.g. [KaHa]) asserts that
the supremum of the entropies of invariant probability measures on
S M is the topological entropy h. The variational principle by itself of
course guarantees neither existence nor uniqueness of a measure of
maximal entropy, i.e. one whose entropy actually equals h. These
two facts were established in the setup of nonpositive curvature by G.
Knieper [Knil]:

Theorem 3.9. There is a measure of mazimal entropy for the geodes-
ic flow on a compact rank one nonpositively curved manifold. More-
over, it is unique.
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The proof uses the Patterson-Sullivan construction ([Pat], [Sul]; see
also [Kail], [Kai2]). Knieper’s construction builds the measure as limit
of measures supported on periodic orbits.

For the case of strictly negative curvature, the measure of maximal
entropy was previously constructed (in a different way) by G.A. Mar-
gulis [Mar3]. He used it to obtain his asymptotic results. His construc-
tion builds the measure as the product of limits of measures supported
on pieces of stable and unstable leaves. The measure thus obtained
is often called the Margulis measure. It agrees with the Bowen
measure which is obtained as limit of measures concentrated on pe-
riodic orbits. U. Hamenstadt [Ham] gave a geometric description of
the Margulis measure by projecting distances on horospheres to the
boundary at infinity, and this description was immediately generalized
to Anosov flows by B. Hasselblatt [Has].

The measure of maximal entropy is adapted to the dynamical prop-
erties of the flow. In particular, we will see that the conditionals of
this measure show uniform expansion/contraction with time. In nega-
tive curvature, this can be seen by considering the Margulis measure,
where this property is a natural by-product of the construction. In
nonpositive curvature, however, this property is not immediate.

The measure of maximal entropy is sometimes simply called max-
imal measure. In the setup of nonpositive curvature, we think that
the name Knieper measure is appropriate.

Remark 3.10. 1t is part of Katok’s entropy conjecture and shown in
[Knil] that m(Sing) = 0 (and in fact even that h(g|sing) < h(g))-
In contrast, whether A(Sing) = 0 or not is a major open question;
it is equivalent to the famous problem of ergodicity of the geodesic
flow in nonpositive curvature with respect to A. On the other hand,
ergodicity of the geodesic flow in nonpositive curvature with respect
to m has been proven by Knieper.

A very useful dynamical property—stronger than ergodicity—is mix-
ing. For nonpositive curvature it has recently been proven by M. Ba-
billot [Bab]:

Theorem 3.11. The measure of mazimal entropy for the geodesic
flow on a compact rank one nonpositively curved manifold is mizing.

We use this property in our proof of the asymptotic formula.

3.4. Parallel Jacobi fields

Lemma 3.12. The vector v € SM is regular if and only if W"(v),
W4 (v) and WO(v) intersect transversally at v.
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Here transversality of the three manifolds means that
T,SM = T,W"® T,W°a® T,W*.

Proof. W*(v) and W*#(v) intersect with zero angle at v if and only if
there exist
Ee TW(v)yNTW?(v) C T,SM.

But £ € TW*#(v) is true if and only if J¢ is the stable Jacobi field along
cy, and & € TW"(v) is true if and only if J¢ is the unstable Jacobi
field along c,. A Jacobi field J is both the stable and the unstable
Jacobi field along ¢, if and only if J is parallel. The nonexistence of
such J perpendicular to ¢, is just the definition of rank one. ad

3.5. Coordinate bozes

Definition 3.13. We call an open set U C SM of diameter at most §
regularly coordinated if for all v,w € U there are unique x,y € U
such that

w € B(v), y € Bj(x), w € Bj(y).

In other words, v can be joined to w by means of a unique short three-
segment path whose first segment is contained in W*(v), whose second
segment is a piece of a flow line and whose third segment is contained
in W4 (w).

Proposition 3.14. If v is reqular then it has a reqularly coordinated
neighborhood.

Proof. Some 44-neighborhood V of v is of rank one. Let
U = Bi(g" 0 By (v)).

This is contained in V and hence of rank one. It is open since WV,
W* and W¥ are transversal by Lemma 3.12.
By construction, for any w € V, there exists a pair (z,y) such that

Bi(v) 33 € Biy), y € Bi(w).
Assume there is another pair (z/,y’) with this property. From
Bj(z) 3 v € Bj(z')
we deduce = € Bls(z’), and from
Bj(z) 3y € Bj(w), w € Bj(y), y € BY(a)

we deduce = € BJ3(2'). Hence x and 2’ are simultaneously positively
and negatively asymptotic; therefore, they bound a flat strip. Since
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V' is of rank one, there is no such strip of nonzero width in U C V.
Hence z and 2’ lie on the same geodesic. Since € W"(z'), these two
points are identical.

The same argument with v and s exchanged shows that y = 3.
Hence the pair (x,y) is unique. O

3.6. The Busemann function and conformal densities

Definition 3.15. Let b(.,q,&) be the Busemann function centered
at £ € M (<) and based at g € M. It is given by

b(p,q,§) == pliglg(d(q,pn) —d(p,pn))

for p,q € M and is independent of the sequence p, — &.
Remark 8.16. The function b satisfies

b(p. g €) = lim (d(epe(t),q) — 1)

where ¢, ¢ is the geodesic parameterized by arclength with ¢, ¢(0) = p
and cp¢(t) — € as t — oo.
For £ and p fixed, we have

b(p7pna£) — —oo for p, —¢§

and -
b(p,pn,€) — 0o for limpy € M(00) \ {€}.

Moreover it is clear that b(p,q,&) = —b(q,p,§). We use the sign con-
vention where b(p, q,§) is negative whenever p, ¢, ¢ lie on a geodesic
in this particular order.

Definition 3.17. (Mp)peM is a h-dimensional Busemann density
(also called conformal density) if the following are true:
— For allp € M, Wy 5 a finite nonzero Borel measure on M (c0).
— iy 15 equivariant under deck transformations, i.e., for all v €
w1 (M) and all measurable S C M(c0) we have

fap(7S) = pp(S).

— When changing the base point of n,, the density transforms as
follows:

dpip —hb

L2 (g) = e~Mblar),

dpig

In the case of nonpositive curvature, Knieper has shown in [Knil] that

p is unique up to a multiplicative factor and that it can be obtained
by the Patterson-Sullivan construction.
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4. The measure of maximal entropy

In section 5 we will use the fact that if m is the measure of maximal en-
tropy then it gives rise to conditional measures m*, m%, m® and m%
on unstable, weakly unstable, stable and weakly stable leaves which
have the property that the measures m"* and m® expand uniformly
with ¢ and that m® and m% contract uniformly with .

Remark 4.1. In [Gun] we present an alternative and more general con-
struction of the measure of maximal entropy in nonpositive curvature
and rank one which follows the principle of Margulis’ construction.
Using that construction, the uniform expansion/contraction proper-
ties shown here are already a straightforward consequence of the con-
struction. Also, that construction is more general; it is appropriate for
non-geodesic flows satisfying suitable cone conditions (see [Kat2] for
these). On the other hand, Knieper’s approach, which substantially
uses features of rank one nonpositively curved manifolds, is shorter
and therefore is the one we use in this article.

First we give Knieper’s definition of the measure of maximal en-
tropy [Knil]:

Definition 4.2. Let (u),c 7 be a Busemann density. Let

IT : SM — M(o0) x M(c0), II(v) := (Voo V—oo)

be the projection of a vector to both endpoints V4o = limy_,+o0 TGt
of the corresponding geodesic. Then the measure of mazimal entropy
of a set A C SM (we can without loss of generality assume A to be
reqular) is given by

m(A) = / len(A N 1T (&, m))e "OPAOT@aD gy (&) dpy (),
£mEM (00), £#n

where ¢ € TII~1(&,n) and p € M is arbitrary.

Saying that I1-'(&,n) is a geodesic already is a slight simplification,
but a fully justified one since we need to deal only with the regular
set.

4.1. Discussion of the conditionals

Given a vector v € SM with base point p, we want to put a conditional
measure m" on the stable horosphere b(p,.,£)"1(0) given by v and
centered at & := vy, (or on W?*(v), which is the unit normal bundle
of b(p, .,£)~1(0)). This conditional is determined by a multiplier with
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respect to some given measure on this horosphere. Note that the set of
points ¢ on the horosphere is parameterized by the set M (c0)\{{} via
projection from ¢ into the boundary at infinity, hence the multiplier
depends on 7) := proj(q), i.e. is proportional to du.(n) for some z.
The canonical choice for = is p. Clearly the whole horosphere has
infinite m"“-measure, but p, is finite for any x. Thus the multiplier of
djip has to have a singularity, and this has to happen at 7 = £ since any
neighborhood of ¢ is the projection of the complement of a compact
piece of the horosphere. The term e~ "*(%7) has the right singularity
(note that n — & means ¢ — &), and by the basic properties of
the Busemann function the term e (") then converges to infinity.
Therefore we investigate m,(q) := e "My, (n). First we prove
that this is indeed the stable conditional measure for dm?®. We will
parameterize dm by vectors instead of their base points.

Definition 4.3. For v,w € SM, let

dm®(w) = e~ MbTvmwwse) gy (),

dmi(w) := e~ hb(mo,mww—co) Aty (W_0).

Proposition 4.4. dmj,dm; and dt are the stable, unstable and cen-
ter conditionals of the measure of mazimal entropy.

Proof. Observe that

dt dmg (,w) dmf} (U]) = dt e—h(b(m;,ﬂw,woo)+b(7rv,7rw,w,oo))
: d:uﬂv (woo)dﬂwv (w—oo)

with p := mv, ¢ := 7w, £ = W, 1 = W_so- This formula already
agrees with the formula in Definition 4.2, although the meaning of
the parameters does not necessarily do so: In Definition 4.2, p and to
some extend ¢ are arbitrary in M, while in the formula for F they
are fixed. Thus we need to show that if we change them within the
range allowed in Definition 4.2, the value of £ does not change.

Lemma 4.5. The term E does not change if q is replaced by any point
in M on the geodesic cye from n to & and p by an arbitrary point in
M.

Proof. First we show that ¢ can be allowed to be anywhere on c,;:
Parameterize c,¢ by arclength with arbitrary parameter shift in the
direction from 7 to &£. Replacing ¢ = ¢,¢(s) by ¢ = c¢e(s’) changes
b(p,q,&) to b(p,q', &) = b(p,q,&) — (s' — s) since we move the distance
s’ — s closer to . It also changes b(p, q,n) to b(p,q',n) = b(p,q,n) +
(s’ — s) since we move the distance s’ — s away from to 7. Thus E
does not change under such a translation of g.
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Now fix g anywhere on ¢;¢ and replace p by some arbitrary p’ € M.
Note that

1y (&) = @' p, g)dﬂ €),

(
(

fyy (1) = €"PE Py, (),
(p 0,€) = b(p, ¢, &) +b(p', p, &),
b(p',q,m) = b(p,q,n) +b(p', p,n)

Thus
e*h(b(p'7q75)+b(1"7q”7))dup/(g)dup/(n) — ¢ hOPa+bPam) gy, (€)dp,(n).

Hence FE also does not change if p is changed to any arbitrary point.
O

This also concludes the proof of Proposition 4.4. ad

4.2. Proof of uniform ezxpansion/contraction of the conditionals

Let w; denote glw.
Theorem 4.6 (Uniform expansion/contraction of the condi-
tionals). For allt € R and all v,w € SM we have

dmli(wy) = M - dm(w),

dms (wi) = e " - dm? (w).
The same uniform expansion holds with m* replaced by m° and the
same uniform contraction with m® replaced by m°

Here dm® := dm™dt, dm® = dm?dt.

Proof.
dmy (wy) = eihb(wv’ﬂwt’w_w)dﬂwv(w—m)
— e—h(b(ﬂv,ww,wfoo)+b(7rwv7rwt’w*OO))d,um)(w*OO)
_ b))
—e Nt e_hb(ﬂv’ww’MwO)d/ﬁﬂv(w—OO)
Similarly

dmg(wt) _ efhb(ﬂv,wwt,w_mo)dluwv (w—l—oo)

_ €_hb(7w’7rw’w+°°)+htdu7w(w+oo)

= el dm®(w).
This shows the desired uniform expansion of m" and the uniform
contraction of m?®. From this we also immediately see the uniform

expansion of m% and the uniform contraction of m® since dt is evi-
dently invariant under g¢'. O
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4.3. Proof of holonomy invariance of the conditionals

Another important property of the conditional measures on the leaves
is holonomy invariance. We formulate holonomy invariance on in-
finitesimal unstable pieces here, but of course this is equivalent to
holonomy invariance that deals with pieces of leaves of (small) posi-
tive size.

We consider positively asymptotic vectors w,w’ and calculate the
infinitesimal Ou-measure on corresponding leaves. We let v, v’ be some
(arbitrary) base points used as parameters for the pieces of leaves, so
that w lies in the same Ou-leaf of v and similarly w’ in that of v/. The
factor dt is evidently invariant, so we do not have to mention it any
further.

Theorem 4.7 (Holonomy invariance of the conditionals of the
measure of maximal entropy).

dm(w) = dm2 (w')
whenever v' € Wé(v), w' € W(w), w € W%(v) and w' € WO ().

Proof. Note that the equation w’ € W#(w) is equivalent to the two

equations
/

Woo

= Weo,
b(rw, Tw’, weo) = 0.

The latter equation is equivalent to b(p, 7w, we) = b(p, Tw', weo) for
all p € M. Thus clearly

dmty (w') = =M T ) g ()

—hb(mv' ;rw’ weo)

—e Btz (1000).
Now

b(mv, ', wee) = b(TV, T, Weo ) + b(mv, W, Wey)
= b(mv', T, Weo ) + b(TV, TW, Woo)

and djiry (weo) = e MTvmvwee) gy (). Thus

dmg/ (w/) _ efh(b(m/,Ww’,woo)+b(7rv,7rv’,woo))dlqu (woo)

_ e—h(b(m/ TV, Woo ) +b(Tu,Tw,Weo ) +b(v, 10’ ,wes )

dlu'm) (woo)

—hb(mv,Tw,Weo)

=e Aptry(Woo)
= dmy(w).
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Corollary 4.8.

dm$(w) = dm?, (w')
whenever v' € W¥(v), w' € W¥(w), w € W% (v) and w' € WO ().

Proof. This is the same proof as before with u and s exchanged and
with ws, and w_., exchanged. O

Note that m®" is invariant under holonomy along s-fibers and m°® un-
der holonomy along u-fibers, but m* is not invariant under holonomy
along Os-fibers and m?® not invariant under holonomy along Ou-fibers
due to expansion (resp. contraction) in the flow direction.

5. Counting closed geodesics

In this final section we count the periodic geodesics on M. The method
used here is a generalization of the method which, for the special case
of negative curvature, was outlined in [Tol] and provided with more
detail in [KaHa).

Definition 5.1. Let f and g be expressions depending on t and e.
Write

f~g

if f(t)/g(t) — 1 ast — oo. In other words, f/g—1=o0(1) (here 1 is
understood to be a (constant) function of t). Write

g
if f/lg—1=0() as e — 0. We write
f
if there exists f' with f ~ f > g, di.e. if f/g = (1+0(e))(1+o(t — 1)).

Thus the equivalence relation “=” is implied by both “~” and ‘<7, but
the equivalence relations “~” and “><” are independent.

1

g

5.1. The flow cube

Fix any vy € Reg. Choose sufficiently small € and § such that 2¢ is
smaller than inj(M) (the injectivity radius of M), such that 2§ < ¢,
such that By.(vg) C Reg, and such that further requirements on the
smallness of these which we will mention later are satisfied.
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Definition 5.2. Let the flow cube be A = B3(¢l®<)(Bf(vy))) C
Reg. Here B_g(vo) is the closed unstable ball of radius 6 around vy.
We choose Bs = Bs(v) as the closure of an open set contained in the
closed stable ball of radius § around v € gl*</(B¥(vy)); this set, which
depends on v, can be chosen in such a way that it contains v and that
A has the following local product structure: For all w,w’ € A there
exists a unique 3 € [—¢, €] such that

B¥(w) N Bg(g°w)
is exactly one point. This is the local product structure in Reg de-

scribed in Proposition 3.14. We call B5(v) the stable fiber (or stable
ball) in A containing v.

Vo

~

0 0

Fig. 5.1. The flow cube A: an unstable neighborhood of vy (top) is iterated
(center) and a stable neighborhood of that is formed (bottom).

In the following arguments, the cube A will first be fixed. In particular,
¢ and ¢ are considered fixed (although subject to restrictions on their
size). At the end of the article, we will consider what happens when
e — 0.

Definition 5.3. Let the depth 7 : A — [0,¢| be defined by
v e B (g7 B} (w)).
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Lemma 5.4. For allv € A, w € Bi(v) N A it is true that

IT(w) — 7(v)| < 2/2.
Proof. The foliation W* is uniformly continuous by Theorem 3.7 and
compactness of SM, and without loss of generality ¢ was chosen small
enough. a

Lemma 5.5 (Stable fiber contraction). There is a function o =
o(t) such that

m*(g'B*(v)) > o (t)
for all v € A. In particular, for oll v,w in A we have
m*(g' B*(v)) eam*(g' B* (w)).
Proof. First we show that m®(B*(v)) > m*(B*(w)). Observe that for
0 < a < inj(M) (a independent of ), g% B*(v) is u-holonomic to a
subset of gl=25:¢+2¢1 B (1)), Thus

mA(BAw) _ m% (gl ) [0 e Mt
m*(B(w)) — m°s< [M}Bs( >> o et

By exchanging v and w, the opposite inequality is also proven. Hence
m*(B*(v)) <1 m*(B*(w)). Applying g' therefore gives

m*(¢'B*(v)) = ¢"'m*(B*(v))
>a "m® (B (w))
=m*(¢'B*(w))
as claimed. It immediately follows that we can define
a(t) == m*(¢' B*(v))

for some arbitrary v € A, and this definition does not depend on v
(up to t<equivalence). O
—ht

> 1.

Remark 5.6. Uniform contraction shows that o () > const - e

5.2. Ezxpansion at the boundary
Definition 5.7. For the cube A as above, we call
O"A = B5(gl% (0B (vy))) the unstable end of the cube,
doA := B*(BE(vo)) the back end and

9:A = B5(g°(B¥(v0))) the front end of the cube.
For v € A define

s(v) :==sup{r: B}(v) C A}
to be the distance to the unstable end of the flow cube.
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The stable and the unstable end are topologically the product of
an interval, a k-ball and a (k — 1)-sphere, where k = dim W%(v) =
dim W*(v) = (dim SM — 1)/2; hence they are connected iff k& # 1.

Lemma 5.8 (Expansion of distance to unstable end). There
erists a monotonous positive function S : R — R satisfying S(t) — 0
as t — oo and such that if s(v) > S(t) for an element v € A which
satisfies glv € A then

B—;&(gtv) NAC gtBéf(t) (v).

That means that if a point v is more than S(¢) away from the unstable
end of the cube then the the image of a small u-disc (of size > S(t))
around v has the property that its unstable end is completely outside
A.

Proof. By nonpositivity of the curvature, B§ noncontracts, i.e., dis-
tances on it are nondecreasing in length. This is true even infinitesi-
mally, i.e. for unstable Jacobi fields. By convexity of Jacobi fields, such
distances also cannot stay bounded. Hence the radius of the largest
u-ball contained in ¢g' B} becomes unbounded for ¢ — oo.

Hence for all v > 0 we can find T’, such that

9" By (v) D Bis(g"7 (v)). (5-1)

By compactness of A, this choice of T, can be made independently of
v € A. Without loss of generality 7', is a strictly decreasing function
of 7. Choose a function S > 0 so that S(t) < v for t > T,,. E.g.,
choose S(.) =T 1, ie. Tsy) =t fort > 0. S can be chosen decreasing
since T can be. Therefore, given v € A, if ¢ > T}, then s(v) > S(t),
and thus equation (5.1) shows the claim. O

Remark 5.9. The convergence of S to zero in the previous Lemma is
not necessarily exponential, as opposed to the case where the curva-
ture of M is negative (i.e. the uniformly hyperbolic case). However,
we do not need this property of exponential convergence.

If the smallest such S would not converge to zero, it would require
the existence of a flat strip of width liminf, .. S(t) = lim; o S(?),
which would intersect A. Since a neighborhood of A is regular, this
cannot happen.

5.3. Intersection components and orbit segments

Definition 5.10. Let A} be the set of v € A with s(v) > S(t) and
7(v) € [€2,e — €2]. Thus A} is the set A with a small neighborhood of
the unstable end and of the front end and back end removed.
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Definition 5.11. Let ®; be the set of all full components of inter-
section at time t: If I is a connected component of A, N g'(A}) then
define

¢ =g () NANg (A)

and
& = {¢! : I is a connected component of A, N g'(A))}.

Let
N(A,t) := #P;

be the number of its elements.

We call the set gI==luN A the geometric orbit segment of length
€ in A through v. Similarly we speak about the orbit segment of length
e — 2% in Al

Lemma 5.12. For every orbit segment of length ¢ — 22 in A} that
belongs to a periodic orbit of period in [t — ¢ + 22t + & — 22| there
exists a unique ¢} € ®; through which the orbit segment passes.

Proof. Existence: If g“0 = o for an orbit segment o of length £ —2¢? of
A} that belongs to a periodic orbit of period L € [t—e+2¢2,t+&—2¢2]
then o also intersects g’ A}, hence some component of 4} N g'Aj.
Uniqueness: Assume that o passes through ¢/, ¢/ € &;, ie. p =
o(a) € ¢!, ¢ = o(b) € ¢/ for |b — a] < e. Then o passes through
I, J (the connected components corresponding to ¢!, ¢/ ) respectively.
Since g' A} is pathwise connected, there is a path ¢ in ¢g' A} from p to
q- We can assume that ¢ consists of a segment in W, followed by a
segment in WO, followed by a segment in W?*. By applying ¢ ¢, we
get a path g~ ' ocin A} from o(a —t) € A} to o(b—t) € A}. The local
product structure in A} shows that the u-segment and the s-segment
of g~! o ¢ have length 0. Therefore g% o ¢ and hence c is an orbit
segment. This means that c lies in A} and in g'A}. Hence p and q lie
in the same component, i.e. ¢} = ¢7. a

In the other direction, we have the following Lemma:

Lemma 5.13. For every ¢ € &; there erists a unique periodic orbit
with period in [t — e, t+¢€| and a unique segment on that orbit passing
through ¢ .

In other words, up to a small error, intersection components corre-
spond to periodic orbits, and of all orbit segments that belong to such
a periodic orbit, just one orbit segment goes through any particular
full component of intersection.
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Proof. Choose ¢!. Here we of course only need to consider the case
t > 0. Since A} C A has rank one, it follows that for every v € A} any
nonzero stable Jacobi field along c, is strictly decreasing in length, and
any nonzero unstable Jacobi field is strictly increasing in length. Since
the set of stable (resp. unstable) Jacobi fields is linearly isomorphic
to B (resp. E%) via (dm, K)~!, it follows that for all v € A} N gt Al:

ldg'e] < |§] V€ € B°(v) \ {0},
dg~'¢l < [¢] V€ € E*(v) \ {0}

By compactness of A, and hence of ¢ there exists ¢ < 1 such that
for all v € A} N gt A}:
|dg’¢| < cl¢| V€ € E*(v) \ {0},

|dg~'€] < clé| V€ € B¥(v) \ {0}.

Hence ¢' restricted to ¢/ is (apart from the flow direction) hyperbolic.
Thus the first return map on a transversal to the flow is hyperbolic.
Hence it has a unique fixed point.

Therefore there exists a unique periodic orbit through ¢!. Two
geometrically different (hence disjoint) orbit segments would give rise
to two different fixed points. Hence the geometric segment on the
periodic orbit is also unique. a

5.4. Intersection thickness

Definition 5.14. Define the thickness (or length) 0 : &, — [0, ] by

O(pl) :=e —sup< 7(v) : v € ¢ U g=lwn oA
weA, gtwel

for such ¢! which intersect O-A (the front end of A) and

0(¢f) :=infSr(w):veg [ |J g Iwna.A
weA, gtwel

for such ¢ which intersect OyA (the back end of A).

Lemma 5.15 (The average thickness is asymptotically half
that of the flow box).

1 €
NAD Z 0(¢7) = 3

pled:
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Proof. Take any full component of intersection ¢! € ®;. Assume that
it intersects the front end of A. We cut A along flow linesin n := |1/¢]

pieces A= {U €A:7(v) e [E’ . 1)€>}

n n

of equal measure (i = 0,...,n — 1). By the mixing property, m(A; N
gt Ap) is asymptotically independent of i as t — co. Hence the number
of full components of intersection of A; with g4, is asymptotically
independent of i. Since any intersection component of A; N g' Ay has
depth 7 with |7 —ie/n| < €/n, we see that the average of 0 is €/2 up
to an error of order 2.

The same reasoning applies if Ag is changed to A4,,_1, hence for ¢!
intersecting the back end of A instead of the front end. ad

Note that if we compute the measure of an intersection Ay N g*A,_1
for ¢ large, the terms which are not in full components of intersection
contribute only a fraction which by mixing is asymptotically zero
because m(A}) = m(A), which follows from

m{veA:s(v) <S{Ht)}) - 0ast— oo
and

m({ve A:7(v) €0,e2]U e — &% ]}) = 2em(A).

5.5. Counting intersections

Proposition 5.16. The number N(A,t) satisfies
N(A,t) = 2Mm(A).

Proof. Let F := gl®<IB¥(vy). First note that

0(¢1)

o (F)o (1)

m(¢f)

for ¢! € @, since by Lemma 5.5 the stable measure of the pieces of
stable fibers in ¢/ is equal to o(¢) up to an error term that disappears
as ¢ — 0 and since by holonomy invariance (Theorem 4.7) and by
Lemma 5.8 the m%-measure of Ou-leaves of ¢! is the same as that
of I, except that the thickness of the intersection is not £ but (¢} ).
Since by Lemma 5.15 the average of the 0(¢)is asymptotically /2,
we get
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Since the measure of ANg’A is asymptotically the sum of the measures
of the full components of intersection (there are N(A,t) of those), we
obtain

m(An g A) = %N(A, Do (tym ™ (F). (5.2)
Moreover note that by the mixing property of g,

m(ANgtA) = eMm(A)o(t)m (F).
The claim follows from combining these two equations. a

Lemma 5.17. The number of orbit segments passing through A that
belong to periodic orbits with period in [t —e,t + €] is = N(A,t).

Proof. Let G(t,¢) be the set of all geometric orbit segments in A of
periodic orbits with period in [t — &,¢ + ¢]. As before, &; = P.(¢) is
the set of all full components for given ¢,e. Let G(t,¢) := #G(t,¢)
and N(t,e) := #P(¢). We want to show

N(t,e) = G(t,e).

By Lemma 5.12 we have a map G(t,c — 2¢2) — &;(¢) and by
Lemma 5.13 a map &;(¢) — G(t,e). These maps are invertible be-
tween their domains and images; hence they are injective. Thus we
have

G(t,e —2¢%) < N(t,e) < G(t,¢).

Since N(t,e — 2¢2) < G(t,e — 2¢?), it suffices to show
N(t,e) = N(t,e +£2).
Partition A again into n := |1/¢]| pieces
Aj:={veA:7(v) € lig/n,(i+ 1)e/n)}
of equal measure (i = 0,...,n — 1). Mixing implies that
m(AgNgtA,_ 1) = *m(A)>.

Observe that in analogy to equation (5.2) we have
1
e2m(A)? =2 m(Ag N gHEQAn_l) = §€2N(t,5)m0”(F)a(t).

The full components of Ay N g'+<" A,,_; which are newly created
at the back end of A by increasing t to ¢ + 2 have average thickness
£?/2 and hence average measure zem"(F)o(t). Hence this increase
of t can produce at most = eN (¢, ) such full components. Thus

N(t+e2¢) < N(t,e) +eN(t,e).
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(The notation fi(t,e) < fa(t,e) means fi(t,e)<fs(t,e)=fa(t,e) for
some f3.) It follows that N (t +¢2,&)=N(t,¢).

Since increasing ¢ by ¢* leads to a gain in the number of full
components by making more of them enter the back end of the flow
cube exactly like increasing ¢ by £ does, plus a similar increase in
number by making some of them delay their departure through the
front end of the flow cube, we get

N(t, e+ &%) < N(t,e) 4+ 2eN(t,e).

This shows that N(t,e + ¢2)=N(t,¢). Hence N(t,e) = G(t,¢) as
claimed. d

5.6. A Bowen-type property of the measure of mazimal entropy

Definition 5.18. Let P, be the number of homotopy classes of closed
geodesics of length at most t. Let P,(A) be the number of closed geodes-
ics of length at most t that intersect A. Let P} be the number of regular
closed geodesics of length at most t.

Remark 5.19 (Terminology). When we say “closed geodesic”, we mean
“periodic orbit for the geodesic flow”, i.e. with parameterization (al-
though always by arclength and modulo adding a constant to the
parameter). Thus a locally shortest curve is counted as two geodesics
(i.e. periodic orbits for the geodesic flow), namely one for each direc-
tion.

P/, P,(A) are finite because there is only one regular geodesic in each
homotopy class. Clearly

P(A) <P <P,
for any t. We will show that these are in fact asymptotically equal.

Lemma 5.20.
Pt' ~ P;.

Proof. Singular geodesics have a smaller exponential growth rate than
regular ones because the entropy of the singular set is smaller than
the topological entropy [Kni2] whereas the entropy of the regular set
equals the topological entropy. a

In the case that M is a surface, the growth rate of Sing is in fact
zero, since a parallel perpendicular Jacobi field gives rise to the largest
Liapunov exponent being zero.
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Definition 5.21. Let u; be the arclength measure on all reqular peri-
odic orbits of length at most t, normalized to 1:

P; := {regular closed geodesics of length < t},
P (A)= {geodesics in P; which pass through A},

1 1
Ht = 60,

Here §. is the length measure on ¢.

Theorem 5.22. For any weak limit pu of (ju)i>0 we have
m o~ [

Moreover, for any weak limit u” of (ui')¢>0 we have
m o~ pt

In other words, for any ¢; — oo such that (Mé)tkeﬂg converges weakly
and for any measurable U the following holds:

lim ,ué(U) =m(U).

k—o0
Similarly with p4 replaced by pu.

Proof. Knieper showed in [Knil] that m can be obtained as a weak
limit of the measures j;, which are Borel probability measures sup-
ported on Py, ; see also [Pol]. The singular closed geodesics can be
neglected because the singular set has entropy smaller than h. Hence
any weak limit of u; equals m.

Since

[Knil, Remark after Theorem 5.8|, any weak limit of the measures /‘é
concentrated on Py, (A) has entropy h. Since the measure of maximal
entropy is unique, any such weak limit equals m. a

COI'OllaI‘y 5.23. Pt(A) ~ Pt-

Proof. The measure on the geodesics in P;\P;(A) (which assigns zero
measure to A) would otherwise also converge weakly to the measure
of maximal entropy. a
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Remark 5.24. This means that we can approximate the measure of
maximal entropy m of a measurable set by its (i, -measure for k suf-
ficiently large. Moreover, when counting orbits, an arbitrarily small
regular local product cube A will suffice to count periodic orbits in
such a way that the fraction of those not counted will converge to
zero as the period of these orbits becomes large. We use this fact in
the proof of Theorem 5.26.

Definition 5.25. Let P;. be the number of regular geodesics with
length in (t — e,t + ¢].

Again, P, is finite because there is only one regular geodesic in each
homotopy class.

Theorem 5.26. The number P, . of reqular closed geodesics with pre-
scribed length is given by the asymptotic formula
eN(A,t)
P —.
Y57 om(A)
Proof. By Theorem 5.22, for a typical closed geodesic ¢ with suffi-
ciently large length,

1 1 N
mdc(/l) = Ten() /mA dlen = m(A).

Here “typical” means that the number of closed geodesics of length
at most ¢ that have this property is asymptotically the same as the
number of all closed geodesics of length at most ¢; in other words, the
ratio tends to 1.

Hence such a geodesic (which consists of ¢/ segments of length
¢) will have asymptotically m(A)t/e segments of length e intersecting

A. Thus P, & i?n((tf)) where G is as in the proof of Lemma 5.17. The

statement of Lemma 5.17 then shows the claim.

Note that it suffices to consider closed orbits which are not multiple
iterates of some other closed orbit for the following reason: If H(¢, k)
is the number of periodic orbits passing through A of length at most ¢
which are k-fold iterates, then H(t, k) = 0 for k > t/inj(M). Thus the
number of segments of A which are transversed by all multiple iterates
is at most Z,EZI;J(M)J kH (t, k). By Knieper’s multiplicative estimate
Ztt/inj(M)J Leht/k

k=2 ’

(see Section 2.3), this number is at most const -

thus at most const - t2e"*/2. This contributes only a zero asymptotic
fraction of the segments and can thus be ignored. ad

Proposition 5.16 and Theorem 5.26 combined yield:
Corollary 5.27.

2eeht
—

Il

P, .(A4)
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5.7. Proof of the main result

The desired asymptotic formula is now derived:

Theorem 5.28 (Precise asymptotics for periodic orbits). Let
M be a compact Riemannian manifold of nonpositive curvature whose
rank is one. Then the number P; of homotopy classes of periodic orbits
of length at most t for the geodesic flow is asymptotically given by the
formula

eht

P~
P ht

where ~ means that the quotient converges to 1 as t — oo.
Proof. We use the standard limiting process
b [b/2¢]
/ fayde 3 2ef((2i+1)e)
a i=la/2¢]

for suitable functions f (in particular, if f is continuous and piecewise
monotonous, as is the case for f(z) = ¢*/z). Choose some fixed suf-
ficiently large number ¢y > 0. Since we can ignore all closed geodesics

of length at most tg for the asymptotics, we see that for ¢ > ty by
Corollary 5.27 we get

P/ = Pi(A)
[t/2¢]

= Z Poit1)ee

i=[to/2¢]

12

Il

>~

>~

[t/2¢] oh(2it+1)e
2 o
i=|t0 /2] (2 c
t _hx
e
—dx
to x
hz |t t _hx
e e
— + / —dz
ha |, Ji, ha?
eht ehto
ht  htg
oht
ht "
Note that in the last term there is no dependence on ¢ and that
P/ ~ P,. Hence
oht

P~ .
P ht
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This concludes the proof. a
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