
RIGIDITY OF HYPERBOLIC PRODUCT MANIFOLDS

MARIO LISTING

Abstract. This paper presents a scalar curvature rigidity result of real hyper-
bolic product manifolds in analogy to M. Min–Oo’s result [10]. In order to
prove this, we consider Dirac bundles obtained from the spinor bundle, and
we derive Killing equations trivializing these Dirac bundles. Moreover, an in-
tegrated Bochner–Weitzenböck formula is shown which allows the usage of the
non–compact Bochner technique.

1. introduction

M. Min–Oo proved in [10] that a strongly asymptotically hyperbolic spin manifold
(Mn, g) with scalar curvature scal ≥ −n(n − 1) is isometric to the real hyperbolic
space. The key points of Min–Oo’s result are the existence of imaginary Killing
spinors on the real hyperbolic space as well as the non–compact Bochner technique.
This technique was introduced by E. Witten [11] to give another proof of the positive
energy theorem. Moreover, R. Bartnik generalized in [2] Witten’s method to show
scalar curvature rigidity of asymptotically flat spin manifolds. Another rigidity result
of a non–compact symmetric space was given by M. Herzlich in [6]. But for this result
a holonomy assumption turned out to be necessary.

In this paper a rigidity result of the Riemannian product manifold

(M0, g0) = Rm1 ×RHm2(−K2)× · · · ×RHml(−Kl)

is given, where RHmj (−Kj) means the real hyperbolic space of dimension mj and
sectional curvature −Kj . In order to obtain this result, we need a weak holonomy
assumption which is specified in the definition below. Moreover, we have to show
the existence of special Killing spinors on a Dirac bundle of (M0, g0), and we have
to derive an integrated Bochner–Weitzenböck formula on this Dirac bundle which is
suitable for the usage of the non–compact Bochner technique.

Definition 1.1. Let (Mn, g) be a Riemannian manifold and Uj ⊂ TM , j = 1 . . . l, be
subbundles of rank mj that give an orthogonal decomposition of the tangent bundle.
(M, g) is said to be strongly asymptotic to the Riemannian product (M0, g0) if there is
a compact manifold C with a disjoint decomposition M = C∪E and a diffeomorphism
f : E → M0 − BR(0) in such a way that the positive definite gauge transformation
A ∈ Γ(End(TM|E)) given by

g(AX, AY ) = (f∗g0)(X, Y ), g(AX,Y ) = g(X, AY )

satisfies
(1) A is uniformly bounded:

1
c
|X|g ≤ |AX|g ≤ c |X|g
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for some constant c > 0.
(2)

∣∣(f∗∇0)A
∣∣
g

+
l∑

j=2

∣∣A ◦ π0
j − πj

∣∣
g
∈ L1(E; eαrvolg) ∩ L2(E; eαrvolg),

where f∗∇0 is the Levi–Civita connection for f∗g0, π0
j ∈ Γ(End(TM|E)) is

the pull back by df of the projection TM0 → T (RHmj ), πj is the projection
TM → Uj , r is the f∗g0–distance to a fixed point and α is given by

√∑
Kj .

Theorem 1.2. Let (M, g) be a complete and connected Riemannian spin manifold
which is strongly asymptotic to (M0, g0) with dim M0 ≥ 3 and m2 ≥ 2. If the scalar
curvature satisfies

(1.1) 2
l∑

j=2

√
Kj g(δπj , δπj) + scal0 ≤ scal,

(M, g) is isometric to the symmetric space (M0, g0). In this case δπj ∈ Γ(TM) is
the divergence of πj with respect to g, i.e. δπj =

∑
(∇eiπj)(ei) if e1, . . . , en is a g–

orthonormal base. Moreover, scal0 is the scalar curvature of (M0, g0) and it equals
− ∑

j=2

mj(mj − 1)Kj.

If (M0, g0) is isometric to the real hyperbolic space, this rigidity result reduces
exactly to the one of Min–Oo (cf. [10]). An example of a manifold which is strongly
asymptotic to (M0, g0) is the following. Suppose h : M0 → M0 to be a smooth
compact supported function, then the manifold (M0, e

hg0) is strongly asymptotic to
(M0, g0). Since (M0, e

hg0) is isometric to (M0, g0) if and only if h ≡ 0, equation (1.1)
holds only if h ≡ 0.

2. Killing spinors on (M0, g0)

Because of irreducibility of Riemannian manifolds carrying a real or imaginary
Killing spinor, it is more difficult to get some kind of Killing equation on Riemannian
product manifolds. Nevertheless, we can make the following ansatz. Suppose (M, g)
is a Riemannian spin manifold. Denote by S/M the complex spinor bundle of M
associated to the chosen spin structure and denote by D/ the Dirac operator on S/M
with respect to the spin connection. Equip

S/
q
M =

q⊕

j=1

S/M

with the connection ∇ obtained by a diagonal extension of the usual spin connection
∇ and let γ be some Clifford action on S/

q
M with γ(X)γ(Y ) = γ(X)γ(Y )Id, where

γ is the Clifford multiplication on S/M . S/
q
M becomes a Dirac bundle (cf. [8]) if the

induced metric is considered. Since Rei,ej as well as γ(ei)γ(ej) are diagonal, we
obtain the Lichnerowicz formula on S/

q
M

(2.1) D/
2 = ∇∗∇ +

scal
4

.

Assume a parallel and orthogonal splitting of the tangent bundle TM = U1⊕· · ·⊕Uk

and compute the curvature of

(2.2) ∇Xζ = µ1γ(X1)P1ζ + . . . + µkγ(Xk)Pkζ,
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where Xj denotes the projection of X to Uj and Pj ∈ Γ(End(S/ q
M)) is supposed to

be parallel. If ζ ∈ Γ(S/ q
M) is a solution of (2.2), this leads to

Rs
X,Y ζ =

k∑

j=1

µ2
j (γ(Yj)Pjγ(Xj)Pj −γ(Xj)Pjγ(Yj)Pj) ζ+

+
∑

j 6=i

µjµi (γ(Yj)Pjγ(Xi)Pi − Γ(Xi)Piγ(Yj)Pj) ζ.

Thus, if the relations

γ(X)Pi + Piγ(X) = 0
PjPi + PiPj = 0

(2.3)

are satisfied for all X and i 6= j, the last line in the equation for Rs vanishes because
of the orthogonal decomposition of TM . Moreover, if (Pj)2 = −Id holds, we have

Rs
X,Y ζ = 2

k∑

j=1

µ2
jγ(Yj ∧Xj)ζ.

But γ(X ∧ Y ) and Rs are diagonal from the assumptions which implies that every
component ζl ∈ Γ(S/M) of ζ satisfies

Rs
X,Y ζl = −2

k∑

j=1

µ2
j (Xj ∧ Yj) · ζl.

This formula gives the following important fact.

Proposition 2.1. If (M, g) is a complete and simply connected spin manifold with
a parallel and orthogonal decomposition of the tangent bundle, the bundle S/

q
M is

trivialized by solutions of (2.2) if and only if (M, g) is a Riemannian product of the
Euclidean space, hyperbolic spaces and spheres as well as Uj are the induced tangent
bundles of the corresponding manifolds.

Proof. If (M, g) is a product of spheres, hyperbolic spaces and the Euclidean space,
the Riemannian curvature considered as endomorphism on Λ2M satisfies:

R(X ∧ Y ) = −
∑

j=1

Kj ·Xj ∧ Yj ,

where Kj is the sectional curvature of the corresponding part of M . Therfore, the
property (cf. [3])

Rs
X,Y =

1
2
R(X ∧ Y )·

as well as [7, Ch. II, cor. 9.2] supply the first claim with µj = ± 1
2

√
Kj . Since Λ2M

is effective on S/M , i.e. η · ψ = 0 for all ψ ∈ S/M implies η = 0, the converse claim
also follows from the curvature operator and the fact that (M, g) is supposed to be
complete and simply connected. ¤

What are the conditions to have parallel endomorphism Pj satisfying (2.3)? Sup-
pose there is another parallel Pk+1 with P2

k+1 = −Id and which anticommutes with Pj

for all j, then γ(X) will be given by iγ(X)Pk+1. Thus, the problem to find such Pj

reduces to representation theory of the Clifford algebra of a k + 1 dimensional vector
space. Note that here the Clifford relation v2 = −|v|2 is used only for convenience
to get purely imaginary µj in the case of the real hyperbolic space. If we use the
opposite Clifford convention for Pj , the following considerations will work too with
γ(X) = γ(X)Pk+1 and with (Pj)∗ = Pj instead of (Pj)∗ = −Pj . In order to get
minimal dimension of S/

q
M choose q = 2[ k+1

2 ]. In the case that dim M is even, it is
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possible to reduce q to 2[ k−1
2 ] if the natural Z2 grading of S/M is taking into account

like in example 2.3.
Thus, the endomorphisms Pj will be given by χ(ej) where χ : ClC(V k+1) →

End(S) is a representation of the Clifford algebra of V and e1, . . . , ek+1 is an or-
thonormal base of V . Consider the representation in [3, Ch. 1], then the following
parallel endomorphism of S/M ⊕ S/M :

G0 =
(

i
0

0
−i

)
, G1 =

(
0
i

i
0

)
, E =

(
1
0

0
1

)
, T =

(
0
i
−i
0

)

will define the required endomorphism Pj . Set |j| = j mod 2, then in the case k + 1
is even, Pj (j = 1 . . . k + 1) is given by the Kronecker product

E ⊗ · · · ⊗ E︸ ︷︷ ︸
[ k+1

2 ]−[ j+1
2 ]

⊗G|j+1| ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
[ j−1

2 ]

.

If k + 1 is odd, choose Pj for j = 1 . . . k like in the even case and set

Pk+1 = iT ⊗ · · · ⊗ T︸ ︷︷ ︸
[ k+1

2 ]

.

Pj is independent of the choice of the connection on S/M , that means Pj is parallel
w.r.t. any diagonal connection ∇ on S/

q
M obtained from ∇ on S/M . Moreover, if B is

an endomorphism on S/M , the diagonal extension of B to an endomorphism on S/
q
M

always commutes with Pj for all j.

Example 2.2. Consider the case k = 3. Suppose TM = U1⊕U2⊕U3 is a parallel and
orthogonal splitting of the tangent bundle of M . The bundle S/

4
M will be equipped

with the Clifford multiplication

γ(X) = i




0 0 0 γ(X)
0 0 −γ(X) 0
0 γ(X) 0 0

−γ(X) 0 0 0




,

where γ means the usual Clifford multiplication on S/M . Moreover, choose

P1 =




i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i


 P2 =




0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0


 P3 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




,

then S/
4
M is locally trivialized by solutions of

∇Xζ = µ1γ(X1)P1ζ + µ2γ(X2)P2ζ + µ3γ(X3)P3ζ

if and only if (M, g) is locally isometric to

Mn1
0 (4µ2

1)×Mn2
0 (4µ2

2)×Mn3
0 (4µ2

3).

In this case (Mn
0 (K), g0) means the n–dimensional complete simply connected mani-

fold of constant curvature K and nj is the rank of Uj .

Example 2.3. Consider the Riemannian product manifold

(M, g) = Rk ×RHm(−4λ2)×RHn(−4κ2)

where dim M is supposed to be even. The spinor bundle S/M = (S/M)+ ⊕ (S/M)− is
trivialized by solutions of (cf. [9])

∇Xζ = λγ(X2)ζ + iκγ(X3)(ζ+ − ζ−).

Nevertheless, since this Killing equation does not make sense if dim M is odd, we will
use for convenience the above approach to prove theorem 1.2.
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3. Integrated Bochner–Weitzenböck formula

Let (M, g) be a Riemannian spin manifold with an orthogonal decomposition of
its tangent bundle TM = U1 ⊕ · · · ⊕ Uk. Denote by πj : TM → Uj the projections as
well as by mj 6= 0 the rank of Uj . Consider the connection

∇̂X := ∇X −
k∑

j=1

µjγ(πjX)Pj

with q = 2[ k+1
2 ], Pj and γ as in the previous section. Suppose N ⊂ M is a compact

manifold with boundary ∂N and outward normal vector field ν. If µj is purely imag-
inary for all j, this leads to the following integrated Bochner–Weitzenböck formula

(3.1)
∫

∂N

〈
∇̂νψ + ν · D̂/ψ,ϕ

〉
=

∫

N

〈
∇̂ψ, ∇̂ϕ

〉
−

〈
D̂/ψ, D̂/ϕ

〉
+

〈
R̂ψ, ϕ

〉
,

where integration is done with respect to volg and

R̂ =
scal
4
−

k∑

j=1

µ2
jmj(mj − 1)−

k∑

j=1

µjγ(δπj)Pj .

In order to see this, use the Lichnerowicz formula (2.1), the fact that ∇ is Riemannian,
(µjPj)∗ = µjPj , as well as the definition of the Dirac operator D̂/ :

D̂/ =
n∑

i=1

γ(ei)∇̂ei = D/ +
k∑

j=1

µjmjPj .

Furthermore, since R̂ is symmetric w.r.t. g, the boundary operator in (3.1) satisfies

(3.2)
∫

∂N

〈
∇̂νψ + ν · D̂/ψ,ϕ

〉
=

∫

∂N

〈
ψ, ∇̂νϕ + ν · D̂/ϕ

〉
.

To obtain theorem 1.2, we have to prove an isomorphism property of the Dirac
operator D̂/ . This leads to the following analytic preliminaries. If E → Mn is a
Riemannian vector bundle and ω is a positively oriented nowhere vanishing n–form,
L2(M, E ; ω) denotes the completion of compact supported sections of E with respect
to the L2 norm

‖ϕ‖ω =

√√√√
∫

M

〈ϕ,ϕ〉ω .

Suppose that E is equipped with a Riemannian connection ∇, and consider the scalar
product

(ϕ,ψ)1,ω :=
∫

M

(
〈∇ϕ,∇ψ〉+ 〈ϕ,ψ〉

)
ω

on Γcpt(E). The Sobolev space W 1,2(M, E ;ω) is the closure of Γcpt(E) in L2(M, E ; ω)
with respect to the norm ‖.‖1,ω :=

√
(., .)1,ω. Moreover, W 1,2(M, E ;ω) becomes a

Hilbert space with respect to the extension of the product (., .)1,ω. For notational
simplicity set W 1,2(M, E) := W 1,2(M, E ; volg) and L2(M, E) := L2(M, E ; volg), where
volg denotes the volume form of (M, g).

Proposition 3.1. Suppose µj is purely imaginary for all j and there is some j with
µj 6= 0. If (M, g) is complete with uniformly bounded scalar curvature such that

scal := scal− 4
k∑

j=1

µ2
jmj(mj − 1) ≥ 0,
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then the Dirac operator

D̂/ : W 1,2(M, S/
q
M) → L2(M, S/

q
M)

is an isomorphism of Hilbert spaces.

Proof. The operator D̂/ is well defined and bounded. The essential L2 adjoint of
the Dirac operator D̂/ satisfies D̂/

∗
= D̂/ . Moreover, the parallelism of Pj as well as

γ(X)Pj = −Pjγ(X) imply

D̂/
∗
D̂/ = D/

2 −
k∑

j=1

µ2
jm

2
j .

Thus, the sesquilinear form

B(ψ, ϕ) :=
∫

M

〈
D̂/
∗
D̂/ψ,ϕ

〉
=

∫

M

〈∇∗∇ψ, ϕ〉 −
k∑

j=1

µ2
jmj 〈ψ,ϕ〉+

scal
4
〈ψ, ϕ〉

is bounded and coercive on Γcpt(S/
q
M) with respect to the W 1,2 norm. In particular

B can be extended to a scalar product on W 1,2(M, S/
q
M). This gives the injectivity

of D̂/ . Suppose ζ ∈ L2(M, S/
q
M), then the linear functional

l(ψ) :=
∫

M

〈
ζ, D̂/ψ

〉

is bounded on W 1,2(M, S/
q
M). Therefore, the Riesz representation theorem supplies

some ϕ ∈ W 1,2(M, S/
q
M) with B(ϕ,ψ) = l(ψ) for all ψ ∈ W 1,2(M, S/

q
M). Set θ :=

D̂/ϕ− ζ, then elliptic theory implies smoothness of θ and D̂/θ = 0 in the strong sense.
Moreover, θ ∈ L2(M, S/

q
M) together with D̂/θ = 0 imply D/θ ∈ L2(M, S/

q
M), so that

[5, thm. 2.8] supplies θ ∈ W 1,2(M, S/
q
M). But D̂/ is injective on W 1,2(M, S/

q
M),

i.e. θ = 0. ¤

4. Proof of the rigidity result

In order to obtain theorem 1.2, it will be necessary to conclude parallelism of the
projection maps πj : TM → Uj . Thus, the following lemma is a useful tool to get
parallelism of πj from the Riemannian curvature tensor.

Lemma 4.1. Suppose TM = U ⊕ V is an orthogonal splitting of the tangent bundle
of (M, g). Then the following statements are equivalent:

(1) The Riemannian curvature tensor preserves sections of U respectively sections
of V:

RX,Y : Γ(U) → Γ(U) , RX,Y : Γ(V) → Γ(V).
(2) Hol0(M, g) leaves U and V invariant.
(3) The projection maps πU and πV are parallel.

Proof. The equivalence of the last two statements follows from [4, Ch. 10]. Moreover,
that (2) respectively (3) imply (1) is obvious. Suppose the rank of U is l and consider
Λl(U∗) which is at least locally defined and of rank one. Let ω = e∗1∧· · ·∧e∗l be a non–
trivial section in this bundle, we obtain from (1) the essential fact: RX,Y ω ∈ Λl(U∗).
Since RX,Y f vanishes for all functions f ,

〈RX,Y ω, ω〉 =
1
2
RX,Y |ω|2 = 0

implies RX,Y ω = 0 (note that this is wrong if RX,Y does not leave U invariant). Thus,
Λl(U∗) is flat and admits locally a non–trivial parallel section ω′. The same thing can
be done for V to get locally another parallel exterior form (locally means in simply
connected neighborhoods). Thus, [4, remark 10.22] implies (2). ¤
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Let (M0, g0) as well as (M, g) be the Riemannian manifolds in the rigidity theorem
1.2, where E ⊂ M is supposed to be the Euclidean end of M . In order to avoid any

problems with notation, consider the Dirac bundle S/
q
M =

q⊕
j=1

S/M with q = 2[(l+1)/2]

and the parallel endomorphism Pj from the previous section as well as the Clifford
multiplication γ(X) = iγ(X)Pl+1. Set µ1 = 0 and µj := i

2

√
Kj for 2 ≤ j ≤ l. Define

the connection

∇̂X := ∇X −
l∑

j=1

µjγ(πjX)Pj

on S/
q
M as well as the connection

∇̂0

X := ∇0
X −

l∑

j=1

µjγ0(π0
j X)Pj

on S/
q
M|E , where ∇0 means the diagonal extension of the Levi–Civita connection

with respect to f∗g0 on E and γ0(X) is given by iγ0(X)Pl+1. We conclude from

section 2 that S/
q
M|E is trivialized by solutions parallel with respect to ∇̂0

.
The gauge transformation A extends to a bundle morphism A : S/M|E → S/M|E

with (cf. [1])
∣∣∇ϕ−∇ϕ

∣∣ ≤ C
∣∣A−1

∣∣ ∣∣∇0A
∣∣ |ϕ| ,

where ∇ is the usual spin connection for g and ∇ is a connection on S/M|E obtained
from the connection ∇ on TM|E and given by ∇Y = A(∇0(A−1Y )). Moreover, the
same estimates hold for the diagonal extension of ∇ respectively ∇ (denoted by a
bold symbol) to the bundle S/

q
M .

Let ψ0 be a spinor on E ⊂ M which is parallel with respect to ∇̂0
. Set ψ := h(Aψ0)

for some cut off function h, i.e. h = 1 at infinity, h = 0 in M−E and supp(dh) compact.
The following computations show that ∇̂ψ ∈ L2(M,T ∗M ⊗ S/

q
M). Set T := ∇̂−∇

as well as T0 := ∇̂0 −∇0, then the facts A ◦ γ0(X) = γ(AX) ◦ A and APj = PjA
imply

−AT0
Xψ0 + TX(Aψ0) =

l∑

j=2

µj

(
A(γ0(π0

j X)Pjψ0)−γ(πjX)PjAψ0

)

=
l∑

j=2

µjγ
(
Aπ0

j (X)− πj(X)
)
PjAψ0.

In particular

∇̂Xψ = (Xh)Aψ0 + h(∇XAψ0 + TX(Aψ0))

= (Xh)Aψ0 + h(∇X −∇X)Aψ0 + hA(∇0
Xψ0) + hTX(Aψ0)

= (Xh)Aψ0 + h(∇X −∇X)Aψ0 − hAT0
Xψ0 + hTXAψ0

supplies for uniformly bounded A (near infinity for some c > 0)

∣∣∣∇̂ψ
∣∣∣
2

≤ c

( ∣∣∇0A
∣∣2 +

l∑

j=2

∣∣A ◦ π0
j − πj

∣∣2
)
|Aψ0|2g .



8 MARIO LISTING

Moreover, |Aψ0|2g = |ψ0|2g0
is of order eαr with α =

√∑
Kj , |X| = 1:

∣∣∣X |ψ0|2g0

∣∣∣ = 2
∣∣〈∇0

Xψ0, ψ0

〉∣∣

=
∣∣∣i

l∑

j=2

√
Kj

〈
γ0(π0

j X)Pjψ0, ψ0

〉∣∣∣

≤ |ψ0|2
l∑

j=2

√
Kj

∣∣π0
j X

∣∣
g0
≤ |ψ0|2g0

√√√√
l∑

j=2

Kj ,

where the Cauchy–Schwarz inequality is applied to the vectors
∑ √

Kjej and
∑ |Xj |ej .

Thus, the estimate

〈
∇̂νψ + ν · D̂/ψ, ψ

〉
≤ c |Aψ0|2

√√√√∣∣∇0A
∣∣2 +

l∑

j=2

∣∣A ◦ π0
j − πj

∣∣2

and the assumptions on being strongly asymptotic to (M0, g0) imply

(4.1)
〈
∇̂νψ + ν · D̂/ψ,ψ

〉
∈ L1(M).

A straightforward computation shows that inequality (1.1) yields scal ≥ 0 in proposi-
tion 3.1 as well as R̂ ≥ 0 in the integrated Bochner–Weitzenböck formula (3.1). There-
fore, since D̂/ψ is a L2–section, proposition 3.1 supplies some ψ̃ ∈ W 1,2(M, S/

q
M) with

D̂/ ψ̃ = D̂/ψ. Set ϕ := ψ − ψ̃, then ϕ is non–trivial and D̂/ϕ = 0. Moreover, we obtain
in the usual way from the selfadjointness of the boundary operator (3.2), equation
(4.1) as well as [1, prop. 4.1]

lim inf
r→∞

∫

∂Mr

〈
∇̂νϕ + ν · D̂/ϕ,ϕ

〉
= 0

if {Mr} is an exhaustion of M . Since R̂ is non–negative and D̂/ϕ vanishes, the
integrated Bochner–Weitzenböck formula (3.1) supplies ∇̂ϕ = 0.

In particular ϕ is given by (Id − D̂/
−1

D̂/ )hAψ0, where ψ0 /∈ W 1,2(E, S/
q(M)|E) is

parallel with respect to ∇̂0
. Thus, the bundle S/

q
M is trivialized by spinors parallel

with respect to ∇̂, hence ∇̂ is a flat connection.
Computing the curvature of ∇̂, we obtain for every ∇̂ parallel section ζ:

(4.2) Rs
X,Y ζ =

l∑

j=2

µjγ((dπj)(X, Y ))Pjζ+

+
l∑

j=2

µ2
j (γ(πjY )γ(πjX)−γ(πjX)γ(πjY )) ζ,

where dπj(X, Y ) is the vector field given by (∇Xπj)(Y )− (∇Y πj)(X). Moreover,

(µjγ(X)Pj)
∗ = µjP

∗
jγ(X)∗ = −µjPjγ(X) = µjγ(X)Pj

implies hermiticity of

(4.3)
l∑

j=2

µjγ((dπj)(X,Y ))Pj .
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Since the other parts in (4.2) are skew Hermitian and (4.2) holds for all ζ ∈ S/
q
M ,

equation (4.2) reduces to

Rs
X,Y ζ = −2

l∑

j=2

µ2
jγ(Xj ∧ Yj)ζ.

Clifford multiplication with two forms is effective on S/M (cf. [9]) which supplies the
Riemannian curvature tensor of (M, g):

R(X ∧ Y ) = −4
l∑

j=2

µ2
j (Xj ∧ Yj).

Therefore, if Zj is a section in Uj , RX,Y Zj is a section in Uj . In particular applying
lemma 4.1, gives a holonomy restriction of (M, g), and thus, (M, g) must be locally
isometric to (M0, g0). But (M, g) is complete and has sectional curvature K ≤ 0, so
that the Hadamard–Cartan theorem together with the fact E ∼= (0, 1)× Sn−1 imply
global symmetry of (M, g).

5. Remarks

The method of concluding a holonomy restrictions seems to work only in the imag-
inary Killing case. If there is a spherical factor, the part in (4.3) is skew Hermitian
too, i.e. this part in (4.2) does not vanish from algebraic reasons.

What can be said about rigidity of the Riemannian product

(M0, g0) = N ×RHm

if (N,h) is a compact simply connected spin manifold with a non–trivial parallel
spinor, in particular h is Ricci flat? In this case a Riemannian manifold is said to be
asymptotic to (M0, g0) if M has an end E which is diffeomorphic to N × (0,∞) ×
Sm−1 and the gauge transformation A given on E satisfies the usual assumptions
for Riemannian products. The spinor bundle of M0 admits non–trivial solutions of
(cf. [9])

∇0
Xψ = λπ0

2(X) · ψ
with λ ∈ iR − {0}, but S/M0 is not trivialized by them. In particular if the scalar
curvature satisfies

|λ||δπ2|g ≤ scal
4

+ m(m− 1)|λ|2,
the same methods like in the previous section provide S/M with non–trivial solutions
ψ of

∇Xψ = λπ2(X) · ψ.

Nevertheless, the spinor bundle S/M is not trivialized by these sections, so that the
curvature of ∇− λπ2(.)· does not supply the full Riemannian curvature tensor and it
seems to be much more complicated to get a holonomy restriction on (M, g). But if
one could conclude the reducibility of the holonomy group, (M, g) will be isometric
to (M0, g0).
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