


APPLICATIONS OF HOFER’S GEOMETRY TO

HAMILTONIAN DYNAMICS

FELIX SCHLENK

Abstract. We prove that for every subset A of a tame symplectic
manifold (W, ω) the π1-sensitive Hofer–Zehnder capacity of A is not
greater than four times the displacement energy of A,

c◦
HZ

(A, W ) ≤ 4 e(A, W ).

This estimate yields almost existence of periodic orbits near dis-
placeable energy levels of time-independent Hamiltonian systems.
Our main applications are:

• The Weinstein conjecture holds true for every displaceable
hypersurface of contact type in (W, ω).

• The flow describing the motion of a charge on a closed Rie-
mannian manifold subject to a non-vanishing magnetic field
and a conservative force field has contractible periodic orbits
at almost all sufficiently small energies.

• Every closed Lagrangian submanifold of (W, ω) whose funda-
mental group injects and which admits a Riemannian met-
ric without contractible closed geodesics has the intersection
property.

The proof of the above energy-capacity inequality combines a curve
shortening procedure in Hofer geometry with the following detec-
tion mechanism for periodic orbits: If the ray {ϕt

F
}, t ≥ 0, of

Hamiltonian diffeomorphisms generated by a compactly supported
time-independent Hamiltonian stops to be a minimal geodesic in
its homotopy class, then a non-constant contractible periodic orbit
must appear.

1. Introduction and Results

On their search for periodic orbits of autonomous Hamiltonian sys-
tems, Hofer and Zehnder [24, 25] associated to every open subset A
of a symplectic manifold (V, ω) a number, the Hofer–Zehnder capacity
cHZ(A) ∈ [0,∞], in such a way that cHZ(A) < ∞ implies almost ex-
istence of periodic orbits near any compact regular energy level of an
autonomous Hamiltonian system on A. Showing that cHZ(A) is finite
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is, however, often a difficult problem. Our main result states that if
a subset A of a tame symplectic manifold can be displaced from itself
by a Hamiltonian isotopy in a stabilized sense, then the Hofer–Zehnder
capacity of A is indeed finite.

In order to set notations, we abbreviate I = [0, 1] and consider an
arbitrary smooth symplectic manifold (V, ω) without boundary. Denote
by Hc (I × V ) the set of smooth functions I × V →

�
whose support

is compact and contained in I × V . The Hamiltonian vector field of
H ∈ Hc(I × V ) defined by

ω (XHt
, ·) = −dHt (·)

generates a flow ht. The set of time-1-maps h form the group

Hamc(V, ω) := {h | H ∈ Hc(I × V )}

of compactly supported Hamiltonian diffeomorphisms of (V, ω). The
set of functions in Hc (I × V ) which do not depend on t ∈ I is denoted
by Hc(V ). We shall denote functions in Hc (I × V ) by H or K and
functions in Hc(V ) by F or G, and their flows by ht or kt and ft or gt,
respectively.

The Hofer–Zehnder capacity we shall study is defined as follows. We
say that F ∈ Hc(V ) is slow if all non-constant contractible periodic
orbits of ft have period > 1. Following [24, 25] and [36, 52, 15] we define
for each subset A of (V, ω) the π1-sensitive Hofer–Zehnder capacity

c◦HZ(A, V, ω) = sup {max F | F ∈ Hc (Int(A)) is slow} .(1)

We shall often suppress ω from the notation, and we shall write c◦HZ(V )
instead of c◦HZ(V, V ).

Remarks 1.1. 1. The Hofer–Zehnder capacity cHZ(A) mentioned
above is obtained by taking the supremum over the smaller class of
functions F ∈ Hc (Int(A)) for which all non-constant periodic orbits
of ft have period > 1. Therefore, cHZ(A) ≤ c◦HZ(A, V ).

2. The definition of cHZ(A) in the original work [24, 25] and of c◦HZ(A, V )
in [36, 52] starts from the subset

F(A) = {F ∈ Hc (Int(A)) | F ≥ 0, F |U = max F for some open U ⊂ A}

of Hc (Int(A)). It was only noticed in Theorem 2.8 of [15] that starting
from the larger set Hc (Int(A)) yields the same invariants. 3

We shall compare the Hofer–Zehnder capacity c◦HZ(A, V ) with the
displacement energy defined in [19, 29]. The norm ‖H‖ of H ∈ Hc(I ×
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V ) is defined as

‖H‖ =

∫ 1

0

(
sup
x∈V

H(t, x) − inf
x∈V

H(t, x)

)
dt,

and the displacement energy e(A, V ) = e(A, V, ω) ∈ [0,∞] of a subset
A of V is defined as

e(A, V ) = inf {‖H‖ | H ∈ Hc(I × V ), h(A) ∩ A = ∅}

if A is compact and as

e(A, V ) = sup {e(K, V ) | K ⊂ A is compact}

for a general subset A of V .
We were not able to compare the Hofer–Zehnder capacity c◦HZ with

the displacement energy e on all symplectic manifolds, but on a large
class of symplectic manifolds.

Definition 1.2. [18, 54, 1] A symplectic manifold (W, ω) is tame if
W admits an almost complex structure J and a Riemannian metric g
such that

• J is uniformly tame, i.e., there are positive constant c1 and c2

such that

ω (X, JX) ≥ c1 ‖X‖2 and |ω (X, Y )| ≤ c2 ‖X‖ ‖Y ‖

for all X, Y ∈ TW .
• The sectional curvature of (W, g) is bounded from above and

the injectivity radius of (W, g) is bounded away from zero.

Examples of tame symplectic manifolds are closed symplectic man-
ifolds, the standard cotangent bundle (T ∗M, ω0) as well as twisted
cotangent bundles (T ∗M, ωσ) over a closed base M (see [6] and Para-
graph 3 below) and symplectic manifolds which at infinity are isomor-
phic to the symplectization of a closed contact manifold, and the class
of tame symplectic manifolds is closed under taking products or cover-
ings.

Our main result is the following energy-capacity inequality.

Theorem 1.3. Assume that A is a subset of a tame symplectic mani-

fold (W, ω). Then

c◦HZ (A, W ) ≤ 4 e (A, W ) .

Remarks 1.4. 1. It is important that in the definition of c◦HZ(A, V )
the periodic orbits in A looked for are assumed to be contractible in V ,
and not in A. We illustrate this by looking at the annulus A = B2(1) \
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{0} in (
� 2, ω0). Then c◦HZ(A,

� 2) = e(A,
� 2) = π, while the Hofer–

Zehnder capacity obtained from looking at periodic orbits contractible

in A is infinite, whence Theorem 1.3 fails for this capacity.

2. The first energy-capacity inequality was obtained by Hofer [20], who
proved that

(2) c◦HZ

(
A,

� 2n
)
≤ e

(
A,

� 2n
)

for every subset A of (
� 2n, ω0), see also [25, Section 5.5] as well as

[19] where (2) had been obtained for the first Ekeland–Hofer capacity
instead of c◦HZ. Later on, the inequality

(3) c◦HZ (A, V ) ≤ 2 e (A, V )

was established for every subset A of a weakly exact symplectic mani-
fold (V, ω) which is closed [52] or convex [10]. For the open ball B2n(r)
of radius r in (

� 2n, ω0) it holds that

c◦HZ

(
B2n(r),

� 2n
)

= e
(
B2n(r),

� 2n
)

= π,

see [25], and so (2) is sharp. It is conceivable that the factors 2 and 4
in (3) and in Theorem 1.3 can be omitted.1

3. The Gromov-width cG(A) = cG(A, ω) of a subset A of a symplectic
manifold (V, ω) is defined as

cG(A) = sup
{
πr2 | B2n(r) symplectically embeds into (A, ω)

}
.

According to [29], the energy-capacity inequality

(4) cG (A) ≤ 2 e (A, V )

holds for every subset A of any symplectic manifold (V, ω). This in-
equality implies that the Hofer norm on Hamc(V, ω) is non-degenerate.
Since cG ≤ c◦HZ, Theorem 1.3 recovers inequality (4) for tame (W, ω)
up to a factor 2. It is worthwhile to compare the proofs of (4) and
Theorem 1.3. Inequality (4) was proved by combining an explicit and
elementary (and ingenious) embedding technique (symplectic folding)
with the general Non-squeezing Theorem

cG

(
V × B2(r), ω ⊕ ω0

)
≤ πr2

proved by J-holomorphic techniques. Similarly, Theorem 1.3 will be
proved by combining Sikorav’s explicit and elementary (and ingenious)

1It has been recently shown in [14] that the factor 2 in (3) can indeed be omitted,
an so for weakly exact closed or convex symplectic manifolds the factor 2 in (4) can
also be omitted.



APPLICATIONS OF HOFER’S GEOMETRY TO HAMILTONIAN DYNAMICS 5

curve shortening technique in Hofer’s geometry with the area-capacity
inequality

(5) c◦HZ

(
W × B2(r), ω ⊕ ω0

)
≤ πr2

which for tame symplectic manifolds (W, ω) was essentially proved in
[44] by Floer homological techniques, see also [9, 35]. An extension
of inequality (5) to quasi-cylinders combined with the “gluing of mon-
odromies” construction of [31] yields Theorem 1.5 below, whose con-
traposition is a detection mechanism for periodic orbits which together
with the curve shortening procedure will imply Theorem 1.3. 3

Theorem 1.5. Assume that (W, ω) is a tame symplectic manifold, and

that the autonomous Hamiltonian F ∈ Hc(W ) is slow. Then the path

ft, t ∈ [0, 1], is length minimizing in its homotopy class.

This theorem was discovered by Hofer ([20], see also [25, Section 5.7])
for standard symplectic space (

� 2n, ω0) and was proved in [31, proof of
Theorem 5.4] for weakly exact tame symplectic manifolds; it removes
an additional assumption on F in [44, Theorem 1.4] and verifies Con-
jecture 1.2 in [44] for tame symplectic manifolds.

Theorem 1.3 shows that if e(A, W ) is finite, then so is c◦HZ(A, W ),
and as we shall recall in Section 3, the finiteness of c◦HZ(A, W ) implies
almost existence of periodic orbits near any compact regular energy
level of an autonomous Hamiltonian system on A. Theorem 1.3 itself
is nevertheless not too useful, since the hypothesis that e(A, W ) is finite
imposes serious restrictions on the symplectic topology of A ⊂ (W, ω).
Capitalizing on the fact that the finiteness of our Hofer–Zehnder ca-
pacity guarantees the existence of contractible periodic orbits, and
using a stabilization trick used before by Macarini [39], we shall ob-
tain an improvement of Theorem 1.3 which implies the finiteness of
c◦HZ(A, W ) under a much weaker hypothesis on the symplectic topology
of A ⊂ (W, ω). Here, we only describe a basic version of stabilization;
the general version is given in Section 2.2. Endow the cotangent bundle
T ∗S1 over the unit circle S1 =

�
/ � with the standard symplectic form

ω0 = dp ∧ dq. For every subset A of a symplectic manifold (V, ω) we
define the stable displacement energy e1(A, V ) ∈ [0,∞] by

e1(A, V ) = e
(
A × S1, V × T ∗S1, ω ⊕ ω0

)
.

It is not hard to see that e1(A, V ) ≤ e(A, V ), and we shall give examples
with 0 = e1(A, V ) < e(A, V ) = ∞ in Example 2.9.1. The following
theorem thus improves Theorem 1.3.
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Theorem 1.6. Assume that A is a subset of a tame symplectic mani-

fold (W, ω). Then

c◦HZ (A, W ) ≤ 4 e1 (A, W ) .

In the remainder of this introduction we describe applications of The-
orem 1.6. We say that a subset A of a symplectic manifold (V, ω) is
displaceable if there exists h ∈ Hamc(V, ω) which displaces the closure
A of A, i.e., h(A) ∩ A = ∅, and we say that A is stably displaceable if
A× S1 is displaceable in (V × T ∗S1, ω ⊕ ω0). Thus A ⊂ V is displace-
able resp. stably displaceable if and only if A is relatively compact and
e(A, V ) < ∞ resp. e1(A, V ) < ∞. Note that if A is (stably) displace-
able, then a whole neighbourhood of A is (stably) displaceable.

In order to apply Theorem 1.6, we need to understand which com-
pact subsets of a symplectic manifold are (stably) displaceable. Every

compact subset of a symplectic manifold of the form (V ×
� 2, ω ⊕ ω0)

is displaceable. Less obvious sufficient assumptions on A alone are
collected in the following proposition due to Laudenbach [33] and to
Polterovich [48] and Laudenbach–Sikorav [34]. Recall that a middle-
dimensional submanifold L of a symplectic manifold (V, ω) is called
Lagrangian if ω vanishes on L.

Proposition 1.7. Suppose that a compact subset A of a symplectic

manifold (V 2n, ω) meets one of the following assumptions.

(i) A is contained in an embedded finite CW-complex of dimension

< n.

(ii) A is contained in an n-dimensional closed submanifold which is

not Lagrangian.

(iii) A is strictly contained in a closed Lagrangian submanifold.

Then A is stably displaceable.

The term “almost all” will always refer to the Lebesgue measure on
�

.

1. Almost existence of closed characteristics and the Wein-

stein conjecture

A hypersurface S in a symplectic manifold (V, ω) is a smooth compact
connected orientable codimension 1 submanifold of V without bound-
ary. A closed characteristic on S is an embedded circle in S all of whose
tangent lines belong to the distinguished line bundle

LS = {(x, ξ) ∈ TS | ω(ξ, η) = 0 for all η ∈ TxS} .
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Examples show that LS might not carry any closed characteristic, see
[13, 15]. We therefore follow [23] and consider parametrized neighbour-
hoods of S. Since S is orientable, there exists an open neighbourhood
I of 0 and a smooth diffeomorphism

ϑ : S × I → U ⊂ V

such that ϑ(x, 0) = x for x ∈ S. We call ϑ a thickening of S, and we
abbreviate Sε = ϑ (S × {ε}). We denote by P◦ (Sε) the set of closed
characteristics on Sε which are contractible in V . The refinement of
the Hofer–Zehnder argument in [42] shows that if c◦HZ (U, V ) is finite,
then P◦ (Sε) 6= ∅ for almost all ε ∈ I. Together with Theorem 1.3 we
obtain

Corollary 1.8. Assume that S is a stably displaceable hypersurface in

a tame symplectic manifold (W, ω). Then for any stably displaceable

thickening ϑ : S × I → U ⊂ W it holds that P◦ (Sε) 6= ∅ for almost all

ε ∈ I.

In [61], Zehnder constructed a symplectic form on the 4-torus T 4 =

(
�

/ � )4 such that none of the hypersurfaces {x4 = const} carries a
closed characteristic. The assumption in Corollary 1.8 that S is stably
displaceable thus cannot be omitted.

A hypersurface S in a symplectic manifold (V, ω) is called of contact

type if there exists a Liouville vector field X (i.e., LXω = dιXω = ω)
which is defined in a neighbourhood of S and is everywhere transverse
to S. Weinstein conjectured in [59] that every hypersurface S of contact
type with H1(S;

�
) = 0 carries a closed characteristic.

Corollary 1.9. Assume that S is a stably displaceable hypersurface of

contact type in a tame symplectic manifold (W, ω). Then P◦(S) 6= ∅.
In particular, the Weinstein conjecture holds true for S.

Proofs of the Weinstein conjecture for all hypersurfaces of contact
type of special classes of symplectic manifolds have been found in
[56, 23, 21, 9, 22, 26, 38, 57, 36, 58, 5, 35, 37]. Corollary 1.9 gen-
eralizes or complements the results in [56, 23, 9, 58, 35], where the
ambient symplectic manifold is of the form (V ×

� 2, ω ⊕ ω0). Under
the additional assumption that (W, ω) satisfies [ω]|π2(W ) = 0 and is
convex, Corollary 1.9 has been proved in [10].

2. Periodic orbits of autonomous Hamiltonian systems

Given a Hamiltonian F on (V, ω) we denote by P◦ (F−1(r)) the set of
non-constant periodic orbits on F−1(r) which are contractible in V . A
function F : V →

�
is proper if F−1([r0, r1]) is a compact subset of V
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for all −∞ < r0 ≤ r1 < ∞. For simplicity, we shall always assume that
F is proper. We point out, however, that it is enough to assume that
F is proper on the set of levels F−1([r0, r1]) under consideration.

Corollary 1.10. Consider a proper Hamiltonian F on a tame sym-

plectic manifold (W, ω). If [r0, r1] ⊂ F (W ) and if F−1[r0, r1] is stably

displaceable, then P◦ (F−1(r)) 6= ∅ for almost all r ∈ [r0, r1].

From now on we focus on searching periodic orbits near the minimum
set of F , which we can assume to be F−1(0). We abbreviate the sublevel
set F−1 ([0, r]) by F r. Given a proper Hamiltonian F on (V, ω) we
define d1(F ) ∈ [0,∞] by

d1(F ) = sup {r ∈
�

| F r is stably displaceable}

= sup {r ∈
�

| e1 (F r, V ) < ∞} .

Since F is proper, d1(F ) > 0 if and only if F−1(0) is stably displaceable.
Corollary 1.10 yields

Corollary 1.11. Consider a proper Hamiltonian F on a tame sym-

plectic manifold (W, ω) with minimum 0, and assume that d1(F ) > 0.
Then P◦ (F−1(r)) 6= ∅ for almost all r ∈ ]0, d1(F )].

We recall that Corollary 1.11 becomes relevant in conjunction with
Proposition 1.7 applied to A = F−1(0). Specific applications of Corol-
lary 1.11 are given in the next paragraph. In the remainder of this
paragraph we further discuss Corollary 1.11 and compare it with pre-
vious results of this kind.

Remarks 1.12. 1. (i) The Hamiltonian (x, y) 7→ x2 on (
� 2, ω0) shows

that the assumption that F is proper cannot be omitted.

(ii) Given d > 0 it is easy to construct a proper Hamiltonian F on
(T ∗S1, ω0) with minimum 0 such that d1(F ) = d and P◦ (F−1(r)) 6= ∅
for r ∈ ]0, d[ and P◦ (F−1(r)) = ∅ for r > d. More interesting examples
showing that in general one cannot expect that P◦ (F−1(r)) 6= ∅ for
almost all r > 0 are given in Remark 1.15.2 below.

(iii) According to [15], every symplectic manifold (V, ω) of dimension
2n ≥ 4 admits a proper C2-smooth Hamiltonian F with minimum 0
and d1(F ) > 0 such that P◦ (F−1(r)) = ∅ for a sequence rk → 0 of
regular values, and if 2n ≥ 6, then F can be chosen C∞-smooth.

2. Assume that F is a proper Hamiltonian on any symplectic manifold
(V, ω) attaining its minimum in a point. In view of Darboux’s theo-
rem we can assume that (V, ω) = (

� 2n, ω0). Corollary 1.11 or already
Struwe’s theorem [55, 25] show that P◦ (F−1(r)) 6= ∅ for almost all
sufficiently small r > 0.
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3. Consider a tame symplectic manifold (W 2n, ω), and assume that
the proper function F : W →

�
attains its minimum 0 along a closed

symplectic submanifold M 2k of (W, ω). In this situation, it was shown
in [15, Corollary 2.16] and [40] that P◦ (F−1(r)) 6= ∅ for almost all
r ∈ ]0, b(F )], where

(6) b(F ) = sup {r ∈
�

| F r ⊂ B(M, F )} ∈ ]0,∞]

and B(M, F ) is “the F -maximal symplectic ball neighbourhood of M
in (W, ω)”, see [15, Section 4.1] for details. For k ∈ {0, 1, . . . , n}, this
result is covered by Proposition 1.7 and Corollary 1.11 with d1(F ) > 0
instead of b(F ). It would be interesting to compare these two constants.

4. The main point of Corollary 1.11 is that there is no assumption on
the infinitesimal behaviour of F near F−1(0). If F−1(0) is a Morse-
Bott non-degenerate minimum of F , then P◦ (F−1(r)) 6= ∅ for all

sufficiently small r > 0 if F−1(0) is a point [59] or if F−1(0) is a
symplectic submanifold and the transverse eigenvalues of D2F along
F−1(0) meet a global resonance condition [27].

3. Closed trajectories of a charge in a magnetic field and a

potential

Consider a closed Riemannian manifold (M, g) of dimension at least
2, and let ω0 =

∑
i dpi ∧ dqi be the standard symplectic form on the

cotangent bundle T ∗M . We fix a closed 2-form σ on M and define
the twisted symplectic form ωσ on π : T ∗M → M by ωσ = ω0 + π∗σ.
We also fix a function V on M with minimum 0. The flow of the
Hamiltonian system

(7) FV : (T ∗M, ωσ) →
�

, FV (q, p) 7→ 1
2
|p|2 + V (q),

describes (for example) the motion of a unit charge on (M, g) subject
to the magnetic field σ and the potential V , cf. [45, 28, 12]. As be-
fore, we denote by P◦

(
F−1

V (r)
)

the set of periodic orbits on the level

F−1
V (r) which are contractible in T ∗M and hence project to contractible

closed trajectories on M . We shall also study the possibly larger set
P

(
F−1

V (r)
)

of periodic orbits on F−1
V (r); these orbits might not be con-

tractible in T ∗M . For historical reasons, we first discuss our result for
the case V = 0. We set d1(g, σ) = d1(F0) and Er = F−1

0 (r).

Corollary 1.13. Consider a closed Riemannian manifold (M, g) en-

dowed with a closed 2-form σ which does not vanish identically. Then

d1(g, σ) > 0 and P◦ (Er) 6= ∅ for almost all r ∈ ]0, d1(g, σ)].

If σ is exact, d1(g, σ) is always finite in view of inequality (10) below.
If σ is non-exact, d1(g, σ) can be infinite, however. Examples with
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infinite d1(g, σ) are non-exact closed 2-forms σ on tori. Using this we
shall obtain

Corollary 1.14. Assume that M is a manifold of the form M = T k ×
M2, where T k is a torus of dimension k ≥ 1 and M2 is any closed

manifold, and assume that M is endowed with a Riemannian metric g
and a non-vanishing closed 2-form σ such that

[σ] = [σ1] ⊕ [σ2] ∈ H2 (M1) ⊕ H2 (M2) ⊂ H2(M).

(i) If [σ1] 6= 0, then P◦ (Er) 6= ∅ for almost all r > 0.
(ii) If [σ1] = 0, then P (Er) 6= ∅ for almost all r > 0.

Remarks 1.15. 1. As we shall prove in Proposition 6.2 below, “for
most M and σ” the hypersurfaces Er are not of contact type. Therefore,
Corollaries 1.13 and 1.14 do not follow from existence results of closed
characteristics on contact type hypersurfaces nor do they imply that
P◦ (Er) 6= ∅ for all sufficiently small r > 0.

2. One cannot expect that P◦ (Er) 6= ∅ for almost all r > 0 in general.
Indeed, let M be a closed oriented surface of genus 2, and let g and σ
either be a Riemannian metric of constant curvature −1 and its area
form or the Riemannian metric and the exact 2-form σ constructed in
[47]. Then P◦ (Er) = ∅ for all r ≥ 1

2
, see [12, Example 3.7] and [47].

On the other hand, there are no examples known with P (Er) = ∅ for
an infinite set of r > 0.

3. The state of the art. We review the known existence results for
periodic orbits of a charge in a magnetic field on small energy levels; for
results concerned with periodic orbits on intermediate and large energy
levels we refer to [12]. As before, M is a closed manifold endowed with
a Riemannian metric g and a non-vanishing closed 2-form σ.

A. Previous results. Corollary 1.13 generalizes various previous re-
sults: The existence of a sequence rk → 0 with P◦ (Erk

) 6= ∅ has been
proved by Polterovich [49] and Macarini [39] under the assumption that
[σ]|π2(M) = 0 and by Ginzburg–Kerman [17] under the assumption that
σ is symplectic. For exact forms, Corollary 1.13 has been proved in
[10], and for rational symplectic forms in [6, 15, 39, 40] with d1(g, σ)
replaced by the number b(F0) defined in (6). Corollary 1.14 improves
Theorems 12.9 and 12.10 of [10] which extended results of Lu [36].

B. Special results. Under additional assumptions on M , g or σ, Corol-
lary 1.13 can be improved.

B1. Denote by Cl(M) the cup-length of M . If M is a surface and σ
is symplectic or, more generally, if σ is a symplectic form compatible
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with g, then

(8) # (P◦ (Er)) ≥ Cl(M) + 1
2
dim M

for all sufficiently small r > 0, see [11, 27].

B2. Assume that M = M1 × M2, where M1 is a simply connected
manifold admitting an effective semi-free circle action. Examples are
spheres Sk with k ≥ 2 and connected sums of � Pk’s. If σ is exact,
then P◦ (Er) 6= ∅ for almost all r > 0, see [41].

C. Results for P(Er).

C1. If M is a surface and σ is exact, then P (Er) 6= ∅ for all r > 0, [8].

C2. Assume that M = M1×M2 and that M1 admits an effective semi-
free circle action. If σ is exact, then P (Er) 6= ∅ for almost all r > 0,
see [41].

For the 2-sphere, which is of particular interest [45, 28], the state of
the art thus is

Corollary 1.16. Assume that g is a Riemannian metric on S2 and

that σ 6= 0 is a closed 2-form on S2. Then P◦(Er) 6= ∅ for almost all

r ∈ ]0, d1(g, σ)], for all r > 0 if σ is exact, and for all sufficiently small

r > 0 if σ is symplectic.

4. Outlook. (i) Corollary 1.13 and the results listed above suggest
that P◦ (Er) 6= ∅ for all sufficiently small r > 0. In view of Propo-
sition 2.24 of [15] this conjecture cannot, however, be established by
purely symplectic topological means, and one must make use of the
convexity of the function 1

2
|p|2 along the fibres. If σ is symplectic,

there is further evidence for this conjecture, and one in fact expects a
lower bound like (8) for all sufficiently small r > 0, see [16, 27].

(ii) Assume that σ is exact. We define the norm of σ as

(9) ‖σ‖ = inf {‖α‖ | dα = σ}

where ‖α‖ = maxx∈M |α(x)|. According to [10, 51],

(10) d1(g, σ) ≤ 1
2
‖σ‖2 ,

but for the example from [47] mentioned in Remark 1.15.2 we have
d1(g, σ) < 1

2
‖σ‖2. In view of [10] and Corollary 1.11, P◦ (Er) 6= ∅ for

almost all r ∈ ]0, d1(g, σ)], and in view of [21, 7], P (Er) 6= ∅ for all
r > 1

2
‖σ‖2. In order to close the possible gap between d1(g, σ) and

1
2
‖σ‖2, it suffices to show that cHZ(A) is finite for all bounded subsets

A of (T ∗M, ω0). While this result is believed to be true, it is known
only for the manifolds as in C2 above, see [41]. 3
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The approach used in [6, 15, 39, 40, 41] makes explicit use of the
geometry of the sphere bundle Er → M over the symplectic manifold
M . This geometry does not exist if M is not symplectic or V 6= 0. Since
our approach only uses that the zero locus F−1

V (0) is stably displaceable,
it also yields the following generalizations of Corollaries 1.13 and 1.14.

Corollary 1.17. Consider a closed Riemannian manifold (M, g) en-

dowed with a closed 2-form σ which does not vanish identically, and

let V be a potential on M with minimum 0. Then d1(FV ) > 0 and

P◦
(
F−1

V (r)
)
6= ∅ for almost all r ∈ ]0, d1(FV )].

Corollary 1.18. Let V be a potential with minimum 0 on a manifold

(M, g, σ) as in Corollary 1.14.

(i) If [σ1] 6= 0, then P◦
(
F−1

V (r)
)
6= ∅ for almost all r > 0.

(ii) If [σ1] = 0, then P
(
F−1

V (r)
)
6= ∅ for almost all r > 0.

Remark 1.19. For a proper potential V and under some additional
assumptions on M and σ, Corollaries 1.17 and 1.18 continue to hold
for open manifolds M , see [51].

4. Lagrangian intersections

According to a celebrated theorem of Gromov, [18, 2.3.B ′
3], a closed

Lagrangian submanifold L of a tame symplectic manifold (W, ω) with
[ω]|π2(W,L) = 0 is not displaceable. The following result generalizes
Theorem 13.1 in [10] and complements Theorem 1.4.A in [32].

Corollary 1.20. Assume that L is a closed Lagrangian submanifold of

a tame symplectic manifold (W, ω) such that

(i) the injection L ⊂ W induces an injection π1(L) ⊂ π1(W );

(ii) L admits a Riemannian metric none of whose closed geodesics

is contractible.

Then L is not displaceable.

Remarks 1.21. 1. Neither condition (i) nor (ii) can be omitted: This
is clear for (i) in view of the Lagrangian torus T n ⊂ � n. For (ii) we
follow [1, 3]: Let S2k+1 ⊂ � k+1 be the unit sphere, and let ωSF be the
Study–Fubini form on � Pk normalized so that the pull-back of ωSF by
the Hopf fibration h : S2k+1 → � Pk is equal to the restriction of the
standard form ω0 on � k+1. Then

L =
{
(z̄, h(z)) | z ∈ S2k+1

}
⊂ � k+1 × � Pk

is a displaceable Lagrangian sphere in
(

� k+1 × � Pk, ω0 ⊕ ωSF

)
. Mul-

tiplying these spheres with S1 ⊂ (T ∗S1, ω0) we obtain examples in all
dimensions n ≥ 3.
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2. Condition (ii) is weaker than

(ii’) L admits a Riemannian metric of non-positive curvature.

Indeed, for each k ≥ 1 there exists a (2k + 1)-dimensional nilmani-
fold meeting (ii) but not (ii’), see [10, Remark 13.2.3]. Under condi-
tions (i) and (ii’), the conclusion of Corollary 1.20 was proved for closed
Lagrangian submanifolds of arbitrary symplectic manifolds in [32] by
using the general energy-capacity inequality (4). 3

The paper is organized as follows. In Section 2 we prove Theo-
rems 1.3, 1.5 and 1.6, discuss various displacement energies, and prove
Proposition 1.7. In Section 3 we first show that the Hofer–Zehnder
capacity c◦HZ agrees with a modification of it needed in the proof of
Theorem 1.5, and then review the almost existence theorems obtained
from the finiteness of c◦HZ. In Sections 4, 5, 6 and 7 we prove the corol-
laries stated in Paragraphs 1,2,3 and 4, respectively. In Section 6 we
also prove Proposition 6.2 mentioned in Remark 1.15.1. In Section 8
we notice that most of our results continue to hold for C2-smooth
hypersurfaces, Hamiltonians, Riemannian metrics, potentials and La-
grangian submanifolds.

Acknowledgements. The cornerstone to this work was laid by Leonid
Polterovich, who suggested to me to combine his approach to periodic
orbits of a charge in a magnetic field in [49] with the approach in
[10]. I cordially thank him for sharing his insight with me. I also
thank Urs Frauenfelder, Viktor Ginzburg and Jean-Claude Sikorav for
their generous help and for many valuable discussions. Much of this
work was written during my stay at Tel Aviv University in April 2003,
and it was finished at FIM of ETH Zürich and at the Mathematisches
Institut of Leipzig University. I wish to thank these institutions for
their support, and I thank Hari and Harald and Matthias Schwarz for
their warm hospitality.

2. Proof of the main theorems and of Proposition 1.7

2.1. Proof of Theorem 1.3. We follow Polterovich’s beautiful argu-
ment in [49, Section 9.A]. The proof consists of two steps.

Step 1. Curve shortening in Hofer’s geometry

Curve shortening in Hofer’s geometry was invented by Sikorav in [53]
and further developed in [30, Proposition 2.2]. Here, we closely follow
the proof of Theorem 8.3.A in [50], see also Theorem 3.3.A in [2].

We consider an arbitrary symplectic manifold (V, ω). Two Hamil-
tonians H, K ∈ Hc(I × V ) are equivalent, H ∼ K, if h = k and the
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paths {ht}, {kt}, t ∈ [0, 1], are homotopic in Hamc(V, ω) with fixed end
points. In other words, there exists a smooth family {Hs}, s ∈ [0, 1],
in Hc(I ×V ) such that h0

t = ht and h1
t = kt for all t and hs = h = k for

all s. The group of equivalence classes Hc(I×V )/ ∼ form the universal

cover H̃amc(V, ω) of Hamc(V, ω). We denote the lift of the Hofer norm

to H̃amc(V, ω) by

ρ [ht] ≡ ρ[H] := inf {‖K‖ | K ∼ H} .

Proposition 2.1. Consider a displaceable subset A of an arbitrary

symplectic manifold (V, ω). If F : V →
�

is supported in A and ‖F‖ >
4 e(A, V ), then ρ [F ] < ‖F‖.

Proof. Choose a path {ht}, t ∈ [0, 1], in Hamc(V, ω) such that h(A) ∩
A = ∅ and

ρ [ht] < 1
4
‖F‖ .(11)

For t ∈ [0, 1] we decompose the path ft as

ft =
(
ft/2 ◦ ht ◦ ft/2 ◦ h−1

t

)
◦

(
ht ◦ f−1

t/2 ◦ h−1
t ◦ ft/2

)
≡ bt ◦ at.

As we shall see below,

ρ [at] < 1
2
‖F‖ and ρ [bt] ≤

1
2
‖F‖ .(12)

Since {bt ◦ at} is equivalent to the juxtaposition of {at} and {bt ◦ a1}
and since ρ satisfies the triangle inequality, the estimates (12) imply
Proposition 2.1. In order to prove the first estimate in (12), notice that

the paths
{

f−1
t/2 ◦ h−1

t ◦ ft/2

}
and

{
f−1

1/2 ◦ h−1
t ◦ f1/2

}
are equivalent and

that

ρ
[
f−1

1/2 ◦ h−1
t ◦ f1/2

]
= ρ

[
h−1

t

]
= ρ [ht] .

Together with the triangle inequality and the estimate (11) we can
estimate

ρ [at] = ρ
[
ht ◦ f−1

t/2 ◦ h−1
t ◦ ft/2

]

≤ ρ [ht] + ρ
[
f−1

t/2 ◦ h−1
t ◦ ft/2

]

= 2 ρ [ht]

< 1
2
‖F‖ .

In order to prove the second estimate in (12), notice that the path
{bt} =

{
ft/2 ◦ ht ◦ ft/2 ◦ h−1

t

}
is equivalent to the path

{
ft/2 ◦ h ◦ ft/2 ◦ h−1

}

generated by the Hamiltonian

K(t, x) = 1
2
F (x) + 1

2
F

(
h−1f−1

t/2x
)

, t ∈ [0, 1].
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Since F is autonomous, F = F ◦ft/2, and since h displaces supp F ⊂ A,
so does h−1. Therefore,

‖Kt‖ = 1
2

∥∥∥F + F ◦ h−1 ◦ f−1
t/2

∥∥∥
= 1

2

∥∥F ◦ ft/2 + F ◦ h−1
∥∥

= 1
2

∥∥F + F ◦ h−1
∥∥

= 1
2
‖F‖ ,

and so ρ [bt] ≤
1
2
‖F‖. The proof of Proposition 2.1 is complete. 2

Step 2. The cut point has a non-constant contractible periodic

orbit

We restate Theorem 1.5 as

Proposition 2.2. Assume that (W, ω) is a tame symplectic manifold

and that F ∈ Hc(W ) is an autonomous Hamiltonian such that ρ [F ] <
‖F‖. Then F is not slow.

Proof. We first consider an arbitrary symplectic manifold (V, ω) and
recall from the introduction that F ∈ Hc(V ) is slow if all non-constant
contractible periodic orbits of ft have period > 1. We say that F ∈
Hc(V ) is flat if all non-constant periodic orbits of the linearized flow
of F at its critical points have period > 1. Following [44] we define for
each subset A of (V, ω) the Hofer–Zehnder capacity

(13) c◦,fHZ(A, V, ω) = sup {max F | F ∈ Hc (Int(A)) is slow and flat} .

We again omit ω from the notation and abbreviate c◦,fHZ(V, V ) = c◦,fHZ(V ).
Let now (W, ω) and F be as in Proposition 2.2. We first assume that

W is closed. According to Proposition 3.9 of [44],

c◦,fHZ

(
W × B2(r), ω ⊕ ω0

)
≤ πr2 for all r > 0.

In fact, this area-capacity inequality is shown to hold for all quasi-
cylinders over (W, ω), and this implies that F cannot be slow and flat,

see [31]. As we shall prove in Proposition 3.1, the capacities c◦,fHZ and
c◦HZ always agree, and so the arguments in [31] in fact yield Propo-
sition 2.2 as stated. Assume now that (W, ω) is an arbitrary tame
symplectic manifold. Then the compactness theorems in [18, 54] hold,
and so the arguments in [44] establishing compactness of the relevant
Floer moduli space go through. 2
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End of the proof of Theorem 1.3. We can assume that e(A, W ) <
∞, and in view of the definitions of the capacity c◦HZ and the dis-
placement energy e we can assume that A is compact. Hence A is
displaceable. Let F ∈ Hc (Int A) be such that max F > 4 e(A, W ).
Then ‖F‖ > 4 e(A, W ). According to Proposition 2.1 we have ρ [F ] <
‖F‖, and so Proposition 2.2 shows that F is not slow. Therefore,
c◦HZ(A, W ) ≤ 4 e(A, W ). 2

2.2. Stabilization.

Definition 2.3. A stabilizer is a triple (AS, VS, ωS) consisting of a
symplectic manifold (VS, ωS) and a subset AS of VS such that there
exists a Hamiltonian FS : VS → [0,∞) with the following properties.

(i) F−1
S (0) = AS.

(ii) There exists ε > 0 such that F ε
S is compact and such that all

contractible period orbits of the flow of FS contained in F ε
S are

constant.

Denote the class of stabilizers by S, and by Sτ the subclass of sta-
bilizers for which (VS, ωS) is tame.

Example 2.4. Given any closed manifold M admitting a Riemann-
ian metric of non-positive curvature (or, more generally, admitting a
Riemannian metric none of whose closed geodesics is contractible) the
triple (M, T ∗M, ω0) belongs to Sτ . Indeed, the geodesic flow Hamil-
tonian (q, p) 7→ 1

2
|p|2 with respect to such a metric does the job. By

the Symplectic Neighbourhood Theorem, a neighbourhood of a closed
Lagrangian submanifold L in an arbitrary symplectic manifold sym-
plectically identifies with a neighbourhood of L in (T ∗L, ω0). A triple
(L, W, ω) as in Corollary 1.20 thus belongs to Sτ .

Remark 2.5. The set AS of a stabilizer (AS, W 2n
S , ωS) ∈ Sτ cannot

be contained in a finite CW-complex of dimension < n. Indeed, using
such a stabilizer and Proposition 1.7 (i) and Corollary 5.2 we could
conclude that the flow of (q, p) 7→ 1

2
p2 on (T ∗S1, ω0) has contractible

periodic orbits on almost all small enough energy levels. 3

For every subset A of a symplectic manifold (V, ω) we define the
stable displacement energy eτ

S(A, V ) ∈ [0,∞] by

eτ
S(A, V ) = inf {e (A × AS, V × WS) | (AS, WS, ωS) ∈ Sτ} .

Since e1 ≥ eτ
S, Theorem 1.6 follows from
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Theorem 2.6. Assume that A is a subset of a tame symplectic mani-

fold (W, ω). Then

c◦HZ(A, W ) ≤ 4 eτ
S(A, W ).

Proof. We shall derive Theorem 2.6 from Theorem 1.3. We start with

Lemma 2.7. Let (AS, VS, ωS) be a stabilizer and choose FS and ε > 0
as in Definition 2.3. For any subset A of a symplectic manifold (V, ω),

c◦HZ(A, V ) ≤ c◦HZ (A × F ε
S, V × VS) .

Proof. We can assume that Int A 6= ∅. Let F ∈ Hc (Int A) be slow.
We choose a smooth function a :

�
→ [0, 1] such that

a(t) = 1 if t ≤ 1
3
ε and a(t) = 0 if t ≥ 2

3
ε.

The function G : V × VS →
�

, (v, vS) 7→ F (v) a(FS(vS)) belongs to
Hc (Int (A × F ε

S)). In order to see that G is slow, assume that x(t) is a
contractible periodic orbit of gt. Then x(t) = (x1(t), x2(t)) ⊂ V × VS,
where both x1(t) and x2(t) are contractible periodic orbits. Denoting
the Hamiltonian vector fields of F and FS by XF and XFS

, we find

ẋ1(t) = a
(
FS(x2(t))

)
XF (x1(t)) ,

ẋ2(t) = F (x1(t)) a′
(
FS(x2(t))

)
XFS

(x2(t)) .

Since F and FS do not depend on t, the functions a
(
FS(x2(t))

)
and

F (x1(t)) a′
(
FS(x2(t))

)
are constant. Since

∣∣a
(
FS(x2)

)∣∣ ∈ [0, 1] and F
is slow, the orbit x1(t) is constant or has period > 1, and since all con-
tractible periodic orbits of the flow of FS in F ε

S are constant, the orbit
x2(t) is constant. We have constructed for every slow F ∈ Hc (Int A)
a slow G ∈ Hc (Int (A × F ε

S)) with max F = max G. Lemma 2.7 thus
follows. 2

In order to prove Theorem 2.6 we need to show that for every stabi-
lizer (AS, WS, ωS) ∈ Sτ and every compact subset A of W ,

(14) c◦HZ (A, W ) ≤ 4 e (A × AS, W × WS) .

So fix (AS, WS, ωS) ∈ Sτ and a compact subset A of W . We can
assume that e (A × AS, W × WS) is finite. Fix δ > 0, and choose H ∈
Hc (I × W × WS) such that h displaces A × AS and

‖H‖ ≤ e (A × AS, W × WS) + δ.

We then find FS and ε > 0 as in Definition 2.3 such that h displaces
A × F ε

S. It follows that

e (A × F ε
S, W × WS) ≤ ‖H‖ ≤ e (A × AS, W × WS) + δ.
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Since both (W, ω) and (WS, ωS) are tame, so is their product (W × WS, ω ⊕ ωS).
Together with Lemma 2.7 and Theorem 1.3 we can thus estimate

c◦HZ (A, W ) ≤ c◦HZ (A × F ε
S, W × WS)

≤ 4 e (A × F ε
S, W × WS)

≤ 4 e (A × AS, W × WS) + 4 δ.

Since δ > 0 was arbitrary, inequality (14) follows, and so Theorem 2.6
is proved. 2

In the remainder of this subsection we further discuss the invariant
eτ

S.

Lemma 2.8. For any subset A of a symplectic manifold (V, ω) and

any stabilizer (AS, VS, ωS) ∈ S,

e (A × AS, V × VS) ≤ e (A, V ) .

Proof. We can assume that A is compact and that e (A, V ) is finite.
Fix δ > 0, and choose H ∈ Hc (I × V ) such that h displaces A and
‖H‖ ≤ e(A, V )+ δ. Choose now FS and ε > 0 as in Definition 2.3, and
choose a :

�
→ [0, 1] as in the proof of Lemma 2.7. The Hamiltonian

K : I × V × VS →
�

, (v, vS) 7→ H(t, v) a(FS(vS)),

belongs to Hc (I × V × VS), and its time-1-map k restricts to h× id on
V ×AS. Since h displaces A, we conclude that k displaces A×AS, and
so

e (A × AS, V × VS) ≤ ‖K‖ = ‖H‖ ≤ e(A, V ) + δ.

Since δ > 0 was arbitrary, Lemma 2.8 follows. 2

Given two stabilizers in Sτ , we write (AS, WS, ωS) ≤ (A′
S, W ′

S, ω′
S) if

there exists (A′′
S, W ′′

S , ω′′
S) ∈ Sτ such that

(A′
S, W ′

S, ω′
S) = (AS × A′

S, WS × W ′′
S , ωs,⊕ω′′

S) .

Since the 0-function on a point is a stabilizer, (Sτ ,≤) is a partially
ordered set, which is directed. In view of Lemma 2.8, eτ

S(A, V ) is the
direct limit

eτ
S(A, V ) = lim

(Sτ ,≤)
e (A × AS, V × WS) .

For each k = 1, 2, . . . we let T k = ×kS
1 be the k-torus and set

ek(A, V ) = e
(
A × T k, V × T ∗T k, ω ⊕ ω0

)
.

By Lemma 2.8, the sequence ek(A, V ) is decreasing, so that the limit

e∞(A, V ) = lim
k→∞

ek (A, V )
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exists, and

(15) e(A, V ) ≥ e1(A, V ) ≥ e∞(A, V ) ≥ eτ
S(A, V ).

At this point we must admit that we have introduced the invariants eτ
S

and e∞ for conceptual reasons only, and in the hope that interesting
examples with ∞ = e1(A, V ) > eτ

S(A, V ) will be found. In fact, we do
not know any such example. It would also be interesting to know an
example with ∞ > e(A, V ) > e1(A, V ) or ∞ = e1(A, V ) > e2(A, V ).

Examples 2.9. 1. Let σ be a non-vanishing closed 2-form on a
closed manifold M and let ωσ be the twisted symplectic form on T ∗M
as in Paragraph 3 of the introduction. If the Euler characteristic χ(M)
vanishes, then e(M, T ∗M) = 0, and if χ(M) does not vanish, then
e(M, T ∗M) = ∞ for topological reasons, while e1(M, T ∗M) = 0, see
Proposition 2.10 (ii).

2. Consider the unit circle S1 ⊂ (
� 2, ω0). If follows from [4] that

e∞ (S1,
� 2) ≥ e (S1,

� 2), and so π = e (S1,
� 2) = e∞ (S1,

� 2).

3. For every stabilizer (AS, WS, ωS) ∈ Sτ we have eτ
S (AS, WS) = ∞,

see Corollary 7.1.

2.3. Proof of Proposition 1.7. Recall that a compact subset A of a
symplectic manifold (V, ω) is stably displaceable if and only if e1 (A, V ) <
∞. The following proposition thus refines Proposition 1.7.

Proposition 2.10. Let A be a compact subset of a symplectic manifold

(V 2n, ω).

(i) Assume that A is contained in an embedded finite CW-complex

X of dimension < n. Then e1(A, V ) < ∞.

(ii) Assume that A is contained in an n-dimensional closed subman-

ifold M which is not Lagrangian. Then e1(A, V ) = 0.
(iii) Assume that A is strictly contained in a closed Lagrangian sub-

manifold L. Then e1(A, V ) = 0.

Proof. (i) By assumption, the set A × S1 is contained in the finite
CW-complex X ×S1 of dimension < n +1 in the (2n + 2)-dimensional
symplectic manifold (V × T ∗S1, ω ⊕ ω0). Since X×S1 can be displaced
from itself in V ×T ∗S1 by a smooth isotopy, a result of Laudenbach [33]
implies that X × S1 is displaceable in (V × T ∗S1, ω ⊕ ω0). It follows
that X and hence A are stably displaceable, and so e1(A, V ) < ∞.

(ii) Consider the closed submanifold M×S1 of V ×T ∗S1. Since ω|M 6= 0
we have ω⊕ω0|M×S1 6= 0. Moreover, the Euler characteristic of M ×S1

vanishes. A result of Polterovich [48] and Laudenbach–Sikorav [34] thus
implies that e (M × S1, V × T ∗S1) = 0, and so e1(A, V ) = 0.
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(iii) The proof of the case n = 1 is elementary and omitted. So assume
that n ≥ 2. Since A is compact, L \ A is open. Using the Lagrangian
Neighbourhood Theorem we easily find a closed submanifold L′ of V
which is not Lagrangian and such that A ⊂ L′. By assertion (ii) we
have e1(L

′, V ) = 0, and so e1(A, V ) = 0. 2

The example S1 ⊂ (T ∗S1, ω0) shows that neither the dimension as-
sumption in (i) nor the assumption ω|M 6= 0 in (ii) nor the assumption
A ( L in (iii) can be omitted.

3. Hofer–Zehnder capacities and almost existence

In this section we first show that the Hofer–Zehnder capacities c◦HZ and

c◦,fHZ defined in (1) and (13) agree, and then review the almost existence
theorems obtained from the finiteness of c◦HZ.

The following proposition, which was pointed out to me by Viktor
Ginzburg, answers a question in [44].

Proposition 3.1. For any subset A of a symplectic manifold (V, ω),

c◦,fHZ(A, V ) = c◦HZ(A, V ).

Proof. The inequality c◦,fHZ(A, V ) ≤ c◦HZ(A, V ) follows from definitions.
In order to show the reverse inequality, it suffices to construct for any
slow F ∈ Hc(A) and any ε > 0 a slow and flat G ∈ Hc(A) such that
max G ≥ max F − ε. Let F ∈ Hc(A) be slow and fix ε > 0. Since F
is smooth and compactly supported and by Sard’s theorem, the set C
of critical values of F is compact and has zero Lebesgue measure. If
F (A) = [a, b], we thus find finitely many intervals [ai, bi] ⊂ [a, b]\C such
that

∑
i(bi − ai) ≥ (b− a)− ε. Choose a smooth function r : [a, b] →

�

such that r(a) = a and such that 0 ≤ r′(t) ≤ 1 for all t and

r′(t) = 1 if t ∈
⋃

i

[ai, bi] and r′(t) = 0 if t ∈ C.

The function G = r ◦ F belongs to Hc(A) and is both slow and flat.
Moreover,

max G = r(b) ≥ r(a) + (b − a) − ε = max F − ε,

as we set out to prove. 2

We now come to the almost existence theorems for closed character-
istics near hypersurfaces and for periodic orbits of autonomous Hamil-
tonians.
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Theorem 3.2. Consider a hypersurface S in a symplectic manifold

(V, ω). For any thickening ϑ : S × I → U ⊂ V with c◦HZ(U, V ) < ∞ it

holds that P◦ (Sε) 6= ∅ for almost all ε ∈ I.

We refer to [25, Sections 4.1 and 4.2] and [42] for a proof. Using that
the set of critical values of a compactly supported smooth function is
compact and, by Sard’s theorem, of Lebesgue measure zero, we obtain

Corollary 3.3. Consider a smooth function F on a symplectic man-

ifold (V, ω), and assume that [r0, r1] ⊂ F (V ) and that F−1 ([r0, r1])
is compact. If c◦HZ (F−1 ([r0, r1]) , V ) < ∞, then P◦ (F−1(r)) 6= ∅ for

almost all r ∈ [r0, r1].

4. Proof of Corollaries 1.8 and 1.9

Corollary 1.8 is a special case of the following corollary which follows
from Theorem 2.6 and Theorem 3.2.

Corollary 4.1. Consider a thickening ϑ : S × I → U ⊂ W of a hy-

persurface S in a tame symplectic manifold (W, ω). If eτ
S (U, W ) < ∞,

then P◦ (Sε) 6= ∅ for almost all ε ∈ I.

A hypersurface S in a symplectic manifold (V, ω) is stable if there
exists a thickening ϑ : S × I → U ⊂ V of S such that the local flow ϑt

near S induced by ϑ induces bundle isomorphisms

Tϑε : LS → LSε

for every ε ∈ I. It then follows that ϑ−ε(x) ∈ P◦(S) for every x ∈
P◦ (Sε). Corollary 4.1 yields

Corollary 4.2. Assume that S is a stable hypersurface of a tame sym-

plectic manifold (W, ω). If eτ
S (S, W ) < ∞, then P◦(S) 6= ∅.

It is well known that every hypersurface of contact type is stable,
see [25, page 122], and so Corollary 1.9 follows from Corollary 4.2.

5. Proof of Corollaries 1.10 and 1.11

Corollary 1.10 follows from the following corollary, which is a conse-
quence of Theorem 2.6 and Corollary 3.3.

Corollary 5.1. Consider a proper Hamiltonian F on a tame symplec-

tic manifold (W, ω). If [r0, r1] ⊂ F (W ) and eτ
S (F−1([r0, r1]), W ) < ∞,

then P◦ (F−1(r)) 6= ∅ for almost all r ∈ [r0, r1].
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Assume for the remainder of this section that F is a proper function
on a symplectic manifold (V, ω) attaining its minimum along F−1(0).
We define dτ

S(F ) ∈ [0,∞] by

dτ
S(F ) = sup

{
r ∈

� ∣∣ eτ
S (F r, V ) < ∞

}
.

Since d1(F ) ≤ dτ
S(F ), Corollary 1.11 follows from

Corollary 5.2. Consider a proper Hamiltonian F on a tame sym-

plectic manifold (W, ω) with minimum 0, and assume that dτ
S(F ) > 0.

Then P◦ (F−1(r)) 6= ∅ for almost all r ∈
]
0, dτ

S(F )
]
.

6. Proof of Corollaries 1.13, 1.14, 1.17 and 1.18.

Recall that Corollaries 1.13 and 1.14 are special cases of Corollaries 1.17
and 1.18. It is shown in [6] that for any closed 2-form σ on a closed
manifold M the symplectic manifold (T ∗M, ωσ) is tame. Moreover,
F−1

V (0) ⊂ M for any function V on M with minimum 0, and since σ
does not vanish, M is not Lagrangian. Proposition 1.7 (ii) thus yields
d1(FV ) > 0. Since dτ

S(FV ) ≥ d1(FV ), Corollary 1.17 follows from the
following corollary, which is now a consequence of Corollary 5.2.

Corollary 6.1. Consider a closed Riemannian manifold (M, g) en-

dowed with a closed 2-form σ which does not vanish identically. Then

dτ
S(FV ) > 0 and P◦

(
F−1

V (r)
)
6= ∅ for almost all r ∈ ]0, dτ

S(FV )].

Proof of Corollary 1.18: We follow [10, Sections 12.3 and 12.4]. Let
σT be the unique translation-invariant 2-form on T k cohomologous to
σ1. By assumption on σ there exists a 1-form α on M = T k ×M2 such
that σ = σT ⊕ σ2 + dα.

(i) Since [σT ] 6= 0, the proof of Theorem 3.1 in [16] guarantees a sym-
plectomorphism

ϕ :
(
T ∗T k, ωT

)
→

( � 2l × W, Ωcan ⊕ ΩT

)
,

where 2l > 0 and ΩT is a translation-invariant symplectic form on
W =

� k−2l × T k. Composing the shift

(T ∗M, ωσ) → (T ∗M, ωσT ⊕σ2
) , (q, p) 7→ (q, p + α(q))

with ϕ × id we thus obtain a symplectomorphism

(T ∗M, ωσ) →
( � 2l × W × T ∗M2, Ωcan ⊕ ΩT ⊕ ωσ2

)
.

Since every compact subset of this space is displaceable, we see that
d1(FV ) = ∞, and so assertion (i) follows.

(ii) The proof is similar, but replaces the symplectomorphism ϕ by
symplectic embeddings

ϕR :
{
(q, p) ∈

(
T ∗T k, ω0

) ∣∣ |p| ≤ R
}

↪→
( � 2k, Ωcan

)
.
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Since these embeddings are not injective on π1, the periodic orbits
found might not be contractible in T ∗M . 2

We consider again a closed Riemannian manifold (M, g) endowed
with a non-vanishing closed 2-form σ. For the sake of clarity, we assume
V = 0. If the hypersurfaces Er, r ∈ ]0, dτ

S(g, σ)[, are of contact type,
then Corollary 4.2 shows that P◦ (Er) 6= ∅ for all r ∈ ]0, dτ

S(g, σ)[. The
following proposition, which was explained to me by Viktor Ginzburg
and Sasha Dranishnikov, shows that “for most M and σ”, Er is not of
contact type.

Proposition 6.2. Assume that M is neither a 2-sphere nor an ori-

entable surface of genus greater than or equal to 2. If Er is a contact

type hypersurface of (T ∗M, ωσ), then σ is exact.

Proof. Fix r > 0. Since Er is of contact type, we find a 1-form α
on Er such that dα = ωσ|Er

. Let π : Er → M be the projection. In
H2 (Er;

�
) we then have

(16) π∗ [σ] = [π∗σ] = [ωσ|Er
] = [dα] = 0.

Assume first that M is orientable. We then consider the part

H1−k (M ;
�

)
∧e
−→ H2 (M ;

�
)

π∗
−→ H2 (Er;

�
)

of the Gysin sequence of the k-sphere bundle π : Er → M . Here, ∧e is
multiplication by the Euler class. If M is the 2-torus, then e = 0, and
if dim M ≥ 3, then H1−k (M ;

�
) = 0, and so π∗ is injective in both

cases. Together with (16) we conclude that [σ] = 0, as claimed.
Assume now that M is not orientable. If dim M = 2, then H2 (M ;

�
) =

0, and so there is nothing to prove. If dim M ≥ 3, let p : M̂ → M be

the orientable double cover of M and pr : Er

(
M̂

)
→ Er(M) its lift.

Their induced maps fit into the commutative diagram

PSfrag replacements

p∗

p∗r

π∗ π̂∗

H2 (Er(M);
�

) H2
(
Er

(
M̂

)
;

� )

H2 (M ;
�

) H2
(
M̂ ;

� )

We need to show that π∗ is injective. Since we already know that π̂∗

is injective, we are left with proving

Lemma 6.3. The map p∗ is injective.
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Proof. Let H∗ denote simplicial homology. We choose a triangulation

T of M so fine that it lifts to a triangulation T̂ of M̂ . For each
simplex σ of T we fix an orientation, and we endow both simplices
σ̂1 and σ̂2 in p−1(σ) with the orientation compatible with p. The map
σ 7→ σ̂1+σ̂2 is a chain map between the chain complexes C∗ (M ;

�
) and

C∗

(
M̂,

� )
freely generated by T and T̂ , and thus induces the “transfer

homomorphism”

p! : H∗ (M ;
�

) → H∗

(
M̂ ;

� )
.

The composition p∗ ◦ p! : H∗ (M ;
�

) → H∗ (M ;
�

) is multiplication by

2, and so p∗ : H∗

(
M̂ ;

� )
→ H∗ (M ;

�
) is surjective. Passing to coho-

mology we find that p∗ : H∗ (M ;
�

) → H∗
(
M̂ ;

� )
is injective, and so

the lemma is proved. 2

Remarks 6.4. 1. Define the norm ‖σ‖ of an exact 2-form σ as in (9).
It is shown in [8] that if M is an orientable surface different from a
torus, then Er is a contact type hypersurface of (T ∗M, ωσ) if and only
if r > 1

2
‖σ‖2.

2. For any closed 2-form σ on an orientable surface different from
a torus, Er is of contact type if c is large enough, see [12] and [10,
Lemma 12.6].

3. Proposition 6.2 has a partial converse: If σ = dα is exact, then Er

is of contact type whenever c > 1
2
‖α‖2, see [10, Lemma 12.1].

7. Proof of Corollary 1.20

Recall from Example 2.4 that a triple (L, W, ω) as in Corollary 1.20 is
a stabilizer in Sτ . Corollary 1.20 is thus a special case of

Corollary 7.1. For every stabilizer (AS, WS, ωS) ∈ Sτ it holds that

eτ
S (AS, WS) = ∞.

Proof. Choose FS and ε > 0 as in Definition 2.3. Property (ii) shows
that P◦

(
F−1

S (r)
)

= ∅ for all r ∈ [0, ε], and so Corollary 5.2 yields
dτ

S (FS) = 0. In other words, eτ
S (AS, WS) = ∞. 2

8. Remarks on smoothness

In this section we show that most of our results continue to hold for C2-
smooth hypersurfaces, Hamiltonians, Riemannian metrics, potentials
and Lagrangian submanifolds. We still assume that the manifold V
and the symplectic form ω are C∞-smooth. For each subset A of V we
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define the π1-sensitive Hofer–Zehnder capacity c◦,2HZ(A, V ) by replacing
the set Hc (Int A) in the definition (1) of c◦HZ(A, V ) by the set H2

c (Int A)
of C2-smooth compactly supported functions on Int A.

Lemma 8.1. For any subset A of a symplectic manifold (V, ω),

c◦,2HZ (A, V ) = c◦HZ (A, V ) .

Proof. In view of definitions it suffices to prove this identity for
each compact subset A of V . Since H2

c (Int A) ⊃ Hc (Int A) we have
c◦,2HZ(A, V ) ≥ c◦HZ(A, V ). In order to prove the reverse inequality, we can
assume that c◦HZ(A, V ) is finite. Given F ∈ H2

c (Int A) with max F >
c◦HZ(A, V ) we need to show that the flow ft has a non-trivial contractible
periodic orbit of period ≤ 1. Since Hc (Int A) is dense in H2

c (Int A) in
the C2-topology, we find a sequence Fk, k ≥ 1, in Hc (Int A) converg-
ing to F in C2. We can assume that max Fk > c◦HZ(A, V ) for all k,
and so we find for each k a contractible periodic orbit xk of the flow
of Fk of period Tk ∈ ]0, 1]. Since Fk → F in C2, the C2-norms of Fk

with respect to some Riemannian metric on V are uniformly bounded,
and so there exists ε > 0 such that Tk ∈ [ε, 1] for all k, see the proof of
Proposition 17 in Section 5.7 of [25]. Using that A is compact we find a
subsequence kj, j ≥ 1, such that xkj

(0) → x0 ∈ A and Tkj
→ T ∈ [ε, 1]

as j → ∞. Since Fkj
→ F in C2, it follows that x(t) := ft(x0) is a

contractible T -periodic orbit of ft. 2

Theorem 1.6 and Lemma 8.1 yield

Corollary 8.2. Assume that A is a subset of a tame symplectic man-

ifold (W, ω). Then

c◦,2HZ (A, W ) ≤ 4 e1 (A, W ) .

The proof of Theorem 3.2 goes through for C2-smooth hypersurfaces
and under the assumption c◦,2HZ(U, V ) < ∞. It follows that Corollar-
ies 1.8 and 1.9 continue to hold for C2-smooth hypersurfaces. While
the set of regular values of a C2-smooth proper function on V 2n is
still open, it might not be of full measure since Sard’s theorem only
applies to C2n-smooth functions. For C2-smooth proper Hamiltoni-
ans F , Corollaries 1.10 and 1.11 thus only hold for almost all regular

r ∈ [r0, r1] and almost all regular r ∈ ]0, d1(F )]. Since 0 is the only
critical value of the function FV (q, p) = 1

2
|p|2 + V (q) on T ∗M , Corol-

laries 1.13, 1.14, 1.16, 1.17 and 1.18 hold for C2-smooth Riemannian
metrics g and C∞-smooth magnetic fields σ. Finally, Corollary 1.20
extends to C2-smooth Lagrangian submanifolds.



26 FELIX SCHLENK

References

[1] M. Audin, F. Lalonde and L. Polterovich. Symplectic rigidity: La-

grangian submanifolds. Holomorphic curves in symplectic geometry, 271–321,
Progr. Math. 117, Birkhäuser, Basel, 1994.
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