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Abstract

We sketch the integral transform method in a close connection with
its historical development and survey newer applications to problems
in production economics and finance.

1 Introduction

Integral transforms have been created for solving problems in science. Now,
they will be used also in business administration and production economics.
We begin to sketch the historical sources of this valuable tool to get a better
understanding and to develop a feeling for further applications.

The propagation of heat is one of the first examples in physics to test this
method. Jean-Baptist Fourier (1768 - 1830) proposed a mathematical model
and a procedure for solving it in his book [1] (submitted to the Academy
in Paris in 1807, finally published in 1822). He formulated an initial-value
problem for the heat equation

∂u

∂t
= κ

∂2u

∂x2
, −∞ < x < +∞, t > 0, (1)

under the condition

u(x, 0) = f(x) , −∞ < x < +∞, (2)

where f is a given initial temperature distribution in a linear body.
Introducing so-called “Fourier series” he obtained “hand made” the tempe-
rature at the point x ∈ R at time t > 0 as

u(x, t) =
1√
π

∫ ∞

−∞
e−q2

f
(
x + 2q

√
κt

)
dq. (3)



Today, we can get solution (3) by integral transforms depending on a pa-
rameter t which are not used in [1]. Define the Fourier transform U of u
by

U(ω, t) :=
1√
2π

∫ ∞

−∞
eiωxu(x, t)dx (4)

under the condition ∫ ∞

−∞
|u(x, t)|dx < ∞, (5)

cutting short: u ∈ L1.
In the case U ∈ L1 there exists u the inverse of U (see [2] Prop. 5.1.10):

u(x, t) =
1√
2π

∫ ∞

−∞
e−iωxU(ω, t)dω. (6)

Fourier has found an inverse formula only for the so-called Fourier sine trans-
form (see [1] p. 405).
In connection with problem (1), (2) we can also consider the two-sided
Laplace transform

Ũ(s, t) :=
∫ ∞

−∞
e−sxu(x, t)dx. (7)

If the integral in (7) converges absolutely for Re(s) = c ∈ R, then a nice
inversion theorem

u(x, t) = lim
r→∞

(
1

2πi

∫ c+ir

c−ir
esxŨ(s, t)ds

)
(8)

holds at a point of continuity of the function u(·, t) (see [3] p. 210).

Pierre Simon Laplace (1749 - 1827) did not use the special transforms (7),
(8) or (4), (6). He developed a general transform method to solve problems
or obtain properties of mathematical objects by “transforming” them into
another space, then solving the problem there, and finally transforming the
solution back. In his monograph “Théorie analytique des probabilités” (see
[4] p. 7) he studied the generating function G for a discrete random variable
X with P (X =n)=yn, n ∈ N0, and distribution FX

G(t) =
∫ ∞

−∞
txdFX(x) =

∞∑

n=0

yntn. (9)

Here, Laplace used only the power series but not integral representation.
In the gambler’s ruin problem, yn is the ruin probability of the player having
n counters. These probabilities satisfy a difference equation of the second
order. Difference equations for the yn may be solved by simple operations
to the associated generating function G and its series expansion. Such a
calculus (see [4] pp. 7 - 11) is a basis for the integral transform method
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which we use now for solving the problem (1), (2).
Applying the Fourier transform (4) to equation (1) we obtain

∂U(ω, t)
∂t

= −κω2U(ω, t) (10)

which may be solved by classical methods yielding

U(ω, t) = A(ω) exp(−κω2t). (11)

According to the initial condition (2) with f ∈ L1 we have

A(ω) = U(ω, 0) =
1√
2π

∫ ∞

−∞
eiωxf(x)dx. (12)

In the case A ∈ L1 we apply (6) to (11), (12) and find

u(x, t) =
1

2
√

πκt

∫ ∞

−∞
exp

(
−(x− y)2

4κt

)
f(y)dy. (13)

With the substitution y − x = 2q
√

κt we get again solution (3).
This example shows that in Paris at the beginning of the 19th century the
basic ideas of the integral transform method were developed (after Euler’s
preparatory work [5], [6]) by the experts Laplace and Fourier reinforced by
Cauchy who introduced complex numbers in this calculus (see [7]). But the
first satisfactory functional analytic justification was given more than 100
years later (see [8]).

The connection between the equations (11) and (13) may be interpreted
as follows: the convolution product (13) of two functions is associated to
the product (11) of their Fourier transforms. This fact is basic for the prob-
ability theory as it was explicitly pointed out by Paul Lévy (1886 - 1971) in
his book [9]:
The distribution of the sum of independent random variables is equal to
the convolution product of the variables’ distributions, and therefore, the
Fourier-Stieltjes transform of the distribution of such a sum is equal to the
product of the Fourier-Stieltjes transforms (so called characteristic func-
tions) of those variables.
The characteristic function ϕX of a Rn-valued random variable X with dis-
tribution FX is defined on Rn by

ϕX(v) =
∫

Rn

exp(i < v, x >)FX(dx), (14)

where < v, x > denotes the scalar product of v, x ∈ Rn.
Lévy found this way in Paris a simple proof of the Central Limit Theorem
for independent and identically distributed random variables.
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In the 1930s Harald Cramér (1893 - 1985) and William Feller (1906 - 1970)
co-operated in Sweden and propagated the method of characteristic func-
tions too. They gave conditions for properly normalized sums of random
variables to converge in distribution to a normally distributed random vari-
able showing the convergence of the associated characteristic functions and
applying a uniqueness theorem instead of an inversion formula (see [10] -
[13]). Cramér’s graduated students Herman Wold and Ulf Grenander ap-
plied integral transforms to stochastic processes (see [14], [15]).

After the historical sketch providing simultaneously main properties of
integral transforms, the aim of this note is to discuss the application of
integral transforms to problems in engineering economics and finance, the
different viewpoints and the limitation of their use. We start in Section
2 with a decision problem. Then we study cash flows under uncertainty
and their use for material requirement planning in Section 3. Finally, we
investigate special options on financial markets (Section 4).

2 Optimal planning in discrete time

Ronald A. Howard considered in [16] a discrete-time Markovian decision
process describing an economic system with N states with the following
properties. If the system is in state i and an action k is chosen, then the
probability of a transition to state j during the next time interval is equal to
pk

ij and it will earn rk
ij dollars. Let vi(n) denote the present value of the total

expected reward for the system in state i with n transitions remaining before
termination if an optimal policy is followed. Applying Bellman’s “Principle
of Optimality” (see [17]) Howard got for an infinite horizon

vi(n + 1) = max
k

N∑

j=1

pk
ij

[
rk
ij + βvj(n)

]
, n = 0, 1, 2, . . . ,

i = 1, 2, . . . , N
(15)

where β ∈ [0, 1) is the discount factor. He solved the planning problem by
policy iteration which consists of the value-determination operation (i) and
a policy-improvement routine (ii):

(i) The present values vi for a given policy k(i), i = 1, 2, . . . , N are deter-
mined by solving the set of equations

vi = q
k(i)
i + β

N∑

j=1

p
k(i)
ij vj , i = 1, 2, . . . , N (16)

q
k(i)
i :=

N∑

j=1

p
k(i)
ij r

k(i)
ij .
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(ii) The policy k′(i) maximizing

qk
i + β

N∑

j=1

pk
ijvj

improves the previous policy k(i).

Howard obtained formula (16) using Laplace’s method of generating func-
tions just as A.A. Markov did in his pioneering paper [18] getting a limit
theorem for stochastic processes with three and more states. However, inte-
gral transforms are not always the shortest way to approach a limit. In the
case of discounting we get directly the present values for large n and with
them Howard’s nice procedure (see [19] p. 97).

3 The Linköping model

Robert W. Grubbström presented in [20] a single-product, single-location
production-inventory model - the corner-stone for a general modelling of ma-
terial requirements planning developed at the Linköping Institute of Tech-
nology during the last decade. The structure of this model is chosen in such
a way that a Laplace transform approach is applicable (see [21] -[26]).

3.1 Model assumptions and transform analysis

Let H(t) denote the Heaviside function with a unit step at zero. The deter-
ministic production process may be described by the staircase function

P (t) =
∞∑

k=1

Qk ·H(t− tk), (17)

0 < tn < tn+1, n ∈ N, that means, production takes place in batches of the
size Qk made up at discrete points in time tk .
We consider the one-sided Laplace transform of the time function H:

H̃(s) = L{H(t)} :=
∫ ∞

0
e−stH(t)dt =

1
s

(18)

and obtain

P̃ (s) =
1
s

∞∑

k=1

Qke
−stk . (19)

The stochastic demand process is a compound renewal process. More pre-
cisely, the cumulative demand up to time t is given by

D(t) =
∞∑

k=1

XkH


t−

k∑

j=1

Tj


 , (20)
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where Tj is the random time between (j− 1)st and jth demand events, and
Xk is the size of the kth demand.
Analogously to equations (17), (19), for a fixed scenario we get

D̃(s) =
1
s

∞∑

k=1

Xk exp


−s

k∑

j=1

Tj


 . (21)

If the random variables Xk, Tj are all independent, if the Tj , j ∈ N, have the
same density f with f(t) = 0 for t ≤ 0, and E(Xk) = m for all k, then the
expected transformed cumulative demand will be

ED̃(s) =
m

s

∞∑

k=1

k∏

j=1

E(e−sTj ) =
m

s

∞∑

k=1

f̃k(s) =
mf̃(s)

s(1− f̃(s))
. (22)

Here, a production plan is a static policy characterized by the batch times tk
and the batch sizes Qk or the cumulative production levels Pk :=

∑k
j=1 Qj .

An objective function takes into account costs of production P , inventory
I, stockouts S or revenues. In a backlogging system at any time t, it holds

I(t) = P (t)−D(t) + S(t), S(t) := [D(t)− P (t)]+. (23)

In the case Xk = 1, P (t) = Pk ∈ N for t ∈ [tk, tk+1) Grubbström has found
for the stockouts

ES̃(s) = f̃Pk(s) · ED̃(s), (24)

as well as (use (8) and (22))

ES(t) = lim
r→∞

(
1

2πi

∫ c+ir

c−ir
est f̃Pk+1(s)

s(1− f̃(s))
ds

)
. (25)

The right hand side of equation (25) may be evaluated explicitely for special
distributions by using the residue theorem (see [20], pp. 412 - 414, [24], pp.
34 - 39). This handling of shortages is also applicable to holding inventories.
Laplace transform analysis leads in the same way to EI(t).

3.2 Present value and Laplace transform

The present value V of a given continuous cash flow C for a given interest
rate ρ is defined by

V (ρ) :=
∫ ∞

0
e−ρtC(t)dt. (26)

Comparing (26) with (18) yields

V (ρ) = [L{C(t)}]s=ρ = C̃(ρ). (27)
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Grubbström has already used in [22] (see also [26]) the Laplace transform
for determining the present value of economic processes.
Especially, he considered a deterministic cash flow

C(t) =
∞∑

k=1

Vkδ(t− tk) (28)

where the Dirac Pulse δ(t) is a generalized function in the usual sense of
L. Schwartz (see [27]). We use only the property

L{δ(t− tk)} = sL{H(t− tk)}. (29)

From (26) and (28) with Vk = −(K + pQk) we obtain analogously to (17)
and (19) the present value of the production costs

Vproduction = C̃(ρ) = −
∞∑

k=1

(K + pQk)e−ρtk , (30)

where K is a fixed and p a proportional cost factor.
Now, we consider a stochastic cash flow which is connected to (28) with a
random variable Xk and Vk = EXk.
The expected present value of revenues by sales of demanded units reduced
through backlogging is easily derived as

Vrevenues = qρE[D̃(ρ)− S̃(ρ)], (31)

where q is the payment per sold unit at the time of each sale.

The sum Vproduction + Vrevenues is a special objective function which will
be maximized by the optimal plan t∗k, P

∗
k , k = 1, 2, . . . as a solution of the

set of equations obtained from the usual first-order optimization conditions.

3.3 Modifications and MRP

Let us consider further objective functions for a single-product, single-loca-
tion model. For a given finite horizon τ < ∞ and a limited number n of
setups we have to modify (30) to a sum running up to n, and (31) by a lost
sale term (see [24], p. 56).
For the finite horizon, Grubbström used the traditional average cost ap-
proach proposing the objective function

1
τ

∫ τ

0
[hEI(t) + gES(t) + nK]dt

=
h

τ

[
L−1

{
1
s
EĨ(s)

}]

t=τ

+
g

τ

[
L−1

{
1
s
ES̃(s)

}]

t=τ

+
NK

τ
(32)
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which is to minimize with N = nτ and L−1{x̃(s)} = x(t) (see [20] p. 415).
Instead of expected cost we may consider the reliability of the system char-
acterized by the probability that no stockouts arise in the time interval
[0, τ):

P

(
inf

t∈[0,τ)
[P (t)−D(t)] ≥ 0

)
. (33)

Models with reliability constraints have been investigated by A. Prékopa,
the present author and others (see [28] - [30]).
The important extension of the Linköping model to two-level and finally
multi-level structure as a basic model for Material Requirements Planning
(MRP) has been realized by R. Grubbström, A. Molinder, O. Tang, and
others (see [31], [32], [21], [23], [24]).

4 The price of Asian options

The aim of this section on stochastic finance is to give further examples of
application of integral transforms which is based on a simple trick creating
the needed structure for such a transform.

4.1 The Wiener-Bachelier-process

We return to Paris where Louis Bachelier defenced his doctoral dissertation
in 1900 and where the first World Congress of the Bachelier Finance Society
has celebrated the centenary of this event. With his Thesis (published in [33],
rediscovered in the 1950’s) modern finance was born. Bachelier presented a
model for the price changes on the Exchange consistent with the market at
a given instant. He derived the transition density

p = p(x, t) =
1

2
√

πκt
exp

(
− x2

4κt

)
(34)

under temporal and spatial homogeneity assumptions. He tried to show with
a “radiation of probability” argument that p is a solution of the diffusion
equation (1). This statement is true and may be easily proved using equation
(13) under the special initial condition

p(x, 0) = δ(x), −∞ < x < +∞ (35)

where δ(x) is the Dirac Pulse (see section 3.2).
A stochastic process W = {W (t) : 0 ≤ t < ∞} with independent and homo-
geneous increments and the transition density (34) is a Brownian motion.
It has been called by Feller (for κ = 0.5σ2) a Wiener-Bachelier process.
It was N. Wiener (1923) - not A. Einstein (1906) - who gave a clearly mathe-
matical foundation of this process (see [25] p. 99, [34], [35]).
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4.2 The Geman-Yor approach

Consider a stochastic process {X(t) : 0 ≤ t < ∞} where X(t) = X(t, ω) is
a real-valued, and T = T (ω) a non-negative random variable. We introduce
the process stopped at the random time T as a random variable XT defined
by

XT (ω) := X(T (ω), ω).

For Y (t) =
t∫
0

X(t′)dt′ we may study YT .

Under certain assumption it is easier to compute the distribution of YT and
especially its expectation E(YT ) than E[Y (t)] for a fixed time t. This is the
case for instance for a geometric Wiener-Bachelier process {X(ν)(t) : 0 ≤
t < ∞} with

X(ν)(t) := exp(W (t) + νt), (36)

ν ∈ R, which yields a better modelling of the price changes of an asset than
Bachelier’s model (see [36]).
For pricing an Asian option, this is an exotic option depending on the history
of the price process, we have to investigate

C(ν)(t) := E[(Y (ν)(t)−K)+] (37)

where

Y (ν)(t) :=
∫ t

0
X(ν)(t′)dt′

and the strike price K is a constant.
The transform approach given by H. Geman and M. Yor works as follows:
if T is exponential with parameter λ and does not depend on W , then

E[C(ν)(T )] = λ

∫ ∞

0
C(ν)(t)e−λtdt = λ

[
L{C(ν)(t)}

]
s=λ

(38)

can be determined explicitly, and inversion yields

C(ν)(t) = L−1

{
1
s
E[C(ν)(T )]λ=s

}
. (39)

For details and explicit price formulas see [37] - [39]. Further applications
may be found in [40], [41].

5 Conclusion

We had started our trip through the story of integral transforms in Paris
about 200 years ago, where Laplace and Fourier were developing a transform
approach for series but not for integrals. Our well-known Laplace transform
is a younger child born after Laplace’s death carrying his features. Finally,
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we terminated today in the capital of France again, where H. Geman, the
President of the Bachelier Finance Society, opened the Bachelier Congress
2000 mentioned above (see section 4.1). We have seen the origin and the
development of integral transforms to a useful method for solving certain
problems in physics, and now especially in production economics and fi-
nance.

Howard wrote the first comprehensive textbook on Markov models from
simple Markov chains to semi-Markov decision processes which based on
Laplace’s method of generating functions (z-transform). He applied trans-
form analysis also to a simple inventory system and a marketing example
(see [42]).

Systematic applications of integral transforms to production economics
is closely connected with the name Linköping, more precisely, with PROFIL,
that is ”Production-Economic Research in Linköping”. Since the 1970s, in
the PROFIL series interesting results of associates of Linköping Institute of
Technology have been published (see [43], [44], and in particular [32], [24]).

The transform approach is limited to linear systems and by the effort for the
inversion procedure. That seems to be the reason why this useful approach
does not dominate other methods neither in inventory research nor in options
pricing.
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