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Abstract: FINN and CoNcUs [2] discovered that capillary surfaces rise to infinity in corners with suffi-
ciently small opening angle. They also found the leading term of an asymptotic expansion. MIERSEMANN
[5] improved this result to obtain a complete asymptotic expansion. In the present paper we will apply the
methods of the above authors to discuss asymptotic behaviour of capillarities in cusps, which is a corner
with opening angle 0. A large variety of asymptotic formulas will be provided. The general comparison
theorem from FINN and CoNcCUS will play an important role in the proofs.

Keywords: asymptotic expansion, capillary problem, comparison principle, cusp

1. Preliminaries and Previous Results

We consider the capillary equation in two dimensions, which describes a homogeneous liquid in a container
with perpendicular walls and cross section Q C R? in a constant gravity field with constant, perpendicular

force component:

(1.1) divTu = ku in Q

(1.2) voTu = cosy on smooth components of 0.

Here, 2 is a piecewise smooth domain, “o” the euclidian scalar product, Tu = \/%, v the outer
u

normal, £ > 0 the capillary constant, v the constant contact angle, which is the angle between liquid and
container wall. For v we assume

(1.3) 0 < v < g

It can be proved that there is always a solution of (1.1), (1.2) if 9Q is piecewise smooth (piecewise C* is
sufficient [8]). Furthermore, we have a general comparison theorem for this equation:

Theorem 1.1 ([1], p. 192, [4]): Let X4, X3, Lo be a decomposition of ¥ = 9Q of the form T = L,UX U,
with the properties ¥g € C* and ¢ is of one-dimensional Hausdorff measure 0 so that for two functions
u,v € C%(Q) N CH(Z UN) it holds:

(@) divTu—ku > divIiv-— kv in Q
() u v on X,

<
(iid) voTu <

voTw on Xg,
then v > u in Q.
No regularity condition is needed on ¥,. A lot of a priori properties of the solutions of (1.1), (1.2)

can be generated with the help of this theorem, such as uniqueness and a priori bounds like the following,
which we will need later:
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Theorem 1.2 (cf. [2], p. 208 or [3], p. 113): Let u be a solution of (1.1) for a domain Q, let Bs be a
circle of radius 6 with Bs C 2, then
2
1.4 —+4
(1.4) u < Py +
mn B(s.

By applying theorem 1.1, FINN and CONCUS could also show that if €2 contains a corner bounded by lines
with opening angle 2« and if a + v < T, then the solution is unbounded. With the notations (r,6) as

k2 —sinZ @

polar coordinates with origin O in the peak of the corner (6 € [—a, a]), k = S22 p(§) = <= - ,

cosy?
Bjs a circle with centre O and Q* = QN Bs they got:

Theorem 1.3 (cf. [2], p. 219): It exists a constant A independent of the special solution considered
(that is independent of the special global shape of Q) so that

-

r

(1.5) ‘u— A

in QF.

That means the solution increases asymptotically hyperbolically if approaching the peak of the corner:

h(6)

(1.6) .

r—0,

where “~” means asymptotic equivalence (see e.g. MURRAY’s book [7] for an introduction).

MIERSEMANN ([5]) improved that result and found a complete asymptotic expansion of the solutions
considered in theorem 1.3:

(1.7) u o~ Z hag_1 (8)r*=1 r—0
1=0

where hy—1(0) (I € N, h_1(0) = h(f) with the above function h) are unique solutions of boundary-value
problems independent of the special solution u considered. Note that the expression (1.7) does not assume
the convergence of the series on the right side, which also cannot be guaranteed in general (cf. [7], p. 13)!
Furthermore, MIERSEMANN ([6]) could generalize theorem 1.3 to corners, bounded by analytic functions
instead of lines:

(1.8) — +4q(9) s—0

where (6, s) are curvilinear coordinates, ¢ is the unique solution of a boundary-value problem.
According to (1.6) and (1.7), the solution has an asymptotic expansion with a leading term of order 1,
but the second term is of order 1 and not of order r* as in (1.7).

Here, we want to discuss the case o = 0 that is 2 contains outward cusps. The behaviour of the solution
is only considered in a small neighbourhood of the cusp. Consequently, the results are independent of the
special global shape of 2, like in the above papers. They only depend on the shape of the cusp. Therefore,
different solutions have the same asymptotic expansion.

2. Parametrization of a Cusp

We can assume that the peak of the cusp is in the origin of a cartesian coordinate system and is bounded
by two smooth functions fi, fo : Rt U {0} — R with the property

fi(z1) = o(z1) z1 — 0

fo(z1) = o(z1) z1 — 0



where “0” is the second Landau order symbol. Furthermore, we assume that there is an z* > 0, for which

filzw) > fa(z1) in (0,z7]
holds. Then the set Q* = {(z1,22) : 0 < 21 < z*, fa(21) < 22 < fi(z1)} denotes a neighbourhood of

the cusp and is characterized by setting in advance two functions f; and fo with the above properties.
We parametrize Q* by curvilinear coordinates (a, s) analogous to [6] (see figure 1).

f1

I's, (s constant)

Z1

a constant fa
figure 1
The transformation formulas are:
1+a 1—a
(2.1) 22 = m(a,1) = —5—filz) + fa(21) a€[-1,1]

(2.2) s(z1,a) = /Owl \/1+23,, (a,€)dE

where a has to be considered as independent of £ in (2.2). Thus,

s(zy1,a) ~ m z; — 0.

Remark: Of course we can define the coordinate a in different ways, but the above seems to me the most

convenient one.

We define the following quantities for the neighbourhood of the cusp (see figure 1):

(2.3) Qy = {(a,s) o —l<a<l, 0<s<$0}
(2.4) Y = {(a,s) : a==l, 0<s§80}
(2.5) Ty, = {(a,s) : —l<ax<l, s= so}

with 0 < 59 < 8* = minge[_1,1) 8(a, z*).
To calculate our asymptotic formulas we compare the solution of (1.1), (1.2) with a suitable comparison
function by applying the comparison theorem (theorem 1.1) in the following form.

Corollary 2.1: Let v be a solution of (1.1), (1.2) for a domain 2 with cusp Qg, u € C?(Qye: )NC (Ty+ U
Q) (comparison function) and 0 < so < s*, then we have: If
(4) divTu—ku > 0 in Q,,
(44) u < w on Iy,
<

(#91) voTu— cosy 0 on X,



then v > wu in g, .

If
(1) diviu—ru < 0 in Q,
) u > v on Iy,
(4i1) voTu—cosy > 0 on Xy,

then v < w in Q.

But it is not easy to find a suitable comparison function, since it must already reflect the right asymptotic
behaviour. It is also not sufficient to “guess” the leading term because this does not always yield a suitable

comparison function.

3. Estimation of the Leading Term
We consider two analytic functions, which form the cusp:

(3.1) fi(z1) = a2z + bzt +0(a7?) neN, n>1
’ fo(z1) = asa? + bez?™ + O(27?) a;,b; € R

where “O” denotes the first Landau order symbol. Without restriction of generality we can assume
(3.2) a > as.

Otherwise, this can be generated by a simple transformation.
At first we can estimate the solution on the sets I';,. With this result the condition (i¢) of our comparison
theorem can be proved later:

Lemma 3.1: Let v be a solution of (1.1), (1.2) for a domain Q with a cusp of the form (3.1), then
there is a positive constant A independent of the special solution v considered so that

(3.3) v < A on T,

with 0 < sg < s* arbitrary but fized.

Consequently, the solutions v for domains with the same cusp 2* are uniformly bounded on I'y;,. The

bound A is independent of the global shape of 2. It depends only on the shape of the cusp 2*, k and the
choice of sy3. No grow condition for v is needed.

Proof: This result follows easily by using a suitable covering of I'y, with circles and applying theo-
rem 1.2. O

We now estimate the leading term of an asymptotic expansion of a solution of (1.1), (1.2) for a do-
main ) containing a cusp of the form (3.1).

Theorem 3.la: Let v be a solution of (1.1), (1.2) for a domain Q with a cusp of the form (3.1),
then there are positive constants so < s*, A independent of the special solution v considered so that

A
(3.4) v — Sgn g in Qg
where
2
35 C = cosy

(a1 —a2)k’



In asymptotic notation:

C

(3.6) v~ s — 0.

That means, the solution has a stronger singularity then it has in corners (cf. (1.8)). It depends on the
order of contact of the two arcs, which form the cusp.

Proof: We transform the differential operators into curvilinear coordiantes with respect to our cusp.

(3.7) a% = (1+C1(a)s2"2+O(s2"1))%+<C2£a)+03(a)+0(3)>%

Here and in the following, the ¢; denote on [—1, 1] analytic functions of a, which we do not need to clarify
more detailed. They are independent of other quantities of the comparison function.
We consider the general comparison function

D h(a)

g1 TEE TS

(3.9) u(a,s) = s% + + 9(a)

with for the moment indetermined, on [—1, 1] analytic functions h(a), g(a) and constants C > 0, D and
E.

We calculate the expressions divTu — ku in Qg and v o Tu — cosy on X, to apply the comparison
theorem. It is necessary to distinct two cases.

Case 1: n >3
After some calculation we obtain:

, 4 h\' 1 1 1
(310) divliu—ku = <m (W) - K'zC) S_" + (TG - K;D) 8"71 —kE + O (S"2>

with the following abbreviations

4h?
W = n?C? + ———
\/ (a1 — a2)?
4n' 2
7. = 2n(n-1)CD+ ( g +ce (a)h’)
a1 —az \ai — a2
PLE W
nC\'
T; = Tr+ca(a)T; —cs(a) (W)
2 !
T, = 9 +c6(a)h'
ay — a
WTy Ty
Ty = ——— e+ =
> ((11 - GQ)W3 + w
2T} 2h/ '
Ty = —5 4eha (7> .
6 ap — as 6( ) (a1 — ag)W
Obviously, the term O (=) in (3.10) is independent of E.
Furthermore,
(3.11) wvoTu—cosy = |[=% 2K L —cos7y | £Tss + O(s%)
’ T= a; — a2 w i ¥ )
We have to take the upper sign for @ = 1 and the lower sign for a = —1. The term O(s?) is again

independent of E.



We determine the function h so that the leading term in (3.10) vanishs. The constant C' and one integration
constant of h can be chosen so that the leading term in (3.11) also vanishs. We choose the second
integration constant, which is an additive constant, of A as 0. Thus,

2
(3.12) c = 297
(a1 —a2) K
h(a) = /1= a2 cos? 7.
K
We choose g so that
kD
TG - T = 0

Let F; (i = 1,2) be on [—1, 1] analytic functions of a independent of D, E, then we get from this equation.

2T} kD
_%%5 o
a; — as 1(@) + 2
= Ty = Fg(a)+a1;a2wa+c,1

We choose Cy,1 = 0. After rewriting the term T5, a further integration of the last equation yields g by
choosing again the additive integration constant as 0. But the function g is still dependent on D.
With these results we can simplify (3.10) and (3.11):

D 1 1
(3.13) divTu—rku = —% pr kE+ O (s”‘2>
(3.14) wvoTu—cosy = <a1 _a2/€D:tF2(:t1)) s+ 0(s%).

We choose D > 0 sufficiently large, so that

ap —az

kD £ Fy(+1) > 0.

With this D we can determine g. Choose E positive, e.g. at first £ = 1. Because of the estimates (3.13)
and (3.14) the positive quantity sg < s* can be chosen so small that

(3.15) diviu—rku < 0 in Qg
(3.16) wvoTu—cosy > 0 on X .

Since the solutions v are uniformly bounded on I'y, (lemma 3.1), we can choose E > 1 sufficiently large
so that

317 w > w on Ty, .

This does not influence the validity of the inequality (3.15), since the remainder term of (3.10) is inde-
pendent of E; and therefore, the left side of (3.15) becomes at most smaller by this choice. The inequality
(3.16) keeps also true because all terms are independent of E.

Applying theorem 3.1 we obtain form (3.15), (3.16) and (3.17):

v < wu
c A .
(3.18) wv-— o < Snil in Qg

with A1 = D + Es§ ' + max,e[_1.17{|h(a)|s§ > + |g(a)|s§ '} < 0.
Similarly, we get a lower bound by choosing D and E suitable negative; and with this result we obtain
our supposition.



Case 2: n =2

Here it is sufficient to consider a simpler comparison function:

(3.19) w = s% + @ +g(a) + D.

The proof is then analogous to case 1. m|

The result of theorem 3.1a can be generalized. Consider the case that the cusp is bounded by two
container walls of different but homogeneous material, then we have, instead of (1.2), the boundary

condition:
(3.20) voTu = cosm on X¢.
voTu = cosvy on X%,
with
Y. = {(a,s) : oa=1, 0<s§s*}
¥ = {(a,s) : a= -1, 0<s§s*}.

The quantities y; and v, denote the corresponding contact angles with the considered liquid. We assume

0

(3.21) <m <7
0 < Yo <

and without restriction of generality

(322) 7 S T —7Y2.

We have:

Theorem 3.1b: Let v be a solution of (3.1) with the generalized boundary condition (3.20) on X
for a domain Q with the cusp Q* of the form (3.1). Assume that y1 < ™ — 2, then there exist positive
constants sg < s*, A independent of the special solution considered so that

C

(3.23) v pre in Qs
where
(3 24) c = COS Y1 + COS Y2

(a1 —az)k

Proof: The proof is completely analogous to that of theorem 3.1a. We obtain for the function h, which

we will need later:

2
(3.25) h(a) = n 1 c0571+c0572a+c0s71 COS Y2 +Chy
K 2 2 ’
where C},5 is an integration constant. O

Remarks: Our proof fails if 4 = 7 — 72, since in this case our comparison function is not suitable.
I suppose that the asymptotic behaviour is different from (3.6).

It is not surprising that v; = m — 7. causes trouble. We have also difficulties in this case for the corre-
sponding problem in corners (FINN).



We do not need full analyticity of the functions fi; and fs to prove asymptotic results as (3.6), but
note that we have to be very careful, if we differentiate order relations (cf. [7]).
Let us show another result. Consider the functions

filz1) = azf

(3.26) b)) = as®

a>1, aj,az €R, a; > as.

We obtain

Theorem 3.2: We define the function h(a) on [—1,1] as follows:

(3.27)  h(a) = —%\/1 — a2 cos? .

Assume that v1 < 7 — 2 holds; let v be a solution of (1.1), (3.20) for a domain Q with a cusp Q* of the
form (3.26), then there exist positive constants so < s*, A so that it holds on Qs :

(3.28) ‘v—(s%+@>‘ < A if a>2
(3.29) ‘U - (s% + hTa)) < Ase? fl<a<?2

with the constant C from theorem 3.1b. The quantities so and A are independent of the special solution
considered.

In asymptotic notation (s — 0):
C hfa
C ., h@

s S

(3.30)

Proof: The proof is similar to that of theorem 3.1a or b. Here, we use the general comparison function:
(3.31)  wu(a,s) = Cs *+h(a)s™' +g(a)s* 2 + f(a)s**3 + D.

The constant C' and the function h are again determined by a condition that leading terms of divTu — ku
and v o T'u — cos-y should vanish. |

We now discuss a possible practicle benefit of our results.

Example: Two circular cylinders in contact with radius 1 of the same, homogeneous material are in
a sufficiently large basin with a liquid, which forms a contact angle v with the material of the cylinders.
Let the origin of a cartesian coordinate system be in the point of contact of the cylinders at the bottom
of the basin and let the z;-axis be in tangential direction, then we have:

fl(.ib'l) = 1—\/1—.2;'%
f2(.fL'1) = -1+ \/1 —m%.

By Taylor expansion we get:
1
fi(z1) 537% +0(z7)

faler) = =3+ 0.

Consequently, from theorem 3.1a it follows for the liquid surface v:

2cosy 1
Sl s — 0.

vV o~
Kk §2



4. Complete Asymptotic Expansion

The disadvantage of our estimates (3.4), (3.23), (3.29) is that the error is admittedly of lower order than
the solution but still it could become infinite if s — 0. To improve the estimates we construct a complete
asymptotic expansion for the solution v from (1.1), (3.20) for a domain with a cusp of the shape (3.1).
We assume in the following;:

(4.1) < T—.

For k£ > 0, k € N we set

—n+k ) —1+k )
(4.2) ug(a,s) = Z Cis' + Z hi(a)s*
i=—n i=—1

where C; are constants and h;(a) are on [—1,1] analytical functions.
We can prove the following lemma.

Lemma 4.1: There exist constants C; (i = —n,—n + 1,...) and on [—1,1] analytical functions h;(a)
(j =-1,0,...) so that

(4.3) div Tuy, — Kuyg O(sk—n+h) in Qs (s0 < s%)
(4.4) voTup—cosy = O(sFth) on ¥,

for every k > 0.

The estimate (4.4) is to be understood in the sense that we take y; on ¥ and 2 on ¥ .

That means the functions wu; are approximated solutions of (1.1), (3.20). We prove this result with
the method of complete induction. Theorem 3.1b is the basis of our induction that is C_, = C and
h_1 = h(a) with the notations from theorem 3.1b (see equations (3.24), (3.25)). In every induction step
we will determine a constant C; and a function hj;, which is a solution of an ordinary second order
differential equation, up to an additive constant. Because of the special notation of uy, (4.2) this additive
constant can be chosen to be 0.

Otherwise, the sums in (4.2) could be simplified with the definition h;(a) = h;(a)+ C;. Then the functions
h; are uniquely determined. But the notation (4.2) will turn out to be especially advantageous, since we
do not need any distinction of cases.

The proof will be done together with the following theorem. |

Theorem 4.1: Let the functions uy satisfy (4.3), (4.4) and let ¥ be a solution of (1.1), (3.20) for a
domain Q with cusp Q* of the shape (3.1), then for every k > 0 there are positive constants so < s* and
A independent of the special solution considered so that

(4.5) |6 —up| < As mHhH! in Qs, .

This theorem implies the complete asymptotic Laurent series expansion of the solution v if approaching
the peak of the cusp:

—2 o)
(4.6) b o~ Z Cis' + Z hi(a)s® s—0
i=—n 1=—1

with h;(a) = hi(a) + C; and C, hi(a) as in Lemma, 4.1.
The first n — 1 terms of the expansion are independent of a!
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Proof: For the proof we will need a suitable decomposition of the operators divI’ and T'. Further-
more, it is necessary to estimate the remainders more precisely than in the proofs of theorem 3.1a or
b. We apply again our comparison theorem but now, the condition (i) follows not from the choice of
an additive constant of the comparison function, but by using the result of theorem 3.1b. Only such a
procedure yields better estimates then e.g. one of order 1.

We set

(4.7) u = U

(4.8) C = C,

(4.9)  ha) = h-(a)

(4.10) v = DsF"1 4 g(a)s”
(4.11) w = u+v

where D is a constant and g(a) an analytical function on [—1, 1]. For the proof of lemma 4.1 we construct
v, so that w is a new approximative solution; and for the proof of theorem 3.1 we construct v, so that w
is a suitable comparison function. The case k = 0 is theorem 3.1b. Therefore, we can assume k > 1.

We first prove theorem 4.1 under the assumption that lemma 4.1 holds. We redefine the Landau order
symbol as follows F(a,s) = O(s°) & |F| < cs® and c is independent of z € Q,, for a sufficiently small
S0, independent of the constant D and independent of a quantity 7, which we will later introduce. We
further assume

(412)  q,¢.q"
(4.13) D

D-0(1)
1.

v

Remark: The condition (4.13) allows estimates of the form D - O(s?) + O(s?) = D - O(sP). Tt is also
possible to assume |D| > € and ¢ is another fixed, positive number.

We have the differential operators in curvilinear coordinates like in the proof of theorem 3.1a.

o _ 2n—2 2n—1yy 9 cz(a) 0
(4.14) prli (1+ci(a)s® 2 + O(s>™1)) 5s T\ te@+06)) 5
0 _ 0 2 1 cs(a) 1 0
4.1 — = n—1 ™)) — — — ] | =
(4.15) s (ca(a)s" ™+ 0O(s™)) 5s T <a1 “wm e T +0{ 3
The functions ¢; are independent of D and ¢. Compare with the proof of theorem 3.1a!
Consequently,
(4.16)  wy, = —nCs™ ™' 4cgla)s™™ +O0(s7"H)
2 !
(4.17)  wug, = h s yer(a)s ™+ O(s )
a; — Qg
(4.18) vy, = Dk —n+1)s*"+D.0(s"1)
2 !
(4.19) v, = —L gknyp.o(skrl),
a; — Qg

We need a decomposition of div Tw:

diviw = 1/ 1+ |Vu| / 1+ |VU|
/1+ |vu ].+ |V’U)| /1_|_ |VU ].+ |V’U)|

Wa, Q Wy, Q \°
(4.20) <1+ 4|1+ —2—
Ji+vap \ 1Vl Ji+ v\ 1HIVal
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where

(421)  Q = 2up,vp, + 2up,Vp, + V5, + 2,
Let the numbers D and sq satisfy

(422)  [Dlsgtt <

for a sufficiently small positive number n < 1.
Because of the special structure of u; we have from lemma 4.1
divTug — kup, = g(a)st~"1 4+ O(sh—"12)
voTu,—cosya = ZTsF 4 0(s"?)
where g(a) is an analytical function on [—1,1] and Z* are two numbers. For the upper boundary (a = 1)
we have to take Zt and +;, for the lower boundary (a = —1) Z~ and 2. Clearly, the numbers Z* are

independent of ¢, D, so and 7).
From the proof of theorem 3.1a (and b respectively) we have

4 B\’
(a1 — az2)? (W> = nC

S,
(al _ U/Q)W 71,2-
Using these results we obtain after a longer calculation:
, 4n2C? ¢\ 4n(k-n+1)CD [ K R
(423) diviw— kw = (m (W) + (a1 _ a2)2 (W) + g(a) — kD |s n+

+ D - O(Skfn+2) + D2 . O(S2kfn+2)‘

Similarly, the term Tw can be decomposed:

Wg, <1+ Q )5

2

(424) T Visivuf A1
. w = _
Wy, <1+ Q 2)

V14|Vl 1+ [Vl

After some calculation we get:

M=

2072 ! _ !
(425) voTw—cosms = (i 2n°C* ¢q 2nCD(k —n+1)h +Zi) gkt

ap — as m (a1 — GQ)W3
+ D -0(s**?) + D% . O(s2k+2).

To prove theorem 4.1 we determine D and ¢ so that the preconditions of the comparison theorem are
satisfied. We choose D:

(4.26) D = Dgsg*

where Dy # 0 is still an arbitrary constant. The conditions (4.13) and (4.22) keep satisfiable for a
sufficiently small sq.

Let ¥ be a solution of (1.1), (3.20) for one of the considered domains, then we get by applying theorem
3.1b

o < w4 Bs "t in Q

80,1
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for a sufficiently small sg1 < s* (so,; > 0 in the following). B is a positive constant independent of Dy,
50,1, M, ¢ and .
Thus,

o < w+ Bs™™" — DsFT L _g(a)s* in Qg , .
For a sufficiently small sg» < 59,1 we can conclude
? < w+ (B —Dy) 30_"+1 + ¢| Do onTys Vso <592

by using precondition (4.12). The positive constant ¢ is independent of Dy, so and 1. We choose Do >
B > 0. In addition, s¢,3 < sg,2 can be chosen so small that

< w on 'y, Vsp <593
1

Vso < 80,3

We determine ¢ so that

4n?C? ¢\  4dnlk—n+10CD (K kD
4.2 oy (4 = _E o,
(4.29) (a1 — a)? <W3> T i —wy <W3> ol = 0

After integration it follows that:

2n°C?* ¢ 2mCD(k—n+ 1)K (ay —az)kD
a; — aq W3 (a1 - CLz)W3 - 4

(430) a+ G(a) + C -

We set the integration constant Cjy 1 = 0 also the second integration constant of g (Cy,2), which arises
after a further integration. By construction, the function G(a) is independent of ¢, Dy, sg, 7 and analytical
on [—1,1]. Consequently, ¢ is also analytical; and it obviously satisfies the condition (4.12).

From (4.23) and (4.29) we get

_ kD 8k—n+1
2

For the quantities 7;, 12 it holds

diviw—sw = + 1 + .

|m| < Deysk—nt?

|772| < D20282k_n+2

on 1, for a sufficiently small so. The numbers ¢; and ¢y are positive constants and independent of Dy,
50, 1. Consequently, sp,4 < 50,3 can be chosen so small that

kD ,_ - -
_ Sk n+1+D618k n+2+D26282k n+2

diviw—rw < 2
< Dsgk—ntl (—g + ¢80 + Dczs’gH)
(4.31) < Dgknt! (—g + c180 + 0277)

on Qso VS() S 50,4-
Analogously, from (4.25) and (4.30) we have

(a1 —azx)kD

1 +G(£1) + Zi) sFH 4 ng 4y

voTw—cosye = (

where the quantities 7z, n4 satisfy

Ins] < Decsskt?

|,’74| < D2C432k+2
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on X, for a sufficiently small so. The numbers ¢3 and ¢4 are again positive constants, independent of

DO; S0, 1.
Because of the choice (4.26) sg5 < s9,4 can be chosen so small that
- D
%iG(il)-}-Zi Z 0 VS() S 50,5-

With it, we can choose sg ¢ < 59,5 so small that

(a1 — az)kD gk+1

voTw—cosya > — Degsht? — D2¢y g2k 2

8
(4.32) > Dskt! (@ — 380 — 0477>
on ESO VSO S 50,6-
We choose 7:
) k(a1 —a92)k
4. = —,—— 1.
(4.33) 7 mln{4cz, 6o, }

We choose sg < sg,6 so small that condition (4.22) is satisfied and that
K + < 0
4 C1so =

(a1 — as)k
16
With this s all preconditions (4.13), (4.22) are satisfied and from the inequalities (4.27), (4.31), (4.32)
it follows that:

— C38¢ Z 0.

(4.34) diviw—rkw < 0 in 0,
(4.35) w > 0 on Ty,
(4.36) voTw—cosyiz > 0 on Xy

Applying theorem 1.1 we obtain:

(437 w > o in Q.

Consequently, there is a positive constant A; with

(4.38) D —up < Apstornt! in Q.

Analogously, we get a lower bound for 7, if we use theorem 3.1b in the form

o > wu—Bs ! in Q

50,17

and if we choose Dy < —B < 0. That is we can further choose sg so small that for a negative constant
A, it holds additionaly:

(4.39) D —up > Agshntl in Q.

The precondition now follows from (4.38) and (4.39) by setting A = max{A;, —A»}.

We now prove lemma 4.1. The notations (4.7) to (4.11) can be taken over, but “O” is again the or-
dinary Landau order symbol without further restrictions. We also do not need the conditions (4.12),
(4.13) and (4.22).

We use complete induction. From theorem 3.1b it is clear that with

COS Y1 + COS Y2

C_
n (a1 —a2)k
2
n COS Y1 + COS CO0S7y1 — COS
hoi(a) = _E\/1_< 712 PN 712 72)
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it holds

divTug — kug = O(s~™1)

Vo T’LL() —CO0SY1,2 = O(S)

that is ug satisfies the basis of our induction.
Let the supposition be true for £ > 0, we show, that then it holds also for k + 1. Using the proof of
theorem 4.1 and our inductional assumption, we get

(e () + 2™ () oo

_ ED) Sk7n+1 4 O(sk7n+2)

(4.40) divTw — kw

2n?C? ¢ 2nCD(k — 1)n'
(441) voTw—cosyi2 = (:I: nC 4 nCD(k —n +1)

+ k+1 k42
aj —azﬁ (a1 —a2)W3 +Z ) 5 +O(S )

Again the quantities g(a) and Z* are independent of ¢ and D.
We determine ¢ so that the coefficient of s*~"*1 in (4.40) vanishs:

4n*C* (¢ \'  4n(k—n+1)CD (N
(a1 — a2)2 W3 (a1 — 02)2 W3

)I+g(a)—l~eD = 0.

An integration of this equation yields

2n°C? ¢ 2mCD(k—n+1)k'  (ag —az)kD
(4.42) p— + (a1 — )3 = 5 at G(a) +Cy1-

We choose D and Cj 1 so that the coefficient of s**! in (4.41) vanishs:

(a1 — az)kD
2

This equation system has always a unique solution. Again we integrate (4.42) to obtain ¢. Then ¢ satisfies

+G(*)+£C +2%F = 0.

all assumptions with the same argument as in the proof of theorem 4.1. The additive integration constant
can be chosen as 0, as already mentioned.
With these choices it follows that

(4.43) divTw—kw = O(s""?)
(4.44) voTw—cosys = O(sF+?).
Setting

(445) C—n+k+1 = .D

(4.46) he(a) = ¢

we have

(447)  w = upts-

From (4.43), (4.44) and (4.47) the supposition follows for k£ + 1. The principle of induction completes the
proof.

With the same argument as in the proof of theorem 3.1, the quantities sg, A, h; and C; are independent
of the special considered solution 7. O
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5. Summary

With the results of theorem 3.1a and b, theorem 3.2 and theorem 4.1, the asymptotic behaviour of ca-
pillarities can be characterized for a large class of objects. From a heuristic point of view it is interesting
that for the considered problems we can summarize the results in one statement:

The solution rises with the same order like the order of contact of the two arcs, which form the cusp.

The complete asymptotic expansion from theorem 4.1 grants a gradually better estimate of the solu-
tion in a neighbourhood of the cusp.
The case v1 = m — 2 keeps an open question.
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