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Abstract: It was pointed out by FINN [2] that the capillary problem in zero gravity has not always a
classical (smooth) solution in the case that the bounded domain 2 C R? contains cusps or corners. Here,
Q) denotes the cross section of a given cylinder, in which a liquid is contained. If special energy terms
could become infinite, the variational formulation is not free of limitations as well. Therefore, the concept
of generalized solutions, which can be traced back to MIRANDA [11], has been developed and could be a
way out.

We want to prove an existence result for such solutions under very weak preconditions. The proof is
closely related to GIUSTT’s paper [6], but we do not require full smoothness of the boundary. The major
new difficulty is that we also want to consider domains with non-Lipschitz boundary. This excludes
the application of some theorems. On the other hand, we use special geometric conditions in R? and
consequently, the proof cannot easily be generalized to a higher dimension.

Furthermore, we construct some generalized solutions explicitly.
Keywords: capillary problem, cusp, generalized solution

1. Preliminaries and Motivation

At first we consider the capillary equation in zero gravity
(1.1) divTu = 2H in Q
(1.2) voTu = f on smooth parts of 92,

Q C R? a bounded domain with piecewise smooth boundary, Tu = \/%, v the outer normal, H,
u

0B constant and 0 < 8 < 1 the adhesion coefficient. Here, “o” denotes the euclidian scalar product. By

partial integration we obtain H = @l“g‘”.

The existence-nonexistence principle of FINN for smooth solutions of this problem is (see [2])
(1.3) Q[ H,B,Q = Do« — B2 +2H|Q*| >0

for each Caccioppoli-set Q* C Q, Q* # (,Q where I'qg- = 0,Q0* N Q, T = 0,0* N IN and J.Q* the
measure-theoretic boundary of Q* (see [1]). This principle is necessary (which can easily be shown by
partial integration of (1.1) over *) and sufficient.

We always get a contradiction to (1.3) if £ contains cusps.

Lemma 1.1: No smooth solution of (1.1), (1.2) exists for domains Q with outward cusps.

Proof: We consider a small neighbourhood A of the cusp bounded by two functions f; and fo (see
figure 1).
It follows

Tal = B1Zal + AA] = —Bz10+0(z1,0)
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where “0” is the second Landau order symbol. For a sufficiently small z1 o we obtain ®[A] < 0 and by

the existence-nonexistence principle no smooth solution can exist. a
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figure 1

Therefore, we have to look for a suitable generalization of the problem. From now on we will allow
H and 8 € [0,1] to vary.
The variational formulation of (1.1), (1.2) is

(1.4) Elu] = /Q 1+ |Dul? +/Q)\(u) dx — - B(s)uds — min.! u € BV (Q);

the function A shall satisfy X(u) = 2H(u) and A”"(u) > 0. The set BV (f2) denotes the space of the
functions of bounded variation in § (see [1] or [7] for an introduction to the theory of this space). The
functional £ is the sum of surface, gravitational and contact energy. See also the book of FINN [2] for
further background material.

The last integral is to be understood in the sense of the trace of u on 9Q. This trace has not always to
be in L! if Q contains cusps that is if 9 is not Lipschitz-continuous (cf. [1], p. 177).

An observation of MIRANDA leads from the variational formulation to a generalized formulation.

Definition 1.1: Let u be a real-valued function in €, then the set
U = {(z,t) eOxR : t<u(zr)}

is called the subgraph of u.

Theorem 1.1 ([2], p. 192 or [10]): A function u € BV (Q) minimizes £ in Q (Q Lipschitz) if and

only if its subgraph U minimizes the functional

(1.5) FlU = / |D<pU|+2/ HgoUda:dt—/ By dsdt.
Q=QxR Q 0Q=00xR

The function @y is the characteristic function of U. The minimization of (1.5) is to be understood in a
special sense. Let

(1.6) FrlU] = / [Dey| +2/ Hopy dxdt —/ Bpu dsdt
Qr=Ox[~T,T] Qr 5Qr=0Qx[—T,T]

for a Caccioppoli set U C @ and T > 0, it is defined that (cf. [2], [10], [11]):

Definition 1.2: The set U minimizes (or U is a solution of) Fr in Qr if Fr[U] < Fr[S] for every



Caccioppoli set S that coincides with U outside from Q.

Remark: The additional precondition on S (S coincides with U outside from @r) should be added
in [2], p. 192 to get an equivalent to other formulations in literature (see later Lemma 1.2).

Definition 1.3: The set U minimizes (or U is a local solution of) F in @ if U minimizes the func-
tional Fr in Q7 for every T > 0.

In this sense we can define a generalized solution, which is important for the following:

Definition 1.4: A function u(z) : Q@ — [—00,00] is called a generalized solution of the problem (1.1),
(1.2), if its subgraph U is a Caccioppoli set and a local solution of F in Q.

Note that a solution can be infinite on sets of positive measure that is the solution u has even not
to be an L!-function. Furthermore, the functional F has not to be well-defined for a solution. It is suffi-
cient that the functionals Fr are well-defined to suffice the minimization property and therefore, domains
with cusps make no problem because of the boundedness of the integrals of Fr. The solutions are in ge-
neral not global minimizers for Fr, since we can only compare them with admissible comparison sets.
The solutions are only minimizers with respect to local disturbance.

We have the theorem that smooth solutions are generalized solutions ([10], see also the remarks in [2],
chapter 7) and by Theorem 1.1 that every solution of the variational problem is a generalized solution.
It is clear that the definition of a generalized solution makes sense for almost arbitrary functions H and
B. For the moment we only need H € L}, (Q), 8 € L},.(6Q) that means very weak preconditions.

Last we want to prove equivalence of various definitions of minimization of Fr in literature (which is not
always trivial to see) and equivalence to a new definition. For this proof Q can be n-dimensional.

Lemma 1.2: With the definitions

FlanlU] = / |Doy| + 2 Hoy dzdt — / By dsdt
Qla,b] =Qx[a,b] Qla,b] 6Q[a,b]:39><[a,,b]

/ |Dpu| + 2/ Hoy dedt — / By ds,
QnK QnK 5QNK

[a,b] an interval with a < b, K a compact subset from R*"*1 the following formulations of minimization

FxlU]

are equivalent.

Formulation A:
FrlU] < FrlS]

for every Caccioppoli set S that coincides with U outside of Q1 and every T > 0.

Formulation B:
f[a,b] [U] < f[a,b] [S]

for every Caccioppoli set S that coincides with U outside of Q4,5 and every interval [a,b] with a <b.

Formulation C ([6], p. 300) :

FrlU] < FrlUUS] (U is a supersolution in Q)
FrlU] < FrlU\S] (U is a subsolution in Qr)



for every Caccioppoli-set S C Q1 and every T > 0.

Formulation D ([13], p. 855) :
FelU] < FxlS]

for every Caccioppoli set S that coincides with U outside of K and every compact set K C R+,

Proof: A & B:

The direction “<” is trivial. For the other direction we choose for every interval [a,b] the number T
sufficiently large so that [a,b] C [-T,T] and let S = (U \ Q[4,5) U So where Sy C Q45 is an arbitrary
Caccioppoli set. Applying the measure property of the first integral in (1.6) (e.g. [1], p. 209) we obtain
formulation B.

AsC

The direction “=" is clear. Let S be a Caccioppoli set that coincides with U outside from Q7 and assume
that the formulation C holds, then it follows that

(1.7) FrlU] < FrlUUS]
(1.8) FriU] < FrlUNnS].

First we want to show that

(1.9) / \Douus| + / \Douns| < / Dyu| + / Dps|.
Qr Qr Qr Qr

With the Coarea formula for BV-functions ([1], p. 185) it is easy to see that

(1.10) /|D<,0AUB|+/ |Dpan| < /|D<PA|+/ |Dyg|
v v v v

holds for an open set V' and two Caccioppoli sets A, B. Note that we cannot immediately apply the
Coarea formula, since Qr is not open. The inequality (1.9) now follows from (1.10) by choosing A = U,
B=SV=Qx(-T-¢T+¢) (¢ > 0) and by taking into consideration that U = S on Q x
(=T —¢&,-TYU(T,T +¢)).

From inequality (1.9) the supposition follows, if we add the inequalities (1.7) and (1.8).

The other conclusions of lemma 1.2 are trivial or can be shown in the same way as direction A = B. O

Obviously, the definition A is the most convenient one.

2. Proof of Existence

Although the definition of generalized solution is meaningful for almost arbitrary functions H, 3, we
will need some further restrictions to prove existence of such solutions. Consider the following structure
conditions, which we have to assume (sometimes):

1) HeLL(Q), B € L (5Q)

(2.2) H = H(z,t) non-decreasing with respect to ¢ for almost every z € Q
(2.3) B = B(z,t) non-decreasing with respect to ¢ for almost every z € 90
(2.4) H locally essentially bounded on Q U §Q

(2.5) |8 <1 almost everywhere on 6Q).

We will need the following convergence lemma to prove existence.



Lemma 2.1: Let Q be a bounded domain with piecewise smooth boundary (C® is sufficient), the smooth
components of the boundary are of bounded curvature. Let H; and (3; be two sequences, which terms
satisfy the structure conditions (2.1), (2.4) and (2.5) and which uniformly converge to H and 3. Let the
subgraphs U; minimize the functionals

(26)  Fh(A) = / [Dpal +2/ Hjpa dxdt — Bipa dHs.
QT Qr QT

Let us further assume that for a Caccioppoli set U it holds U; — U in Qr with respect to L*-convergence
of the corresponding characteristic functions and that

(2.7) /~ |90Uj—<PU|d'H2 - 0, 0QT = 9Q1 \ 6QT,
0QT
(2.8) / |Doy,| = 0 Vj > jo €N,
oQr
(2.9) / Dgy| = 0,
QT

then U minimizes Fr in Q.

Equation (2.7) is to be understood in the sense of the outer trace that is the trace of |py\Q, —¥u\@r |
on 5QT.

Remark: In [6], p. 304 there is a version of this lemma for smooth domains but without the condi-
tions (2.8), (2.9). In my opinion, these conditions should be added to complete the proof in [6]. This does
not influence the further results in [6] because these conditions are fulfilled for almost every T in the
situations that had been considered there (see [6]).

We will prove this lemma together with the following existence theorem.

Theorem 2.1: Let Q be a bounded domain with piecewise smooth boundary (C® is sufficient), the smooth
components of the boundary are of bounded curvature. Let H, 3 satisfy the structure conditions (2.1) to
(2.5), then there is a generalized solutions of (1.1), (1.2).

Proof: The proof is closely related to the ideas in GIUSTI’s paper [6] but here we work more directly
with the functionals Fr instead of the energy functional £. Our method uses special geometric properties
in R? and cannot simply be generalized to higher dimensions.

The proof is divided into four steps, for the moment under the precondition that lemma 2.1 holds. Finally,
we will prove this lemma in the fourth step.

Step 1: (Proof of semicontinuity of the functional Fr with respect to L'-convergence of characteristic

functions)
Because of the preconditions the boundary of € can be decomposed to 0Q = (|J, L)) U(U; {=:}) (1 € L =
{1,...,n}). Here, ¥; denote disjoint, smooth, connected components of 9 and the points z; (I # n) are

the corners or cusps formed by the arcs ¥; and ¥;,1, x,, is the corner or cusp formed by the arcs ¥; and
¥,. Without restriction of generality we can assume that n > 1 (see figure 2).

At first we assume that the opening angles of the corners are less than or equal to 7.

In view of the precondition about the curvature and lemma 2.3 in [9], p. 234, there is for every point x;
a curve I'; C Q with

diSt(.’L‘,El) = diSt(x,El+1) Ve el I<n
dist(z,%,) = dist(z,%;) Ve eT,



and I is locally C2.
The argumentation in [9] holds for opening angles less than m but for opening angles = we can choose the
inner normal for I';.

figure 2

Consider the set
(2.10) X, = {ze€Q : dist(z,00) <&}

for a sufficiently small € > 0. Choose g9 > 0 so small that for every € < g9 the curves I'; decompose X,
into disjoint subdomains XL (see again figure 2) with the property

(2.11) =L = {zeX. : dist(x,d0) = dist(z, T;), dist(z, Tx) > dist(z, T;) VEk #1}.

Because of (2.11), the precondition about the curvature and lemma 14.16 in [5], p. 355, we can choose g
so small that the distance function is twice differentiable on the sets ¥ for every 0 < € < g, since ¥; can
be considered as a part of the boundary of a C2-domain. With this property we can prove the following
lemma (cf. lemma 1.1 in [6], p. 301).

Lemma 2.2: Let Q be a domain satisfying the preconditions of theorem 2.1, let w € BV, (Q) be an
essentialy bounded function on Qr, then

(2.12) / lw| dHa < / | Dw| +cl/ |w| dzdt + (sup |w|> R(e)
QT B x(=T,T) 2 x[=T,T) z€EQT

where ¢y is a constant that only depends on Qr and €. Furthermore, for the quantity R independent of
w it holds that lim._,o R(¢) = 0.

Proof: Consider at first w > 0, let n be a C*°-cutoff-function with 0 < n < 1,7 =1 on @t and
n=0on Qr\ (X x[-T,T]). With the above choice of £ we have for the distance function d(z) =
dist(z,6Qr) that d € C*(ZL ) for every I € L where X! ; = EL x (-T,T).

Thus,

(2.13) Z/ wdiv (nDd) dzdt = —Z/ nDdDw—FZ/ wnv o DddHs.
=1 EZE,T =1 Z.lz,T =1 8215,T

Since d is globally Lipschitz-continuous with Lipschitz constant 1 (e.g. [5], p. 354), we can deduce

Z/ wnv o DddH, < Z/ wnv o DddHz + ( sup |w|> R(e)
1=1 /9% r =1 /T x[-T,T] TEQT
(2.14) < —/ wdHs + ( sup |w|) R(e).

QT zEQT



For the last inequality we used that v o Dd = —1 on X; X (—T,T) and n = 1 on §Q.
Using |Dd| < 1 we obtain:

- <
;/EL,T nDdDw < ;/EL,T | Dw|
(2.15) < / |Dw|
S x(=T,T)
and
(2.16) —Z/ wdiv (nDd) dzxdt < cl(s)/ w dzdt
i S x[-T,T]

with ¢;(e) = sup, supst |div(nDd)| < oo ([5], lemma 14.17, p. 355, &¢ sufficiently small, 0 < £ < &).
This quantity obviously depends only on £ and {2.

From equation (2.13) we obtain our claim in the case w > 0 by using the inequalities (2.14) to (2.16).
The general case follows from the inequality

(2.17) / Dl < / |Dw|
e x(—T,T) e x(~T,T)

(cf. [6], p- 301), which can be shown easily with the help of the Coarea formula. a
With this lemma we are able to prove lower semi-continuity for the functionals Fr.

Lemma 2.3: Let U; C Q1 be a sequence of Caccioppoli sets with oy, — oy in LY(Qr) for a Cac-
cioppoli set U C Qr, then

(2.18) Fr(U) < li_rninf]:T(Uj).
j—o0

Proof: From the structure conditions and the definition of the functionals Fr we have
Fr) - F1@U) < [ Devl~ [ 1Dpu+C [ Jou v, dodt
Qr Qr Qr

-I-/ lev — ¢u, | dHo.
QT

The constant ¢ is independent of U, Uj;. The application of lemma 2.2 for the function w = pu — ¢u;
yields the following estimate

Fr(U) - Fr(U;) < / |Dch|—/ |DgoUJ.|+C/ lou — pu;| dzdt
QT Qr Qr

+ / |Dov| + / | Doy, |
e X[~T,T] S X[=T,T]

+ac / |ch - ou; | dzdt + R(e)
Yo x[~T,T]

< / | Doy —/ |Deu, | +0/ lov = pu, | dedt
QT,e Qr,e Qr
va v — gy | dade +2 [ IDgul + R(e)
T X[=T,T] e x[-T,T]

with the notation Qr. = Q7 \ (Ze x [-T,T)).
Using the lower semi-continuity of the integrals [ [Dyy| (e.g. [7], p. 7), we obtain by taking the limit
j — oo

j—oo

(219)  Fr(U) —liminf Fr(U;) < 2 / \Deu| + R().
e x[-T,T]



Remark: At first we have lower semi-continuity for the integral [ |Dyy| only on open sets. With the
special properties U;,U C @ we can extend this to our half-closed sets 7 because of the identities
fQT |Doy| = fo(—T—sl,TJrsl) |Dou| ete. for €1 > 0. On the other side, this lemma cannot be applied for
subgraphs. Compare this with a later version of lemma 2.3 (see lemma 2.4 in the fourth step)!

From (2.19) we obtain the supposition by taking the limit & — 0. |

Now we consider the case that Q also contains corners with opening angle greater than w. We deno-
te {z;+} C {x;} as the subset of the corners with opening angle greater than 7 and L* the corresponding
index subset of L. Let I'} and I'? (i € L*) be the inner normals to the two the corresponding corner
forming arcs ¥; and X; respectively (i € L*, j =i + 1 if i < n else j = 1). These curves in combination
with the curves I'; (i € L\ L*) yield a decomposition of . of the following form (see figure 3) for a
sufficiently small g and 0 < € < g¢:

figure 3

(2.20) %t {:1: € X : dist(z,00) = dist(z, %;), dist(z, Xx) > dist(z, X;),

dist(z, z1) > dist(z, ;) Vk,l € L,k # @}

\g|
<.
I

{x € ¥, : dist(z,00) = dist(z, z;), dist(z,z;) < dist(z, z)

vk e L\ {j}]

(1 € L, j € L*) with the property

Y = (UE@)U U minz. u(Uz)

icL i€L\L* icL*

From the property (2.20) can be concluded as above that we can choose €9 so small that the distance
function has bounded second derivatives on the sets Eg for every 0 < € < g¢ and 7 € L. But on the sets
% (i € L*) the distance function has no bounded second derivatives. On the other side, an integration
on these sets gives no contributions to the boundary of Q2 and therefore, we can neglected them. More
precisly, we substitute the set X%, defined as

221) 3 = %\ (U ii>,

ieL*
for the set X in the previous proofs, exept for the definition of 7 in the proof of lemma 2.2. Analogously,
we obtain an estimate of the kind of lemma 2.2 and the required lower semi-continuity of the Fr also in
this case.



Step 2: (Construction of a minimizing sequence on Q)
We approximate () with smooth domains as below. Let ,, (n € N) be a sequence of C2-domains so that

QO C O Vij i<j
(222)  lim Hi(S,) = 0
(223)  lim Hi () = 0
Yn
figure 4

with the notations X,, = 90 \ 99, and T',, = 0Q, N N (figure 4).
We extend § to B = 0 on I'y,. It follows from [6], p. 303 that there is a solution u} on Q, of the functional
£ in the sets

(2.25)  Vi(Q,) = {veBV(Q,) : |v <i} i € N,

which subgraph U;® minimizes the functionals 77 with the definition

T[A] = / |D¢A|+/ 2H g 4 dzdt
Q%:an[_TaT] T

Qr

- / Bpa dsdt
6Qn =00, x[—T,T]

for every 0 < T <. Since if a set minimizes F7*, then it obviously minimizes 77" with 0 < j <.

From the set of solutions u} we choose a sequence {ul}nen for a fixed i. We would like to show that
we can choose a subsequence from it converging locally (that is on @;) to a function u; € V;(Q) and the
corresponding subgraph U; minimizes F;.

Obviously, we have

(2.26) / purngr < H3(Qi) < o0 VneN

i

Since U]* is a solution on (2, for F* we have:

FUr < FUM QY
:>/ |Dpyn| < |Qn|+2/ |H|d:1:dt+/ |8| dsdt
Qr Qr 5Q7
:,'/ [Dypyrngr| < 2|Qn|+2/ |H|dxdt+/ |8] dsdt.
Qr Qr Q7
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From the construction of 8 we obtain:
(2.27) / Dourngr| < 2|Q|+2/ |H|dxdt+/ 18| dsdt.
Q7 Qi Qi

Thus, by using (2.26) and (2.27), we see that ¢ysng» are uniformly bounded in BV-norm. With the
help of the compactness theorem for BV -functions (e.g. [1], p. 176) we can choose a subsequence from
{®urn@r }nen, which converges in L'(Q;) to a BV-function f. This function is again a characteristic
function of the intersection of a subgraph U; of a function u; € V; with Q;. We set f = ¢y;ng, and denote
the upper subsequence again with {‘PU,-" nQr }nen for convenience.

We still have to show that U; minimizes F;.

Let £ be a positive number, with the same reason as above and the special structure of the involved
sets, it is clear that we have CUPNQL,, — PUINQirte in L1(Q+¢)- The application of lemma 2.3 for the
functional F; . yields:

(2.28) FitelliNQite] < liIT_l}nf FiteW N Q?_,_E]
where W denote the subgraphs of the functions

n u? T €N,
—o0 : z€eN\Q,

With the equations

FuclUinQus] = FlUl+I0+2

Qx[—i—e,—1)

H dxdt — / Bdsdt
OUX[—i—e,i)

Fite W' N Q%]

FilWi ]+ |Qn| + &[Ty +2/ H dxdt

Qp X[—i—e,—1)
- / B dsdt
Oy, X[—i—e,i)

we obtain from inequality (2.28) and the conditions (2.22) to (2.24):

n—oo
Let S be an arbitrary Caccioppoli set coinciding with U outside of ();, then we have because of the inner
regularity of the integrals [ |Dyg| and the properties (2.22) to (2.24):

(2.30)  F[S] = FMSNQ™+ Ri(n) Q" =0, xR

For the quantity R; it holds lim,, ,o, Ri(n) = 0. On the other side, the set S N Q™ is an arbitrary
Caccioppoli-set that, by construction, coincides with U outside of Q7. Using the minimization property
of u? it follows:

(2.31)  FW8 < FISNEM.
Further,

(2.32) AW/

]:,[Wln] + Ry (n)

with lim,_,e0 R2(n) = 0.
From (2.29) to (2.32) we can conclude:

(2.33) AU < FS].

That means U; minimizes F;.

Step 3: (Construction of a generalized solution)
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Let {u;};en+ be a sequence of the above solutions with the corresponding subgraphs U; then we have as
above:

(2.34) / |Dou,| < C Vi>T
Qr

where C only depends on T'. With the same argument as in the second step we can choose a subsequence
from {u;};cn+ that converges on Q1 to a subgraph of a generalized function. We choose such a sequence
for T =1 and from this a subsequence for 7' = 2 and so on. The diagonal sequence, chosen from this
sequence of subsequences, denoted again with {u;};cn+, has the property that it converges on every set
Q7 to the intersection of a subgraph U with Q7. The corresponding function u is a generalized function,
which can possibly be +o0o. The subgraph U is a Borel set as the unification of the Borel sets U N Q7
and a Caccioppoli set because of (2.34) and the semi-continuity of the measures [ [Dypy|.

We have still to show that u is a local solution for F. This follows from lemma 2.1 by setting H; = H
und B; = 3. The conditions (2.7) to (2.9) are fulfilled for almost every T', which follows from Lebesgue’s
theorem (e.g. [7], p- 30) and proposition 2.8 in [7], p. 36. Using that minimizers of Fr are also minimizers
of Fr: for 0 < T' < T we obtain our supposition.

Step 4: (Proof of lemma 2.1)
We will need a further technical lemma. Compare this with lemma 2.3!

1
loc

Lemma 2.4: Let U; C Q be a sequence of Caccioppoli sets with oy, — ¢y in Ly, (Q) for a Caccioppoli

set U C Q, assume that (2.8) and (2.9) hold, then:

Fr(U) < liminf Fr(Uj).

j—oo

Proof: The proof is analogous to that of lemma 2.3. Because of the conditions (2.8) and (2.9) we have
relations of the form fQT |Doy| = fo(—T,T) |Dyy| and so on. This makes it possible to apply the lower
semi-continuity of the measures [ |Dypy| on open sets. |

Now we can prove lemma 2.1. We first start as GIUsTI did in [6].
Let V C Q, V = U outside of Q1 be a Caccioppoli set and let

V in QT
Vi = .
U; outside of Q1

then V; is an admissible comparison set to U; and we have because of the minimization property of U;:
(235)  FpU;) < Fp(V).

Setting Q% = Q x (=T,T), using that V; coincides with V in Qr and proposition 2.8 in [7], p. 36
respectively we obtain:

/|D<ij| = / |D<,0Vj|+/~ [Doy; |
r Qs 5Qr

| 1evi+ [ Doyl [ Deyl
QT 0QT QT

| Dol [ v, - ool ans
T 0Qr

f%(V)+/~ lou; — eu| dHa.
0Qr

IA

IA

(2.36) Fo(V5)
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From (2.35) and (2.36) follows that:

yr2 [ - HsoU+/ (8- B8;) vu
QT QT

< f%(vw/éQ lpu, — pu| dHa.

Taking the lower limit j — oo we obtain with the help of lemma 2.4, the uniform convergence of Hj, §;
and the precondition (2.7)

Fr(U) < Fr(V).

That is the supposition, since V' is an arbitrary admissible comparison set to U. a

3. Uniqueness

Of course uniqueness of generalized solutions is of interest. But we have only the weak statement that it
is not in the general case.

Lemma 3.1: Assume that H and 8 are independent of t and assume that (2.1) is satisfied, then a
generalized solution is determind at most up to an additive constant.

Proof: Let u be a generalized solution then we have with lemma 1.2
FlanlU] < FlaplS]

for every Caccioppoli set S coinciding with U outside of @[, and every interval [a, b] with b > a. Choose
@ =u+C (C €R) and U the corresponding subgraph, it follows by transforming the coordinates

Flarcpra)ll]l < FarcpialS]

for every Caccioppoli set S coinciding with U outside of Q[a+0,p+c) and every interval [a + C, b+ C] with
b > a.
The special choice a = =T — C, b =T — C with T > 0 yields the supposition. m|

Nevertheless, it keeps unanswered what varieties of solutions are possible or if there is uniqueness in
special cases, even if H and 3 are constant as in the following chapter.

4. The Special Case H, ( Constant

In the following, 2 is a domain satisfying the preconditions of theorem 2.1 and H, 8 are constant
(B = cosvy, H > 0 without restriction of generality). For v we assume 0 < v < 7. From lemma 1.1
we have that there is no smooth solution of (1.1), (1.2), if  contains cusps but there are generalized
solutions, which we want to discuss in this chapter.

We first characterize the sets where a generalized solution could become plus or minus infinity. The
geometry of these sets will be very restricted.

Let u(z) be a generalized solution, we define
P = {ze€Q : u(x)=+o00}
N = {2€Q : u(z)=—o0}.
We can change u(z) on a set of measure 0 so that for every circle B, () it holds

41)  H»(PNB,(z)) # 0 VzeP
42)  Ha(NNB,(z)) # 0 Vz e N.
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Theorem 4.1: The set P minimizes the functional
(4.3) SO H,v,Q] = |Ta:|—|Za~|cosy+ 2H|Q|
where Q* C Q is a Caccioppoli set. The set N minimizes the functional

(4.4) U[Q*5 H,v, Q) = [Da«|+ |Zq+|cosy —2H|Q¥|.

Remarks: For convenience we use ®[Q*; H, v, )] = ®[Q2*] and so on if it is clear to what quantities H,
v, Q we refer.

An analogous version of this theorem can be found in [6], p. 306 for domains with smooth boundary.
The theorem has been already proven in [2], p. 196 for global minimizers of F. Now we want to prove it
also for our local minimizers. Therefore, we adapt the idea in [2].

Proof: Let u be a generalized solution of (1.1), (1.2), then the functions u — j (j € N) are also so-
lutions (lemma 3.1) that is the subgraphs

Ui = {(xt)eQ:t<u(z)-j}

minimize Fr for every T > 0. We have U; — U = P x R in L], .(Q). Furthermore, the conditions (2.7) to
(2.9) are satisfied for almost every T' with the same reason as in the proof of theorem 2.1 (step 3). Using
lemma 2.1 we obtain that U is also a local solution.

Suppose that there is a Caccioppoli set A C Q with ®[4] < ®[P]. We set ®[P] — ®[A] = ¢ > 0
and choose T sufficiently large so that €I' > |Q| holds. Taking the admissible comparison set S =

(A [-T,T])) U (U \ Q) into consideration it follows, because of Fr[U] = f_TT ®[P] = 2T'®[P], that:

T
FrlS] < / B[A] dt + 2|0 = 2TH[A] + 2|0
-7
< T (e + 8[P]) + 2|9
< FrlU]+2(9) - T)
< ]:T[U],

which means a contradiction to the minimization property of U.

The result for N follows analogously by using the property that if M is a minimizer of ®, then Q\ M is
a minimizer of ¥ and vice versa. This property can easily be verified by direct calculation and motivates
the name “adjoint functionals” for & and V. O

The proof of theorem 4.1 yields a simple example for a generalized solution.

Lemma 4.1: Let M be a minimizer of ®, then

{-1—00 .z EeEM

(4.5) u(@) = -0 : z€eN\M

is a generalized solution of (1.1), (1.2).

Proof: Let U be the subgraph of u, S = Sy U (U \ Qr) an arbitrary admissible comparison set for
u, that is Sg is an arbitrary Caccioppoli set in Q7. We have to show that

(46)  FrU] < FalS)
We set

(4.7) St = {ze€eQ : (x,t) € Sp}.
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From the proof of lemma 9.8 in [7], p. 112 it follows that S? is a Caccioppoli set in R? for almost every
te[-T,T).
On the basis of the precondition that M is a minimizer of ®, we have

(4.8) ®[M] < @[5 for almost every t € [T, T).

We set Q5 = Q x (=T,T) and 6Q% = 0Q x (=T, T). By integration of (4.8) and applying lemma 9.8 ([7],
p. 112) and cos~y > 0 respectively, we can deduce:

T
/ | Doy | + 2H/ oy dxdt — cos'y/ pydsdt < / ® [SY] dt
QT QT Q% -T
(4.9 < / |Des,| + 2H/ s, drdt — cos*y/ s, dsdt.
Q% Q% QT

If we now go over again to the half-closed sets @7, we have because of the special structure of U

(4.10) / Dpu| = / Doyl
Q Qr

o
T

furthermore,
@) [ pes < [ IDesl.
QT Qr
From (4.9), (4.10) and (4.11) we obtain (4.6), that is the supposition. O

Lemma 4.1 is an interesting analogon to an example of generalized solutions for the minimal-surface
problem discussed in [7], p. 183.

Assuming that there exists a smooth solution for (1.1), (1.2) (these solutions are determined up to an
additive constant as a consequence of the comparison theorem for the capillary equation (e.g. [2], p. 135)),
then the “limit solutions” u = +o0o and u = —oo are also generalized solutions because ) and Q both are
minimizers of ® (see chapter 1).

For domains with cusps it follows from chapter 1 that always P # {).

Now we want to discuss the structure of the sets M (without restriction of generality it is assumed that
M is an open set satisfying a condition of the form (4.1)), which denotes a minimizer of ® in the following.
These sets have a very restricted geometry discovered by FINN. We will write these properties down for
self consistence. Suppose that Ty = M N Q # @ we have:

Theorem 4.2 (cf. [2], chapter 6): The set I'psr consists of arcs of radius R = ﬁ, the set M is op-
posite to that side, into which the curvature vector points. If an arc meets a smooth part of 0N, then it
forms an angle v with 0. If v > 0, then the arcs are pairwise isolated.

There are further restrictions, e.g. that I'y; cannot end in corners with opening angle 0 < a < 7 as
proved in [4]. This result can be easily extended also to outward cusps that is o = 0.

With these results the set M can nearly be guessed for a given set 2. This is important for the calculation
of a special class of generalized solutions, which could be of physical interest. We will discuss them now.
Let M # 2 be a minimizer of ®. FINN observed in his paper [4] that under special preconditions there is
a smooth solution of the problem

(4.12) divTu = 2H inQy=0\M
(413) wvoTu = cosy on smooth components of 9 N 9N
(414) voTu = 1 on 00y N Q.
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These solutions are called C-singular solutions. Note that from a theorem of FINN it follows immediately
that limgeq,—zoera () = +00 ([3], p. 561). The next theorem connects the C-singular solutions with
our generalized solutions.

Theorem 4.3: Let M # Q be a minimizer of ®, assume that there is a C-singular solution ug on
Qo = 0\ M, then the function

uo(zr) : z €
400 : zEM

(4.15) wuw = {
is a generalized solution of (1.1), (1.2) with P = M.

Proof: Let T > 0 be an arbitrary but fixed number, we set

Qf = QxR Q? = MxR
Q%‘ = Q0 X [_T7 T] Q%‘ = Mx [_T7 T]
QY = 00 xR 0Q? = OM xR
QY. = 00 x [-T,T] Q% = OM x[-T,T]
5(x) cosy : x € 90NN 8 () cosy : z €IOMNIN
1 @ zely -1 : z€el'y
Fl4] = / |D<p,4|—|—2/ HcpAd:cdt—/ B4 dsdt
Qt Qt Q!
Fr[A] = / | D 4| +2/ H(pAdwdt—/ Brpa dsdt
Qr Q% Q%
FA] = / |D<p,4|+2/ HgoAdxdt—/ B2p 4 dsdt
Q? Q? 0Q?
Fi[A] = / |Dpal +2/ Hopy dmdt—/ B2 dsdt
Q% Q7 Q%

for a Caccioppoli set A from Q! and Q? respectively.
We denote U as the subgraph of u and S an arbitrary admissible comparison set to U with respect to T'.
We set once again

Ul = Un@t St = SnE!
U? = Un@Q? S = SnQ@.

Then U! is the subgraph of uy and S' is an admissible comparison set to U!. Since ug is a smooth
solution and consequently a generalized solution, the set U minimizes F'. That means

(4.16)  FplU'] < FplS').
The set U? is a solution for F (lemma 4.1), S? is an admissible comparison set for U2. Thus,
(417 FrlU?] < Fr[S?).
The special structure of U?, S? as subsets of @ in combination with our setting of FZ yields

(4.18)  Fr[U? = Fi[U?
(4.19)  Fr[S? = Fi[S?.

From (4.17) to (4.19) we obtain

(120) R’ < FS.
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We add (4.16) and (4.20)
(4.21)  FRUYN+ FRU?] < Fr[SY+ FF[S?].

In view of the fact that lim;cq,—moery vo(x) = +00, the inner and outer trace of ¢y on I'py x [-T,T)
are equal, thus,

(4.22)  FrU'+ F2[U* = ZFrlU).

For the boundary integrals on I'ys x [=T,T] of the functionals F}, F2 with respect to the sets S and
S? it follows with proposition 2.8 in [7], p. 36 that

(4.23) / (ps2 — ps1) dsdt < / [Des|
T x[—T,T] Ty x[—T,T]

and with it

(4.24)  Fr[S+Fi[S?] < FrlS]

From (4.21), (4.22) und (4.24) we obtain

(425)  Fr[U] < FrlS],

that is the supposition. m|

Remark: There is already a hint in [4] to the functions (4.15). Here we have shown that these functions
provide really generalized solutions in the sense of MIRANDA.

We cannot expect that for every H and minimizer M of ®[Q*; H,~, ] there is a C-singular solution
on Q. Integrating (4.12) on Qy we obtain:

We can deduce immediately
H > 0.

Since M is a minimizer of ® and Qg is a minimizer of ¥, it follows from (4.26) by comparing € and Q:

thus,
(427 0 < H < H,.

The problem now is that for a fixed H the minimizers M of ® are determined but then the condition
(4.26) has not necessarily to be satisfied. From [4] it follows that if ®[A; Hy,~,2] < 0 for a Caccioppoli
set A # (,Q (which is especially fulfilled for domains with cusps) there is at least one H for which a
C-singular solution exists on the complement of a minimizer of ®[Q*; H,~,Q]. That means, if there is
no smooth solution of (1.1), (1.2) on £, there is at least one H, for which a generalized solution of the
form (4.15) exists. This H has not to be uniquely defined. The argumentation in [4] works for domains
without cusps but can be extended to our configurations by using our existence result theorem 2.1, which,
in combination with theorem 4.1, guarantees also the existence of minimizers of ®.

The next lemma is a pecularity of the solutions of the form (4.15).
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Lemma 4.2: Let u(x) be a generalized solution of (1.1), (1.2) of the form (4.15) for a fized H, then the

function v(z) = 400 on § is also a generalized solution for that H.

Proof: The set M is a minimizer of ®[Q*; H,~, ], therefore,
(4.28)  B[M] < ®[A]

for every Caccioppoli set A C Q.
We subtract equation (4.26) from (4.28), thus,

o[ < ¢[4]

for every Caccioppoli set A C Q that means { is also a minimizer of ®[Q*; H,~, ]. The supposition of
that lemma now follows from lemma 4.1. a

Because of observations in practise (see e.g. [8] or [14]) the solutions of the form (4.15) could be considered
as the physically interesting one. We formulate this as a hypothesis.

Hypothesis: The solutions of the form ({.15) are the physically interesting generalized solutions of

(1.1), (1.2).

With this hypothesis the equation (4.26) provides some kind of choice condition for determination of
an H of physical interest. Note that this setting provides exactly the right H in the case if a smooth
solution exists on the whole domain Q (chapter 1). This method has been already intuitively applied in
[8] for some examples but without a proof that (4.15) is really a generalized solution.

We would like to point out a strategy how such examples can be calculated:

Strategy for the calculation of generalized solutions of the type (4.15):

1. For the H with (4.27) we calculate the minimizeres o of ¥[Q*; H,~, Q] with the help of the
geometric properties (theorem 4.2).

2. We check if equation (4.26) is satisfied for the calculated Q¢ and the corresponding H. Only these
pairs (H,Qg) we will continue to consider.

3. We check if there is really a C-singular solution on Qg (this could best be done with the existence-

nonexistence principle).
4. We form the function (4.15).

Further examples in [4] show that in general H has not to be uniquely defined. Finally, the author calcula-
ted also an example, which could be of interest for the understanding of the metabolism of plants (see [12]).
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