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Abstract: Short-time existence, uniqueness, and regularity results are shown
for the moving boundary problem of a free drop of liquid governed by the
Stokes equations and driven by surface tension. The value of the surface
tension coefficient is variable, not necessarily strictly positive, and transported
with the flow on the moving surface.

By a perturbation of identity approach, the problem is transformed into a
nonlinear, nonlocal first order degenerate parabolic evolution equation on a
fixed reference manifold. Its solvability is proved by deriving a priori estimates
and using Galerkin approximations.
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1 Introduction and problem formulation

It is the aim of this paper to give short-time existence, uniqueness and smoothness results
for the free boundary problem of Stokes flow of a liquid drop driven by surface tension
with nonconstant surface tension coefficient v > 0. More precisely, our problem can be
formulated (in dimensionless form) as follows: For given Q(0), one looks for a family
of bounded domains Q(t) C RY parametrized by time ¢ > 0 with sufficiently smooth
boundaries T'() which move with normal velocity V,(#) in the direction of the outer
normal n(t) and for corresponding functions (-, 1) € C?(Q(t),RN), p € C1(Q(t)), such
that

AT 4 VD) = 0 in (1),
div u(,t) = 0 in Q(¢),
(T(au(-. ), p(-t t)) = divrpy(3(-. 1) Vryzi(t)) on T(t), L1
fn ) (-, t)de = 0, (1.1)
Qe rotu t) de = 0,
Va(t) = (1) -n(t) on T'(#).



Here, Q(t) represents the domain occupied by the liquid drop at time ¢ > 0, @ and p
represent the velocity and pressure field, T' is the deformation tensor given by

(T'(u.p))ij = Oiuj + Oju; — pdij,

and (-, t) > 01is a scalar function on I'(¢) representing the surface tension coefficient. The
differential operators A, V, and div are applied with respect to the spatial coordinates,
the operators divy(;) and V() are the divergence and gradient on I'() with respect to its
Riemannian metric induced from the ambient space, and z(t) : T'(#) = R denotes the
embedding of T'(¢) into RN. Tt follows from the Green formula for the Stokes equations
that the dynamic boundary condition (1.1)s is of Neumann type (cf. [12]). Solvability
of the fixed-time problem (1.1);—(1.1)5 will be discussed below.

The model of Stokes or "creeping” flow is applied as an approximation of the full
Navier-Stokes equations in the case of small Reynolds numbers. Mathematically, a par-
abolic equation in the interior of the domain is replaced by an elliptic one, i.e. we
consider a quasistationary problem. As a consequence, the model reduces to a nonlocal
(hyper)surface motion law for the boundary T'(¢); in particular, no initial velocity field
has to be prescribed.

For a precise formulation of our results, we refer to Theorem 4.3 below and to the
remarks after Equation (2.9).

In the existing literature on this problem, most attention has been given to the case
¥(-.t) =~ = const > 0. For N = 2, families of explicit solutions have been constructed
by Hopper [9], and general existence results for the case of analytic boundaries have been
proved by Antanovskii [1, 2] and Prokert [13]. In [1], an exterior liquid domain (bubble) is
discussed. and a case of nonconstant, but strictly positive 4 arising from thermocapillarity
is also treated. All these result rely crucially on complex analysis methods which are not
available in higher dimensions.

For N = 3 and in the general case, existence results as well as additional statements
on smoothing of the boundary and on equilibria and their stability have been shown in
[8] and [18]. In the case ¥ = 0, sources or sinks (or other inhomogeneities) in the interior
of the liquid domain have to be included as driving forces in the model. For this problem,
existence and uniqueness results have been shown in [16]. In the case N = 2, a family of
conserved quantities is identified in [4], see also [10].

It is a common property of most of the work on the problem (1.1) that it is refor-
mulated as a nonlinear, nonlocal evolution equation. Depending on the setting, in some
cases these evolution equations are seen to be of order one and parabolic for v > 0 and
hyperbolic for ¥ = 0 (cf. e.g. [16]).

If one considers nonconstant 4, problem (1.1) has to be complemented by a description
of the evolution of 4 on the moving boundary T'(¢). As the surface tension coefficient is
a local physical property of the interface between the liquid and its environment, it is
natural both from a mathematical and a physical point of view to assume that its value
is transported along with the liquid particles at the boundary, i.e. to demand

%~(X(t:'):t) =0 on F(O) ¢
B 2 s ahe ) 12)

Here X (-,t) denotes the parametrization of T'(¢) by Lagrangian coordinates arising from
the motion according to the velocity field u, i.e. X is defined by

X(1.6) = (X(1.6).1).



X(0.8) = ¢

for £ € T(0), t > 0. Note that (1.1) guarantees that X (¢,(0)) = T(¢), hence (1.2);
makes sense.

For example, (1.1), (1.2) can be considered as a model for thermocapillary creep-
ing flow where the heat transport is slow compared to the deformation. Of course, in
more precise models one would have to include diffusive behavior of 3 or consider 7 as
dependent on the density of a surfactant which is distributed on the surface. It seems
reasonable, however, to consider the simpler situation described by (1.2) as a model
problem which already contains the essential aspects and difficulties.

The structure of (1.2) strongly suggests a so-called ”perturbation of identity” ap-
proach to the moving boundary problem. We will describe the moving boundary by
an RM-valued function ¢(-,) defined on the boundary of a fixed reference domain such
that ¢(n,t) represents the Eulerian coordinates at time ¢ of a particle with Lagrangian
coordinates 1. This approach is different from the one used in [8, 15, 16], where the defor-
mation of the moving domain is described only by variations of the boundary in normal
direction. Our approach avoids the unnatural geometric restrictions on the shape of the
moving domain which had to be imposed there. Thus, the results presented here are
generalizations of the earlier ones even for 4 = const. Tt deserves explicit mentioning,
however, that the RN-valued evolution equation which we will obtain here (Eq. (2.9)
below) instead of a scalar one (as in the earlier papers) is degenerate parabolic even for
strictly positive 5. This is due to the fact that the propagator F'(¢) of the evolution
equation is degenerate elliptic where the degeneracy occurs in the directions tangential to
the boundary while we have elliptic behavior in normal direction as long as ¥ is positive.

(Let us digress here for a moment to make some remarks about a modification of the
model: Assume that ¥ = o(p) is a function of the concentration p of a surfactant at
the surface I'(¢) where the surfactant is transported analogously to (1.2). In this case,
4 varies not only due to transport of the surfactant along the boundary but also due to
local variations of the surface area. The resulting evolution equation is also degenerate
parabolic for o nonnegative and nonincreasing. However, if ¢ is positive and strictly
decreasing, the degeneracy occurs only in the direction of divergence free tangential
vector fields. In this case, the evolution equation is parabolic for N = 2. Tt is intended
to discuss the details of this in a forthcoming paper.)

As in the earlier papers [8, 16], the existence proof will be based on the derivation
of a priori estimates in a (standard) scale of L2-type Sobolev spaces H™(I',RY) on the
reference manifold T (see below) and on Galerkin approximations. This is oriented at the
work of Kato and Lai on the Euler equations [11]. No results about parabolic smoothing
are obtained because of the degeneracy. Compared to [8] and to [16], some slightly more
subtle arguments and calculations are needed in the situation considered here. Due to
the degeneracy, no perturbation arguments like ”freezing of coefficients” can be applied.
On the other hand, the principal part of the propagator is nonlocal which is not the case
for ¥ = 0. Technically, this has the following consequences:

1. The calculation of the linearization F'(¢) and all corresponding estimates have to
be carried out not only at one fixed ¢ = ¢*, i.e. around one fixed domain, but
for all ¢ in a suitable neighborhood. This is the reason for the introduction of
the metrics g and g below which depend on ¢ and for the use of covariant tensor
calculus.



2. In view of the weak formulation of (1.1)1-(1.1)5, it appears natural to give an a priori
estimate for F/(¢) first in the space H'(T) (cf. [8]). However, the corresponding
natural scalar product involves differential operators that depend on ¢ which leads
to additional difficulties in the existence proof. To avoid this, we use the close
relationship of the propagator and the well-known Dirichlet-to-Neumann operator
of the Laplacian (with respect to g) which has a natural L%-a priori estimate.
Furthermore, the use of low norms necessitates estimates in norms with negative
index. These are given by duality arguments, using symmetry properties of the
occurring operators.

3. One has to use the following fact on the ”Neumann-to-Dirichlet operator” for the
(homogeneous) Stokes equations which links the normal component of the stress
tensor at the boundary to the velocity (see Lemma 3.5 below): In highest order,
the dependence is decoupled with respect to tangential and normal components,
i.e. tangential components of the Neumann boundary data contribute only in lower
order to the normal component of the velocity at the boundary and vice versa. This
is seen easily both from a Fourier analysis approach to the halfspace problem (cf.
[18]) and from the method of hydrodynamic potentials (cf. [12]), but we have to
give a different proof here which also provides uniformity of our estimates with
respect to g.

Parallel to [8, 15], we obtain a priori estimates in higher norms using a generalized
chain rule (Eq. (4.3) below) which is based on the geometric invariance of the problem
under reparametrizations. It directly provides the necessary commutator estimates for
the occurring nonlocal operators.

Although the propagator F’(¢)[] is a pseudodifferential operator, the calculus of such
operators is not used in this paper because of the considerable technical difficulties that
arise when one has to treat ”quasilinear” pseudodifferential operators with symbols of
finite smoothness on manifolds.

2 Transformation and evolution equation

The main aims of this section are to construct the nonlocal operator F. to prove mapping
properties for it and to show that for appropriate data, (2.9) is equivalent to (1.1), (1.2).

We fix the following notation: Let @ C RY be a bounded smooth domain and 5 > 0
a smooth function on T := 9Q. Let v° denote the outer unit normal on T' and Trr the
trace operator from function spaces on € to the corresponding spaces on T'.

For t € R, we denote by H*(T') and H*(T,RY) the usual L%-based Sobolev spaces of
order t with values in R and R™, respectively. The norms of these spaces will be denoted
by ||||£ If z is a function defined on €. we will write ||u||£ instead of ||Trru||£. For
t>0, HY(Q), H'(Q,RY), and ||||£ are defined analogously, but, differing from the usual
conventions, for z € LQ(Q) we define

/ zvdx
Q

ie. ||z||(_2t = ||7*2||(zr1(q))r Where j* is the dual of the embedding operator j : H*(Q) —

2|2, == sup
[Jol|¥=1




L2(Q). Note that fort < —1,i=1,...,N, and z € H'(Q)

Q Q T :
10:2l;" < C(llzllyyr + 2ll4 1) (2.1)
because of
‘/&-zvdm < ‘/ z0;vdx +‘/zw/fdl"‘
Q Q T
Q Q r r Q r Q
< ||z||t+1||aib'||—t—1 +C||z||t+%||vl|—t—% < C(||z||t+1 + ||z||t+%)||l’||—t

Concerning pointwise multiplication, the following estimates will be used throughout the
paper repeatedly, sometimes without explicit mentioning;:

=22 < Ozl (2.2)

for [t|<s.s>%. z€L*(M). veH (M),

M (2.3)

n
llz122 .. znll2" < CT] Il
i=1

for 0 <t <sjt <) si—(n—1)2 2 € H*(M), where M is Q or T, m = dim M.
In the case M = R* n =2, (2.3) is proved in [17], Ex. 1.11, the generalization to our
situations is straightforward. Note that for ¢ > 0, (2.2) is a special case of (2.3), for
t < 0, (2.2) follows by duality.

Moreover, we introduce a right inverse £ of Trr by £h := w, h € H%(F), where w
solves

Avw = 0 inQ,
w = h onT. }

We start by gathering some estimates for £h and the boundary values of its deriva-
tives. The emphasis is on norms with low index where trace theorems are not available
and elliptic estimates have to be obtained by duality arguments. (The existence of the
occurring traces is guaranteed as we consider only functions of sufficient smoothness.)

Lemma 2.1 (Estimates on &)
For any t € R, there is a constant C > 0 such that

T
€A + IVERIL_, + || VZER]|,_, < ClIAIIT

for all h € HY([') N H2* ().

Proof:
1. At first we show the estimate for ||€h||?+l. Fort > %, this is a standard result from
2

elliptic regularity theory. Suppose t < —%. Pick ¢ € H_t_%(Q) arbitrary and define v
to be the solution of the BVP

¢ in Q,

0 onl [~

Q Q
||U||—t+g < Cl|¢||_t_%

Av

v

By standard results,



with C independent of 4. So

/ﬂwwz

/ wAvdz
Q

/ hal,o’l} dr
T

r r Ty 9
< CHth ||6V°7"| -+ < ||h||t l|¢||—t—%
This proves
Q r
€~ 41 < ClIAIL;
for t < —%, and the same estimate for ¢ € (—%, %) follows by interpolation.

2. To show the estimate on TrpVEh, it is sufficient to show

9,0w]|Z,_y < ClIRI, (2.4)

because the gradient at the boundary can be represented in terms of normal and tangen-
tial derivatives. Eq. (2.4) can be proved using a similar argument as before or the fact
that [h — Jyow] is given by a pseudodifferential operator of order 1.

3. From the previous results and the well-known identity

8,2110 = —ArTrrw 4+ TrrAw — kOpw (2.5)

where —Ar is the Laplace-Beltrami operator on T' with respect to the standard metric
and « is the mean curvature of T one obtains the estimate

| en]),_, < CliAl

By decomposition with respect to tangential and normal components, the estimate on
Trp V2Eh follows from this and another application of the previous results. [ ]
Fix o > % and choose s > o + 4 integer. (The restriction to integer values for s
is just for the sake of simplicity.) Let &/ be a small open neighborhood of the identity in
H*+1(I',RN) which will be shrunken in the sequel whenever necessary without further
mentioning. For ¢ € U, set
¢ = g(¢ — Idr) + Idg

(with £ acting componentwise on R™-valued functions) and note that ® € C3(Q,RY) N
Diff(Q, ®(£2)) due to the Sobolev embedding theorems and the smallness of U.

Now set Q3 = ®(Q2) and let ¢;, i = 1, ..., N denote the standard unit vector fields on
Qs C RN, On this domain, consider the augmented BVP

—AUi+8Z-P+)\§ = 0 n Q@,
QiUi = 0 in Qg,
(0;U7 + 6]-Ui + /\ZQJ)UJ' = divr,((yo <I>_1_)qu,azi) on Ty, (2.6)

fnéUida: = 0,
Ja, (O:U7 = 0;U) dx = 0,

i,j=1,..., N, for (sufficiently smooth) functions U/!, P, and real numbers X}, /\éj with
AY = =X, where T'g := 0Qg, divr, and Vr, denote the divergence and gradient with
respect to the Riemannian metric induced on T'g from RY, 2% denotes the i-th component

of the embedding T'y — RN, and v is the outer unit normal on T'g.



Let g denote the pull-back of the standard Riemannian metric from Qg to Q by ®
and g the metric induced by g on T'. In cartesian coordinates on © and coordinates from
a (regular) local parametrization (¢!),i=1,..., N, on T, these metrics have representa-
tions

gij = 0:®"0; 0" Gap = 0a€'gi;05€ .
Furthermore, we set G = (gi;), ¢ = detG, ¢" = (G™');;, and introduce analogous
notation for g. Moreover, let

ab = 0(@ 1) 0 ® = ((D®) " 1)ir.

On Qg we consider the contravariant tensor fields U := U'e;, Apy = Aie;, and Ay =
)éjei ® ej, where @ denotes the tensor product. Finally, by v := ®*U and p := ®*P
we denote the pull-backs of U and P to Q by ®. The cartesian coordinates of u will be
denoted by u’.

Lemma 2.2 (Transformation)
With the notation introduced above, (2.6) is equivalent to

—VEV ! —|-Vzp—|-/\1c1k =0 in Q,
Viub = 0 in Q,
(Vi + Viu' — g'ip + Mstaial)n; = \/L; 1003757 05®%)  on T, (2.7)
f% g@kq)’ Ede = 0
fﬂfak@al@( _VhuFyde = 0
where i,j = 1,..., N, Vi denotes the covariant differentiation operator (in cartesian

coordmates) and n denotes the conormal vector field on T, both with respect to g.

In (2.7) and in the sequel, unless otherwise stated, the usual conventions of “index raising”
and ”index lowering” are applied with respect to g, i.e. V¥ := g*iV;, n; 1= g;;n? etc.
Proof: Without reference to coordinates, (2.6) can be written as

—TI’12ﬁ1VVU + ﬁVP + A(1) = 0 n Qq;,
VU = 0 in Qg,
Traa((Sym(§VU) — $1dP + A(Q)) &br) = w'e; on Iy,
fniTr(UQ@bei)dw = 0, i=1,....N,
fsn TrTri(Antisym(§VU) € be; & bej)dx = 0, i,5=1,...,N,

where

w' = divr, ((y 0o 1) Vr,zt),

V. 4. and b denote the operations of covariant differentiation, ”index raising” and ”in-
dex lowering” with respect to the standard metric on Qg, and Tr, Sym, and Antisym
denote trace, symmetrization and antisymmetrization. (Where necessary, indices at the
operators are used to determine to which of the tensor indices the operations refer.)

To the first three equations, ®* is applied while in the last two we use the integral

transformation formula
/ god:c:/ V9P pdz.
Qs Q



All occurring operations commute with ®* in the sense that for tensor fields on Q, the
operations V, #, and b are to be understood with respect to g and ®*divy, ®, and
®* VD, are the divergence and gradient on T with respect to g. Using this and

®*v =n, (Q*ei)k‘:af, gjka _8<I>Z

one straightforwardly obtains (2.7). [ |

All geometric quantities occurring in (2.7) will be considered as functions of ¢ (al-
though the argument will be suppressed in the notation). Additionally, we recall the
definition of the Christoffel symbols

rjj = %gkm(aigjm + 9igim — Omgij)- (2.8)
and define
Wg = :/E :
Vg(1d)
S N )

S

and f:=(f1..... fV). Note that wydl is the measure on I' induced by g.

Lemma 2.3 (Geometric quantities)
Fori,jk=1,....N,a,f=1...N —1 and U sufficiently small we have

gij.9,d5.\/F € C=U, HT3(Q),
Gop: 37 G55 wgmy € CT(U.H(T)),
e Ot HTHY),
ffoe o aTHT).
Proof: The spaces HH'%(Q) and H*(T) are Banach algebras for ¢ > Y=L This fact (for

various ) is the basis for the asserted results. To begin, the qtatement on g;; and g,g is
immediate from this. Analogous results hold for ¢, g, G and G. For any Banach algebra,
the inversion is a smooth operation on the set of its invertible elements. Application of
this result to G, D®, and G in the Banach algebras H*+% (Q, L(RN)) and H*(T, L(RY)),
respectively, yields the statement on g'/, a;'-, and §*#. The statement on Ffj follows now
by (2.8). The statement on /g, g7, and wg is implied by the fact that the superposition
operator generated by the square root is smooth on the positive cones of HH'%(Q) and
H*(T'). The statement on G~ 7 follows again from the smoothness of the inversion. From
this, one gets the statement on f*. Finally, the statement on n; is obtained from the

identity
ni = Y9 a0
bl



To describe the dependence of the solution of (2.7) on ¢, we introduce the spaces

Vo= () ]ij=1,....N. ¢V €R. ¥ = —cl'},
X, = HI(QRY)x H=2(Q) x (RY x V),
Y, = HUTHQRY) x HEE(Q) x HEHT,RY) x RY & v

for ¢t > % and the operator L : U — L(X;,Y;) by

—VFVu' + Vip+ Maj,
Vz-ul ]
L(@)(u.p. N) = | (Ve + Viu' — gp + Maja])n;
Jo V90, da
Jo VIOR P DI (VEu — ViuF) da

We will denote the canonical projection of X; onto its i-th component by II; and by Ej
the operator in L(H'~Y(I',RY),Y;) mapping H to EsH := (0,0, H,0,0). For Banach
spaces E and F, let L;5(E, F) denote the set of continuous isomorphisms from F to F'
with the topology inherited from L(E, F).

Lemma 2.4 (Solvability of (2.7) and dependence on ¢)
For sufficiently small U,

LeC™ (u ‘CiS(XS:YS))'

Proof: Due to the Banach algebra property of the occurring Sobolev spaces and Lemma
2.3, one immediately gets L € C™ (U, L(X;,Ys)). As Li5(X,,Ys) is open in L(X,,Y5),
it remains to show that L(Id) is an isomorphism which is a regularity result for the
(augmented) Stokes equations with Neumann boundary conditions. Tt is proved in [§],
Lemma 2(i). [ |

For ¢ € U, we introduce the linear operators D® on H*+z(Q,RY), H*~2(Q,RN),
and H*~YT,RY), S(¢) on X, and T(¢) on Y, by

(D®z)! = 09;0'%7,
S@)(u.p.A) = (DPu,p.A),
T(¢)(F. K, H,Mi,Ms) := (D®F, K, DOH, My, M>).

By the same arguments as above, one shows

[p DB] € C=U. Liy(HT2(QRN)))NC=U, Liy(H2(Q,RYY))
NC™ (U, Lis(H*~N(T,RY))),

C* U, Lis(Xs)),

C* (U, Lis(Yy)).

[ — S(9)]
[6 = T(¢)]

Moreover, we introduce

€
€

A € C*WU,LH~YT,RN), H*(T,RN))), A(s)

F e C=U,H*(T,RY)), F(9)
voe C=U,H YT, RY)), (o)

TreMy L(¢) ™! Es,

DO A(4)(DD)~" f(4),
D®n.



We remark that v = v o ¢.
With this notation, we introduce the initial value problem

6 = F(o). .
600) = o } (29)

with ¢¢9 € U. With a slight abuse of notation, we will denote by ¢ both elements of U
and functions of time valued in If; the interpretation should be clear from the context.
For our present purposes, we regard F as a function of ¢ only and consider v to be fixed.
Define

by = S(¢0 — Idr) —+ IdQ,
(I)(t) = g((f)(t) — Idr) + Idg.

Using (3.11) which will be proved below, it is not hard to check that (2.9) is equivalent
o (1.1), (1.2) with data

Q) = Bo(Q),
o vody!

and solution

(@) (),

®(t), I L(g(t)) "' E3(DD(t)) ™" f((1)).

(o L(¢(t) " E3(D®(t)) ™" f(o(t))) o ®(t) ™",
yoo(t)~!

2= =
\bL

T 2=
I

°¢

for ¢t > 0.

3 Linearization

Our next aim is to study the linearization of (2.9). As a preparation for this, we give
estimates for the (transformed) Neumann BVPs both for the Laplacian and for the Stokes
operator, i.e. for problem (2.7). (The former has to be treated because it will occur as an
auxiliary problem in the discussion of the Stokes equations, cf. e.g. [6].) The emphasis is
on estimates in weak norms and on the uniformity of all estimates with respect to ¢ € U.

The Laplace-Beltrami operators on (22, g) and (I', g) will be denoted by Ag and Ag,
respectively. Moreover, we set J, := n*Ir0;.

Lemma 3.1 (The Neumann problem for the Laplacian)
For¢ €U, (F.H) € H*~%(Q) x H*~'(T), the (augmented) BVP

Agp+p = F in Q,
Onv = H on T,
fﬂ Vavdr = 0,
y o= fﬂ VIF dx — fr wgH dT

Jo Vi da

10



is uniquely solvable, and fort € [—1,0 + 2] there is a constant C = C} independent of ¢
such that

T Q T Q Q T
Il + i,y + 90y + 192y < C (IFIE 5 + 1)

Remark: For ¢ large enough, the estimates of various terms on the left follow by trivial
estimates and the trace theorem from the ones for ||1/||?+%
Proof:

Step 1: We prove the estimates for ||b||£ and ||b||?+l Fort > 1, the result is standard
and follows from a discussion of the weak formulatii)n, elliptic regularity theory, and
interpolation. (To see the validity of the regularity results in the case of general g, it is
also possible to apply a perturbation argument as in Lemma 2.4.)

It remains to treat the case t < % For arbitrary ¢ € H~*(I'), consider the problem

Agw+n = 0 in Q,
Ohw = é¢ on I,
fn Vowdz = 0,
n o= Jrbdl

Javade

As —t > —15, we have

Q T
? s < CIYIT,.

r
w| —tq1 T |

w

By Green’s formula,
/vwdl" = /wgl=8nwdrz/wganvwdr+/ VI(Agw v — wAgy) de
r r r Q '
= /ngwdF—/\/ﬁdex,
r Q

hence
r r Q Q
[odr| <o (U il +1FIE ol )

which implies

T Q T
Iellf < C (WP 5 +IF s ) -

Analogously, for arbitrary y € H='~2 (Q) consider the problem

Agw + 17 ﬁx in Q,
Opw = 0 on T,
Jovgwde = 0,
) = fﬂxda}

Javade

The solution satisfies an estimate

r
Zeq1 T

(]

w

Q Q
—t+3 < C||¢||—t—%'

11



Using Green’s formula as above, we find

/vxdw:/\/ﬁdex—/ngwdr
Q Q r

Q Q T
Ielifys < € (IFIE s + IHIE,) -

Step 2: Due to (2.1), we have
r
)

for t < —%, and the same estimate is trivially true for ¢ > 1. The estimate for ||VU||?_1
2

follows from this by the results of Step 1 and interpolation. Finally, due to the decom-
position of Vv at the boundary with respect to the normal and tangential components,
one has

which implies

[|Vv

v

v

Q Q
t—%SC( t+%+|

T
[[Val,_, < C(

L)

v

This implies the estimate for ||V’U||£_1. [ |

Lemma 3.2 (The Neumann problem for the Stokes equations)
For¢ €U, (F. K, H, My, Ms) €Y, set

(u,p, ) := L(¢)"Y(F, K, H, My, M>).
Then, fort e [—%, o+ 2] there is a constant C' = Cy independent of ¢ such that

T Q T T Q
lelly +Mlelly s + 11Vull_y + el + [Pl 2y

Q - 1T T
< c(IFI 5 +11K KNy + I + (M + M)

Lt IIVE

Q
t—%—{—l

Remark: As in the previous lemma, various terms, both on the left and on the right,
can be omitted due to trivial estimates and the trace theorem if # is large enough.
Proof:

Step 1: Suppose ¢t > % For g euclidean, the result is proved in [8], Lemma 2(i); the
result for general g follows again by a perturbation argument.

Step 2: We first consider the case t € [% %) K = 0 and prove the estimates for ||11||tr,

Q Q
I|“||t+%: and ||p||t—%'
The equation L(¢)(u,p, ) = (F,0, H, M1, M») implies its weak formulation

Ly (6)(u,p, \) = ([vr—>/ VIF v d:n—{—/ngivi dr],0,0,0), (3.1)
Q r

where

Ly(¢) : X1 — HY(QRY) x HY(Q) x RN x V
is given by

[v Jo vVa(Viu + viyi)(ij + Vi) dz + Jo VapViv' dx g
+A] [ /90; P da
ij i ok, _ ol kY J.
L()(w.pX) = A S SO (TS = V) ]
fﬂ \/ﬁak(biuk dx

[ JTOR® 8,7 (VFu! — VHub) da

12



Arguments parallel to those in the proof of Lemma 2.4 show that
Ly € C™ (U L(Xy. H'(QRBY) x H(Q) x BY x V)
and
6= f v /rwgfiyi drjje c*= (u,ﬁ(H—%(r,mN), Hl(Q,RN)’)>. (3.2)
Tt is shown in [8], Lemma 1(i), that
Ly(1d) € Lis (X1, HY(Q.RY) x H(Q) x RN x V).

Hence

Ly € C* (u,ﬁis(x%, HY(Q.RY) x HO(Q) x RN x v)).

Together with (3.2), this implies our estimate for t = % Fort e (% %) the result follows
by interpolation.
Step 3: Suppose t < % and K = 0, pick ¢ € H*~}(I',RY) arbitrary and set

(v.g.1) 1= 1(6) ™" Fa (L g0 )
Then, due to the regularity results above,

v

Sors gl g s+ lal Lol < ClIL, (3.3)

By the Green formula for the Stokes operator (cf. [8], Eq. (2.3))

. |
/¢]u3 ar = /wgui—g”lpf dr
r r “y

- / waui(Vied + Vit — glip 4 pblajal)n; dT
T

/Q\/g(—vjvjuwvip)ui dx
+/r°v'g”i(vi“j +Viu' - g¥g+ pblajal)ny dU
_/Q\/g(—vivjuwviq)ui dx
= /Q\/E(FZ —afc)\lf)vi dzx
-|-/rwg(Hi-|-(/1]§l —)\gl)a};a{nj)vi dF-l-/ﬂ\/ﬁulfa};ui dz.
Using
/Q\/ﬁ)\lfafcwdx = /\’f/n\/ﬁaﬂ%i dz =0,

[ Varkads = bt

13



and the Stokes theorem in the form

/nggla;;a{njvidr = A’;l/ V90: 50,8 (Vivd — Viv')dx = 0,
T Q

/rwg,u];la};a{njvidr = ,uéerfl
we obtain
Awwa\sc@mgw&%ﬂmﬂmmﬂﬂmwmwmmo
< C(IFIE s + IHIE, + 18] + 0]} 1911

where the trace theorem and (3.3) have been used in the last inequality. This proves the
desired estimate on ||u||£
Analogously, pick y € Hs_%(Q, RY) and set

(v.q.1) = L(9)™" (Z50727.0.0.0.0)
Due to the regularity results above,
19124+ llal s + il + 12l < ClIxIIE, s (3.4)
By the Green formula,
/ﬂuixi de = /Q\/ﬁF%Z dx + /rngim dr + ph MF 4y Mk
and thus

/ 'y dz
Q

Q Q r r
< C (I 1ol s+ el gy + | Ma] + o1 Mo])

Together with (3.4) and the trace theorem, this yields the desired estimate for ||u||?+l.
Finally, pick € H"’_%(Q) and set
, — -1 1
Due to the regularity results of Step 1,
19115+ llall? + s + lpez] < Cllnl (3.5)

By the Green formula,
/ pndr = —/ VI(Oimu® + Fiuv;) de — / wgH v dT — p§ MY — pb M5
Q Q T

and thus

‘/ pndz
Q

Q Q Q Q T T
< C (a1l + UFI Nl + 1T s llolls + s [Ma] + a1 Ma])

14



Together with (3.5), the previously given estimate for ||u||? and the trace theorem, this
yields

Q Q T
IpI1, < € (IFI, + 1N 5 + 1M ] + | Mo])

The desired estimates for ||p||? follow from this and the estimates of Step 1 by interpo-
lation.

Step 4: We consider the case (F, K, H, M1, M) = (0, K,0,0,0). Define ¢ to be the
solution of the Neumann BVP

Agp = K in Q.
. _  JovoKds
Ot = Fagar o0 T.

fn VI dx
Hence
VAWV = (VAV = VIVF) Vet + VIK = R MV, ¢+ VIK = RV, + VK, (3.6)

where leki and R denote the coordinates of the Riemann and Ricci tensors of g.
respectively. We extend the outer normal vector n differentiably to a neighborhood of T
and keep the same notation for the extension. There we have

Viviyn; = Vi(Viyn;) — VIyVin,.
On T, the first term on the right is a g-normal vector because Vi¢n; = 8, is constant
along I'. Hence, introducing the orthogonal projection P9 onto the tangent bundle with
respect to g. given by . . '
(P9v) = 0,0'GP s vi,
and using the transformed version of (2.5), we find on T
ViVign, = ningV*Vign; — (PI(VI¢VIn;))
= /(TrrAgl — AgTrry — ki) — (PY(VIVIng)) . (3.7)

where k is the mean curvature of T' with respect to g.
Thus, setting ¥ := u — V9 we obtain

L(¢)(@.p.X) = (0,K.0,0,0)— L(¢)(V¥},0,0)
RV ¢+ VIK T
0
= | 2 (_ni(TrrK — AGTrry — kOpt) + (Pg(viwgnj))")
Jo VIR VEY da
0

Due to Lemma 3.1, we have

iy ) ) . v
| RV + VK|, + H_n?(Trr K — AgTrry — k0n1) + (PI(VI¢:V9n;)) H

t—1

+

/ VI®' VY dx
Q
C (IFHI 3 + IV + 1l + IVKIS 5 + KT )

c (] 1)

15

IA

K

IN

K

Q 1182
t—1 +||VK t—32 + |



To estimate u and p. the results of the previous steps are applicable, and the asserted
estimates for u follow from u = u + V% by another apPIication of Lemma 3.1.

Step 5: It remains to show the estimates for ||Vu||,_, and ||p||£_1. Fix 2 € T and
choose local coordinates in an RN—neighborhood M of z such that 0y,...9n_1 are tan-
gential derivatives on TNM and Jy is normal to TN M. Differing from our usual notation,
during this step of the proof, u’, T", gij. n; etc. will denote components with respect to
these local coordinates. Moreover, without loss of generality we demand n; = 6V and
gij = 0;; at . Tt is sufficient to show (with obvious notation)

K f_l) (3.8)

N

1 T T
S IVNEIEM - (IpIE0 < C (Jlull} + 11H - +|
i=1

I'nM

< Cllull. j=1.....N —1. Note that on T

because obviously ||6)j u’ H
N-1

("N Vv 4+ g NVt — gp)n; = H'— Z (9" Vil —{—gjkvkuz)nj,
k=1
N-1

Vel = K- Z Viu®.
k=1

These N + 1 linear equations constitute a system for (Vyu',..., Vyul¥,p) whose coef-
ficient matrix at 2 is

1

2 -1

10
which is invertible. Using arguments similar to those in the proof of Lemma 2.3 and
estimates for the right-hand side

N_1 rnM N_1 rnM
‘Hi — Z (g* V! +gjkvkui)nj +||K — Z Viu®
k=1 t—1 k=1 t—1

r r -1 I
< (Illly +1H + 1K )

we get (3.8). [ |
Using the weak formulation in Step 2 of the proof we determine the auxiliary param-
eters )\If and Aél.

Lemma 3.3 (Auxziliary parameters)
For ¢ €U, let (u,p, X) be the solution of

L(¢)(u.,p,A) = EsH.

Then
v _ JregHiadt (3.9)
! fn\/-ad]3 ’ .
1 . :
e — 7</U,H lgi — ¢Fql dr—/ Mgl — ) oF dx). 3.10
2 210\/5(“ i gHi(0'ay — ¢"aj) Q\/ﬁ( 1 1 ) ( )
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In particular,
M3L(¢)~"(D®)~" f(¢) = 0. (3.11)

Remark: The last statement shows that the auxiliary parameters in (2.7) vanish, i.e.
its solution (u, p) is indeed a solution to the Stokes equations without unnatural forcing
terms.

Proof: From (3.1) we get

/ \/ﬁ(viuj + vjui)(v“;j + Vjvi)dx + / \/ﬁpv“ﬁ' dx
Q Q

+0 / V30 @' dx 4 x;’/ Va0® 8,87 (VF! — V'e*) de = /ngivi dr
Q Q T
forallv € HY(Q,RN). Fork =1,..., N, setting v = al, yields V;v* = 0 and hence (3.9).
Similarly, for k,l = 1,..., N, setting v* = ®'al — ®*a! yields V;v' = 0, Vju; = —V,v;,
Vv — Viv; = 28i<1>k8j ®', and one finds (3.10). The last statement follows from setting
(in local coordinates)

H! = \a/%@a (\/E'@Qﬁ@gq)r)

and calculating the integrals

. .l — ~of _
/1"ngde dr = / \/T \/_79 03P ) dl =0,
g Hi(dlal — ¢*alb) dl Oa Gy§°P 0" ) dr
/1_‘-‘*9 (¢"a) — ¢"aj) r M'g“(Id)‘/’ (\/5’7!1 2 )

[ st (Vi) ar o

where integration by parts on T has been used in the first line. ]

Lemma 3.4 (Linearization of f)
We have .
(D®)~" f'()[h] = 7A3(R'T")n + Ri()h,
where R1 (@) is a first order differential operator whose coefficients are smooth functions
of ¢ and its derwatives up to order 3.

Proof: Suppressing the argument ¢ in the geometric quantities, we have due to a well-
known result in the theory of (hyper)surfaces (e.g. [5], Theorem 2.5.1)

[ = 57700705 + 17 = T a6 + 277 Dapd" 7.
where k 0 1 is the ((V — 1)-fold) mean curvature of I's. So
(D®)~' f'[h] = 437 Baph"T*n + Ro(e)h,

where Ry(¢) is a first order differential operator whose coefficients are smooth functions
of ¢ and its derivatives up to order 2. On the other hand,

WA = 0. (VGG (05 T + K50 ))n

7

= 7§ 0aph*vFn 4+ 7§*F 0, (R* 950" )n+7§6 (V75%%) )05 (R*TF)n.

17



This proves the lemma. u
We set N _
A(¢) := D®A(¢)(D®)~! = Trp Tl L(¢) "L s,

where _

L(¢) :=T(¢)L(#)S(¢)~"
corresponds to the augmented BVP (2.6) transformed to Q iomponentwise, 1.e. without
regard of the tensor field character of U, A(i) etc. We have L € C (U, L;5(X;.Y;)) and
(cf. [8]. p. 321)
—ak Oy (ahOru’) + akOp + N T

ak O’

L(g)(u.p. \) = | (Trr(afduud + akdpu’ — pdij) + X )9

Jo /g’ dz

fﬂ \/j(afakuj — a?@kui) dx

Now, by Lemma 3.4
F'h] = A'[h)f+ Af'[h] = Rsh + Ryh + DOA(yAy(h' D" )n)
= Rsh+ Rsh + DOA(yA5(k'ni)n),
where k is defined by k™ := ah?,

Rsh = A'[R]f,
R4h = Aleh

Then
(FUL D) ey = [ ()R dT
= R5+/1_Ai('yA?](kjnj)n)ki dr
= Rs+/rAi(7Az,ln)(zni+(ng)i)dr
= R5+R6+/rAi(7A?]ln)lni dr,

where | = kjnj and

Ry = (R3h + Rah, h)HU(F:]KN)’
r
Thus
7 ) 8 1
(T/[h]rh)Ho(r?]KN) = Z Rm +£n2Az(A3(7l)n)l dl' = Z Rm - §£A0(7l)l dl’
m=5 m=5
8
1 l l
= Z Ry — __/ng0 (x—) —dT,
m=5 2 r “g “g

18



where

R; = /niAi(['y,A'g]ln)ldr,
r
[v:Agll = Ayl = Ay(HD).
. 1
Rs = /(niAl(A—g(’yl_)n) + §A0('yl))l dr,
r
X = g

To define Ay = Ag(¢), consider the Laplace-Beltrami operator Ay on (£, g) and note
that
(Mg Tor) € O (U, Lo (FH3(Q). 7(T).

which can be proved in analogy to the corresponding results on (2.7) above. We set
AU(QS) = aﬂ (Ag: Trr)_l(o, )
i.e. Ag(¢) is the Dirichlet-Neumann operator on the boundary of the Riemannian mani-

fold (Q, g).

The corresponding second Green formula implies the symmetry property

/ wgAo(t)y dT = / wgAo(mi dT Vi, q € H(T).
I I

Consequently,

8
1
(j:/[h]’h)H“(I‘JRN) = E Ry — E/]_“QXA0(¢)¢ dr (3.12)
m=5

with ¢ = J—g = ;—ga:'nni = 0;¢"nIh™.

To estimate Rg and Rg we need an additional result which may loosely be stated as
follows: Up to lower order terms, A has diagonal structure with respect to the decompo-
sition in tangential and normal components:

Lemma 3.5 (”Diagonal structure” of A)
There are constants C such that

(i)
|PIA(Rn)|l; < C|lhll;_,, € {02}
foro €U, he H-UT),
(ii)
Ini A (w) |5 < Cllwl|L

for ¢ €U, we PI(H*=(T,RN)).
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Proof: Fix ¢ €U, h € H*7'(T) and set
(u,p. A) := L((/))_lEg(hn).
Then, by (3.9), (3.10),
il + o] < ClIAIIL,. (3.13)

There is a function d € H*(Q) such that Trrd = 0 and d;d = nj on T'. (Near T,
d can be chosen to be the distance function from ' with respect to the metric g. The
statement about its smoothness and the existence on the whole of Q follow then from
[7], Lemma 14.16, together with straightforward transformation and cutoff arguments.)
We extend n to Q by setting n; = 9;d.

Set .
him—— igh dT
fro.;gdl"/r“g

and consider the (augmented) Neumann BVP for the Laplace-Beltrami operator of g

Agp = 0  inQ,
20, = h—h onT,
Jo Vo de = 0.
By Lemma 3.1,
_—
lls < Cllh=R], < Cliallg. (3.14)
2+, < CliRlL, (3.15)
with C independent of ¢ € Y.
Now set
o= Ynt — dVie,
q = —?Vj¢nj.
Note that
PITrrv =0

and (cf. (3.6))
VIV Vi = (VIV = VIVI) V¢ = R 7'V = R* V.
Now

—ViVir' +Vig = —Agyn’ —2VIyV;n' — ¢yVIV;n
+VIin; Vi + 207V Vi + dVIV; Vi — 2V Vnd — 2V,4Vn;
= 2VI(Vn' + Ving) —¢ViVn' + Vin; Vi + dR* Vv,
Vil = Vin' +4Vin' —n, Vi — dA g = V;n',
Vivd + Vil —gilq = Vignd + Vign' +4(Vind + ani)
—n'Viy — nd Vi — 2dVIVIY + 260V Eny
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Trr(Vin + Vit — gijq)nj = Trr(d;(vinj + ani))nj + (h— h)ni,
/ VIOR®F de = 2/ V0K @ Yn* dx,
9) Q

/ \/ﬁakcbial@j(v%l — Vli;k) dr = /wgakq)i@lq)j(njvi — nivj) dl' = 0.
Q T

Set (w,s) := (v, q) — (u,p) and note that
PI9A(hn) = P9Trru = —P9Trrw
and
L(w,s,0) = L(v,q.0) — F3(hn) 4+ L(0,0, A).
The calculations above and (3.13), (3.14) imply

12(0.0. Nly, < C|I||L,.
IL(v.q.0) — Es(hn)lly, < Cllhlly.

Thus, by Lemma 3.2 and the trace theorem,

|PIA(Rn)||y = || POTrrw]ly < Cfl(w. 5.0)|x, < C|lAl;.

Similarly, using Lemma 3.2, (2.1), and (3.15) one gets
IPIA(Rm) g < C[Trrully < ORI,

Hence (i) is proved.
To show (ii), note at first that A is symmetric with respect to the L2(I', RV)-scalar
product induced by g on T, i.e.

/wggoiAi(X)dF:/ngi(go)Xi dr. (3.16)
T T

This fact is a consequence of the Green formula for the Stokes operator with respect to
g. cf. the proof of Lemma 3.2.

Now fix w € PI(H*~1(I',RY)) and pick ¢ € H*~}(T'). Using (3.16), the orthogonality
of PY and (i) we get

/rgoniAi(w) dr‘ = ‘/ro.;gAi (ﬁ_%gpn) (PIw); dr‘
/rwg (PgA (ﬁ_%gon))i (P9w); dT

r
~_ L r r r
C|[Poa (5= ¥en) |, IlwliZ, < Clells e 2

IA

This implies (ii). [ |
The following estimate plays the key role in the analysis of (2.9).
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Lemma 3.6 (LQ-a priori estimate for F')
There is a constant C such that

(F'(6)[h]. h)grormm) < ClIRJIS

for allh € H**Y(T,RN) and ¢ € U.

Proof: We will subsequently give the necessary estimates for all terms occurring in

(3.12).

Suppressing the argument ¢ again, we have

A'[R)f = =Terly L™ L' [R) L™  Esf = —=Trr I SL™' T~ L'[A]2,

where z := SL=1T~1FE3f. Note that

d¥'(9)[h] = @ (9) (€],

k!

where Ej (¢) is a first order differential operator whose coefficients are smooth functions
of the first derivatives of ®. Corresponding results hold for 7'(¢)[h] and ¢'(¢)[h]. Conse-
quently, using (2.1), (2.2), Lemma 2.1, and the fact that z is uniformly bounded in X

with respect to ¢ we find
¥ r
”Ll[h]Z”Yt S C”th : te [%:5]
Q ~
- HVHgL’[h]z

HHlf’[h]z : + HHgf'[h]z

+Hn3'i'[h]z

T ~ ~
LT[Rz + [T/ [A]z| < CAI|L

~ Q r
HHQL’[h]z <Ol

Interpolation yields

Hnlf'[h]z

Q ~
+ Hnﬂ/[h]z
-3

Q ~
+ HVHQL’[h]z
-

~ T ~ ~
-|-HH3L’[h]z | L[| 4 T/ (]| < ClAIl;

for t € [—%, o+ 2]. In particular, Lemma 3.2 yields

T e r T
IRshlly = | X111 < ClRIE.
Lemmas 3.2 and 3.4 yield
- — r
|Rah|ly = | SL= T~ B3 Ryb||, < C|IA]l5-

Lemma 3.5 (i) with ¢ = 0 implies

2
|Re| < G| PIA(yAZLn) |3 I1k]l5 < CllvAgl | lIEIlG < ClIRJlG -
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The commutator [y, Ag] is a first order differential operator in I' whose coefficients are
smooth functions of ¢ and its first derivatives. Hence, by Lemma 3.2,

|Ral < CJl ATy Aglim) D115 < €y A" 15 < Cmgis”. (3.21)

To estimate Rg, consider the BVP

Agl = 0 in Q,
¥ = 14/ onT.

It follows from standard results that this problem is uniquely solvable, and dual estimates
as in the proofs of Lemma 2.1 and (3.15) together with an interpolation argument show
that there are constants C independent of ¢ € If such that
Q r T r ;
)]s + 102 ¥l_y < Cllyllo < CllAllo- (3.22)

With w := VI¥, we have in Q (cf. (3.6))

Viviw' = RFV,U,
Viwt = 0,
and on T (cf. (3.7))
(Viw! + Viuw'n; = 2VIVIUn; = 2VFVIWn;ngn’ + 2P9(VI(VIIny))

= —Ag(a)n’ = k0, U’ + 2PI(VI(VIUn;))'.

Setting (u.p, A) := L™ E3(Ag(vl)n) we obtain

. 1 . .
n; A" (Ag(yl)n) + §Ag(7l) =n;Trr(u' + w')

and )
RNV, U
. 0 . .
(u+w,pA)=L""| —k8,Un' + 2PI(VI(V)Uny))
fy /TR DV da
0

Using (2.1), Lemmas 3.2 and 3.5 (ii), and (3.22) one finds from this

i NI 2
Rl < Clfms(u + w515 < €Al (3.23)

To estimate the last term in (3.12), we choose an extension of y which will be denoted
by the same symbol such that x € C?(Q) and x > 0. We set u := (Ag, Trr)~'(0,¢) and
note that, by dual estimates as above,

Q T T
Il < Iy < s

with C independent of ¢ € Y. Then

/ngA0(¢)¢dF: /wganuwdr: / VIViuVi(ux)de = I 4 I,
T T Q
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where

L = /\/ﬁxviuviudag:/\/ﬁxg(Vgu,Vgu) dx >0
Q Q

I, = /\/ﬁuvzuvixdm: 5/\/§V1(u2)vixda:
Q Q
1 1
= —§Aﬁ112Angx+ §/ro,g¢28nxdl“

2 2 2
> —Cllully = Clllly > =Cliallg -

Together with (3.18)—(3.21) and (3.23), this proves the lemma. [ |

4 Chain rule and main result

To derive estimates like the one in Lemma 3.6 for stronger norms, we will apply a chain
rule based on the invariance of our problem under reparametrizations. For a precise
formulation, we recall that the right hand side of (2.9); depends not only on ¢ but also
on the surface tension coefficient 4, i.e.

Flo)=:G(d.7).

where

G €O (U x H*(T), H*(T.RY))

and the dependence on the second argument is linear.

We recall that
g(¢7) = Uqu> ° ¢:

where (U, P, A) solves (2.6). Let ¢ € Diff™" (T'), ¢ot) € U and set By := Ida+E(pory—Idr).
Then, because of ®(Q) = @, (Q) and Yoo (o)) ' =y0¢~ ",

G(po,yo) =Ulrgogoyy =G(g,v) 0. (4.1)
Let Dq,..., Dy be N smooth vector fields on I, identified with first order differential

operators. such that
span{Ds,..., Dy} =TT Vz eT. (4.2)

For example, one can choose D; as orthogonal projection of T x {¢;} on TT. Then, for
all n € N, the scalar product (-, ), defined by

(u,v)p = Z (D%u, D*v)gory, D*:=D{" ... Dy, l|al:=a1+...an,
lo|<n

generates a norm on H"(T) which is equivalent to the usual one. This follows (via
localization) from (4.2) and the compactness of T.

Each D; generates a one-parameter group of smooth diffeomorphisms ¢ +— /i. For
any ¢ € U N H*T%(T), there is a small interval 7 around 0 such that the mapping
t (Godl,youl)isin CH(I,U x H*(T)). Setting ¢ := ¢i in (4.1) and differentiating
with respect to ¢ at ¢ = 0 yields

DiG(¢.7) =G'(6.7)(Di¢, Di)]
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for all ¢ € U N H**T2(I',RYN). Note that this formula can be interpreted as a generalized
chain rule for the nonlocal operator G as it links the spatial derivatives of G(¢, ) to those
of ¢ and v. More generally,

G(o.y) = G'(6.7)[(D%¢, D*)]
+3° S Car a6 ) (D 6. D), (D6, D)

k=2a1+.. f+ar=a

(4.3)

for ¢ € U N H3+|a|+1(F,IRN), where the second sum is to be taken over all additive
decompositions of a with nonzero multiindices a;. In particular, F is a smooth map
from U N H*Hlel+1(T, RY) to Hetlel(T, RY). For a proof of this (in a completely parallel
context) we refer to [14], Lemma 6. As G is linear in the second argument,we easily find

G0, 7) (D™, D™7)...... (D¢, D)) = FE($)[D™9,..... D]
k
+Z (8k 19) (¢. D% 9)[D*¢,.... D% ¢, D%+ ¢, ... D], (4.4)

j=1

where afﬁg denotes the [-th Frechet derivative of G with respect to the first argument.
The following lemma gives the crucial estimate for such derivatives (with general smooth
7). It shows that the terms in (4.3) that contain higher Frechet derivatives are ”of lower
order” in the nonlinear estimates.

Lemma 4.1 (Estimates on higher Frechet derivatives)
Fork>2, ¢ € UOH5+|“|+1(F,RN), v € C=(T), and (a1 ...ax) as in (4.3), there is
a constant C' = C 4 such that

|70 @6, )| < cloll.
Proof: We have F(¢) = u where (u,p, A) € X, solves

L(¢)(u.p. \) = Esf(9).

(Note that the meaning of u here differs from the one in (2.7), Lemma 2.2 etc.) Due to
(3.11), we have

A = TsL(¢)7'Esf(¢) = M3S(¢)L(6) ™' T(6) " Eaf(6)
= M3L(¢)” ' E3(D®)™'f(¢) =

As above, we consider u and p as (smooth) functions of ¢ € I/ and introduce the shortened
notation

(u,p) I (@)[h1 ... k) = (u()[hy ... hy], pl9)(@)[hy . .., Dy, 0)

for their Frechet derivatives. By differentiation one obtains for k € N

L()(u.p)*N()[D*1 . .... D ¢]
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=1 meSy
=: (Fg, Ky, Hi, My ;. M 1), (4.5)
where Sy, is the set of the permutations of {1, ..., k}. For the sake of brevity we introduce

the aggregated norm (cf. Lemma 3.2)
I Pl o= Mlelly + llully s + IVl + Pl + Pl -
Setting £ = 1 in (4.5) and using (3.17) and Lemmas 3.4 and 3.2 yields
(e, p) ($)[RIlle < Cllkllyy: € [=F.0+2). (4.6)
We are going to prove the estimate
(e p) (@)D 6, ... D G]llle < Clidllygms 1o (4.7)

for t € [0,0 + 2] and arbitrary nonzero multiindices a; by induction over j > 2. (4.7)
clearly implies the assertion of the lemma.
Let k£ > 2 and assume (4.7) holds for all j with 2 < j < k. Lemma 3.2, (4.5), and

L(¢)™ = S(¢)L(¢)~'T(¢)~" imply

l(w. ) B (&) [D*1g..... D] |
< C(IFE s + IS s + (VR

l¢

Ky,

T T
o Iy + M+ [ Mol
(4.8)

Q
t—%+|

We will prove (4.7) for j = k by separately estimating the terms on the right.
1. The Frechet derivative f(k)(qﬁ)[Daqu, ..., D**¢] is a finite sum of terms of the

form
k

Ti == "Trra(V®,V?®) [] 076D ¢
j=1

where a is smooth, 1 < |v;| <2, Z§:1 lvj| =k + 1. We set
Bj = lajl+ Iyl 1:={jlp; >3}, m:=4L

and assume without loss of generality that 3; is maximal.
L.1. If m < 1 we estimate, using (2.2), Lemma 2.1, and the fact that |ag| <|a|—1

1 Till—y < ClO™ED*ll;_y < Cllllyypar.

1.2. If m > 2 we set

. +
b::Zﬂjf Aj::%, ri=(t—-1)7, sp=(1=X)(o+1)+ X\
jel
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TheHOSTSO'+],,TSSj,Zk Sj:T+(k—1)(0'+])>T+(k—1)¥,andby

=1
(2.3) and Lemma 2.1, !
r r v o; I r
ITille-y < ITllz < C T8 €D 8ll;, < € [T 191,45,
JeI jer
Furthermore, because of b < |a|+m + 1 and m > 2,

sitBi=0=X)0+4)+X(r+b=-3m+3) <(1-X)(0+4)+A(r+a])

and hence, by the logarithmic convexity of ¢ — ||<z§||tr

r r 1=X; r Aj
||¢||Sj+ﬂj S C||¢||0+4 J||¢||‘r+|a| J'

Due to 7 <t and ),y A; = 1, this implies

r T
||7-1||t—1 < C||¢||t+|a|'

2. The term Fj and the first spatial derivatives of Ky can be written as a finite sum
of terms of the form

l
Tz := a(V®) H 3V ED ) g+ u T (g) [DARaH G, DAk @]

j=1

with 1 <1<k 1<y <2, 3 [yl =1+2, and

l
Ts = a(V®) [[ 07 € D=0 g0+ k=1 () [D* =406, ..., D=t )]

7j=1
with 1 <I <k, |v;] =1.
At first we consider 7T5. We set

k
L ) L |Vj|+|o‘7f(j)|= j§l= e [ilA. ,_
s 2 e 2 "{ i+l 41, G4, DE A=A =il
]:

Moreover, without loss of generality we assume §; < f; for j < [ and introduce the
shortened notation

u*=h = u(k_l)(fb) [DFrt40 g, ..., DR @]

2.1. f m =0 or I = {I} one straightforwardly obtains from (2.2), Lemma 2.1, and
(4.6) or (4.7), respectively,

-1
Q
Q . ) Q -
ITy < CTLI0" €D 6|2,y 10 ED r0g|Ly o=
j=1 2
-1 Q
< Clg|" r Gl
> ||¢||a+4 I|¢||t+|a| otlvigal 4L
r r r
< C||¢||t+|a|||¢||a+ﬁ,+1 < CI|¢||t+|a|'
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221 I = {l+ 1} one has by (2.2)

Q

1y h=h) .
t—32
2

I s < €|

) 3
2.2.1. Suppose k — 1= 1. Then, for t > 3,
g+ (¢) [DO ) 6|1 5 < Ol (¢) [P0 6]|[S 1 < Cllg]Ir
0"+ ' (9) | All;—s < Cllw(9) [ Ay s < Clidlliyjal

because of [ar )| < |a] — 1 and (4.6). Moreover, using (2.1),

o+ ' (9) (D™ w ]2, < C (|l (8) [P =0 g)ll5 +]Vu'(6) D™ ]|
+ 1’ (8) [P0 )| ) < ClIOIT 1 410

Interpolation yields

10+ (6) [D* 1 B2 5 < Cllbli 40

in the general case.
2.2.2. Suppose k—1> 2. Fort > % we have, by the induction assumption,

|

For ¢ € (3. 2) we have, using the induction assumption and |o/| < |a| — 1,

|

For ¢ < 1 we have, using additionally (2.1),

Q
i1 (k=D <C

t—3

Q
ok l)”t+l < ClDllegan < ClIllegya)-
2

Q
3"’+1u(k_l) < )
t—3 —
2

Q
k-1 T T
0741w < ClI6IG oy < ClloNE o

Q Q

)8u,+1u(k—l) s < C(Hvu(k—l) s + HVu(k_l) tr_l)
and
o] < [t < ot < O < Ot

Together with the induction assumption, these inequalities imply

Q
v (k=1 r
oD L < Ul

2.3. If m > 2 we set

)t
b= Zﬂj: /\_7' = %, 7= (t— 2)+, s; 1= (1- )\j)O'—{—/\jT.
Jel '

Then 0<7<0, 7<s; <0, andzy;ll(sj-l-%):r-l-%-l-l(a-l-%)>T-|—%—|—l%.
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2.3.1. If I+ 1 € I then by (2.3), Lemma 2.1, and the induction assumption

Q
=D
sipitvigr|+3

Q Q v o Q
1Tl < IBle<C I levep®gll s
JeI\{i+1}

< CITI8I:, 45,

Jer

As in 1., we find from b < |a|+ m + 2 and m > 2
sj 4+ B; < (1 =X5) (0 +4) + A (7 +[a]),

and hence

Q r r
17202 < C TNl 18, < Clidlligia)- (4.9)
Jjel
23.2. 1+ 1¢ I, we apply (2.3), estimate, as in 2.1.,

and also get (4.9).
3. The estimates for ||7?;||?_1 can be obtained in a way completely parallel to 2. Note,

Q
GYi+1 g (k=)
o+%

<C.

however, that one has to set 41 := |a/| + 3 here.
4. The term Kj can be written as a finite sum of terms of the form

l
Ta = a(V®) [] 01 £D%0) ¢0"+ u* =D (g) [DAt+0 6, .. D=1 g]

Jj=1

with 1 <1 <k, |y;| = 1. The estimates on ||T4||?_l are parallel again, with §; as in 2.
2
and I := {j|B; > 3}. If m > 2 one has to set

oy
A= % ri=@t=1% s =(1=X)o+ 1)+ N1

and to use b < |a|+m + 1.
5. Additionally to the term discussed in 1., Hy contains terms of the forms

l

Ts .= Trra(V®) H 0v1EDY ) ¢ 3V’+111(k_l)(¢) (Do~ g, ..., D=t g]

7j=1
and

l
Ts := Trra(V®) [[ 07€ D01 p* =1 (g) [Dmt4n g, ..., D=1 g]

j=1

with 1 <! <k, |vj| = 1. The estimates on ||'7'5||£_1 are completely parallel to 4.

6. The estimates on ||'T6||£_] are also parallel to 4., one has to set 41 1= |a’| + 2.
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7. To estimate the integrals that occur from the terms My x and Ms k., one uses

‘/de
0

and proceeds as in 4., as the integrands have the form discussed there (or are simpler).
|
From now on, only function spaces on T will play a role, and to simplify our notation,
we will write || - ||; instead of ||||£
Consider the "nonlinear commutator” [D?, F] defined on ¢ N H*+o+1 ([, RY) by

[D*. F1(¢) := D*F(¢) — F'(¢)[D*¢].

Equations (4.3) and (4.4) and Lemma 4.1 (with v replaced by its partial derivatives)
imply

I9)
< CHU”t—%

1D FA)y < Collélly . 6 €U A HHA (T, BN, (4.10)
This implies the following a priori estimate:

Lemma 4.2 ( H" - a priori estimate for F)
Let r > s+ 1 be integer. Then

(F(6).0) <Co (L+10I7).  deun ™ (I.E).

Proof: It is sufficient to show the estimate for smooth ¢ € i/. For such ¢. we have from
Lemma 3.6, the definition of (-,),, and (4.10)

(F(8).8), = 3 (D"F(6).D°¢)o = (F(6).0)o+ Y. (DF(4). D)o

lal<r 1<]a|<r
= (F(¢).6)o+ D> (F(HIDG]. D)o+ > ([P F(¢). D)o
1<lal<r 1<lal<r
< G (1+1912).

|

We are ready now to prove our main result. Both its formulation and its proof are
oriented at [11]. Tn particular, we use "norm compression” to simultaneously control two
different norms in the Sobolev scale H!(T,RY). Differing from the treatment of the Euler
equations in [11], we cannot conclude strong continuity of the solution in time from strong
right continuity because our problem is not time reversible. Instead, we use a nonlinear
interpolation argument in our Sobolev scale to show continuous dependence on the initial
data. Combined with a compactness argument, this yields the strong continuity result.

We introduce the following notation: Let r > rg := s+1 be integer and set V := #/—1d,
where we assume that V is a ball of radius § > 0 around 0 in H™ (I, RY). Moreover,
for T > 0 and X an open set in a reflexive Banach space we denote by Cy([0,7], X)
the space of functions which are continuous from [0,77] to X with respect to its weak
topology. Analogously, C ([0, 7], X) denotes the set of weakly differentiable functions
from [0, T to X whose derivative is in Cy ([0, T]. X).

Setting ¢ := ¢ — Id, instead of (2.9) we consider the equivalent problem

F(y +1d),
) (1)

<.
|

(0)
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Theorem 4.3 (Eristence, uniqueness, and regularity of solutions to (4.11))
(i) For any ¢ € V N H"(T,RY) with [¥oll,, < K <& there is a T = T(K,r) such
that (4.11) has a unique solution
= W( o) € C([0.7), VN H™(T,RY)) n C* ([0, 7], H~HT, RY)) .

(i1) Foranyr >y, K € ( 5) andt € [0, T(K,r)], the mappings V(t, ) are continuous
from By ([\, H™ ([, R N H"(T,RY) to H™(T,RYN), uniformly with respect to t.

(ii1) Suppose ¢ € C([O T],
¥ € C([0. 7], H"(T,RY)

Proof:
1. We show that for 4o € VN H" (I, RN with [¥oll,, < K <dthereisa T =T(K,r)
such that (4.11) has a solution

V) is a solution to (4.11) with o € H"(T,RYN). Then

¢ € Cy ([0, 7, VN H (T,RY)) nCy, ([0, 7], H=1(T,RY)).

By standard arguments, we find that [¢f — F(¢ 4 Id)] is weakly sequentially continuous
from VN H™(T,RN) to H™=1(T,RN) (cf. [14], Lemma 7). There is a g > 0 such that
K 4 3p < 8. For fixed positive ¢ < 1, we define on H"(T,R™) the equivalent scalar
product (-, ), by

(Ur 'U)f‘ﬁ = 62(“7 U)" + (U, U)"o
The corresponding norm will be denoted by ||+ ||, .. By Lemma 4.2, ¢ € VN H"+!(T', RN)
implies

(F(¢ +1d). ¢)r

(F(4 +1d).¢ + 1d), — (F(¢ + 14). 1),
o1+ 1) + Cr 1F (4 )]y (1], 4y < Cr(1 4 J117)

IA

and analogously ,
(F(¢+1d).¢)r, <CO+[1¥l;,)-

Consequently,

(F(¢ +1d), ). e (F(¢ +1d), ¥), + (F(¢ +1d), )y,

Y
20, (L+I17) +C (141117, ) < CF (14 9I1.) (4.12)

IA

We set € := min{1, W} so that ||¢l], . < K +p. Moreover, we set 3(p) :=2C7(1+p)
and choose T'= T'(K,r) > 0 small enough that any solution p(-) of the ODE p' = B(p)
with p(0) < (K + 2u)? satisfies p(t) < 62 for t € [0,7]. Now the assertion follows
as in Theorem A in [11] with V = H™tY(T,RN), H = (HT(T‘,RN),H : ||,?E), X =
H™=Y(T,RN). Note that we need a slight modification due to the local character of our
considerations: A simple ODE argument shows that (4.12) implies H¢(”)(t)Hr£ < ¢ for

all t € [0,7] and all Galerkin approximations ("), and due to the choice of T we also
get [[4(t)|l, . < 4.t € [0.T]. for their limit ¢. This implies both (1), 4(t) € V and,
together with the definition of €,

)12 < 8272 < C(1+ |Io]l2). €0, 7]. (4.13)
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2. Let ¢1Z € Cy ([0, 7. V) N C, ([0.77, Hro_l(F,TRN)) be two solutions of (4.11)
with initial values ¢y and ¢, respectively. Then 4.+ € C* ([0, T], H(T,R"Y)), and by
Lemma 3.6

(e-71)

2F (¢ +1d) — F(¢ +1d). ¢ — ¢)o

, 2
2/0 (F'(F+ = d) + 1) — .y - Podr <O w7 .

This implies
|e) - )| <c |- . ten.T (4.14)
and hence uniqueness of the solution to (4.11) constructed in 1.

3. For fixed ¢ € [0,7] we consider the nonlinear operator ¥(¢,-) assigning to any
initial value 1o € V the value of the corresponding solution of (4.11) at time ¢. Taking
into account that the Sobolev spaces H"(I',RY), r € R, form a real interpolation scale
with p = 2 and using (4.13) (with r replaced by r + 1) and (4.14), (ii) follows from the
application of the nonlinear interpolation result given in [3], Proposition A.1 and Remark
A2, to ¥(¢,).

4. Suppose ¢ € C ([0,7],V) is a solution to (4.11) with ¢ € H"(T,RY). We show
that then

¢ € Cy (0.TL.VN HY(T.RYN)) nCy, ([0.T), H™ 1T, RY)).

Set
T = sup {t € [0.7] | ¢l € Cu ([0.4,V 0 H (1. RN)) N CL (10,41, ™ (1Y) }

We will show 7* = T. From 1. and 2., we have T* > 0. Assume T* < T. There is
a constant K such that [[¢:(t)][, < K fort € [0,7*]. Choose now Ty € [0,7T™) such
that T — T} < T(K,r) where T(K,r) is given by 1. Due to 1. and the translational
invariance of (4.11); in time, the initial value problem

o= F(§+1d),
G(T) = ¥(n)
has a solution ¢ on [Ty, T5], where Ty := min{T, T + T'(K,r)} and
¢ = ¢l 1) € Co ([T, T2). VO HT (D RYN)) 0 CL (17, 7o), H~Y(T. RY))

due to 2. This contradicts the definition of T* because of To > T*.
5. To complete the proof of (i) and (iii), it remains to show that if

€ Cy ([0. T,V H (L, RY)) N Cy, ([0. 7], H~ (L, RY))

is a solution of (4.11) with |[¢:(t)]|,, < K <4, € [0,T], then actually

¢ eC (0,7, vnH (T, RY))nct ([0, 7], H 1T, RY)) .
This will be done by showing that for any Ty € [0, 7],

¢|[T17T2] eC ([TerQ]: yn HT(FJRN)) N Cl ([TerQ]: Hr_l(rrTRN)) : (4']5)
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where Ty := min{7. T} + T(K,r)}. Approximate ¢(7}) by ¢'§") € H™Y(T,RY) so that
1/;5") — (Ty) in H"(T,RY) and Hng”) < K. By 1., 2., and 4., \Il(-,i/;gn)) exists on
[0, TQ — Tl], and ’

(-, ¢§n))|[07T2—T1] € Cu([0.7o— T H*Y(T.RY))nCy, ([0.7, — Tv], H (T, RY))
c C(0.T: =] H (T.RY)nC' ([0.T: = ] H~(T.RY)) .

Moreover, for ¢t € [T1, T3], by 3. and the translational invariance in time,

(1) = W(t = Ty (Ty)) = lim W(t - T4, 4{")
in H"(T,RY), uniformly in ¢ € [T}, Ty]. As the uniform limit of continuous functions is
continuous, this implies (4.15). ]
Remarks:

1. Due to the smoothness of F, a solution ¢ € C ([0, 7], VN H"(T, RN)) automatically

satisfies
r—ro+1

ve () ¢ (0.7], HHT,RY)).

k=0

2. Part (iii) shows that no smoothness is lost during the evolution as long as a solution
exists, in particular, solutions having smooth initial data are smooth in space and
time. Moreover, the existence time ensured by (i) is actually independent of 7.

Acknowledgment: The second author is is indebted to Prof. M. Kimura for an inter-
esting discussion.
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