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1. Introduction

About ten years ago a general framework for covariant di�erential

calculi on Hopf algebras was invented by Woronowicz [18]. Since then

covariant �rst order di�erential calculi on quantum groups have been

constructed, studied and classi�ed by many authors, see for instance

[3, 1, 7, 13, 8].

In classical di�erential geometry higher order di�erential forms nat-

urally appear. The de Rham cohomology of a compact Lie group G
characterises certain topological properties of G. However, there are

only very few papers dealing with higher order di�erential calculi and de

Rham cohomology on quantum groups. Maltsiniotis [11] constructed

a multi-parameter di�erential graded bialgebra of GL(N)-type hav-

ing the classical dimensions of the bigraded components. Tsygan [16]

studied the linear GLq(N)-di�erential calculus in detail. The de Rham

cohomologies of the left-covariant 3D-calculus and of the bicovariant

4D�-calculus were determined by Woronowicz [17] and Grie�l [9], re-

spectively.

The present paper deals with the de Rham cohomology and the

Hodge decomposition of the standard bicovariant di�erential calculi on

the quantum groups of types A, B, C, and D. We use Woronowicz' con-

struction of the external algebra. Our �rst main result (Theorem3.1)

says that the embeddings of the left-coinvariant, the right-coinvariant,

and the coinvariant (both left- and right-coinvariant) sub-complexes

into the whole complex of di�erential forms are quasi-isomorphisms,

respectively. This means that their de Rham cohomologies coincide.

Our second main result (Theorem3.2) is a Hodge decomposition the-

orem obtained for the quantum groups of type A. The main technical

tool is the quantum Laplace-Beltrami operator [6] which is constructed

using the dual pairing of two bicovariant di�erential calculi. Di�eren-
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tial forms vanishing under the action of the quantum Laplace-Beltrami

operator are called harmonic forms. If the parameter value z of the

di�erential calculus is regular, then the following three spaces coincide:

the de Rham cohomology ring, the algebra of coinvariant forms, and

the vector space of harmonic forms. For a special class of non-regular

parameter values z however, there exist additional harmonic forms like

Dk�, k 2 Z, where D is the quantum determinant and � is a coinvariant
di�erential form.

In case of the orthogonal and symplectic quantum groups there ex-

ist harmonic forms which are not closed. Therefore we only have a

restricted Hodge decomposition for elements in the image of the quan-

tum Laplace-Beltrami operator.

Our standing assumption is that the deformation parameter q is a

transcendental complex number. On the one hand this ensures that

the coordinate Hopf algebra A of the quantum group is cosemisimple

and that the theory of corepresentations of A corresponds to the rep-

resentation theory of the underlying classical Lie group. On the other

hand it guarantees that there are no other harmonic functions except

for polynomials in the quantum determinant.

This paper is organised as follows. In Section 2 we collect some ba-

sic de�nitions and preliminary facts needed later. The main result

about quasi-isomorphisms is Theorem3.1. The Hodge decomposition

for SLq(N) and GLq(N) is given in Theorem3.2. In Section 4 we pro-

vide an isomorphism of the left-dual and the right-dual Hopf bimodules.

In Section 5 we recall properties of the contraction operator from [6]

and we add some new results. Section 6 is devoted to the spectral de-

composition of the quantum Laplace-Beltrami operator. Theorem3.1

is proven therein. Section 7 deals with the duality of di�erential and

codi�erential operators. We use the notion of homomorphic di�eren-

tial calculi due to P
aum and Schauenburg [12] and show that �+;z
and ��;z are weakly isomorphic. The proof of Theorem3.2 is given in

Section 7.

We close this introduction by �xing some assumptions and notations

that are used in the sequel. All vector spaces, algebras, bialgebras, etc.

are meant to be C-vector spaces, unital C-algebras, C-bialgebras etc.

The linear span of a set faiji 2 Kg is denoted by haiji 2 Ki. The sym-

bol A always denotes a Hopf algebra. We write A� for the dual vector
space of A and AÆ for the dual Hopf algebra. All modules, comodules,

and bimodules are assumed to be A-modules, A-comodules, and A-

bimodules if not speci�ed otherwise. The comultiplication, the counit,

and the antipode of A are denoted by �, ", and by S, respectively.
For a cosemisimple Hopf algebra A, let h denote the Haar functional

on A. Let v = (vij)i;j2K be a corepresentation of A. The coalgebra
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of matrix elements is denoted by C(v) = hvij j i; j 2 Ki. As usual vc

denotes the contragredient corepresentation of v, where (vc)ij = S(vji ).
For the space of intertwiners of two corepresentations v and w the

symbol Mor(v;w) is used. We write Mor(v) for Mor(v; v). We use

the same notation Mor(f ; g) for representations f and g of A. If A is

a linear mapping, At denotes the transpose (dual) mapping of A and

trA the trace of A. Lower indices of A always refer to the components

of a tensor product where A acts (`leg numbering'). The unit matrix is

denoted by I. Unless it is explicitly stated otherwise, we use Einstein's

convention to sum over repeated indices in di�erent factors. Through-

out we assume that N is a positive integer with N � 2 for quantum

groups of type A and N � 3 for quantum groups of types B, C, and D.

The q-numbers we are dealing with are [[N ]]q := (qN � q�N)=(q � q�1).
We use Sweedler's notation �(a) =

P
a(1)
a(2), �L(�) =

P
�(�1)
�(0)

and �R(�) =
P

�(0) 
 �(1) for the coproduct, for left coactions and for

right coactions, respectively. If B is an A-bimodule then the mapping

b / a := Sa(1) b a(2), a 2 A, b 2 B, is called the right adjoint action of

A on B.

2. Preliminaries

In this section we recall some general notions and facts from the

theory of bicovariant di�erential calculus [18], which are needed later.

More details and proofs of related or unproven statements can be found

in [8, Chapter 14].

Hopf bimodules and bicovariant �rst order di�erential calculi. A

Hopf bimodule (bicovariant bimodule) over A is a bimodule � together

with linear mappings �L : � ! A 
 � and �R : � ! � 
 A such

that (�;�L;�R) is a bicomodule, �L(a!b) = �(a)�L(!)�(b), and

�R(a!b) = �(a)�R(!)�(b) for a; b 2 A and ! 2 � . We call the

elements of the vector spaces �L := f!j�L(!) = 1 
 !g and �R :=

f!j�R(!) = !
 1g left-coinvariant and right-coinvariant, respectively.

The elements of �Inv = �L \ �R are called coinvariant. The dimension

of the Hopf bimodule � is de�ned to be the dimension of the vector

space �L. We always assume that � is �nite dimensional.

For � 2 � and f 2 A� we de�ne f � � = �(0)f(�(1)) and � � f =

f(�(�1))�(0). In this way left and right actions ofA
� on � are de�ned. If

f!ig is a basis of the vector space �L then there exist matrices v = (vij),

vij 2 A, and f = (f ij), f
i
j 2 A

Æ, such that v is a corepresentation of A,

f is a representation of A, �R(!j) = !i
 vij, and !i / a = f ij(a)!j. We

brie
y write � = (v;f) in this situation.

A �rst order di�erential calculus over A (FODC for short) is an

A-bimodule � with a linear mapping d: A ! � which satis�es the
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Leibniz rule d(ab) = da�b+ a�db for a; b 2 A, such that � is the linear

span of elements a db with a; b 2 A. A FODC � is called left-covariant

if there exists a linear mapping �L : � ! A
 � such that �L(adb) =
�(a)(id
d)�(b) for a; b 2 A. Similarly, � is called right-covariant if

there exists a linear mapping �R : � ! � 
 A such that �R(adb) =
�(a)(d 
 id)�(b) for a; b 2 A. The FODC � is called bicovariant if

it is both left- and right-covariant. In this case (�;�L;�R) is a Hopf

bimodule.

Let � be a left-covariant FODC. A central role is played by the

mapping ! : A ! �L de�ned by !(a) = Sa(1)da(2). The vector space

R = ker " \ ker! is a right ideal of ker ". It is called the associated

right ideal to the left-covariant FODC � . Suppose that f!i j i 2 Kg
is a linear basis of �L. Then there exist linear functionals Xi 2 AÆ,
i 2 K, such that !(a) =

P
i2K Xi(a)!i for a 2 A. The linear space

X = hXi j i 2 Ki is called the quantum tangent space of � . We have

da =
P

i2K(Xi � a)!i for a 2 A.

Exterior Algebras. We brie
y recall Woronowicz' construction of

the external algebra to a given Hopf bimodule � . Obviously �
 =L
k�0 �


k is again a Hopf bimodule. Let � be another Hopf bimodule.

Then there exists a unique homomorphism � : �
A�! �
A� of Hopf

bimodules called the braiding with

�(�
A�) = �(0)
A(� /�(1)); ��1(�
A�) = � / (S�1�(1))
A�(0) (1)

for � 2 �L and � 2 �L, see [8, Subsection 13.1.4]. Moreover, � satis�es

the braid equation �1�2�1 = �2�1�2, where �1 = �
 id and �2 = id
�.
Later we will use the symbol �i for the automorphism idi�1
�
idk�i�1

of the bimodule �
k. Let Sk be the symmetric group of k elements and

let sn denote the simple transposition of n and n + 1. For � 2 Sk the

expression � = si1 � � � sir is called reduced if r is minimal. Since �
satis�es the braid equation, the bimodule automorphism �� : �


k !

�
k, �� = �i1 � � ��ir , does not depend on the choice of the reduced

expression for �. De�ne the antisymmetriser Ak, k � 1, A0 = id, and

the endomorphism Bi;j, i + j = k, of �
k by

Ak =
X
�2Sk

sgn(�)�� and Bi;j =
X

��12Ci;j

sgn(�)��; (2)

where Ci;j = f� 2 Si+j j �(1) < � � � < �(i); �(i + 1) < � � � < �(i + j)g
are the shu�e permutations. We have B1;i = id��1 + �1�2 � : : : +
(�1)i�1 � � ��i and Bi;1 = id��i + �i�i�1 � : : : + (�1)i�i � � ��1. The

above constructions are possible for any bimodule isomorphism � which

satis�es the braid relation. Therefore, replacing � everywhere by ��1

the above works as well. In what follows we will use both kinds of
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operators and write A�k and B�i;j whenever we are dealing with ��1.

Now we de�neWoronowicz' external algebra �^ =
L

k�0 �
^k by �^k :=

�
k= kerAk. It can be shown that �^ is both a Hopf bimodule and a

graded super Hopf algebra, cf. [8, Subsection 13.2.2].

�-metrics and contractions. We recall from [6, Section 2] the im-

portant notion of a �-metric. Let (�+; ��) be a pair of Hopf bimodules

and � := �+
A�� � ��
A�+. A linear mapping g : � ! A is called

a �-metric of (�+; ��) if g is a homomorphism of A-bimodules, g is

non-degenerate, g is �-symmetric, i. e. gÆ� = g, and

g12�23�12 = g23; g23�12�23 = g12 (3)

in �
A� and �
A�, respectively. Here � denotes either �+ or ��.
The �-metric g is called bicovariant if

�Æg = (id
g)�L = (g 
 id)�R (4)

in � . In this paper we are only concerned with bicovariant �-metrics.

It is easily seen that (3) follows from the bicovariance [2, Section II. 4].

By abuse of notation we sometimes skip the tensor sign and write

g(�a; �) = g(�; a�) = g(�a
A�). We recursively extend g to an endo-

morphism eg of the Hopf bimodule �
� 
A�


�� , � 2 f+;�g, by

eg(�; a) = �a; eg(a; �) = a�;

eg(�
A�; �
A�) = eg(� g(�; �); �) (5)

for � 2 �
� , � 2 �� , � 2 �
�� , � 2 ��� , and a 2 A. If � and � are of

degree n and k, n � k, then eg(�; �) 2 �
n�k� .

Next we de�ne contractions h�; �i� : �
k� 
A�

l
�� ! �


jk�lj
� 0 , � 2

f+;�g, where � 0 = � for k � l, and � 0 = �� for k < l, by

h�; �i� := eg(B�k�l;l� ; A�l �) for k � l;

h�; �i� := eg(A�k � ; B�k;l�k�) for k < l:
(6)

Since g is a homomorphism of Hopf bimodules, so is h�; �i�. If both k
and l are less than two the contraction does not depend on the sign �
and we sometimes omit it, h�; �i+ = h�; �i� =: h�; �i.
The next property shows that the antisymmetriser is symmetric with

respect to eg. For nonnegative integers i; j; k and l, with 1 � i+j � k; l,
we have

egÆ�(id
k�i�j
A�i 
 id
j); id
l
�
= egÆ�id
k; (id
j 
A�i 
 id
l�i�j)

�
:

Therefore the de�nition of h�; �i� can be extended to a contraction

map of exterior algebras namely to h�; �i� : �^k� 
A�
^l
�� ! �

^jk�lj
� 0 , � 2

f+;�g, where � 0 = � for k � l and � 0 = �� for k < l.



6 I. HECKENBERGER, A. SCH�ULER

Di�erential Calculi on Quantum Groups. Let A be the coordinate

Hopf algebra O(Gq) of one of the quantum groups GLq(N), SLq(N),

Oq(N), SOq(N), or Spq(N) as de�ned in [4, Section 1]. Let u =

(uij)i;j=1;:::;N be the fundamental matrix corepresentation of A. The

corresponding R̂-matrix for the A-series is given in [4, Subsection 1.2].

The matrices R̂ and C for the B, C, and D series are given in [4,

Subsection 1.4]. Now we de�ne the invertible diagonal matrix D =

(diÆij), D 2 Mor(ucc;u). In case of GLq(N) and SLq(N) we set di =
qN+1�2i and r = qN . For the B, C, and D series set D = CtC�1 and r =

�qN��, where � = 1 in the orthogonal case and � = �1 in the symplectic

case. Let s = trD = trD�1. For the quantum groups GLq(N) and

Oq(N) there exists a nontrivial group-like central element D of A, the
quantum determinant. It corresponds to the Young diagram (1N) and

can be constructed using the q-antisymmetric tensor [5, Section 5].

Note that D2 = 1 for Oq(N).

A complex number x 2 C is called admissible for A if x is nonzero

for GLq(N), xN = q in case SLq(N), x2 = 1 in cases Oq(N), SOq(2n),
and Spq(N), and �nally, x = 1 in case SOq(2n+ 1). Recall that A is a

coquasitriangular Hopf algebra (see [8, Subsection 10.1]) with universal

r-form rx, given by rx(u
i
j; u

k
l ) = x�1R̂ki

jl , where x is an admissible

parameter. The matrices `+ and `
� of representative functionals on

A are de�ned by `+
i
j(a) = rx(a; u

i
j) and `�

i
j(a) = ry(S(u

i
j); a), x; y

admissible for A. A complex number z is called 2-admissible for A if

z = xy for two admissible numbers x and y for A. Throughout the

paper we assume z to be 2-admissible with �xed admissible numbers

x; y and z = xy. Then the Hopf bimodule ��;z, � 2 f+;�g, is given
as follows. Let f!�

ij j i; j = 1; : : : ; Ng be a linear basis of the space of

left-coinvariant forms of ��;z. De�ne the right coaction �R(�) and the

right adjoint action � / a for � 2 (��;z)L and a 2 A by

�R(!
+
ij) = !+

kl 
 (u
 u
c)klij ; �R(!

�
ij) = !�kl 
 (ucc 
 u

c)klij ; (7)

!+
ij / a = S(`�

k
i )`

+j
l (a)!

+
kl = ry(u

k
i ; a(1))rx(a(2); u

j
l )!

+
kl;

!�ij / a = S�1(`+
k
i )`
�j
l (a)!

�
kl = ry(a(1); S(u

k
i ))rx(S(u

j
l ); a(2))!

�
kl:

In shorthand notation we set �+;z = (u
uc; `�c
`+) and ��;z = (ucc


u
c; c`+ 
 `

�), where (cf)ij := S�1(f ji ). There are unique up to scalars

coinvariant 1-forms !+
0 =

PN
i=1 !

+
ii 2 �+;z and !

�
0 =

PN
i=1 d

�1
i !�ii2 ��;z.

In particular we have the following right adjoint actions

!+
ij / u

m
n = z�1R̂mk

iv R̂
jv
nl !

+
kl; !+

0 / umn = z�1(R̂2)mk
nl !+

kl;

!�ij / u
m
n = zdid

�1
k (R̂�1)mk

iv (R̂�1)
jv
nl !

�
kl; !�0 / umn = zd�1k (R̂�2)mk

nl !
�
kl:
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Recall that �^�;z is an inner bicovariant di�erential calculus with coin-

variant 1-form !�
0 , that is, the di�erential d� is given by

d�� = !�
0 ^ �� (�1)k� ^ !�

0 ; � 2 �^k� : (8)

Projecting this equation for � = a 2 A to the left-coinvariant part of

��;z we get

!�(a) = !�
0 / a� "(a)!�

0 ; (9)

where !� denotes the !-mapping for ��;z. Let fX�
ij j i; j = 1; : : : ; Ng

be the basis of the quantum tangent space X � of ��;z dual to f!�
ijg.

Explicitly, we have

X+
ij = S(`�

i
k)`

+k
j � Æij; X+

0 = s
�1(D�1)ijX

+
ij ;

X�ij = d�1i
�
S(`+

i
k)`
�k
j � Æij

�
; X�0 = s

�1
P

iX
�
ii :

(10)

Here X�
0 denotes the dual basis element to !�

0 with respect to the

decomposition of �R on ��;z into irreducible corepresentations. The

corresponding projections in Mor(u
 u
c) and Mor(ucc 
 u

c) are

(P+
0 )

ij
kl =

1

s

d�1k ÆijÆkl and (P�0 )
ij
kl =

1

s

d�1i ÆijÆkl; (11)

respectively. Note that X�
0 is central in AÆ and S(X+

0 ) = X�0 . We set

X0 := X+
0 +X�0 .

It was shown in [6, Propositions 3.1, 3.3, and 3.4] that the settings

g(a!+
ij; !

�
kl) = aDj

k(D
�1)li and g(a!�ij; !

+
kl) = aÆjkÆil (12)

de�ne a bicovariant �-metric of (�+;z; ��;z). Note that

g(!�
0 ; !

��
0 ) = s: (13)

To simplify notations we sometimes write �� instead of ��;z.

Quantum Laplace-Beltrami Operators. Our main technical tool

to reduce the de Rham cohomology from �^ to the essentially smaller

complex �^
Inv

is the quantum Laplace-Beltrami operator de�ned below.

For a slightly di�erent notion see also [6, Section 6].

The mappings @�� : �^k� ! �^k�1� , k � 0, de�ned by @�� (a) = 0 for

a 2 A and

@�� � = h�; !��0 i� + (�1)kh!��0 ; �i�

for � 2 �^k� , k > 0, are called codi�erential operators on �^k� . The

linear mappings L�� : �^k� ! �^k� de�ned by

L�� := �d� @
�
� + @�� d� (14)
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are called quantum Laplace-Beltrami operators. The elements of the

vector space

H�(�^k� ) := f� 2 �^k� jL�� � = 0g (15)

are called harmonic k-forms. If no confusion can arise we sometimes

write L� instead of L�� .
On elements a 2 A the Laplace-Beltrami operators de�ned in [6] and

the operators L�� coincide, since @�� (a) = 0. Therefore we have

L+
� a = L�� a = �2sa + h!+

0 a; !
�
0 i + h!�0 a; !

+
0 i

for a 2 A.

3. Main Results

De�ne the sets P+ = f� = (�1; : : : ; �N) j�1 � �2 � � � � � �N ; �i 2
Zg and P++ = f� 2 P+ j�N � 0g. In case of GLq(N) the set P+

parametrises exactly the irreducible corepresentations of A, see [8,

Theorem 11.51], where (1; 0; : : : ; 0), (0; : : : ; 0;�1), and (1; 1; : : : ; 1) cor-
respond to u, uc, and the determinant D, respectively. We extend

the notation [10, Chapter 1] for partitions � 2 P++ to Young frames

with \negative" columns: for � 2 P+ de�ne j�j = �1 + � � � + �N .
For i 2 f1; : : : ; Ng and j 2 Z we write (i; j) 2 � if 1 � j � �i or
�i < j � 0. In this situation with x := (i; j) set sgn(x) := 1 if j � 1

and sgn(x) := �1 otherwise. De�ne the content c(x) := j � i and
c(�) :=

P
x2� sgn(x) c(x). In particular

P
x2� sgn(x) = j�j.

In case of GLq(N) a complex parameter z is said to be regular if for

all �; � 2 P+ the number

F�� = (z�j�j � 2 + zj�j)[[N ]]q + (q � q�1)�

�
�
z�j�j

X
x2�

sgn(x)qN+2c(x) � zj�j
X
x2�

sgn(x)q�N�2c(x)
� (16)

is nonzero, except for the case � = � = (0).

Let �^ =
L

k�0�
k be a di�erential graded algebra. As usual

HdeR(�
^) =

M
k�0

Hk
deR(�

^); Hk
deR(�

^) = ker dk= imdk�1; (17)

denotes the de Rham cohomology of �^. By the Leibniz rule ker d =L
k�0 ker dk is a subalgebra of �

^ and imd =
L

k�0 imdk is an ideal in

ker d. Hence HdeR(�
^) is an algebra. Since the di�erential d is bicovari-

ant, the algebras �^
L
, �^

R
, and �^

Inv
, and the vector spaces �^(1;D) :=

f� 2 �^
L
j�R� = � 
Dg and �^(D; 1) := f� 2 �^

R
j�L� = D 
 �g are

Z-graded di�erential complexes.
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Theorem 3.1. Suppose that q is a transcendental complex number.

(a) Let Gq denote one of the quantum groups GLq(N), SLq(N), SOq(N),

or Spq(N), and A = O(Gq) its coordinate Hopf algebra. Let � be one of

the N2
-dimensional bicovariant �rst order di�erential calculi ��;z over

A, where z is 2-admissible. In the case GLq(N) we assume in addition

that z is regular. Then we have canonical isomorphisms

HdeR(�
^) �= HdeR(�

^
L
) �= HdeR(�

^
R
) �= HdeR(�

^
Inv
):

(b) Let Gq be one of the quantum groups GLq(N) or Oq(2n+ 1), A =

O(Gq), and � as above. In the case GLq(N) we assume that zNq�2 =
�, where � is a primitive m th

root of unity, m 2 N. Then we have

canonical isomorphisms

HdeR(�
^) �= C[Dm;D�m]
HdeR(�

^
Inv
) for GLq(N);

HdeR(�
^) �= HdeR(�

^
Inv
)�DHdeR(�

^
Inv
) for Oq(2n+ 1); � = ��;1;

HdeR(�
^) �= HdeR(�

^
Inv
)�HdeR(D�

^
Inv
) for Oq(2n+ 1);

HdeR(�
^
L
) �= HdeR(�

^
R
) �= HdeR(�

^
Inv
) in all cases.

(c) Let Gq = Oq(2n), A = O(Gq), and � as in (a). Then we have

HdeR(�
^) �= HdeR(�

^
Inv
)�DHdeR(�

^
Inv
)�

�HdeR(�
^(1;D))�HdeR(�

^(D; 1));

HdeR(�
^
L
) �= HdeR(�

^
Inv
)�HdeR(�

^(1;D));

HdeR(�
^
R
) �= HdeR(�

^
Inv
)�HdeR(�

^(D; 1)):

Remark 3.1. For GLq(N) the case z = 1 is of special interest since

the commutation relations between the di�erentials duij and the matrix

elements umn appear to be linear, i. e.

du1 � u2 = R̂�
u1 � du2R̂

� :

These calculi were extensively studied in [15], [11] and [16]. In the

proof of Lemma6.5 given below we will show that z = 1 is regular.

Theorem 3.2. Suppose that q is a transcendental complex number.

Let Gq be one of the quantum groups GLq(N) or SLq(N), and A =

O(Gq) its coordinate Hopf algebra. Let � be one of the N2
-dimensional

bicovariant �rst order di�erential calculi ��;z over A, where z is regular

in case of GLq(N). Then we have the Hodge decompositions

�^k �= d�^k�1 � @+ �^k+1 �Hk
deR(�

^);

�^k �= d�^k�1 � @� �^k+1 �Hk
deR(�

^)
(18)
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for k 2 N0. Moreover, the cohomology ring of �^ is isomorphic to the

algebra of coinvariant forms and to the vector space of harmonic forms:

Hk
deR(�

^) �= Hk
deR(�

^
Inv
) �= �^k

Inv

�= H+(�^k) �= H�(�^k): (19)

Remarks 3.2. (i) In [14, Theorem3.2] it was shown that �^
Inv

is

a graded commutative algebra and its Poincar�e series has the form

(1 + t)(1 + t3) � � � (1 + t2N�1). By the above theorem, dimHN2

deR(�
^) =

dim�^N
2

Inv
= 1. This means that there exists a linear functional f on

A with the following property. For all a 2 A there exists � 2 �^(N
2�1)

such that

a� = d�+ f(a)�;

where � 2 �^N
2

Inv
is the unique up to scalars coinvariant form of degree

N2 (volume form). From the fact that d is bicovariant, one derives

easily that a(1)f(a(2)) = f(a(1))a(2) = f(a)1 and f(1) = 1. Therefore,

f is the Haar functional h of the cosemisimple Hopf algebra A.
(ii) If A belongs to the B-, C-, or D-series, then a coinvariant form

is not closed in general. However, there is a weaker form of the de-

composition (18). Let �k := L+(�^k) = L�(�^k). Then one can prove

that

d�k�1 � @+ �k+1 �= �k �= d�k�1 � @� �k+1: (20)

Using a computer algebra program we calculated the �rst terms of the

Poincar�e series P (�^
Inv
; t) = 1+t+5t3+15t4+� � � and P (HdeR(�

^
Inv
); t) =

1 + t + 2t3 + 2t4 + � � � .

4. Duality of Hopf bimodules

We will show that the notion of a �-metric naturally emerges by

considering the left-dual and right-dual Hopf bimodules of a given Hopf

bimodule. Our main result states that the left-dual Hopf bimodule is

isomorphic to the right-dual Hopf bimodule. This makes the notion

of a bicovariant �-metric more transparent. However, both notions

are not identical since the dual pairings gL and gR are not completely

�-symmetric while the metric g is.

Definition 4.1. Suppose that � is a Hopf bimodule. A Hopf

bimodule _� is called the left-dual to the Hopf bimodule � if there

exists a homomorphism gL :
_�
A� ! A of Hopf bimodules such that

the pairing gL is non-degenerate. Similarly, a Hopf bimodule �_ is

called the right-dual to the Hopf bimodule � if there exists a non-

degenerate homomorphism gR : �
A�
_ ! A of Hopf bimodules.
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Remarks 4.1. (i) Note that the left-dual _� and the right dual

�_ to the Hopf bimodule � always exist. Moreover, they are unique

up to isomorphisms. Indeed, the projection PL � := S(�(1))�(0) onto
the left-coinvariant subspace commutes with gL. Hence _�L and �L

are dually paired vector spaces. Suppose that � = (v;f). It was

shown in [2, Section II. 4] that _� = (vc; cf). Similarly one proves that

�_ = (cv;f c).

(ii) Since gL and gR are homomorphisms of bicomodules, they are

bicovariant, i. e. (id
gL)�L = �gL = (gL 
 id)�R and (id
gR)�L =

�gR = (gR 
 id)�R on _�
A� and �
A�
_, respectively.

(iii) It was shown in [2, Section II. 4] that the pairing is compat-

ible with the braiding �. More precisely, let � be a Hopf bimod-

ule. Then we have gL23�12�23 = gL12 on
_�
A�
A� and gL12�23�12 =

gL23 on �
A
_�
A� . Similarly, gR23�12�23 = gR12 on �
A�

_
A� and

gR12�23�12 = gR23 on �
A�
A�
_.

Proposition 4.1. Let A be a Hopf algebra with invertible antipode

and let � = (v;f) be a Hopf bimodule with basis f!ig of �L. Let f�ig
and f�ig denote the left-coinvariant bases of

_� and �_, dual to f!ig,
respectively.

Then the linear mapping T : _� ! �_ de�ned by T (a �i) = a S2(�i) =
a S(vij)�k v

j
k is an isomorphism of Hopf bimodules, where S denotes the

antipode in the graded super Hopf algebra (�_)
. Moreover, we have

the following �-symmetry of the above pairing:

gR(id
T ) = gL� on �
A
_�:

Proof. (a) We �rst show that T is a right comodule mapping, i. e.

�R(~�i) = ~�j 
 (vc)
j
i for

~�i := T (�i) = T j
i �j. Recall that the coproduct

on �_ is given by �(�i) = �L(�i) + �R(�i) = 1 
 �i + �j 
 S�1(vij),

see [8, Proposition 13.7]. Since "(�i) = 0 one has S(�i) = ��jv
i
j and

consequently,

~�i = S2(�i) = �Svij S(�j) = Svij �k v
j
k = �k / v

i
k: (21)

Hence �R
~�i = Svxj �z v

j
y 
 Svix S

�1vkz v
y
k =

~�x 
 Svix which proves (a).
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(b) We show that T is a right module map. Since S2 is an algebra

map of (�_)
 we have for a 2 A

~�i S
2(a) = S2(�i a) = S2

�
(S(f ji ) � a) �j

�
= S2

�
a(1)Sf

j
i (a(2))

�
~�j = (S2a)(1)S

�1f ji
�
(S2a)(2)

�
~�j

= (S�1f ji � S
2a) ~�j = T

�
(S�1f ji � S

2a) �j
�

= T (�i S
2(a)):

Since S2 : A! A is surjective, T is a right module map. By (21), ~�i is
a left-coinvariant 1-form. Hence T is a left comodule map. Therefore

T is an isomorphism of Hopf bimodules. In particular, T := (T l
i ) 2

Mor(vc; cv) and T
t
2 Mor(f c; cf).

(c) We prove the last assertion. Since f c de�nes the right action

on �i, we obtain from (21) that ~�i = Svij(Sf
l
k � v

j
k)�l = Sf lk(v

i
k)�l, i. e.

T l
i = Sf lk(v

i
k). Since �, gL, gR, and T are bimodule maps it suÆces to

prove the statement for !i 2 �L and �j 2
_�L. By (1)

gL�(!i
A �j) = gL(�k
A(!i / Sv
j
k)) = gL(�k
A f

i
n(Sv

j
k)!n)

= f in(Sv
j
n) = T i

j = gR(!i
AT (�j)):

Remarks 4.2. (i) Unfortunately the equation gL (T
�1 
 id) = gR �

on �_
A� is not ful�lled in general. If this symmetry holds, then the

matrices T and eT = (eT a
b ),
eT a
b = Sfkb (v

k
a), have to be inverse to each

other. This is not the case for the fundamental Hopf bimodules (u; `�c),
but for the di�erential Hopf bimodules ��;z it is. A suÆcient condition

for the second �-symmetry is that � = (v;f) is an irreducible Hopf

bimodule and that both �Inv and �_
Inv

are nontrivial.

(ii) It is easy to show that _�+;z �= ��;z. Moreover, the �-metric

g : �+;z
A��;z ! A, see (12), can be obtained from gR by the above

identi�cation of ��;z with the right-dual Hopf bimodule �_+;z of �+;z:

g(!+
ij; !

�
kl) = g(!+

ij ; T
�1(!_kl)) := gR(!

+
ij ; (T

�1)mn
kl !

_
mn) = (T�1)jikl;

where f!_klg is the left-coinvariant basis of �
_
+;z such that gR(!

+
ij ; !

_
mn) =

ÆjmÆin and Tmn
kl = (`�c 
 `+)mn

xy

�
S(ukx (u

c)ly)
�
by step (c) of the above

proof.

5. Properties of the contraction

We summarise some useful properties of the contraction, see [6,

Lemmata 4.3, 4.4, 6.2]. For �i 2 �^ki�i
, i = 0; 1; 2, �1 = �2 = ��0,
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k1 + k2 � k0, the contractions satisfy the following relations:

h�1; h�2; �0i�i� = h�1 ^ �2; �0i�; hh�0; �1i�; �2i� = h�0; �1 ^ �2i�;

h�1; h�0; �2i�i� = hh�1; �0i�; �2i�:
(22)

For a 2 A, � 2 (�� )L, and � 2 (��� )L we have hha�; �i� = hh�a; �i� =
h(a)h�; �i�. Since h�; �i� is �-symmetric, for � 2 �� we particularly get

hh�; !��0 i� = hh!��0 ; �i�: (23)

For � 2 �^k� , �0 2 �^k�� , �1 2 �� , �2 2 ��� , k � 1, we have

h� ^ �1; �2i� = �h�1; �2i� � h�; �
�
(1)
i� ^ ��

(2)
;

h�1; �2 ^ �0i� = h�1; �2i��
0 � ��

(1)
^ h��

(2)
; �0i�;

(24)

where ��(�1
A�2) = ��
(1)

A�

�
(2)
2 ���
A�� .

Now let us prove an identity for the braiding morphism �.

Lemma 5.1. Let � and � be Hopf bimodules over A. Then we have

(��;�)k � � � (��;�)1 = ��;�
k (25)

and this map is a homomorphism of the Hopf bimodule �
A�
A � � �
A�
to �
A � � �
A�
A� . Moreover, replacing �
k by its quotient �^k, equa-
tion (25) remains valid. Similarly, ��k � � ��

�
1 : �
A�

^k ! �^k
A� is

well-de�ned and coincides with ��
�;�^k

.

Proof. (a) The braiding � is compatible with the tensor product of

Hopf bimodules in the sense that the identity (idY 
�X;Z)Æ(�X;Y 
 idZ) =

�X;Y
Z is ful�lled for all Hopf bimodules X, Y , and Z, see [19, Theo-
rem 5.2]. Iterating this yields

(��;�)k(��;�)k�1 � � � (��;�)1 = ��;�
k :

(b) In what follows we skip the space indices � and � to simplify

the notations. Since �i+1�i�i+1 = �i�i+1�i we obtain �k � � ��1 �i+1 =

�i �k � � ��1, i = 1; : : : ; k � 1. It follows that �k � � ��1 (Ak)2���k+1 =

Ak �k � � ��1. Hence �k � � ��1 maps �
A kerAk to kerAk
A� and there-

fore it de�nes a mapping �
A�
^k ! �^k
A� . Moreover, by (25) it

coincides with ��;�^k . Since �
� de�nes a braiding as well and kerAk =

kerA�k , the proof for �
� is analogous.

Now we add some new relations which have not already appeared in

[6].
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Lemma 5.2. For � 2 �^k� , �1 2 �� , �2 2 ��� , k � 1, � 2 f+;�g,
we have

h�1 ^ �; �2i� = �1 ^ h�; �2i� + (�1)keg(��(�1
A�); �2);
h�2; � ^ �1i� = h�2; �i� ^ �1 + (�1)keg(�2; ��(�
A�1)); (26)

where �� = ��
�� ;�^k�

in the �rst equation and �� = ��
�^k
�

;��
in the second

equation.

Proof. We carry out the proof of the �rst equation. The proof of

the second one is analogous. By de�nition (6),

h�1 ^ �; �2i� = eg�(1� ��k + ��k �
�
k�1 � � � �+ (�1)k��k � � ��

�
1 )(�1
A�); �2

�
:

Note that the endomorphisms ��k , �
�
k �
�
k�1, : : : , �

�
k � � ��

�
2 do not act in

the �rst component. So we can separate the last summand. Applying

Lemma 5.1 we continue

= eg��1
A(1� ��k�1 + � � �+ (�1)k�1��k�1 � � ��
�
1 )�; �2

�
+

+ (�1)keg(��k � � ���1 (�1
A�); �2)
= �1
Ah�; �2i� + (�1)keg(��(�1
A�); �2):

This �nishes the proof.

6. Quantum Laplace-Beltrami Operators

Let us derive some important properties of the quantum Laplace-

Beltrami operators de�ned by equation (14).

Proposition 6.1. For � 2 �^k� we have

L�� � = (�1)k
�
�2s� + eg���(!�

0
A�); !
��
0

�
+ eg�!��0 ; ��(�
A!

�
0)
��
:

(27)

Proof. Using the de�nition of d� and @
�
� , the identity �(!

��
0 
A!

�
0 ) =

!�
0
A!

��
0 and equations (24) and (13) we get the following equations.



DE RHAM COHOMOLOGY FOR QUANTUM GROUPS 15

Terms which are not underlined remain unchanged.

L�� � = �d�
�
h�; !��0 i� + (�1)kh!��0 ; �i�

�
+ @��

�
!�
0 ^ �+ (�1)k�1� ^ !�

0

�
= �!�

0 ^ h�; !
��
0 i� + (�1)k�1h�; !��0 i� ^ !�

0 + (�1)k+1
�
!�
0 ^ h!

��
0 ; �i�

+ (�1)kh!��0 ; �i� ^ !�
0

�
+ h!�

0 ^ �; !��0 i� + (�1)k+1h!��0 ; !�
0 ^ �i�

+ (�1)k�1(h� ^ !�
0 ; !

��
0 i� + (�1)k+1h!��0 ; � ^ !�

0i�)

= �!�
0 ^ h�; !

��
0 i� + (�1)k�1h�; !��0 i� ^ !�

0 + (�1)k+1!�
0 ^ h!

��
0 ; �i�

� h!��0 ; �i� ^ !�
0 + h!�

0 ^ �; !��0 i� + (�1)k+1(s��!�
0 ^ h!

��
0 ; �i�)

+ (�1)k�1(s��h�; !��0 i� ^ !�
0) + h!��0 ; � ^ !�

0 i�

= 2s(�1)k+1�� !�
0 ^ h�; !

��i� � h!
��
0 ; �i� ^ !�

0 + h!�
0 ^ �; !��0 i� +

+ h!��0 ; � ^ !�
0 i�

= 2s(�1)k+1�+ (�1)k
�eg(��(!�

0
A�); !
��
0 ) + eg(!��0 ; ��(�
A!

�
0))
�
:

The last equation follows by (26).

Lemma 6.2. For a 2 A and � 2 f+;�g we have

g(!�(a); !��0 ) = g(!��0 ; !�(a)) = sX�
0 (a): (28)

Proof. Let !�
1;ij := !�

ij � (P �
0 )

kl
ij!

�
kl, where P

�
0 is given by (11). Fur-

ther let X�
1;ij be the corresponding dual basis elements in the quantum

tangent space of �� . Since the �-metric is bicovariant, the complex

matrices (g(!�
1;ij; !

��
0 )) and (g(!��0 ; !�

1;ij)) are elements of the vector

space Mor(1; v
1), where v denotes the corepresentation correspond-

ing to the right coaction on h!�
1;iji. By Schur's lemma these matri-

ces have to be zero (see also the proof of Proposition 7.1 (i)). Using

(13) and !�(a) = X�
0 (a)!

�
0 +
P

ij X
�
1;ij(a)!

�
1;ij the assertion follows.

Proposition 6.3. For � 2 �^k� , � 2 f+;�g, we have

L+
� � = (�1)ks

�
�(0)X

�
0 (�(1)) +X��0 (�(�1))�(0)

�
= (�1)ks

�
X�

0 � �+ � �X��0

�
;

(29)

L�� � = (�1)ks
�
�(0)X

��
0 (�(1)) +X�

0 (�(�1))�(0)
�

= (�1)ks
�
X��0 � � + � �X�

0

�
:

(30)

In particular, L+
� a = L�� a = sX0 � a = sa �X0 for a 2 A.

Proof. We prove (29). Let � =
P

i �iai with �i 2 (�^k� )L, ai 2 A.
By (1), since g and � are A-module homomorphisms and since �a =
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a(1)� / a(2), we obtain

eg(�(!�
0
A�iai); !

��
0 ) = eg(�(!�

0
A�i)ai; !
��
0 )

= eg(�i(0)
A(!�
0 / �i(1))ai; !

��
0 )

= eg(�i(0)ai(1)
A(!�
0 / (�i(1)ai(2))); !

��
0 )

= �i(0)ai(1)g
�
!�(�i(1)ai(2)) + "(�i(1)ai(2))!

�
0 ; !

��
0

�
= �i(0)ai(1)X

�
0 (�i(1)ai(2)) + �iaig(!

�
0 ; !

��
0 )

= s(�(0)X
�
0 (�(1)) + �):

In the fourth equation we used (9), in the �fth equation (28) and in

the last one (13). Now let � =
P

i ai�i, �i 2 (�^k� )L, ai 2 A. By (28)

and (13) we have

eg(!��0 ; �(ai�i
A!
�
0 )) = eg(!��0 ai; �(�i
A!

�
0))

= eg(ai(1)!��0 / ai(2); !
�
0
A�i)

= ai(1)g
�
!�� (ai(2)) + "(ai(2))!

��
0 ; !�

0

�
�i

= s

�
ai(1)X

��
0 (ai(2))�i + ai�i

�
= s(X��0 (�(�1))�(0) + �):

In the last equation we used b(1)X
��
0 (b(2)) = X��0 (b(1))b(2) for all b 2 A

which follows from the centrality of X��0 . Inserting both parts into (27)

we obtain (29).

Let us prove (30). Similarly to the preceding equation one shows

that eg(��(!�
0
A�); !

��
0 ) = s

�
� +X0(�(�1))�(0)

�
. Let � =

P
i ai�i with

left-coinvariant elements �i. Using (1) we get

eg(!��0 ;��(ai�i
A!
�
0 )) = eg(!��0 ai; (!

�
0 /S

�1�i(1))
A�i(0))

= g
�
!��0 aiS(S

�1�i(2)); !
�
0S
�1�i(1)

�
�i(0)

= g
�
ai(1)�i(2)!

�� / (ai(2)�i(3)); !
�
0

�
S�1�i(1)�i(0)

= sai(1)�i(2)
�
"(ai(2)�i(3)) +X��0 (ai(2)�i(3))

�
S�1�i(1)�i(0)

= s(�+ ai(1)�i(0)X
��
0 (ai(2)�i(1)))

= s(�+ �(0)X
��
0 (�(1))):

This gives (30). Since X�
0 is central, L

+
� a = L�� a = sX0�a = sa�X0 fol-

lows from (29) and (30).

Cosemisimple Hopf algebras. Let A be a cosemisimple Hopf

algebra (cf. [8, Subsection 11.2]) and let bA be the set of equivalence

classes � of irreducible corepresentations u� of A. Then A has the

Peter-Weyl decomposition A =
L

�2 bA C(u
�). Let P � : A ! A denote

the projection of A onto the simple coalgebra C(u�). In particular, if
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a =
P

�;i;j c
�
iju

�
ij, c

�
ij 2 C, and fu

�
ijj i; j = 1; : : : ; d�g is a linear basis

of C(u�), then P �(a) =
P

ij c
�
iju

�
ij. De�ne the linear functionals h�,

� 2 bA, on A by h� = "ÆP �. Obviously, we have
P

�2 bA h
� = " and

(P �
 id)� = (id
P �)� = (P �
P �)� = �ÆP �. It is easily seen that

h� � a = a � h� = P �(a). Note that h0 corresponding to u0 � 1 is the

Haar functional on A.
Since X�

0 is central, for � 2 bA there exist complex numbers E�
� such

that X�
0 � acts as a scalar on C(u�):

sX�
0 � h

� � a = E�
�h

� � a;

sX�
0 (h

� � a) = E�
�h

�(a)
(31)

for a 2 A. Let v;w be corepresentations of A and � = �� . De�ne the
following subspaces of �^:

� k(v;w) := f� 2 �^k j �(�1) 
 �(0) 
 �(1) 2 C(v)
 �^k 
 C(w)g;

�^(v;w) :=
M
k�0

� k(v;w):

We brie
y write � k(�; �) instead of � k(u�;u�). The main step in our

proof is the following spectral decomposition of the quantum Laplace-

Beltrami operators.

Proposition 6.4. Let � = �� , � 2 f+;�g. For �; � 2 bA de�ne

the mapping h�� : �^ ! �^(�; �) by h��(�) = h�(�(�1))�(0)h
�(�(1)).

For � 2 �^ and ��� = h��(�) we then have

� =
X
�;�2 bA

���; �^ =
M
k�0

M
�;�2 bA

� k(�; �); (32)

L+
� �

�� = (�1)k(E��� + E�
�)�

��;

L�� �
�� = (�1)k(E�

� + E��� )���:
(33)

For brevity we write E�� := E�� + E+
� .

Proof. (a) An easy computation shows that indeed ��� 2 �^(�; �).
Since

P
� h

� = " and � = "(�(�1))�(0)"(�(1)), the �rst part of (32)

follows. Let us verify the second part of (32). The �rst sum is direct

by the grading. The second sum is direct, since matrix elements of

inequivalent irreducible corepresentations are linearly independent.

(b) Since �R(�
��) = h�(�(�1))�(0)
h���(1) and �L(�

��) = �(�1)�h
�


�(0)h
�(�(1)), by (29) and (31) we obtain the equation

L+
� �

�� =(�1)ks
�
h�(�(�1))�(0)X

�
0 (h

� � �(1)) +

+X��0 (h� � �(�1))�(0)h
�(�(1))

�
= (�1)k(E�

� + E��� )���:
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The proof of the second part of (33) is analogous.

In the remainder of this section A denotes the coordinate Hopf al-

gebra of the quantum group Gq as in Theorem3.1. For � 2 P++

as usual �0i denotes the length of the i th-column of �. We de�ne

P (A) to be the set P+ for GLq(N), P 0
++ := f� 2 P++ j�N = 0g

for SLq(N), f� 2 P++ j�
0
1 + �02 � Ng for Oq(N), f� 2 P++ j�

0
1 � ng

for Spq(2n), and f� 2 P++ j�
0
1 �

N
2
g for SOq(N), respectively. By [8,

Theorem 11.22] irreducible corepresentations v of A are in one-to-one

correspondence with elements of P (A). We identify bA and P (A).

Lemma 6.5. Suppose that �; � 2 P (A).
(i) For SLq(N) we have E�� = 0 if and only if � = � = (0).

(ii) For GLq(N) we have E�� = F��. The parameter value z = 1 is

regular. If zNq�2 = � for a primitive m th
root of unity �, m 2 N,

then we have E�� = 0 if and only if � = (nN) and � = (kN) for some

n; k 2 mZ.
(iii) In the cases Spq(N) and SOq(N) we have E�� = 0 if and only

if � = � = (0). In the case Oq(N) we have E�� = 0 if and only if

�; � 2 f(0); (1N)g.

Proof. For � 2 f+;�g de�ne the following rational functions of t
and z:

e��(t; z) := z�� l
�
[[N ]]t + �(t� t�1)

X
x2�

sgn(x)t�(N+2c(x))
�
� [[N ]]t;

e��(t; z) := e�� (t; z) + e+� (t; z); (34)

where l = j�j. It follows from [6, Proposition 7.1] that for the quantum

groups GLq(N) and SLq(N) and for � 2 P++ we have E�
� = e��(q; z),

where zN = q2 in the SLq(N) case and z 6= 0 in the GLq(N) case. Note

that we have to replace z2 in [6] by z according to our de�nition of

��;z. Obviously, E�� = e��(q; z) for �; � 2 P 0
++. Later we will see that

E�
� = e��(q; z) for � 2 P+ and not only for � 2 P++.

We prove (i). Set eE�
� = limt!1(t � t�1)�2 e��(t; t

2=N ). In the remark

to Proposition 7.1 in [6] it was noted that

eE� := eE+
� + eE�� =

N�1X
i=1

(N � i)mi

N

�
i(mi +N) + 2

i�1X
j=1

jmj

�
; (35)

where mi = �i��i+1, i = 1; : : : ; N � 1. On the other hand, computing

the limit limt!1(t� t�1)�2e��(t; t
2=N ) directly from (34) one gets

eE+
� = eE�� =

1

2N
(lN2 + 2c(�)N � l2): (36)
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Using the formulae c(�) = n(�0) � n(�), n(�) =
P

i�1(i � 1)�i, and

n(�0) =
P

i�1
1

2
�i(�i � 1) from [10, Chapter 1], we obtain (35) from

(36). From (35) it follows that eE+
� � 0 for � 2 P 0

++ and eE+
� = 0

if and only if � = (0). Suppose that E�� = 0 for some �; � 2 P 0
++.

Since e��(t) := e��(t; t
2=N ) is an algebraic function of t and t = q is a

transcendental root, e��(t) � 0. In particular

lim
t!1

(t� t�1)�2e��(t; t
2=N ) = eE�� + eE+

� = 0: (37)

Hence � = � = (0).

Let us prove (ii). Fix � 2 P+ and set l := j�j. First we will show that

E�
� = e��(q; z). For this purpose we prove that Dn a is an eigenvector

for X�
0 � if a is and we compute the corresponding eigenvalue. Suppose

that sX�
0 �a = E�a for a complex number E� . Since `+i

j(D) = qx�NÆij
and `�ij(D) = q�1yNÆij we have

!�(D) = (q2�z��N � 1)!�
0 : (38)

Hence !�
0 /D = q2�z��N!�

0 . Acting from the right byD�1 gives !�
0 /D

�1 =

q�2�z�N!�
0 . For n 2 Z we thus have !�

0 /D
n = q2n�z�nN�!�

0 . Since D
n

is group-like, !� (a) = !�
0 / a� "(a)!�

0 , and � a = a(1)� / a(2), we obtain
by (28) the following formulae for n 2 Z:

sX�
0 � (D

na) = sDna(1)X
�
0 (D

na(2))

= Dna(1)g
�
!�(Dna(2)); !

��
0

�
= Dna(1)g(!

�
0 / (D

na(2)); !
��
0 )�Dna(1)"(a(2))g(!

�
0 ; !

��
0 )

= Dna(1)g(q
2n�z�nN�!�

0 / a(2); !
��
0 )� sDna

= q2n�z�nN�Dna(1)
�
g(!�(a(2)); !

��
0 ) + "(a(2))s

�
� sDna

=
�
q2n�z�nN� (E� + s)� s

�
Dna:

Since D corresponds to the weight (1N) and s = [[N ]]q we have for

� 2 P+

E�
�+(1N ) + [[N ]]q = q2�z�N� (E�

� + [[N ]]q): (39)

Next we will show that for � 2 P+,

e��+(1N )(t; z) + [[N ]]t = t2�z�N� (e��(t; z) + [[N ]]t): (40)

For � 2 P+ set �̂ = f(i; j) 2 � + (1N) j (i; j � 1) 2 �g. How to obtain

�+ (1N) from �? In cases �1 � � � � � �k � 0 shift � to the right by 1,

then add one box (i; 1) for each i = 1; : : : ; k. In cases 0 � �k+1 � � � � �
�N remove the box (i; 0) and then shift the remainder by 1 to the right.
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Since boxes with �i < 0 have negative sign and j�+ (1N)j = l +N we

obtain by (34)

e��+(1N )(t; z) =z
��(l+N)

�
[[N ]]t + �(t� t�1)

X
x2�̂

sgn(x) t�(N+2c(x)) +

+ �(t� t�1)

NX
i=1

t�(N+2�2i)
�
� [[N ]]t

=z�� l��N
�
[[N ]]t + �(t� t�1)t2�

X
x2�

sgn(x) t�(N+2c(x)) +

+ �(t� t�1)(t�N + t�(N�2) + � � �+ t�(�N+2))
�
� [[N ]]t

=z�� l��N
�
(1� t2� )[[N ]]t + z� lt2� (e��(t; z) + [[N ]]t) +

+ �(t� t�1)t� [[N ]]t
�
� [[N ]]t

=t2�z��N(e��(t; z) + [[N ]]t)� [[N ]]t:

In the last line we used �t� (t� t�1) = t2� � 1. Since there exists n 2 N
such that � + (nN ) 2 P++ and E�

�+(nN )
= e�

�+(nN )
(q; z) , from (39)

and (40) we obtain E�
� = e��(q; z). Comparing (34) and (16) yields

E�� = F��.

We will show that z = 1 is regular. Suppose that F�� = 0 for some

�; � 2 P+. Inserting z = 1 into (16) we get F�� = e��(q; 1). Since

e��(t; 1) is a rational function of t and q is a transcendental root of it,

e��(t; 1) � 0. In particular 0 = limt!1(t � t�1)�1e��(t; 1) = j�j � j�j.
Set l := j�j = j�j. Further we have 0 = limt!1(t�t�1)�2e��(t; 1). Since

(t� t�1)�2e��(t; 1) =
X
x2�

sgn(x)t
N

2
+c(x)[[N

2
+ c(x)]]t �

�
X
x2�

sgn(x)t�
N

2
�c(x)[[�N

2
� c(x)]]t

(�)

the limit t ! 1 gives 0 = lN + c(�) + c(�). Let us de�ne eE+
� :=

(2N)�1(j�jN2+2c(�)N�j�j2) for � 2 P+. By (36), eE+
� � 0 for � 2 P 0

++

and eE+
� = 0 if and only if � = (0). It is easy to check that eE+

�+(1N )
= eE+

�

for � 2 P+. Hence eE+
� � 0, � 2 P+, and eE+

� = 0 if and only if � = (nN)
for some n 2 Z. We conclude that c(�); c(�) � (2N)�1(l2 � lN2).

Inserting this into equation (�) we obtain 0 � 1

N
l2 � 0, where equality

holds on the left hand side if and only if � = (nN ) and � = (kN ) for
some n; k 2 Z and on the right hand side if and only if l = 0. Hence

� = � = (0) and z = 1 is regular.

Finally consider the case when zNq�2 = � and � is a primitive m th

root of unity (m 2 N). Let ~z = (t2�)1=N . Observe that e�
�+(mN )

(t; ~z) =
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e��(t; ~z) by (40) and since �m = 1. Hence

E�+(mN );�+(mN ) = F�+(mN );�+(mN ) = F��

for �; � 2 P+. Therefore the `if part' of the assertion holds. More-

over, for the `only if part' we can assume that �; � 2 P++. Since q
is a transcendental root of the algebraic function f(t) := e��(t; ~z), we
conclude that f(t) has to be identically zero. Therefore limt!�1 f(t)
has to be zero, and by (34) it follows that j�j; j�j 2 mNZ. We also

have limt!1 f(t)=(t
2 � 1) = 0. Further, using (36) one can show that

limt!1 t
N�1f(t)=(t2 � 1)2 = eE+

� + eE+
� . This sum is positive except

for the case eE+
� = eE+

� = 0. Moreover, the latter is equivalent to

� = (kN); � = (lN) for some k; l 2 Z. Together with j�j; j�j 2 mNZ
we get the assertion.

(iii) There exists an isomorphism of Hopf bimodules �+;z and ��;z,
see [8, Subsection 14.6.1]. In particular X+

0 = X�0 and consequently

E+
� = E�� =: E�. By (10) and the de�nition of `� one obtains

sX+
0 (u

i1
k1
� � �uimkmP�

k1���km
j1:::jm

) =

= zm(R̂mR̂m�1 � � � R̂2R̂
2
1 R̂2 � � � R̂m � I)i1���im i

k1���km k(D
�1)ki P�

k1���km
j1���jm

;

where P� 2 Mor(u
m). Paying attention to the 2-admissible parameter

z 2 f�1; 1g, the choice of the coinvariant 1-form !�
0 , and the de�nition

of the �-metric it follows from the remark after Proposition 7.2 in [6]

that E� = e�(q), where

e�(t) := �zj�j(t� t�1)2
X
x2�

[[N � �+ 2c(x)]]t:

Suppose that E�� = 0. Since �^(�; �) = f0g for j�j 6� j�j mod (2)

we may assume j�j � j�j mod (2). Since e�(t) + e�(t) is a rational

function with transcendental root t = q, e� + e� � 0. In particular

0 = lim
t!1

�zj�j(t� t�1)�2(e�(t) + e�(t))

=(j�j+ j�j)(N � �) + 2c(�) + 2c(�):
(41)

Using the inequality 2c(�)N � j�j2�j�jN2, � 2 P++, from the proof of

(ii) it is easily seen that for � 6= (0) in the case � = �1 and in the case

(� = 1 and j�j > N) we have 2c(�) > �j�j(N � �). Thus, by (41), � =

� = (0) or (� = 1 and j�j; j�j � N). In the latter case 2c(�) � �j�j2 +
j�j where equality holds if and only if � = (1k), 1 � k � N . Inserting

this into (41) yields �; � 2 f(0); (1N)g. Indeed we have E�� = 0 in these

cases.
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Proof of Theorem3.1. Let [�] denote the cohomology class of

� 2 �^. Since d is bicovariant and h� � a = a � h�, the di�eren-

tial d commutes with h��, �; � 2 bA. In particular h0;0 factorises

to h0;0� : HdeR(�
^) ! HdeR(�

^
Inv
). Since h0;0� = id, where � is the

embedding of �^
Inv

into �^, h0;0� is surjective. We prove injectiv-

ity. Let � 2 HdeR(�
^), in particular d� = 0, and suppose that

h0;0�(�) = [�0;0] = 0.

(i) Consider �rst the case (a) of Theorem3.1 with � = �+;z. By

Lemma6.5, E�� 6= 0 if and only if (�; �) 6= (0; 0). From (14) and (33)

we obtain

��� = (�1)kE�1�� (�d @
+ + @+ d) ���;

��� = (�1)kE�1�� (�d @
� + @� d) ���

(42)

for (�; �) 6= (0; 0). Since d commutes with h�� we get d��� = h��(d�) =
h��(0) = 0. By (42), [���] = (�1)kE�1�� [�d @

+���] = 0 for (�; �) 6=

(0; 0) (coboundary). Hence [�] = [�0;0] +
X

(�;�)6=(0;0)

[���] = 0 and h0;0�

is injective. In the same way the restrictions of the map h0;0 to the

subspaces �^
L
and �^

R
yield isomorphisms HdeR(�

^
L
) �= HdeR(�

^
Inv
) and

HdeR(�
^
R
) �= HdeR(�

^
Inv
), respectively. This proves (a) in case � =

�+;z. For � = ��;z use �
�� = (�1)kE�1�� (�d @

� + @� d)��� and ��� =

(�1)kE�1�� (�d @
+ + @+ d)��� to get the same result.

(ii) Observe that for a 2 A with da = 0 we have

HdeR(a�
^) �= aHdeR(�

^): (43)

Consider the quantum group GLq(N) and suppose that the parameter

z satis�es the condition zNq�2 = �, where � is a primitive m th root

of unity, m 2 N. Note that d(Dm) = 0 by (38). Further we have

�L = � (0; 0)�� (0; (1; 0; : : : ; 0;�1)) by (7) and u
uc �= 1�u(1;0;:::;0;�1).

By the Littlewood-Richardson rule for tensor product representations

of GL(N) a necessary condition for �^(0; �) 6= f0g is j�j = 0. Since

�^ = A�^
L
, �^(�; �) 6= f0g implies j�j = j�j. Combining this with

Lemma6.5, E�� = 0 is an eigenvalue of L�� if and only if � = � = (nN)
for some n 2 mZ. Similarly as in (i) it follows that

hD :=
X
n2mZ

h(n
N );(nN ) : �^ !

M
n2mZ

�^((nN ); (nN)) =
M
n2mZ

Dn�^
Inv

de�nes an isomorphism h�D : HdeR(�
^) !

L
n2mZHdeR(D

n�^
Inv
). By

(43), HdeR(D
n�^

Inv
) = DnHdeR(�

^
Inv
) for n 2 mZ. Since the images of

both mappings hD��
^
L

and hD��
^
R
belong to �^

Inv
, they de�ne quasi-

isomorphisms from �^
L
to �^

Inv
and from �^

R
to �^

Inv
, respectively. This

proves the GLq(N) part of (b).
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(iii) Consider now the Oq(N) case. Since �+;z �= ��;z, it suÆces

to carry out the proof for the calculus � = �+;z, z 2 f�1; 1g. By

Lemma6.5, E�� = 0 is an eigenvalue of L+ = L� if and only if

�; � 2 f(0); (1N)g. Similarly as in (i) hD := h0;0 + h(0);(1
N ) + h(1

N );(0) +

h(1
N );(1N ) de�nes a quasi-isomorphism of �^ onto �^(1; 1)+�^(1;D)+

�^(D; 1) + �^(D;D). By the de�nition of `�, R̂, and D we ob-

tain `+i
j(D) = x�NÆij and `�ij(D) = yNÆij. Consequently, X+

ij (D) =

(z�N � 1)Æij and dD = (z�N � 1)D!+
0 . Hence dD 6= 0 in case of

Oq(2n+1) and ��;�1. Otherwise dD = 0. Since u
uc �= u
(2)�u(11)�1,

each irreducible subcorepresentation of any tensor power (u
uc)
k

corresponds to a Young diagram with an even number of boxes. Con-

sequently, �^(�; �) = f0g if j�j+ j�j is odd. In particular, �^(1;D) =
�^(D; 1) = f0g if N is odd. For even N however these spaces may be

nonzero. This completes the proof of Theorem3.1.

7. Proof of Theorem3.2

First we will show that the duality of d� and @��� holds in a rather

general setup. Secondly, we will prove that for the quantum groups

SLq(N) and GLq(N) the di�erential calculi �^+ and �^� are weakly iso-

morphic. Combining both we obtain the proof of the second theorem.

Duality of di�erential and codi�erential.

Proposition 7.1. Suppose that A is a cosemisimple Hopf algebra,

(�+; ��) is a dual pair of bicovariant di�erential calculi and �; � 2 bA.
For � 2 bA let �c 2 bA denote the class of the contragredient corepresen-

tation (u�)c.

(i) The map hÆh�; �i� : �
k
� (�; �)� � k

�� (�
c; �c)! C, � 2 f+;�g, k � 0,

is non-degenerate.

(ii) The restricted di�erential d� : �
k
� (�; �)! � k+1

� (�; �) is the dual op-
erator to the restricted codi�erential @��� : �

k+1
�� (�c; �c) ! � k

�� (�
c; �c)

with respect to the pairing hÆh�; �i�.

Proof. (i) Set �^ := �^� and �x � 2 bA, k 2 N. Let us prove thatP
�2 bA �

k(�; �) is �nite dimensional. The space �^k
L

�
P

�2 bA �
k(0; �)

is �nite dimensional since �L is. Suppose that � 2
P

�2 bA �
k(�; �).

Since � = �(�2) � S(�(�1))�(0), we deduce that � 2 C(u�)�^k
L
. Be-

cause C(u�) is �nite dimensional, the assertion follows. Similarly,

dim
P

�2 bA �
k(�; �) < 1. For �; � 2 bA let f�ijg and f�mn g denote
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the linear bases of � k
� (�; �) and � k

�� (�; �), respectively. Then we have

(id
�R)�L(�
i
j) = u�ix 
 �xy 
 u�yj;

(id
�R)�L(�
k
l ) = u�ka 
 �ab 
 u�bl:

Set hikjl := hh�ij; �
k
l i�. By the left covariance of h�; �i� it follows that

u�ixu
�
kyhh�

x
j ; �

y
l i� = (id
h)�h�ij; �

k
l i� = 1�hh�ij; �

k
l i�;

u�ixu
�
kyh

xy
jl = hikjl1:

Hence (hikjl )i;k 2 Mor(1;u� 
 u
�) for all j; l. By Schur's lemma we

obtain (hikjl )i;k = 0 for u� 6�= u
�c . Using right covariance, in a similar

way we get (hikjl )j;l 2 Mor(u� 
 u
�; 1) for all i; k. Again by Schur's

lemma (hikjl )j;l = 0 for u� 6�= u
�c . Suppose now that hh�; �i� = 0

for a �xed � 2 � k
� (�; �) and all � 2 � k

�� (�
c; �c). By the above ar-

guments hh�; �i� = 0 for all � 2 � k
�� (�; �), �; � 2 bA, i. e. for all

� 2 �^k�� . Since the Haar functional is regular, i. e. h(ab) = 0 for all

a 2 A implies b = 0 and h(ab) = 0 for all b 2 A implies a = 0, and

since the pairing h�; �i� : �
^k
� 
A�

^k
� ! A is non-degenerate, the pair-

ing hÆh�; �i� : �
^k
� 
A�

^k
�� ! C is also non-degenerate, cf. [6, Section 6].

Therefore � = 0. Non-degeneracy in the second component can be

proved similarly.

(ii) Suppose that � 2 � k
� (�; �) and � 2 � k+1

�� (�c; �c). Because of (22),
(23), the �-symmetry of g, and since h�; �i� 2 ��� , we obtain

hhd�; �i� = hh!�
0 ^ �� (�1)k� ^ !�

0 ; �i�

= hh!�
0 ; h�; �i�i� + (�1)k+1hh�; h!�

0 ; �i�i�

= hhh�; �i�; !
�
0i� + (�1)k+1hh�; h!�

0 ; �i�i�

= hh�; h�; !�
0i�i� + (�1)k+1hh�; h!�

0 ; �i�i�

= hh�; @��i�:

The proof is complete.

Homomorphy of di�erential calculi. In this subsection we de�ne

and study the notion of homomorphic di�erential calculi. Our aim is to

show that for the quantum groups GLq(N) and SLq(N) the di�erential

calculi �^+ and �^� are weakly isomorphic in the following sense. There

exists a Hopf algebra automorphism F of A which can be extended to

a graded algebra isomorphism F : �^+ ! �^� such that Fd+ = d�F .
Suppose that f : B ! C is an algebra homomorphism and � is a

C-bimodule. Then � is a B-bimodule via a � � � b := f(a)�f(b).
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Definition 7.1. (i) Let B and C be algebras and let (�; d1) and
(�; d2) be �rst order di�erential calculi over B and C, respectively. The
pair (f; F ) of an algebra homomorphism f : B ! C and a B-bimodule

homomorphism F : � ! � is called a homomorphism of the �rst order

di�erential calculi � and � if

Fd1 = d2f: (44)

(ii) Let �^ and �^ be di�erential calculi over B and C, respectively. A
graded algebra homomorphism F : �^ ! �^ is called a homomorphism

of the di�erential calculi �^ and �^ if

Fd1 = d2F: (45)

Recall that two di�erential calculi �^ and �^ over the same algebra

B are isomorphic in the strong sense if and only if there exists a bijective

homomorphism F : �^ ! �^ of di�erential calculi with F0 = id.

The next lemma characterises homomorphic left-covariant di�erential

calculi in terms of their associated right ideals and in terms of their

quantum tangent spaces.

Lemma 7.2. Let � and � be left-covariant �rst order di�erential

calculi over the Hopf algebras A and B with associated right ideals R
and S and quantum tangent spaces X and Y, respectively. Suppose

that f : A ! B is a Hopf algebra homomorphism. The following are

equivalent:

(i) f(R) � S:
(ii) f t(Y) � X :
(iii) There exists a unique homomorphism (f; F ) of the left-covariant

FODC � and �.

Proof. (iii)!(i). Fix r 2 R. Since f is a Hopf algebra homomor-

phism and F (adb) = f(a)df(b), we have

!�(f(r)) = S
�
f(r)(1)

�
df(r)(2) = S(f(r(1)))df(r(2))

= f(Sr(1))F (dr(2)) = F (!(r)) = 0:
(46)

Moreover, "(f(r)) = "(r) = 0. Hence f(r) 2 S.
(i)!(ii). Since S and Y are orthogonal subspaces with respect to the

pairing of A and AÆ, we have f t(Y )(r) = Y (f(r)) 2 Y (S) = f0g for

all r 2 R and Y 2 Y. Furthermore, f t(Y )(1) = Y (f(1)) = Y (1) = 0.

Hence f t(Y ) 2 X .

(ii)!(iii). F is uniquely determined by (44), since F (aidbi) :=

f(ai)df(bi). We show that F is well-de�ned. Let f!ig and f�jg be
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linear bases of �L and �L, respectively, and let fXig and fYjg be the

corresponding dual bases of X and Y, respectively. By assumption

there exist �ij 2 C such that f t(Yj) = �ijXi. Suppose that aidbi = 0.

Then we have 0 = ai(Xk � bi)!k and consequently 0 = ai(Xk � bi) for
all k. Using this fact, we conclude that

f(ai)df(bi) = f(ai)f(bi(1))!�(f(bi(2))) = f(ai)f(bi(1))Yj(f(bi(2)))�j

= f(aibi(1))f
t(Yj)(bi(2))�j = �kjf(aibi(1))Xk(bi(2))�j

= �kjf(ai(Xk � bi))�j = 0:

Hence F is well-de�ned.

The next lemma is straightforward to prove using covariance of d and

the properties of F0. We omit the proof.

Lemma 7.3. Suppose that �^ and �^ are left-covariant di�erential

calculi over the Hopf algebras A and B, respectively. Let F : �^ ! �^

be a homomorphism of di�erential calculi and F0 := F �A a Hopf alge-

bra homomorphism. Then we have (F0
 F )�L = �LF and F (� / a) =
F� /F0a for � 2 �^ and a 2 A.

Replacing left-covariance by right-covariance in the above lemma the

�rst assertion reads as (F 
 F0)�R = �RF . Now we shall apply the

new notion to our main example.

Proposition 7.4. Let Gq be one of the quantum groups GLq(N) or

SLq(N) and A = O(Gq). For k = 1; : : : ; N , set k0 = N + 1� k.
(i) There exists a unique bijective homomorphism F : �^+ ! �^� of

di�erential calculi such that

F (uab) = Sub
0

a0 ; a; b = 1; : : : ; N: (47)

(ii) For all �; � 2 bA the restriction of F to � k
+(�; �) is a bijection onto

� k
�(�

c; �c).

Proof. (a) We �rst establish the existence of a Hopf algebra au-

tomorphism F : A ! A satisfying (47). To do this we prove that

F preserves the relations of the Hopf algebra A. It is easily shown

that R̂ab
rs = R̂s0r0

b0a0 and d�1k = dk0. Moreover, the q-antisymmetric tensor

satis�es "i1��� iN = "i0
N
��� i0

1
. We show that the algebra homomorphism

f : Chuiji ! Chviji, given by f(uab) = vb
0

a0 maps the generating relations

appearing in the de�nition of the Hopf algebra A to those of the Hopf

algebra Aop;cop. Here we assume that Chviji has both opposite multi-

plication and opposite comultiplication. By the above identity for the
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matrix R̂ we have

f(R̂ab
xyu

x
r 
 uys � uax 
 ubyR̂

xy
rs ) = R̂y0x0

b0a0 v
r0

x0 
 vs
0

y0 � vx
0

a0 
 vy
0

b0 R̂
s0r0

y0x0:

The right hand side generates the relations of the bialgebra Aop;cop.

Similarly one shows consistency with the q-determinant relation. Fi-

nally we have (f
f)�uab = vx
0

a0
v
b0

x0 = �vb
0

a0 = �(f(uab)) and "(f(u
a
b)) =

Æab = "(uab). Hence f is a homomorphism of bialgebras. Since both A
and Aop;cop are Hopf algebras, f is a Hopf algebra homomorphism.

Since the antipode is a Hopf algebra map of Aop;cop ! A, F = SÆf is

a Hopf algebra automorphism. Its inverse F�1 is given by F�1(uab) =
S�1(ub

0

a0).

Next we show that F (C(u�)) = C(u�c). Let P � 2 Mor(u
k) be a

primitive idempotent such that C(u�) = h(P �)~n~x u
~x
~m j~n; ~m 2 f1; : : : ; Ngki.

For ~x = (x1; : : : ; xk) we write ~x
0 = (x01; : : : ; x

0
k) and

 
x
0
= (x0k; : : : ; x

0
1).

Let us show that (Q�)~n~m := (P �)
 
m
0

 
n
0 is a projector equivalent to P �.

Idempotents P and Q are called equivalent, if there exist A; B 2
Mor(u
k) such that AB = P and BA = Q. For this let � and �
denote the algebra automorphism and algebra anti-automorphism of

Mor(u
k) de�ned by

�(R̂n;n+1) = R̂k�n;k�n+1 and �(R̂n;n+1) = R̂n;n+1;

n = 1; : : : ; k�1, respectively. By the theory of Hecke algebras it is easy

to see that � and � map each two-sided ideal of Mor(u
k) into itself.

In particular, the image of a primitive idempotent is an equivalent

primitive idempotent. By induction on k we will show that

T
 
m
0

 
n
0 = �(�(T ))~n~m: (48)

It is well known that for T 2 Mor(u
k) there exist X; Y 2 Mor(u
2)

and B 2 Mor(u
k�1) such that T = Xk�1;kBYk�1;k. Since X and Y

can be written in terms of R̂, R̂�1, and I, and since R̂ab
rs = R̂s0r0

b0a0 , we

have by induction assumption

T
m0
k
���m0

1

n0
k
���n0

1

= X
m0
2
m0
1

x0y0 B
m0
k
���m0

3
x0

n0
k
���n0

3
z0

Y z0y0

n0
2
n0
1

= Y n1n2
yz �(�(B))zn3���nkxm3���mk

Xyx
m1m2

= (Y12�(�(B))X12)
~n
~m = �(�(Xk�1;kBYk�1;k))

~n
~m:

The character of u� is �(u�) = (P �)~n~x u
~x
~n [14, Lemma 5.1]. Since Q� =

�(�(P �)) is an equivalent idempotent, the corresponding characters of

the corepresentations (P �)~n~x u
~x
~m and (Q�)~n~x u

~x
~m coincide [14, Lemma 5.1].

We conclude that

�(Fu�) = (P �)~n~x (u
c)~x

0

~n0 = (Q�)
 
x
0

 
n
0 S(u

 
n
0

 
x
0) = S(�(u�)) = �(u�c):
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Since F is a Hopf algebra homomorphism, matrix elements of irre-

ducible corepresentations are mapped into each other. Hence F (C(u�)) =

C(u�c).

(b) We show that F t(X�) � X+. Since F is a coalgebra homo-

morphism, F t is multiplicative on the subalgebra of AÆ generated by

the matrix elements `�ab , a; b = 1; : : : ; N . We compute F t(`�ab ) on the

generators of A.

F t(`�ab )(u
r
s) = `�ab (Fu

r
s) = `�ab (Su

s0

r0)

= p�1(R̂�1)s
0a
br0 = p�1(R̂�1)rb

0

a0s = `�b
0

a0(Su
r
s) = (S`�b

0

a0)(u
r
s);

where p = x in the `+-case and p = y in the `�-case. Since both F t(`�ab )
and S`�b

0

a0 are representations of A, we obtain F t(`�ab ) = S`�b
0

a0 . By [4,

Theorem 9. 1] we have

`+r
v S`

�w
s R̂

vb
wc = R̂rv

swS`
�b
v `

+w
c :

Multiplying this relation by Ds
r and noting that Ds

rR̂
rv
sw = rÆvw, we get

Ds
r`

+r
vS`

�w
s R̂

vb
wc = rS`�bv`

+v
c :

Multiplying the latter by (R̂�1)mc
na (D

�1)abD
n
k and using the identity

R̂vb
wc(R̂

�1)mc
na (D

�1)abD
n
k = ÆvnÆwm we obtain

Ds
r`

+r
kS`

�m
s = rS`�bv`

+v
c(R̂

�1)mc
na (D

�1)abD
n
k : (49)

By (10), (49), (R̂�1)jcna(D
�1)ac = r

�1Æjn, and d�1k = dk0, we then have

F t(X�i0j0) = F t
�
(D�1)kl S

�1(`+i0

k )`
�l
j0

�
� (D�1)i

0

j0

= (D�1)kl S
�1(S`+k0

i )S`
�j
l0 �Di

j

= Dl0

k0`
+k0

i S`
�j
l0 �Di

j

= rS`�bv`
+v
c(R̂

�1)jcna(D
�1)abD

n
i �Di

j

= r(X+
bc + Æbc)(R̂

�1)jcna(D
�1)abD

n
i �Di

j

= rX+
bc(R̂

�1)jcna(D
�1)abD

n
i :

This completes the proof of (b). Note that F t : X� ! X+ is bijec-

tive since X+
ab = r

�1F t(X�i0j0)(D
�1)ikR̂

ka
lb D

l
j. By Lemma7.2, F (adb) :=

F (a)dF (b) is a well-de�ned A-module map from �+ to ��. Simi-

larly, F�1 : �� ! �+, F
�1(adb) := F�1(a)dF�1(b) is a well-de�ned

A-module map inverse to F .
(c) Consider now higher order forms. Let � 2 f+;�g and F � denote

F for � = + and F�1 for � = �. Since F � is an A-bimodule map,
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we can extend F � to an algebra map F � : �
� ! �
�� . We prove that

F� = �F on �
2+ . Since both F and � are A-bimodule maps and

�+
A�+ is a free left A-module with basis (�+
A�+)L, it suÆces to

prove this equation for left-coinvariant elements. Let �; � 2 (�+)L. By
(1) and Lemma7.3 we have

F�(�
A�) = F (�(0)
A(� / �(1))) = F (�(0))
AF (� / �(1))

= (F�)(0)
A(F� / (F�)(1)) = �(F�
AF�):

Hence F commutes with the antisymmetriser Ak, k 2 N. The same is

true for F�1. Consequently, F � : �^� ! �^�� is a well-de�ned algebra

map and F F�1 = F�1F = id. Now let us prove assertion (ii). Let

� 2 � k
+(�; �). By Lemma7.3 and the last part of (a), F� 2 � k

�(�
c; �c).

Since F�1 : �^� ! �^+ also satis�es the assumptions of Lemma7.3,

it follows immediately that F�1�� k
�(�

c; �c) is inverse to F �� k
+(�; �).

Remark 7.1. For the B-, C-, and D-series the di�erential calculi

�^+ and �^� are isomorphic (in the strong sense: F0 = id).

Now we are able to �nish the proof of Theorem3.2. By [14, The-

orem 3.2 (iii)] the di�erential d vanishes on �^k
Inv
. Hence Hk

deR(�
^
Inv
) �=

�^k
Inv
. Combining this with Theorem3.1 gives (19). Since �^k

Inv
= � k(0; 0)

it follows from (32) that Hk
deR(�

^) is a direct summand in (18). By

(42), for (�; �) 6= (0; 0) we have the following formulae:

� k
� (�; �) = d� k�1

� (�; �) + @+� k+1
� (�; �);

� k
� (�; �) = d� k�1

� (�; �) + @�� k+1
� (�; �):

(50)

We have to prove that both sums are direct. Since all vector spaces

appearing in (50) are �nite dimensional, it suÆces to compare their di-

mensions. We denote the restriction of a linear map f : �^ ! �^ to the
space � k(�; �) by fk;�;�. By Proposition 7.1 we have rank @��

;k+1;�;� =

rank d
k;�c;�c

�� . Indeed, both d
k;�c;�c

�� and @��
;k+1;�;� are linear mappings

acting on �nite dimensional vector spaces and they are dual to each

other. By Proposition 7.4, d
k;�c;�c

� F = Fd
k;�;�
+ and F is bijective.

We conclude that rank @��
;k+1;�;� = rank d

k;�c;�c

�� = rank dk;�;�� . Since

Hk
deR(�

^
� (�; �)) = f0g, dimker dk;�;�� = rank dk�1;�;�� . Finally we ob-

tain

dim� k
� (�; �) = dimker dk;�;�� + rank dk;�;��

= rank dk�1;�;�� + rank @��
; k+1;�;�:

It follows that the sums (50) are direct. The proof of Theorem3.2 is

complete.
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